
Including realistic upper atmospheres in a wind-farm gravity-wave
model
Koen Devesse1, Luca Lanzilao1, Sebastiaan Jamaer2, Nicole van Lipzig2, and Johan Meyers1

1Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
2Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

Correspondence: Koen Devesse (koen.devesse@kuleuven.be)

Abstract. Recent research suggests that atmospheric gravity waves can affect off-shore wind farm performance. A fast wind-

farm boundary-layer model has been proposed to simulate the effects of these gravity waves on wind-farm operation by Allaerts

and Meyers (2019). The current work extends the applicability of that model to free atmospheres in which wind and stability

vary with altitude. We validate the model using reference cases from literature on mountain waves. Analysis of a reference flow

shows that internal gravity wave resonance caused by the atmospheric non-uniformity can prohibit perturbations in the ABL5

at the wavelengths where it occurs. To determine the overall impact of the vertical variations in the atmospheric conditions on

wind farm operation, we consider one year of operation of the Belgian–Dutch wind-farm cluster with the extended model. We

find that this impact on individual flow cases is often of the same order of magnitude as the total flow perturbation. In 16.5% of

the analysed flows, the relative difference in upstream velocity reduction between uniform and non-uniform free atmospheres

is more than 30%. However, this impact is small when averaged over all cases. This suggests that variations in the atmospheric10

conditions should be taken into account when simulating wind-farm operation in specific atmospheric conditions.

1 Introduction

In recent years, it has been well documented that wind farms form a blockage to the flow in and around them (Bleeg et al.,

2018), thereby displacing the Atmospheric Boundary Layer (ABL). Such displacements can propagate through the overlying

inversion layer and free atmosphere as waves in stably stratified atmospheres, conditions which frequently occur at sea. As15

offshore wind farms in Europe increase in size and installed capacity (WindEurope, 2018), improving the understanding and

simulation of gravity-wave wind-farm interaction becomes crucial to optimizing turbine control and wind farm layout (see, eg.

Lanzilao and Meyers (2021b)).

Previous work on the interaction between gravity waves and wind farms has assumed the free atmosphere to be uniformly

stratified, with a constant background wind (Smith, 2010; Allaerts and Meyers, 2017, 2019). However, for waves with horizon-20

tal scale of a few kilometers, such as those triggered by wind farm blockage, vertical variations of the atmospheric conditions

can drastically influence the pressure feedback they induce (Teixeira et al., 2013). Therefore, the goal of this work is to deter-

mine how variations of the free atmosphere’s properties with altitude affect the interaction between gravity waves and the flow

in the ABL, and overall wind farm performance.
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Allaerts and Meyers (2019) proposed a model focused on the interaction between wind turbines and gravity waves. Based25

on earlier work by Smith (2010), the model explicitly simulates the flow in the ABL as two height-averaged horizontal layers,

and incorporates the free atmosphere as a boundary condition. This boundary condition links variations in ABL height to

the pressure gradients induced by the corresponding gravity waves. In Fourier space, the relation between these height and

pressure perturbations is defined by the stratification coefficient Φ̂. As the model is based on a three-layer representation of the

atmosphere, it is called the Three-Layer Model (TLM).30

Currently, the TLM can only describe uniformly stratified free atmospheres, which places a strong restriction on the atmo-

spheric conditions that can be represented. This work adapts the TLM for flow profiles that vary with altitude, and studies how

these variations change the interaction between the ABL flow and gravity waves. A common approach in gravity wave theory

is to use a piecewise representation of the upper atmosphere, where the profiles of the stratification and the wind speed are split

up in a discrete number of layers (Tolstoy, 1973; Gossard and Hooke, 1975; Baines, 1998; Smith et al., 2002; Teixeira et al.,35

2013; Yu and Teixeira, 2015). We generalize this approach by allowing for an arbitrarily large amount of layers, so that any

atmospheric profile can be accurately analyzed.

It is well known that variations in the atmospheric state can cause wave reflection, which might lead to internal gravity-

wave resonance (Gill, 1982). Using the extended TLM, we examine how this resonance affects the pressure feedback on the

ABL. Extensive research has been performed on internal gravity-wave resonance, with most of it focusing on flow around40

topographies, mountain waves, and the effect on the free atmosphere (Teixeira, 2014). As a result, the vertical displacement is

simply given by the shape of the topography, not by a change in ABL height. In wind farms, this is different: the displacement

is given by a change in ABL depth due to wind farm blockage, in which the induced gravity waves can play an active role. We

therefore set up a qualitative analysis of the feedback loop between ABL flow perturbations and the associated resonant gravity

wave feedback. Finally, in order to estimate the overall effect of vertical variations in the atmospheric conditions, one year of45

operation of the Belgian-Dutch wind-farm cluster is simulated.

The remainder of this paper is organized as follows. Section 2 reviews how gravity waves and the ABL flow interact, and how

the TLM models ABL flow. In Sect. 3, the analytical expressions for the stratification coefficients for non-uniform atmospheres

are derived. To evaluate these, a method for solving the wave equation has to be developed, which is done in Sect. 3.2. Section

4 uses the developed method to analyze the effect of variations of the wind and stability in the free atmosphere on wind-farm50

operation. Finally, the paper concludes with a summary and suggestions for further research in Sect. 5.

2 Gravity wave interaction with wind farms

Wind farms form a blockage to the ABL flowing through and around them, thereby pushing the inversion layer, and the free

atmosphere above, upwards. These displacements can trigger gravity waves, which may influence the ABL flow by inducing

pressure gradients. The first part of this section discusses these induced pressures, while the second part gives an overview of55

how the TLM models ABL flow, and how it incorporates gravity wave effects..
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2.1 Pressure feedback induced by gravity waves

The vertical displacement ηt of the capping inversion topping the ABL leads to two types of atmospheric gravity waves. The

first type, called inversion gravity waves, propagate horizontally along the inversion layer, similar to surface water waves. Due

to the strong stratification in the inversion layer, any vertical displacement ηt of the inversion layer will be counteracted by the60

buoyancy-generated changes in pressure p′1 (Gill, 1982; Smith, 2010):

p′1
ρ̄

= g′ηt (1)

where ρ̄ is the unperturbed density and g′ = g∆θ/θ is the reduced gravity, determined by the potential temperature θ and the

inversion strength ∆θ.

The second type of waves propagates vertically through the free atmosphere above the capping inversion if it is stably65

stratified, as is usually the case. The free atmosphere perceives ηt similarly to large-scale topographies, and internal gravity

waves are generated (Smith, 2010). In return, the internal gravity waves also induce pressure gradients on the ABL. This

pressure feedback is easily expressed by using double Fourier transforms in the horizontal directions (i.e. (x,y)→ (k, l)) of

the displacement and the pressure. For each wavenumber (k, l), the perturbation in the free atmosphere is a plane wave, with

the vertical velocity given by (Nappo, 2012):70

w′(x,y,z) =−ıΩη̂t exp[ı(kx+ ly+mz)] (2)

where Ω=−κ · ū=−(ūk+ v̄l) is the intrinsic frequency of the gravity waves, with ū and v̄ the x and y components of the

background velocity, and where m is the vertical wavenumber of the internal gravity waves. For each separate wavenumber

(k, l), the pressure perturbation p̂′2 of the plane wave is proportional to the ABL displacement η̂t, with the relation determined

by the stratification coefficients Φ̂ (Smith, 2010):75

p̂′2
ρ̄

= Φ̂η̂t. (3)

For uniform free atmospheres, these coefficients are given by (Smith, 2010):

Φ̂ =
ı
(
N2

g −Ω2
)

m
(4)

where Ng =
√

g
θ
dθ
dz is the Brunt-Väisälä frequency, which is constant with height in the uniform case. Further, m can be found

using the dispersion relation (Gill, 1982):80

m2 =
(
k2 + l2

)(N2
g

Ω2
− 1

)
(5)

If Ω2 <N2
g , then m2 is positive, and the waves propagate vertically. If Ω2 >N2

g , then m2 is negative, and the waves become

evanescent. To find Φ, the sign of m has to be known. For propagating waves (m2 > 0), the sign of m is determined by the

radiation condition, which states that the energy flux of a wave, which is directed along ∂Ω
∂m , should be upwards, away from

the perturbation (Baines, 1998). It then follows that: sign(m) =−sign(Ω). For evanescent waves (m2 < 0), the positive root85

has to be chosen for the perturbation to die out with altitude (Smith, 1980).
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Figure 1. Schematic representation of the three-layer model. Figure from D. Allaerts and J. Meyers, Sensitivity and feedback of wind-farm-

induced gravity waves, Journal of Fluid Mechanics, 862, 990-1028 (2019), reproduced with permission.

2.2 Three-layer model

The TLM is based on earlier work by Smith (2010), who first analyzed the impact of gravity waves on wind-farm operation.

It represents the ABL as being neutrally stable and capped by an inversion layer, with the flow above being stably stratified.

Although stably stratified atmospheres have often been modeled this way (Klemp and Lilly, 1975; Durran, 1990; Vosper, 2004;90

Smith, 2007; Sachsperger et al., 2015), Smith was the first to apply such a model to wind-farm operation. His model assumes

that the flow in the ABL does not vary with height, so that the perturbed variables can be replaced by their height averages. As

a result, horizontal flow divergence and convergence will lead to changes in the ABL height. Another assumption is that the

ABL flow is assumed to be hydrostatic. The inversion layer is modelled as a zero order jump in potential temperature ∆θ at

the top of the ABL, and the free atmosphere above is assumed to be uniformly stratified.95

The TLM improves on the model by Smith in several ways, the most important of which is to divide the ABL in two separate

layers. The resulting lower and an upper layer are denoted by subscripts 1 and 2, respectively. The two layers are separated by a

pliant surface, similar to the interface between the ABL and the free atmosphere. The wind-farm forcing terms are added in the

momentum equations for the lower layer, while only affecting the upper layer through interaction through the pliant surface.

For this reason, the lower layer is also called the wind-farm layer. The resulting approximation of the ABL is visualized in100

figure 1. The flow in the two layers is governed by the following two-dimensional depth-averaged linearised momentum and

continuum equations (Allaerts and Meyers, 2019):

ūj,1

∂u′
i,1

∂xj
+

1

ρ̄

∂ (g′ +Φ) ∗ ηt
∂xi

= fcϵij3u
′
j,1 + νt,1

∂2u′
i,1

∂xj∂xj
+

Dij

H1
∆2

1u
′
j −

Cij

H1
u′
j,1 +

Fi

H1
(6)

ūj,2

∂u′
i,2

∂xj
+

1

ρ̄

∂ (g′ +Φ) ∗ ηt
∂xi

= fcϵij3u
′
j,2 + νt,2

∂2u′
i,2

∂xj∂xj
− Dij

H1
∆2

1u
′
j (7)

ūj,1
∂η1
∂xj

+H1

∂u′
j,1

∂xj
= 0 (8)105

ūj,2
∂η2
∂xj

+H2

∂u′
j,2

∂xj
= 0 (9)

The atmospheric base state is governed by the mean depth-averaged wind speeds ūi,1 and ūi,2 (with i= 1,2) and the layer

heights H1 and H2 of the wind-farm and upper layer, respectively, and u′
i,1, u′

i,2, η1, and η2 represent the perturbations
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to this reference state. The total inversion layer displacement ηt is given by the sum of η1 and η2. Following Allaerts and

Meyers (2019), H1 is taken to be twice the hub height of the turbines throughout this work. Further, ∆2
1u

′
j = u′

j,2 −u′
j,1 is the110

perturbation of the velocity difference between the wind-farm and the upper layer, linked to the perturbation of the friction at

the interface by the matrix Dij . Similarly, the matrix Cij relates the perturbation of the friction at the ground to the velocity

perturbations in the lower layer. Finally, fc is the Coriolis parameter, and Fi is the wind turbine forcing term.

In equations 6–9, the pressure has been substituted using the equations discussed in Sect. 2.1. As the ABL is assumed to be

hydrostatic, the pressure perturbation is equal to the pressure induced by the gravity waves generated by the changes in ABL115

height ηt = η1 + η2:

p′

ρ̄
= (g′ +Φ) ∗ ηt (10)

where ∗ is the convolution operator. In this way, the TLM incorporates the gravity-wave effects through a pressure boundary

condition, which is determined by the stratification coefficients Φ. These coefficients do not depend on the values of ηt or p′,

and can thus be calculated separately from the set of equations 6 to 9. To avoid the computationally expensive convolution,120

the TLM is solved using a spectral method with a Fourier–Galerkin discretisation (Allaerts and Meyers, 2019). Finally, we

note that the hydrostatic assumption in the boundary layer (∂p∂z = 0) is only reasonable as long as pressure effects within the

ABL are negligible compared to those of the gravity waves. In particular in cases where a capping inversion is absent, we have

noticed that this assumption may not be valid, which can lead to unphysical perturbations. Therefore, in the current work, we

will only consider atmospheric cases with a capping inversion. Extension of the boundary layer equations (6, 7) to include for125

hydrodynamic effects is a topic of further research.

The turbines are represented individually using an actuator disk model. To incorporate their interactions, the TLM is cou-

pled with a wake model, which in this work is a Gaussian wake model coupled with linear superposition of velocity deficits

(Bastankhah and Porté-Agel, 2014; Niayifar and Porté-Agel, 2016).The forces fi,k for each individual turbine k are written

as a first-order Taylor expansion around the background inflow velocity ūfs, in order to incorporate the effect of the velocity130

perturbation (Allaerts and Meyers, 2019):

fi,k(ufs) = fi,k(ūfs)+Jf,k
i (u′

fs) (11)

where Jf,k
i is the Jacobian of fi,k. The background inflow velocity is taken to be the mean wind speed in the wind farm layer,

while the velocity perturbation is evaluated at a distance of 10D upstream of the farm, where D is the diameter of the turbines.

Finally, the turbine forces are filtered on the numerical grid with a Gaussian filter (Allaerts and Meyers, 2019):135

Fi =

Lx∫
0

Ly∫
0

G(x−x′,y− y′)

Nt∑
k

fi,kδ(x−xk,y− yk)dx
′dy′ (12)

where Lx ×Ly is the size of the domain, (xk,yk) denote the positions of the turbines, and G(x−x′,y− y′) is a 2D Gaussian

kernel (Allaerts and Meyers, 2019):

G(x,y) =
1

πL2
exp

(
−x2 + y2

L2

)
. (13)
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We use a filter length of L= 1km.140

3 Extension to vertically non-uniform free atmospheres

In reality, the free atmosphere is not uniform, and the stratification strength and wind speed can strongly depend on altitude.

This will of course impact internal gravity wave propagation through the atmosphere, and thus the pressure feedback of these

waves in the ABL. Currently, the TLM does not incorporate this, as the simplified version of the internal wave equation on

which equation 4 is based is only valid for uniformly stratified free atmospheres with a constant wind velocity. This section de-145

rives expressions for the stratification coefficients for vertically non-uniform atmospheres, where both the stratification strength

and wind speed can vary.

3.1 Gravity waves in vertically non-uniform flows

The internal gravity wave equation in vertically non-uniform atmospheres with continuous background velocities is (Teixeira,

2014):150 [
D2

Dt2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− D

Dt

∂2

∂z2

(
D

Dt

)
+N2

g

(
∂2

∂x2
+

∂2

∂y2

)]
w′ = 0 (14)

where D
Dt is the intertial derivative, which for steady systems simplifies to D

Dt = ūi
∂

∂xi
, and where w′ is the vertical velocity

perturbation of the wave. For plane waves, the solution for this equation can be written as (Teixeira, 2014):

w′(x,y,z) =W (z)exp[ı(kx+ ly)]. (15)

Equation 14 then reduces to the Helmholtz equation (Gill, 1982):155

d2

dz2
W (z)+m2W (z) = 0 (16)

where m2 is given by:

m2 = (k2 + l2)

(
N2

g

Ω2
− 1

)
−Ω−1 d

2Ω

dz2
. (17)

It is important to note that m2 is not a constant, as it depends on the altitude through Ng(z) and Ω(z). The above derivation is

only valid if the vertical background velocities are continuous. In points where the background velocities or their derivatives160

to altitude have a discontinuity, w′ itself can be discontinuous, as will be elaborated in Sect. 3.2.2.

The relation between w′ and p′ is given by:[
D

Dt

∂

∂z
−
(
∂ū

∂z

∂

∂x
+

∂v̄

∂z

∂

∂y

)]
w′ =

(
∂2

∂x2
+

∂2

∂y2

)
p′

ρ̄
(18)

For plane waves, this relation is:

p̂′

ρ̄
=

ı

k2 + l2

(
Ω
dW

dz
− dΩ

dz
W

)
(19)165
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Using W (H) =−ıΩη̂t (cf. equation 2), the definition of the stratification coefficient then leads to:

Φ̂ =

[
Ω

k2 + l2

(
Ω
dW

dz
− dΩ

dz
W

)]∣∣∣∣
z=H

(20)

It is easily verified that the above equation and the expression for m2 (equation 17) simplify to equations 4 and 5 if the free

atmosphere is uniformly stratified.

3.2 Piecewise methods170

To evaluate the expression for the stratification coefficients derived in the previous section, the Helmholtz equation for vertically

non-uniform atmospheres has to be solved. This is no longer trivial, as the vertical wavenumber now varies with altitude. In

earlier studies, one of the main approaches to solving the Helmholtz equation has been the so-called piecewise or multilayer

methods (Tolstoy, 1973; Gossard and Hooke, 1975; Baines, 1998; Smith et al., 2002; Teixeira, 2014; Pütz et al., 2019). These

techniques are based on modeling the continuously varying atmosphere as a discrete set of layers, in which the flow’s properties175

allow for easy computation of the internal wave field. This approach is also commonly used in acoustics, where it is called the

FFP method (Salomons, 2001). To avoid confusion with the lower and upper layers of the TLM, the layers used by piecewise

methods will be called sublayers from now on.

3.2.1 General principle

The basic principle of piecewise methods is to represent the atmosphere as a discrete number of sublayers (Tolstoy, 1973;180

Gossard and Hooke, 1975; Baines, 1998). In these sublayers, the atmosphere’s properties should vary in a such way that

solutions to the Helmholtz equation are easily found, while still approximating the actual profiles. By increasing the number

of sublayers, most aspects of the real flow’s behavior can be accurately simulated. A suitable approach is to use sublayers in

which m2 has simple profiles, for which analytic solutions can be found. In this work, the atmosphere will be approximated

in a piecewise-uniform fashion, so that m2 is piecewise constant, and given in each sublayer by equation 5. The internal wave185

field in each sublayer is a superposition of exponential functions, corresponding to upwards and downwards traveling waves.

The main advantage of this method is that realistic wavepatterns can be obtained with a relatively small number of sublayers.

Within a sublayer, only two degrees of freedom have to be determined. Another advantage compared to other methods such as

WKB theory is that piecewise methods can account for wave reflection, although they can not incorporate weakly non-linear

effects (Gill, 1982).190

As the number of sublayers has to be limited for computational reasons, not all of the atmosphere can be approximated.

An appropriate height Hn has to be chosen, above which the atmosphere is considered uniform, so that W (z > Hn) is an

exponential function. In general, the piecewise method can be summarized by the following equations (Tolstoy, 1973; Pütz
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et al., 2019):

m2(z)≈ m̃2(z)≜



m2
0, H < z <H1

...
...

m2
j , Hj < z <Hj+1

...
...

m2
n, Hn < z

(21)195

W (z)≈ W̃ (z)≜



W0(z) =W0+ exp(ım0z)+W0− exp(−ım0z), H < z <H1

...
...

Wj(z) =Wj+ exp(ımjz)+Wj− exp(−ımjz), Hj < z <Hj+1

...
...

Wn(z) =Wn+ exp(ımnz)+Wn− exp(−ımnz), Hn < z

(22)

where Hj denote the altitudes of the interfaces between sublayers, and n is the number of interfaces between the sublayers.

The values for the 2(n+1) coefficients Wj±, which determine the internal gravity wave field, depend on additional conditions

at the boundaries and sublayer interfaces, which will be discussed in Sect. 3.2.2. The atmospheric variables are evaluated in200

the middle of each sublayer, so that m̃2
j = [m(Hj +∆Hj/2)]

2. This results in second-order convergence when approximating

continuously varying atmospheres, as shown in appendix A. Once the coefficients Wj± have been determined, equation 20 for

the stratification coefficients can be evaluated as:

Φ̂ =
Ω0

k2 + l2

(
Ω0ım0 (W0+ −W0−)−

dΩ0

dz
(W0+ +W0−)

)
(23)

3.2.2 Boundary and sublayer interface conditions205

The values of the coefficients Wj± are determined by the displacement of the inversion layer, the boundary conditions imposed

at the interfaces between the sublayers, and the radiation condition. The stratification coefficients are calculated in Fourier

components by evaluating the response to a change in ABL height ηt. For each wavenumber k, l, the relation between η(z) =

η̂(z)exp ı(kx+ ly) and W (z) is given by (Nappo, 2012):

D

Dt
η(z) =−ıΩη̂(z)exp ı(kx+ ly)

=W (z)exp ı(kx+ ly) (24)210

This leads to a boundary condition for W0(H):

−ıΩ0η̂t =W0+ exp(ım0z)+W0− exp(−ım0z) (25)

This relation is already incorporated in equation 20. The displacement η and the pressure perturbation p′ have to be continuous

over the interfaces between sublayers (Gossard and Hooke, 1975; Klemp and Lilly, 1975; Gill, 1982; Baines, 1998; Smith
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et al., 2002; Vosper, 2004). For each interface at z =Hj between the sublayers j− 1 and j, this leads to two conditions that215

Gossard and Hooke (1975) call the kinematic and dynamic conditions, respectively:

ηj−1 (Hj) = ηj (Hj) (26)

p′j−1 (Hj) = p′j (Hj) (27)

Combining equations 24 and 19 allows the kinematic and dynamic conditions to be written in terms of W (z):220

Wj−1

Ωj−1

∣∣∣∣
z=Hj

=
Wj

Ωj

∣∣∣∣
z=Hj

(28)

Ωj−1

(
Ωj−1

dWj−1

dz
− dΩj−1

dz
Wj−1

)∣∣∣∣
z=Hj

= Ωj

(
Ωj

dWj

dz
− dΩj

dz
Wj

)∣∣∣∣
z=Hj

(29)

Pütz et al. (2019) argue that if the background velocities change continuously with altitude, the kinematic and dynamic interface

conditions should be replaced by conditions ensuring that the vertical velocity is continuous:225

Wj−1|z=Hj
= Wj |z=Hj

(30)

dWj−1

dz

∣∣∣∣
z=Hj

=
dWj

dz

∣∣∣∣
z=Hj

(31)

since evaluating Ω and its derivative evaluated at the center of each sublayer in equations equations 28 and 29, as the use of a

constant wavenumber implies, results in a discontinuous profile for W . As Pütz et al. (2019) found, these discontinuities cause230

the piecewise method to converge to a different solution as solving equation 16 with a simple finite difference solver. However,

the physical reasoning behind the kinematic and dynamic boundary conditions is generally valid, indicating that they should

always be used. The difference between the setup of Pütz et al. (2019) and the older literature is solved if in equations 28 and

29 not only Wj−1 and Wj are evaluated at z =Hj , but Ωj−1 and Ωj as well. While in the piecewise constant method m2
j

should be taken at the center of each layer and held constant throughout, the background velocities and their derivatives should235

be evaluated at the interfaces when setting up the interface conditions. If changes in background velocity within layers is taken

into account in this way, the kinematic and dynamic matching conditions will automatically simplify to those proposed by Pütz

et al. (2019) when appropriate.

Above the highest sublayer, the atmosphere is assumed to be uniformly stratified. This results in the same situation as dis-

cussed in Sect. 2.1, with the upper boundary condition determining the sign of m in the propagating regime. For the propagating240

and evanescent regimes respectively, the root is chosen so that the radiation condition is satisfied, or that the perturbation dies

out with altitude.
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Combined with the radiation condition applied at height Hn, equations 25, 28, and 29 provide 2(n+1) relations, which is

enough to solve for Wj±. As the equations are linear, and the kinematic and dynamic equations at each interface only involve

the wave fields in the adjacent sublayers, the system of equations for each wavenumber can be solved as a banded matrix of size245

2(n+1) with a bandwidth of five. Solving the system has a computational complexity of O(n). The total computation for a

single profile of m2(z) with n= 100, including the building of the matrix, takes roughly 0.4s on a personal laptop with 16GB

of RAM and an Intel core i7 2.60GHz, using scipy routines sped-up with the numba package (Lam et al., 2015; Virtanen

et al., 2020). To determine the pressure boundary condition in the TLM, the stratification coefficients for all the different

wavenumbers have to be calculated, leading to a total complexity of O (NxNyn). Finally, we emphasize that all stratification250

coefficients can be precomputed, as their values do not depend on the solution of the TLM. Once identified, the values of Φ̂

can be used in equation 10 to set the pressure boundary condition in the TLM.

3.2.3 Inversion and critical layers

If there are inversion layers in the free atmosphere, these can be modeled by discontinuities in θ corresponding to the inversion

strengths ∆θ. This can be incorporated in piecewise methods by adding g′ = g∆θ

θ
to the right-hand side of equation 27 (Baines,255

1998).

As the wind can vary, the situation can arise where ūg =−v̄gk/l, so that the intrinsic frequency Ω= 0. In a reference frame

moving with the wind speed, the frequency of the waves is then zero, and the mean flow is no longer perturbed. It is clear

from equation 17 that this corresponds to a singularity. The height at which this occurs is called a critical level, and exactly

what happens is hard to predict with linear theory. In general, the wave disappears, and the energy it carried is absorbed by260

the mean flow (Gossard and Hooke, 1975; Gill, 1982; Baines, 1998). Therefore, critical levels are modelled as fully absorbing

sublayers, as is commonly done in literature (Smith et al., 2002; Wells and Vosper, 2010). This is implemented by applying

the radiation condition at interface j when Ω changes sign across interface j+1, or becomes zero in sublayer j+1. Since

there is no difference for the flow below the critical level between wave energy being absorbed aloft or just radiating outward

indefinitely, this is equivalent for our purposes.265

3.3 Verification

To verify the implementation of the piecewise constant method, it was compared to a second-order finite difference (FD)

code with a central difference scheme on various continuously varying background velocities and buoyancy frequencies. The

piecewise method consistently outperformed the FD code, achieving second order convergence as expected through the proof

in appendix A, and having small errors even at coarse grids.270

We also reproduced results from Wells and Vosper (2010), who calculated the linear gravity response for an idealized

atmosphere to a small 2D ridge, described by:

h=
hr

(x/Lr)
2
+1

(32)
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Figure 2. Idealized upper atmosphere velocity (a) and Brunt-Väisäla frequency (b) used by Wells and Vosper (2010), and the vertical velocity

field as calculated with the piecewise constant method (black lines) and as found by Wells and Vosper (2010) (grey lines) (c). The contour

interval is 0.01 m/s, and the solid and dashed lines denote positive and negative values respectively.

where hr = 10m and Lr = 10km. These values were chosen so that the effects of non-linearity would remain small (Wells and

Vosper, 2010). The vertical velocity perturbation was computed on a 1000km long domain with 2048 gridpoints, a 1D version275

of the grid that will be used in Sect. 4, and up to a height of 20km with a grid spacing of 125m, which is comparable to what

will be used in Sect. 4.3. The idealized background velocity and Brunt-Väisäla frequency profiles, as well as the gravity wave

response, are shown in Figure 2. The contour plots agree fairly well with those obtained by Wells and Vosper (2010), indicating

that the piecewise method is correctly implemented, and suited to this application. This test case will be further discussed in

Sect. 4.280

Wells and Vosper (2010) also analysed the hydrostatic drag response to the same ridge for atmospheres with a two-layer

buoyancy-frequency structure. This is a classic test case, and similar set-ups have been discussed by Gill (1982), Leutbecher

(2001), and Teixeira and Argaín (2020), among others. Wells and Vosper (2010) considered a case where the background wind

ū(z) is constant, and one where it is given by:

ū(z) = u0 +u1 sin

(
πz

2zi

)
(33)285

where zi = 10km. In the constant wind case, the drag is computed for a range of u0. In the case with vertical wind shear, it

is computed for a range of u1, with u0 kept at 5m/s. In reproducing their results, we used a step profile for the Brunt-Väisäla

frequency:

Ng(z) =

 N1, z < zi

N2, z > zi
(34)

where N1 = 0.01s−1 and N2 = 0.02s−1. Our results, obtained on the same grid as above with our method adapted to the290

hydrostatic regime, and those obtained by Wells and Vosper (2010), and Leutbecher (2001) for the constant wind case, are

shown in figure 3. Again, the good agreement indicates that the multilayer method performs well. An overview of all the upper

atmospheric profiles used for verification is given in table 1.
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Table 1. An overview of the different upper atmospheric flow profiles used for verification. The upper atmosphere set up by Wells and Vosper

(2010) is also used in Sect. 4.1 and 4.2.

Upper atmospheric profiles u(z) N(z)

Wells and Vosper (2010) Figure 2, left Figure 2, middle

Two-layer Brunt-Väisäla frequency, constant wind Constant Eq. 34

Two-layer Brunt-Väisäla frequency, varying wind Eq. 33 Eq. 34
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Figure 3. Mountain wave drag on a small ridge with a two-layer Brunt-Väisäla frequency profile and constant background wind (a) and

vertical wind shear (b), normalized by the drag for constant background profiles. The black lines with squares show our results, in which the

wave drag is normalized with the drag for constant background wind u0 and stratification strength N1. The blue lines with circles show the

results of Wells and Vosper (2010), and the red line with triangles in the left figure shows the results of Leutbecher (2001).

4 Effects of vertically varying wind and stability

By using the piecewise-constant method developed in Sect. 3.2 to evaluate the stratification coefficients, the TLM can now295

take the variation of the stratification strength and wind speed with altitude into account. The impact of this non-uniformity on

the interaction between gravity waves and wind farms is now analysed in three ways. In Sect. 4.1, the impact of atmospheric

profile variations on the stratification coefficients is analyzed by comparing Φ̂ for the idealized atmosphere used in Sect. 3.3 to

the Φ̂ for a uniform upper atmosphere. The physical phenomenon causing the differences is identified as internal gravity wave

interference.300

We further investigate how this influences the interaction between wind farms and gravity waves. To this end, Sect. 4.2

discusses an example case of ABL flow with a uniform upper atmosphere from Allaerts and Meyers (2019). By combining

this case with the atmospheric profiles analyzed in previous sections, we investigate the effect of vertical variations in the

atmospheric conditions on wind-farm gravity-wave interaction. Finally, Sect. 4.3 presents a case study that estimates the overall

impact of such variations by simulating one year of operation of the Belgian–Dutch offshore wind-farm cluster.305
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Figure 4. The stratification coefficients for a uniform atmosphere with U = 20.1m/s and Ng = 0.0113s−1 (a), the stratification coefficients

(b) and the gravity wave resonance parameter (see equation 35) (c) for the vertical non-uniform atmosphere of Wells and Vosper (2010) used

in Sect. 3.3. Only k < 1km−1 is shown, so that the important details are clearly visible. Since this is a 2D case, the transversal wavenumber

l is zero. Above k = 0.408km−1, the gravity waves become evanescent within some sublayers, leading to oscillations in A that do not

correspond to resonant behaviour.

4.1 Stratification coefficients

To determine the effects of vertical non-uniformity on the pressure feedback of internal gravity waves, the stratification coeffi-

cients are calculated for the upper atmosphere used by Wells and Vosper (2010), shown in figure 2. The same grid as in Sect.

3.3 is used. The coefficients Φ̂ are calculated for both the original non-uniform as well as for a uniform atmosphere. The latter

was obtained by height-averaging the profiles of the velocity and the Brunt-Väisäla frequency, resulting in U = 20.1m/s and310

Ng = 0.0113s−1. Figure 4 shows the results. Only k < 1km−1 is shown, so that the important details are clearly visible. Since

this is a 2D case, the transversal wavenumber l is zero. Comparing the two profiles for ||Φ̂||, it is clear that the vertical non-

uniformity has a large impact on the stratification coefficients, with two peaks appearing at k ≈ 0.36km−1 and k ≈ 0.72km−1.

We will now show that these changes in the profile of ||Φ̂|| are caused by resonance in the free atmosphere.

4.1.1 Internal wave resonance315

While in a uniform atmosphere the wind farm can only trigger waves with an upwards group velocity, changes in the strati-

fication and wind speed can cause waves to reflect. This allows both up- and downgoing waves to propagate throughout the

atmosphere. As up- and downgoing internal gravity waves pass through each other, they interfere, potentially causing reso-

nance. The resulting large wave amplitudes can drastically affect the pressure feedback of the waves (Teixeira, 2014). The

ratio A between the mean wave energy at a given wavenumber for atmospheric profile with and without vertical variations is320

an effective measure for gravity wave resonance, as long as the waves are in the propagating regime (Gill, 1982). It is easily

evaluated numerically using the following expression:

A=

Hn∫
H

eHD(z)dz ·

 Hn∫
H

eU (z)dz

−1

, (35)
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where e is the sum of the kinetic and potential energy densities (Gill, 1982):

e=
1

2
ρ̄
(
u′2 + v′2 +w′2

)
+

1

2
g2ρ′2/ρ̄N2

g . (36)325

For a sublayer in a piecewise-constant method, the integrals are straightforward to determine analytically, allowing A to be

evaluated.

Figure 4 shows A for the atmosphere of Wells and Vosper (2010). It is clear that ||Φ̂|| and A have a similar profile, with

the same peaks occurring at k ≈ 0.36km−1 and k ≈ 0.72km−1. Above k = 0.408km−1, the gravity waves become evanescent

within some sublayers, leading to oscillations in A that do not correspond to resonant behaviour. Despite this, it’s clear from330

the figure that the profiles of ||Φ̂|| and A follow the same pattern, showing that the pressure feedback is largely determined by

constructive and destructive interference of the internal gravity waves.

4.2 Gravity-wave ABL interaction

We investigate how variations in the wind and stability changes the effects wind-farm operation has on the ABL flow by

revising an example case used by Allaerts and Meyers (2019). By combining this case with the non-uniform upper atmosphere335

used in the previous sections, we identify the mesoscale flow perturbations triggered by the wind farm. One of these changes

caused by the variations in the atmospheric conditions — the increase in the appearance and strength of resonant lee waves —

is further analyzed.

4.2.1 Example cases

To analyze how the changes in the stratification coefficients impacts the flows around wind farms, a flow case discussed earlier340

by Allaerts and Meyers (2019) are analyzed. This example case is simulated once with uniform upper atmospheres, and once

with the upper atmosphere discussed in Sect. 3.3 and 4.1.

The example case is set up to have a Froude number of Fr = 1.1, with the Froude number given by (Allaerts and Meyers,

2019):

Fr =
ūB√
g′H

, (37)345

where ūB is a velocity scale for the ABL (Allaerts and Meyers, 2019):

ūB =

(
H1

H

1

ū2
1

+
H2

H

1

ū2
2

)−1/2

. (38)

The Froude number represents the ratio of the advection terms in the momentum balance to the pressure gradient generated

by the inversion waves (Durran, 1990). It is also a measure for the ratio of the wind speed to the velocity of inversion waves,

and therefore determines whether or not inversion waves can travel upstream from a stationary perturbation. This leads to the350

classification of flows as being either subcritical Fr < 1, when inversion waves can affect the upstream flow, or supercritical

Fr > 1, when they can not (Smith, 2010). Allaerts and Meyers (2019) analyzed two cases: one is subcritical, with Fr = 0.9,

while the other is supercritical, with Fr = 1.1. Here, we focus on the supercritical case.
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Table 2. Flow parameters of the flow case based on the one used by Allaerts and Meyers (2019). The atmospheric state corresponds to a PN

of 1.1, and Fr of 1.1. For the vertically non-uniform case, the upper atmospheric profiles of Wells and Vosper (2010), shown in figure 2,

were used.

Formula Definition Value Value used by Allaerts and Meyers (2019)

h∗ Non-dimensional boundary layer height 0.15 0.15

z̄0 Non-dimensional surface roughness length 10−4 10−4

g′H/Au2
∗ Inversion parameter 0.71 1.04

N/fc Brunt-Väisäla frequency to Coriolis parameter 113 58

The example case is set up as follows. The mean flow in the two layers of the ABL is based on the analytical boundary

layer model of Nieuwstadt (1983), with a cubic eddy viscosity profile ντ = κu∗z(1− z/H)2 and the Von Kármán constant355

κ= 0.41 (Allaerts and Meyers, 2019). This model finds a velocity profile given a non-dimensional surface roughness length

z̄0 = z0/H and non-dimensional boundary layer height h∗ =Hfc/u∗. Combined with the stratification parameters g′ and

Ng , this gives all the inputs required for the TLM. Allaerts and Meyers (2019) presume a conventionally neutral boundary

layer, determining these stratification parameters with the non-dimensional groups Ng/fc and g′H/Au2
∗, where A= 500 is an

empirical constant (Csanady, 1974; Tjernstrom and Smedman, 1993). Since we want to analyze the impact vertical variations360

in the upper atmospheric profile have on the flow, the original inputs used by Allaerts and Meyers (2019) are altered so that the

upper atmosphere corresponds to the one analyzed in Sect. 4.1. The correct geostrophic wind and Brunt-Väisäla frequency are

obtained by modifying u∗ and Ng/fc respectively, and g′H/Au2
∗ is changed so that the final result still has a Froude number

of 1.1. H is increased so that h∗ and z̄0 remain the same. The inputs are summarized in table 2. Finally, the flow in the lower

layer is aligned with the x-direction.365

Table 3 gives an overview of the wind-farm configuration used by Allaerts and Meyers (2019), which is chosen to be

comparable to the Belgian–Dutch wind-farm cluster in area and installed capacity. The turbines are placed in a staggered

pattern with respect to the x-direction, and the relative spacing is equal in the x- and y-directions. The simulations were

performed on a 1000 km by 400 km grid, with 2000 by 800 gridpoints, which is the same as the grid spacing as was used in

Sect. 3.3. For the vertically non-uniform simulation, the same vertical grid as in Sect. 3.3 and 4.1 is used.370

The results of the uniform and non-uniform simulations are shown in figure 5. When comparing the results, it’s clear that

the mesoscale disturbances are much larger in the non-uniform case, with a stronger reduction of the farm inflow velocity. The

farm’s effects also spread out in the transversal directions, as V-shaped patterns appear over large distances. Finally, the wind

farm seems to trigger strong lee waves in its wake. These waves also appear in the reference case, although they are weaker

there.375
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Table 3. Wind farm configuration of the reference flow cases, as analyzed by Allaerts and Meyers (2019).

Configuration Value

Wind-farm length 20 km

Wind-farm width 30 km

# turbine rows 18

# turbine columns 27

Rotor diameter 154 m

Thrust coefficient 0.8

Relative turbine spacing 7.21
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Figure 5. Planform view of the inversion layer displacement ηt (left), pressure perturbation p′ (middle), and velocity reduction in the lower

layer u′ (right) in the reference uniform (top) and vertically varying (bottom) flow cases. The wind-farm region is indicated by the black

rectangles.

4.2.2 Resonant lee waves in the ABL

We further analyse the lee waves that appear in figure 5, and show that they are associated in this case to internal wave reflection.

We follow the ideas developed by Allaerts and Meyers (2019) by analyzing the equation for the total displacement ηt. When

the wind in the ABL is aligned with the x-axis (v̄1 = v̄2 = 0), that equation corresponds to (Allaerts and Meyers, 2019):(
−1+Fr−2 +P−1

N

Φ

GNg

)
∗ ∂2ηt
∂x2

+

(
Fr−2 +P−1

N

Φ

GNg

)
∗ ∂2ηt
∂y2

=
H1

ū2
1

∇ ·RHS1 +
H2

ū2
2

∇ ·RHS2, (39)380

where G is the geostrophic wind velocity. Furthermore, RHS1 and RHS2 are the right-hand sides of the equations 6 and 7,

respectively, and only depend on ηt through the turbulent viscosity, which is a relatively weak effect (Allaerts and Meyers,
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2019). As discussed before, the Froude number Fr indicates the strength of the inversion waves. The second non-dimensional

group PN governs the pressure induced by internal gravity waves, and is given by:

PN =
ū2
B

GNgH
. (40)385

It reflects the fact that the pressure induced by a vertical displacement scales linearly with GNg in the hydrostatic regime.

It is then clear that the left-hand side of equation 39 represents the forcing induced by flow advection
(
−∂2ηt

∂x2

)
and the

corresponding gravity waves
((
Fr−2 +P−1

N Φ/GNg∗
)
∇2

Hηt
)
. These are balanced by the right-hand side of the equation,

which represents the other terms in the momentum equations. If the advection terms and the pressure contributions from the

gravity waves balance each other, the left hand side of equation 39 becomes zero. This corresponds to a resonant state, as ηt390

can be non-zero without external forcing, which explains the lee waves that appear in figure 5.

The left-hand side of equation 39 is easily expressed in Fourier components, leading to the definition of the two-dimensional

lee-wave resonance parameter R:

R= (cosλ)
2 −Fr−2 − H

u2
B

Φ̂, (41)

where λ is the angle the horizontal wavevector makes with the k-axis, so that (cosλ)2 = k2/(k2 + l2). The parameter R is a395

non-dimensional parameter indicating the flow’s resistance to the occurence of two-dimensional lee-wave resonance. If R= 0,

the pressure perturbations induced by ηt ̸= 0 and the accompanying gravity waves balance the advection terms, and resonant lee

waves appear. Equation 41, in combination with equation 4, shows that for uniform upper atmospheres, this type of resonance

can only take place if the internal gravity waves are evanescent, as Φ̂ has to be real for R to be zero. Physically, this corresponds

to propagating waves not being able to trap the perturbation energy below the capping inversion (Vosper, 2004). In contrast,400

the wave reflection in vertically non-uniform atmospheres can cause part of the wave energy to be trapped by being reflected

back. This corresponds to the stratification coefficients as given by equation 23 potentially having a real component, even in

the propagating regime. The additional constraint found by Allaerts and Meyers (2019), that the flow has to be subcritical, is

also not necessary when the waves can be reflected.

In order to apply this theory to the case from Sect. 4.2.1, figure 6 shows the wavenumber spectra for ηt and R. Figure 6 shows405

that low values of ||R|| correspond to high values of ||η̂t||, indicating resonant lee waves in the ABL. The variations in wind

and stability in the upper atmosphere can cause ||R|| to decrease several orders of magnitude in the propagating wave regime.

This happens when the internal gravity wave interference is destructive, which lowers the vertical energy flux of the waves

considerably. This keeps the perturbation energy contained in the lower atmosphere, leading to low ||R||, which for uniform

atmospheres only happes in the evanescent wave regime (Vosper, 2004; Allaerts and Meyers, 2019). In contrast, constructive410

interference can lead to very large values for ||Φ̂||, and thus for ||R||. Furthermore, when ||R|| ≫ 0, a large imbalance exists

between the advection and pressure forces in the ABL. Changes in ABL height of the wavelengths at which this occurs cannot

exist in an equilibrium system without external forcing. This is clearly visible in figure 6, as high values of ||R|| correspond to

low values of ||η̂t||. Internal gravity wave resonance thus prohibits large displacements of the inversion layer at the wavelengths

at which it occurs, by creating large pressure gradients that can not be counteracted by the flow acceleration.415
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Figure 6. ||η̂t||/H (left) and ||R|| (right) for the reference flow case with a uniform (top) and a non-uniform free atmosphere (bottom). Only

the wavenumbers ||k|| ≤ 1.26km−1 and ||l|| ≤ 1.26km−1 are shown, so that the important details are clearly visible. The left column shows

parts of the Fourier transforms of the left column of figure 5.

While the above analysis explains how vertical variations in the atmospheric profile change the interaction between internal

gravity waves and the ABL flow, it does not offer insight on how to predict the resulting impact on wind farm performance. It is

not clear what parameters could describe this. Extensive research has been done on internal gravity wave resonance, with most

of it focusing on flow around topographies. However, this has to be used with caution, as the overall flow is then analyzed in the

context of mountain wave drag, where the height displacement is given by the shape of the terrain (Teixeira, 2014). In contrast,420

the wind-farm forcing leads to this displacement through its interaction with the ABL. Additionally, it is itself influenced

by the mesoscale effects it triggers, leading to an additional feedback loop. Parameters successfully describing internal wave

resonance may therefore not be able to predict how vertical non-uniformity will impact the interaction with wind-farms.

4.3 Overall impact

To determine the impact of varying wind speeds and stability on wind-farm energy production, we follow the approach of425

Allaerts et al. (2018) by simulating one year of wind-farm operation of the Belgian-Dutch wind-farm cluster. This analysis

is performed with both uniform and non-uniform upper atmospheres, and the two are compared. The TLM input is based on

ERA5 reanalysis data of the year 2016
::::
from

::::::::::::::::::
Hersbach et al. (2018), which is available at hourly frequency, resulting in 8784

flow cases. Like Allaerts et al. (2018), we use data from the grid point nearest to the wind-farm cluster, at 51.6N 3.0E, and the

same approach in determining the TLM input from the atmospheric data. We further assume that all turbines are DTU 10 MW430
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Figure 7. The atmospheric profiles of potential temperature (a), velocity in the x- (b) and y-direction (c). The blue crosses are the ERA5

data, and the black lines are the inputs to the TLM, showing the piecewise-constant approximation made in the discretization.

reference turbines, a commonly analyzed model for which the power curve is readily available (Bortolotti et al., 2019), and

place them within the same trapezoidal area as Allaerts et al. (2018). To ensure that we obtain the same total installed capacity

of 3.8GW, we scale the number of turbines and the turbine spacing from 475 and 7.36 to 380 and 8.23 respectively. The thrust

coefficient of the turbines is set based on the height-averaged background velocity in the wind-farm layer of the TLM.

The simulations were performed on a 2000 by 2000 grid, on a 1000km by 1000km domain, the same grid density as435

in the previous sections. Variations in the atmospheric profiles were taken into account up to the tropopause. Within the

troposphere, the potential temperature and velocity profiles were modelled as first and third order splines, respectively, through

the ERA5 data points, around which the sublayers were spaced as well, resulting in 30 to 50 sublayers for each case. The

tropopause altitude and the stratification in the stratosphere were determined with a 2-line, piecewise linear regression fit on

the temperature profiles between the ABL height and 15km. The velocity in the stratosphere was then determined by height-440

averaging the profile from the tropopause up to 15km. As an example, figure 7 shows the profiles of θ, u, and v for the upper

atmosphere of 12am May 1st, 2016.

From the 8746 cases, we only use those where the atmosphere is statically stable at every altitude in the free atmosphere.

Additionally, the cases without capping inversion, (cf. earlier discussion following equation 10 in Sect. 2.2), or with a capping

inversion situated lower than twice the turbine hub height were left out, leaving 3890 cases. This filtering was necessary, as for445

the removed cases the assumptions made in the derivation of the model are not valid, as discussed in Sect. 2.2. The results of the

simulations are shown in figure 8, and summarized in table 4. On average, the difference between the results with non-uniform

and uniform upper atmospheres is small. Despite this however, the impact on individual cases is often significant. In 16.5%

of the analyzed cases, the difference between the uniform and the non-uniform inflow perturbation was more than 30% of the

uniform perturbation case. We therefore conclude that vertical variations of the upper atmospheric profiles are important to450

take into account when analyzing individual flow cases.
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Table 4. Average perturbations over all the analyzed flow cases for both uniform and non-uniform upper atmospheres.

Average over analyzed flow cases Uniform Non-uniform

Maximum ηt/H 10.59% 10.61%

Inflow ∆u1/ū1 4.05% 4.08%
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Figure 8. The maximum capping inversion displacement (a) and the inflow velocity perturbation (b) for all analyzed cases with both uniform

(x-axis) and non-uniform (y-axis) upper atmospheres.

Figure 9 shows that the differences between the simulations seem to be independent from parameters that were good pre-

dictors of the TLM’s behaviour in previous studies, such as Fr and PN . We also investigated parameters that were found to

correlate well with mountain wave drag in vertically non-uniform atmospheres, such as c1 as found by Klemp and Lilly (1975,

eq. 16), but could not identify a meaningful correlation in our case. Directional shear effects, such as those investigated by455

Teixeira et al. (2008), might explain the discrepancy.

5 Conclusions

The goal of this study was to extend the applicability of a wind-farm gravity-wave model to vertically non-uniform free

atmospheres. This was done by changing the expressions for the stratification coefficients Φ̂ to results derived from the internal

wave equation for general stratified flows. By applying the well-known piecewise method with large numbers of sublayers,460

general stratification and velocity profiles can be incorporated into the model.

The effects of the variations in background wind and stability were studied by analyzing how free atmospheric wave re-

flection influences the wave pressure feedback, the ABL flow, and overall wind farm performance. Firstly, the stratification

coefficients for the idealized atmosphere used by Wells and Vosper (2010) were compared to those for a uniform atmosphere

based on it. The differences were found to be caused by constructive and destructive interference of the internal gravity waves465
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Figure 9. The difference between the maximum capping inversion displacements in the non-uniform and uniform simulations as normalized

by the ABL height (a) and the displacement in the uniform simulation (b), plotted against the parameters Fr and PN . The lack of a clear

trend in both figures indicates that Fr and PN are not related to the impact of the vertical non-uniformity.

in the free atmosphere. In a second step, this vertically non-uniform atmosphere was combined with a flow case used by Al-

laerts and Meyers (2019). An analysis of the appearance of resonant lee waves led to a qualitative understanding of the vertical

non-uniformity’s effects on the interaction between gravity waves and the ABL flow. Due to destructive internal wave interfer-

ence, resonant lee waves can appear. On the other hand, internal gravity wave resonance dampens inversion layer displacement

for the wavelengths at which it occurs.470

Finally, the extended TLM was used to simulate one year of operation of the Belgian-Dutch wind-farm cluster, repeating

a similar analysis by Allaerts et al. (2018), in order to determine overall impact of variations in the atmospheric profiles on

the interaction between the ABL flow and the gravity waves to be determined. While this impact was found to be small when

averaged out over all flow cases, on individual flow cases it is often of the same order of magnitude as the total flow perturbation.

In 16.5% of the analyzed flows, the variations in the atmospheric profiles caused a relative difference in the upstream velocity475

reduction of more than 30%. It is unclear how the effect of this non-uniformity for individual flow cases can be predicted, since

it does not simply scale with Fr or PN .

The results of this study show that vertical atmospheric non-uniformity could play a major role in the interaction between

wind farms and gravity waves. This suggests that variations with altitude of the free atmosphere’s wind and stability should

be taken into account when simulating wind-farm operation in specific atmospheric conditions, and may be important for480

the optimization of turbine control in the future (see, eg. Lanzilao and Meyers (2021b)). In the future, we foresee further

improvements of the TLM, among others, including hydrodynamic effects in the boundary layer, and upgrading the wake

model to include the improved wake merging model by Lanzilao and Meyers (2021a). Next to that, we plan further validation

against detailed large-eddy simulations (similar to Allaerts and Meyers (2019)), and data from operational wind farms.

21



Code and data availability. The code used for the simulations and the raw data of the simulation results can be provided by contacting the485

corresponding author.
:::
An

:::::::::
open-source

::::::
version

::
of

::
the

::::
code

::
is

::::::
planned

::
to

::
be

::::::
released

::
by

:::
the

:::
end

::
of

:::
the

:::
year.The code used for the simulations

is written in Python.
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Appendix A: Convergence analysis

Adding more sublayers leads to a better approximation of the actual profiles of atmospheric variables. This would then also

result in a better approximation of W (z). To estimate the rate of convergence, z∗ is defined as the altitude where ∂W̃
∂z (z∗) =490

∂W
∂z (z∗). If n is sufficiently large, such an altitude exists in each sublayer. The error E =W − W̃ can then be written as a

Taylor expansion around z∗:

E(z) =W (z)− W̃ (z)

=W (z∗)+
∂W

∂z
(z∗)∆z+

1

2

d2W

dz2
(z∗)∆z2

− W̃ (z∗)−
dW̃

dz
(z∗)∆z− 1

2

d2W̃

dz2
(z∗)∆z2 + . . .

=W (z∗)

(
1− 1

2
m2(z∗)∆z2

)
− W̃ (z∗)

(
1− 1

2
m̃2(z∗)∆z2

)
+ . . . (A1)

Using the above result, the change in error over the jth sublayer ∆jE can be written as:

∆jE = E(Hj+1)−E(Hj)

=W (z∗)

(
1− 1

2
m2(z∗)∆z2j+1

)
− W̃ (z∗)

(
1− 1

2
m̃2(z∗)∆z2j+1

)
−W (z∗)

(
1− 1

2
m2(z∗)∆z2j

)
+ W̃ (z∗)

(
1− 1

2
m̃2(z∗)∆z2j

)
+ . . .

=
1

2
m2(z∗)

(
∆z2j −∆z2j+1

)
− 1

2
m̃2(z∗)

(
∆z2j −∆z2j+1

)
+ . . . (A2)495

Because ∆zj+1 +∆zj =∆jH , with ∆jH the thickness of the jth sublayer, a maximum value for |∆Ej | is given by:

|∆jE| ≤ 1

2

∣∣m2(z∗)− m̃2(z∗)
∣∣∆jH

2 + . . . (A3)

If m2 = m̃2 somewhere in the sublayer, substituting a Taylor expansion for m2 then directly leads to:

|∆jE| ≤ 1

2

∣∣∣∣dm2

dz
(z∗)

∣∣∣∣∆jH
3 + . . . (A4)

From this analysis, it is clear that the piecewise-constant method has the best result when the distance to z∗ is minimized for500

all z. Therefore, when approximating a general continuously varying atmosphere, sublayers should be evenly spaced, and the

atmospheric state should be evaluated halfway through each sublayer when calculating m̃2
j . In that case, the maximum error

can be expected to scale with n|∆jE|, and ∆jH ∼ n−1, resulting in a second order rate of convergence, as also found with a

different derivation by (Pütz et al., 2019). This is confirmed by comparison with a finite difference solver.

It is notable that the above derivation is not limited to piecewise-constant methods, but is valid for general piecewise methods.505

Therefore, as long as W̃ (z) is not set up so that W̃ (z∗) =W (z∗), the convergence rate will remain second order. For example,

we also developed a piecewise-linear methods using Airy functions instead of exponential functions, that did not outperform

the piecewise-constant one. This is because when linearly approximating a general function m2(z), W̃ (z∗) and W (z∗) will

still not coincide. As a result, there is no improvement for general atmospheric profiles.
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