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Abstract. Variability of wind profiles in both space and time is responsible for fatigue loading in wind turbine components.

Advanced control methods for mitigating structural loading in these components have been proposed in previous works. These

also incorporate other objectives like speed and power regulation for above-rated wind speed operation. In recent years, life-

time control and extension strategies have been proposed to guaranty power supply and operational reliability of wind turbines.

These control strategies typically rely on a fatigue load evaluation criteria to determine the consumed lifetime of these compo-5

nents, subsequently varying the control set-point to guaranty a desired lifetime of the components. Most of these methods focus

on controlling the lifetime of specific structural components of a wind turbine, typically the rotor blade or tower. Additionally,

controllers are often designed to be valid about specific operating points, hence exhibit deteriorating performance in varying

operating conditions. Therefore, they are not able to guaranty a desired lifetime in varying wind conditions. In this paper an

adaptive lifetime control strategy is proposed for controlled ageing of rotor blades to guaranty a desired lifetime, while con-10

sidering damage accumulation level in the tower. The method relies on an online structural health monitoring system to vary

the lifetime controller gains based on a State of Health (SoH) measure by considering the desired lifetime at every time-step.

For demonstration, a 1.5 MW National Renewable Energy Laboratory (NREL) reference wind turbine is used. The proposed

adaptive lifetime controller regulates structural loading in the rotor blades to guaranty a predefined damage level at the desired

lifetime without sacrificing on the speed regulation performance of the wind turbine. Additionally, significant reduction in the15

tower fatigue damage is observed.

1 Introduction

Growing demand for wind energy has led to the development of large wind turbines. However, these turbines are less tolerant

to system performance degradation and faults (Gao and Liu, 2021). To ensure utility-scale wind turbines operate with respect

to their design lifetime, advanced control strategies have been developed in recent years to reduce structural loading of blades20

and tower. Most of these incorporate additional objectives such as power optimization and rotor speed regulation. The objective

of lifetime control of wind turbines using prognostics-based load mitigation strategies has become more important in recent

years. Most of the proposed methods focus on controlling the lifetime of one structural component of a wind turbine, typically
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the rotor blade or the tower, without considering the fatigue damage level in other components. These lifetime controllers are

also designed to be valid about specific operating points.25

A control strategy for extending the maintenance interval of wind turbine blades under assumed crack initiation, detected

using a data filtering algorithm, is proposed (Beganovic et al., 2015). In (Beganovic et al., 2018; Njiri et al., 2019), a set

of switching controllers with varying degrees of load mitigation are engaged sequentially based on the accumulated damage

obtained from an online damage evaluation model to extend the lifetime of rotor blades. An adaptive lifetime controller is

proposed in (Do and Söffker, 2019) to guaranty the desired lifetime of the tower. Depending on the damage accumulation and30

the predicted lifetime provided by a online damage evaluation model, the weights of the lifetime controller are varied. However,

in (Beganovic et al., 2015, 2018; Njiri et al., 2019; Do and Söffker, 2019) fatigue damage is considered in only one turbine

component. The lifetime controllers used are not adaptive to varying wind conditions. In recent times, resilient control has been

proposed in (Acho et al., 2016; Azizi et al., 2019; El Maati and El Bahir, 2020; Jain and Yamé, 2020) to minimize the effect of

unanticipated faults or unexpected dynamics to maintain the operation of a wind turbine within a limited degradation tolerance35

bound. However, resilient control does not address the problem of controlling life consumption in wind turbine components

to avoid early fatigue failures. Although new concepts like operational modal analysis (OMA), which relies on measurement

data to analyze vibrating structures are becoming the industry standard for condition monitoring and diagnosis especially for

offshore wind turbines (Kim et al., 2019; Bajric et al., 2017; Dong et al., 2018; Pegalajar-Jurado and Bredmose, 2019), these

concepts are yet to be integrated for prognosis and lifetime control of wind turbines.40

In this work an adaptive lifetime control strategy is proposed for controlling ageing of rotor blades to guaranty a desired

lifetime while considering damage accumulation level in the tower. A robust disturbance accommodating control (RDAC)

proposed in (Do and Söffker, 2021) is used for rotor speed regulation and load mitigation in the tower, while a prognostics-

based adaptive independent pitch control (aIPC), which adapts to wind speed variation, is used for lifetime control of rotor

blades. By monitoring the accumulated damage using an online structural health evaluation model, the load mitigation level45

in the blades is controlled by varying the control gains in the respective IPC controllers based on a threshold evaluation of the

estimated lifetime. As an improvement to the approaches in the aforementioned contributions, the proposed adaptive lifetime

control strategy regulates fatigue loading in the rotor blades to reach a predefined damage limit at the desired lifetime with

subsequent reduction in tower damage accumulation. This is realized without trade-off in speed/power regulation performance.

The paper is organized as follows. In section 2, a theoretical background on wind turbine health monitoring is given. In50

section 3, design of the primary RDAC controller for rotor speed regulation and tower load mitigation, and the prognostics-

based aIPC lifetime controller for controlled ageing of rotor blades is outlined. The proposed prognostics-based adaptive

lifetime control strategy, which incorporates the primary and lifetime controllers, and an online damage evaluation model is

described in section 4. In section 5, simulation results based on performance evaluation of the proposed prognostics-based

adaptive lifetime control strategy on a reference wind turbine are discussed. Lastly, summary and conclusions are given in55

section 6.
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2 Wind turbine health monitoring

Wind speed variability subjects wind turbine components like blades and tower to cyclic loading. This causes damage to

be accumulated in these components overtime causing gradual degradation until failure occurs. Therefore, structural health

monitoring of wind turbines is important in preventing occurrence of fatigue failure before reaching related design lifetime.60

Information on the damage evolution in a component can be utilized as a health indicator for failure detection as well as for

developing control measures to guaranty desired lifetime. This section outlines the methods used for estimating the damage

accumulation in wind turbine components.

2.1 Evaluation of damage accumulation

A Wind turbine endure varying and complex load conditions over its lifetime. Fatigue analysis is therefore important in deter-65

mining the consumed lifetime of its components. Component degradation starts at micro-scale as micro-cracks resulting from

irreversible changes in the microstructure, and propagates gradually until it fails. Assumptions of underlying damage evolution

laws are often used to estimate the actual damage level as well as to predict the remaining useful life (RUL) of a component.

Component-specific high-cycle fatigue experiments are used to generate S-N curves (Wöhler curve), which describe the rela-

tionship between applied stress amplitude S and the number of load cycles N that would cause failure. This forms the basis for70

the mathematical relation for fatigue analysis in wind turbines components expressed as

smN =K, (1)

where s denotes the stress range amplitude, m the Wöhler exponent (typically 3 for steel materials like the tower and 10 for

composites like the blade (Ragan and Manuel, 2007)). The material parameter of fatigue damage at failure K e.g., ultimate

tensile strength is related to the number of load cycles N .75

Wind turbine components are designed for a service lifetime of at least 20 years according to the international electrotech-

nical commission (IEC) standard, with these structural components facing roughly between 108 and 109 fatigue load cycles

(Ziegler et al., 2018). The component lifetime is typically arrived at using the projected number of fatigue cycles and average

wind conditions it will encounter in its lifetime. Additionally, the IEC standard specifies that a wind turbine component should

be designed to maintain its structural integrity in case it experiences 50 year extreme wind events during its lifetime.80

Fatigue damage in components can be assessed using linear damage accumulation theory based on Miner’s rule or nonlinear

damage accumulation theories (Yuan et al., 2014). Due to its simplicity, Miner’s rule (Miner, 1945) is widely used. Wind speed

variability induces varying-amplitude load spectrum on wind turbine components. To use Miner’s rule, the complex spectrum

of varying load is often transformed using rain-flow counting (RFC) algorithm first proposed by (Matsuishi and Endo, 1968),

into simple uniform loading, from which stress range histograms can be extracted and used to assess the accumulated damage.85

A schematic of this procedure is shown in Fig. 1.
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Figure 1. Conventional fatigue load estimation (Ragan and Manuel, 2007).

By combining RFC and Miner’s rule, damage accumulation Dk is calculated as

Dk =
k∑

i=1

di =
k∑

i=1

ni

Ni
=

k∑

i=1

nis
m
i

K
, (2)

where k denotes the total number of related stress range histograms, di the incremental damage at the ith stress range histogram,

ni the number of applied load cycles in each histogram bin,Ni the number of cycles to failure at the ith stress range histogram,90

and si the applied load amplitude in each histogram bin. With continual load application, damage in a component progresses

from an undamaged state Dk = 0 to the point it is considered to have reached its end of life when the accumulated damage,

Dk = 1. In this case, the component is considered to have exhausted its structural reserves. Although other cycle counting

algorithms including level crossing counting, peak counting, and simple range counting exist, RFC algorithms are the most

widely applied for fatigue analysis (Musallam and Johnson, 2012).95

2.2 Online rain-flow counting

Most standard RFC algorithms generate equivalent load cycles from complex load spectra by pairing local minima and maxima

points using 3-point counting rule. Therefore, the entire load history is needed beforehand for the equivalent cycles to be gen-

erated. This process is computationally inefficient because the algorithm has to process all the stored loading data. Therefore,

standard RFC cannot be used for real-time monitoring or control of life consumption of a component (Musallam and Johnson,100

2012).

In (Musallam and Johnson, 2012), a real-time implementation of the RFC algorithm is proposed. By employing a 3-point

counting rule recursively, the extremal points of time-series loading data are processed and stored in two flexible stacks as they

occur to pick out the full and half cycles. For each identified cycle, and using Miner’s rule, the life consumption of a component
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is then calculated and incremented online. This allows for the online determination of the consumed life of a component as well105

as implementation of lifetime control. In this paper, the online damage evaluation algorithm (Musallam and Johnson, 2012), is

adopted for evaluating the accumulated damage in rotor blades and tower. This information is then used to adapt the lifetime

controller to guaranty a predefined service life of the wind turbine components.

3 Control strategy for load mitigation and speed regulation

In this paper, a Robust Disturbance Accommodation Controller (RDAC) (Do and Söffker, 2021), proposed for rotor speed110

regulation and mitigation of tower fore-aft bending moments is extended to include an adaptive Independent Pitch Controller

(aIPC), which is used as a dynamic lifetime controller for reducing blade flap-wise bending moments in a wind turbine op-

erating in the above-rated wind speed region. In this section the description of the reference wind turbine (RWT) is outlined.

Additionally, the description of the adaptive robust observer-based controller, which is adapted for lifetime control, is summa-

rized.115

3.1 Wind turbine model description

A 1.5 MW WindPACT reference wind turbine developed by NREL (Rinker and Dykes, 2018), which is domicile in Fatigue,

Aerodynamics, Structures, and Turbulence (FAST) design code (Jonkman and Buhl Jr., 2005), is chosen as the test-bed for the

design and simulation of the proposed adaptive lifetime control strategy. This onshore wind turbine model was developed based

on a real-life commercial wind turbine used in the WindPACT program. The specifications of this turbine are summarized in120

Table 1. It is a 3-bladed, upwind, horizontal axis wind turbine, having 24 Degrees of Freedom (DoFs) describing its flexibility.

However, a few DoFs are enabled to obtain a reduced order linear time-invariant (LTI) models used for controller design.

Table 1. 1.5 MW WindPACT reference wind turbine specifications

Parameter Value Unit

Rated rotor speed 20.463 rpm

Hub height 84.288 m

Cut-in, Rated, Cut-out wind speed 4, 12, 25 m s−1

Gearbox ratio 87.965 -

Blade radius 35 m

Rated power 1.5 MW

Blade pitch range 0-90 o

Pitch rate 10 o s−1

Optimal Tip-Speed-Ratio (λopt) 7.0 -

Maximum power coefficient (Cpmax ) 0.5 -

Optimum pitch angle (βopt) 2.6 o
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The nonlinear generalized equation of motion for the wind turbine is expressed as

M(q,u, t)q̈+ f(q, q̇,u,ud, t) = 0, (3)

where M denotes the mass matrix containing inertia and mass components and f is a nonlinear function of the enabled DoFs

q and their first derivative q̇, as well as the control input u, the disturbance input ud, and time t. The nonlinear model Eq. (3)125

available in FAST is linearized about an operating point in the above-rated region. By enabling the DoFs, which capture the

most important wind turbine dynamics of interest, and specifying the operating point defined by a constant hub height wind

speed, pitch angle, and rotor speed, linearization is carried out numerically in FAST yielding periodic (azimuth dependent)

matrices of LTI models.

3.2 Controller for load mitigation and speed regulation130

An adaptive robust observer-based controller, which in combination with an online damage evaluation model used for lifetime

control of wind turbine components, is briefly outlined.

3.2.1 Robust disturbance accommodating controller

The RDAC controller, proposed in previous work (Do and Söffker, 2021), is briefly outlined for principal understanding. To

obtain a linear model for controller design, the nonlinear model Eq. (1) is linearized about an operating point in the above-rated135

wind speed region defined by a steady hub-height wind speed of vop = 18 m s−1, a pitch angle of βop = 20o, and a rotor speed of

ωop = 20.463 rpm. To capture the most important dynamics, corresponding to the desired closed-loop performance with respect

to structural load mitigation and rotor speed regulation, 11 states x are chosen, including tower fore-aft displacement, drive-

train torsional displacement, blades 1, 2, and 3 flap-wise displacements, and there respective velocities, as well as generator

speed. The obtained reduced-order LTI model is expressed in state-space form as140

ẋ=Ax+Bu+Bdd

y = Cx,
(4)

where A,B,Bd,C denote the state-space system, ubthe control input, which is the collective pitch angle, x the states, d the

wind disturbance, and y the measured outputs, which include rotor speed and tower-top fore-aft bending moment.

The model Eq. (4) is augmented with a pitch actuator model, which accounts for the slow pitch actuator dynamics. To

counteract wind disturbance effects, the model is extended with an assumed step disturbance waveform (Wright, 2004; Wright145

and Fingersh, 2008), which approximates sudden uniform rotor effective wind velocity fluctuations. To meet the rotor speed

regulation objective with zero steady-state tracking error, the model is further extended with a partial integral action.

To ensure closed-loop system stability, robustness and optimality, a mixed-sensitivity H∞ norm of the closed loop transfer

function is used as a cost function to optimize the disturbance accommodating controller(DAC) parameters including observer

gain Lx, state controllerKx disturbance rejection controllerKd, and the integral gainKi in a single step. The mixed sensitivity150
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H∞ optimization problem is formulated as

R∗ = argmin
R∈R

∥∥∥∥∥

W1S

W2RS

W3T

∥∥∥∥∥
∞
, (5)

where R∗ denotes the optimized controller, R a set of controllers R that stabilize the plant. The weighting functions W1, W2,

and W3 are introduced to ensure desired robust performance while S, RS, and T denote the related sensitivity, control effort,

and complementary sensitivity functions, respectively. The problem to find an optimal RDAC controllerRDAC∗ is formulated155

as

RDAC∗ = argmin
RDAC∈RDAC

‖Gzd(P,RDAC) ‖∞, (6)

whereRDAC denotes a set of controllers RDAC that stabilize the generalized plant P , and Gzd is the transfer function from

the exogenous inputs d to the controlled outputs z.

Nonsmooth H∞ synthesis proposed in (Apkarian and Noll, 2006), used for problems with structural and stability constraints160

is applied to find an optimal controller RDAC∗ with robust gains L and K for tower load mitigation and rotor speed reg-

ulation. It is implemented in MATLAB using hinfStruct command (Apkarian and Noll, 2017). In Fig. 2 application of the

RDAC controller to the 1.5 MW NREL RWT is shown. An actuator transfer function is included in the generalized plant P, to

account for the blade pitch actuator dynamics. Hub height wind disturbance d excites the wind turbine dynamics in above rated

operation. Measurement outputs including rotor speed ω and tower fore-aft bending moment ζ are fed to the RDAC controller,165

which generates a collective pitch angle β as a control signal for regulating rotor speed at the rated value and for reducing

tower fore-aft bending moment oscillations. The RDAC controller is robust against modeling errors and wind disturbances.

The desired trade-off between robust stability and performance is achieved by choosing suitable weighting functions W11,

Wind
TurbineActuator

P

Rated speed-

β

ω

ζ

RDAC

z1

z2

z3

W11

W12

W2

u

d

y

Figure 2. RDAC for wind turbines.

W12, and W2. To effect rotor speed response and ensure robustness against wind disturbances, W11 is designed as an inverted

low-pass filter. To reduce the first mode of tower fore-aft oscillation, W12 is designed as an inverted notch filter centered at170

2.56 rad/s. To reduce controller activity at high frequencies thereby increasing robustness, W2 is chosen as high-pass filter.
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Both objectives of rotor speed regulation and tower load reduction for wind turbines operating in above-rated wind speed

region are met while ensuring robustness against modeling errors and wind disturbances. However, RDAC∗ is only valid

within its design operating point and suffers performance deterioration outside this envelop. Additionally, its control input

signal is a collective pitch angle, hence cannot be applied for reducing blade oscillations due to vertical wind shear, which can175

only be achieved through IPC control.

3.2.2 Adaptive independent pitch controller

This controller is desired to counteract periodic aerodynamic loading of the rotor blades due to vertical wind shear. It is designed

to reduce 1P (0.333 Hz) blade flap-wise oscillations and is adaptive to change in the operating point due to horizontal wind

speed fluctuations. Five IPC controllers, each designed to be operational over a particular wind speed bin in the above-rated180

wind speed region, together with a switching mechanism based on the incoming wind speed are used to realize aIPC. The linear

models, used for designing respective IPC controllers are extracted from the nonlinear wind turbine model Eq. (1) at different

operating points as shown in Table 2.

Table 2. Design operating points for the IPC controllers

IPC Controller Wind speed bin [m s−1] Steady wind speed [m s−1] Blade pitch angle [o] Rotor speed [rpm]

1 12 - 15 14 13.10 20

2 15 - 17 16 16.75 20

3 17 - 19 18 19.83 20

4 19 - 21 20 22.47 20

5 21 - 25 22 24.84 20

Seven states x including blade flap-wise displacement for each blade and respective velocities, and generator speed are

selected to capture important dynamics with respect to blade load mitigation. To capture periodicity due to vertical wind shear,185

24 equispaced azimuth positions are selected for linearization. To integrate this periodicity in controller design, multi-blade

coordinate (MBC) transformation proposed in (Bir, 2010) is used to transform blade dynamics from the rotating to the non-

rotating frame. The MBC transformed reduced order models are then averaged to obtain a weakly periodic LTI model described

in state-space form as

ẋ=Ax+Bu+Bdd

y = Cx+ v,
(7)190

whereA,B,Bd,C denote the state-space system, u= [∆β1 ∆β2 ∆β3]T denotes the perturbed independent pitch angles, and d

the wind disturbance. The measurements y, which include the blade root flap-wise bending moment for each blade are assumed

to be distorted with noise v.
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Using linear quadratic gaussian (LQG) control method, Eq. (7) is used to design an observer-based controller. The full-state

feedback controller K is designed using linear quadratic regulator (LQR) technique by minimizing the cost function195

JQR =

∞∫

0

(xTQx+uTRu)dt, (8)

while solving the algebraic Riccati equation (ARE)ATP+PA−PBR−1BTP+Q= 0, assuming (A, B) is fully controllable.

Here Q and R denote the state and control input weighting matrices respectively, whose elements are tuned to achieve the

desired dynamic response with respect to blade load mitigation and rotor speed regulation, while P is the solution to the

ARE. To implement optimal full-state feedback control u=Kx̂ using estimated states x̂, a Kalman state estimator is used to200

design the observer gain L by minimizing the state estimation covariance error E((x− x̂)(x− x̂)T ), while solving the ARE

APf +PfA
T −PfC

TR−1
f CPf +Qf = 0, assuming A, C) is fully observable. Here, Qf and Rf are process disturbance and

measurement noise covariance matrices, respectively, while Pf is the solution to the ARE.

Figure 3 illustrates the implementation of one of the five IPC controllers. The wind profile d excites the dynamics of the

wind turbine in the above-rated wind speed region. The perturbed blade root flap-wise bending moment measurements ∆y205

are transformed from the rotating to the fixed coordinate frame of controller design, using an inverse MBC transformation

matrix T (ψ)−1, which relies on real-time rotor azimuth angle measurements ψ. The perturbed independent pitch angles ∆βi

are obtained by transforming the control input u back to the rotating frame using the MBC transformation matrix T (ψ). By

summing ∆βi and the collective pitch angle βc from the RDAC controller, the IPC signal βi obtained.

refy
v
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Wind turbine model 
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Kalman state estimator

ˆ ˆ( )x A LC x Bu Ly= - + +&x̂

cb ib
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-

y
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u
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Figure 3. Independent pitch controller

The five IPC controllers are designed following this procedure, each at a predefined operating point, to cover the entire range210

of operation in the above-rated regime. A switching mechanism is then implemented to activate each controller at a predefined

operating range based on the prevailing wind speed.
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4 Control of wind turbine lifetime: An illustrative example using the 1.5 MW NREL reference wind turbine

To control the lifetime consumption in wind turbine blades, the adaptive robust observer-based controller (RDAC+aIPC),

implemented using two control loops is combined with an online damage evaluation model as shown in Fig. 4. A wind profile215

excites the wind turbine dynamics in the above-rated regime. The RDAC controller (Do and Söffker, 2021), which is robust

against modeling errors generates the primary CPC signal for rotor speed regulation and tower load mitigation, while aIPC

is used as the lifetime controller to dynamically control the damage accumulation of the rotor blades. The IPC angles are

perturbed about the CPC signal from RDAC, forming the control input u to the wind turbine.

Wind turbine

Torque
contr.

RDAC

aIPC

Logging Online damage 
evaluation

Maximum 
gains

Optimal 
gains

Minimum 
gains

Threshold 
evaluation

Y

Y

Y

N

N

u

Wind

y

Gains

kD

RDAC: Robust disturbance accommodation control 
aIPC:    Adaptive independent pitch control

580 ≤ L  ≤ 620e

L  < 580e

L  > 620e

Figure 4. Prognostics-based adaptive lifetime control

The blade-root flap-wise bending moment measurements y are logged into memory during simulation. The online damage220

evaluation model based on the real-time implementation of the RFC algorithm (Musallam and Johnson, 2012), calculates the

accumulated damage at every time-step Dk. The estimated lifetime of the blade Le used as a state-of-health (SoH) indicator,

is calculated as

Le =
Tk

Dk
Dd, (9)

where Tk denotes the current time step while Dd denotes the accumulated damage at the design lifetime. At every time step225

Tk, the estimated RUL can be calculated as

RUL= Le−Tk = Tk(
Dd

Dk
− 1). (10)

Based on the threshold evaluation of Le, the load mitigation level in the respective IPC controllers is controlled by selecting

the appropriate gains L and K every 10 seconds, which is the time interval chosen for lifetime threshold evaluation. For

illustrative purposes a lifetime of 600 seconds is chosen. Three threshold levels are set such that if Le is below the lower230
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limit of the desired lifetime (Le < 580), maximum gains of respective IPC controllers are selected to increase the blade load

mitigation level. If Le falls within a range of the desired lifetime (580≤ Le ≥ 620), optimum gains, which strike a balance

between load mitigation and speed regulation are selected. On the other hand, if the value of Le is higher than the desired

lifetime (Le > 620), hence blade load mitigation level can be compromised, minimum gains are chosen.

5 Results and discussion235

This section presents and discusses the simulation results obtained from evaluating the adaptive lifetime control strategy using

the 1.5 MW NREL RWT in FAST design code. A 600 seconds stochastic wind profile with a mean hub-height wind speed of

18 m/s and a turbulence intensity of 17 % is used for simulation. The wind profile having vertical wind shear with a power-law

exponent of 0.2 is shown in Fig. 5a. The performance of the lifetime control scheme in different blade load mitigation scenarios

as shown in Fig. 5b. As shown, the adaptive lifetime control strategy controls the damage accumulation in the blades to reach240

the predefined damage limit at the desired lifetime of 600 seconds. While the control strategy with maximum load mitigation

achieves the same desired result, the lifetime control scheme spreads the incremental damage accumulation over the entire

operation window by dynamically switching between the different load mitigation levels.
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Figure 5. Adaptive lifetime control performance

A comparison in blade fatigue load mitigation performance with and without (RDAC only) lifetime control is also evaluated.

Figure 6a shows that with lifetime control, the blade flap-wise bending moment reduces, with a 11.26 % reduction in standard245

deviation being achieved. Additionally, there is significant reduction in the accumulated damage as shown in Fig. 6b.

Performance of the adaptive lifetime control strategy in mitigating tower loads is also evaluated. As illustrated in Fig. 7a,

significant reduction in tower fore-aft oscillation is observed, with the standard deviation reducing by 16.08 %. A reduction in

tower damage accumulation can be seen in Fig. 7b. This shows that lifetime control of blades, which reduces 1P fatigue loads,

leads to reduced damage accumulation in tower due to 3P fatigue loads.250

Despite the adaptive lifetime controller achieving improved performance in reducing damage accumulation in both rotor

blade and tower, this does not compromise the speed/power regulation performance. To illustrate this, the rotor speed and
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Figure 6. Blade fatigue load mitigation
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Figure 7. Tower damage accumulation

generator power are evaluated as shown in Fig. 8. With lifetime control, improvement is realized in both speed and power

regulation, with the standard deviation in rotor speed and generated power reducing by 5.03 % and 10.29 % respectively. This

is attributed to improved transient performance by the aIPC controller.255

6 Summary and conclusion

In this paper, a prognostics-based adaptive control strategy for lifetime control of wind turbines is presented. A robust distur-

bance accommodating controller (RDAC) designed using mixed sensitivity H∞ control, is used as the primary controller for

mitigating tower loads and regulating rotor speed using a CPC-signal. On the other hand, aIPC controller designed using LQG

control method is used as a lifetime controller. The gains of each of its five IPC controllers are adapted based on the state of260

health of the rotor blades obtained using an online damage evaluation model to strike a compromise between lifetime control

through load mitigation and speed regulation.
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Figure 8. Speed/power regulation performance

Through simulation using a 1.5 MW wind turbine model, it is demonstrated that the adaptive lifetime control strategy con-

trols the damage accumulation in the blades to guaranty a given damage limit at the desired lifetime. Reduction in accumulated

damage in the tower is also realized. This can potentially be used for optimizing maintenance scheduling in wind farms by265

synchronizing ageing of wind turbine components, hence reducing O&M costs, and increasing operational reliability. This im-

provement is realized without compromise in the speed/power regulation performance. However, the result is achieved based

on a slightly increased pitch actuator duty cycle, which can potentially increase fatigue loading in the pitch actuator system

components. In the future, adaptive lifetime control based on nonlinear damage accumulation models will be considered. Addi-

tionally, use of new concepts for state of health indicators such as change in modal parameters for structural health monitoring270

will be explored.
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