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Gaussian mixture model for extreme wind turbulence estimation
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Abstract. Uncertainty quantification is necessary in wind turbine design due to the random nature of the environmental inputs,
through which the uncertainty of structural loads and response under specific situations can be quantified. Specifically, wind

turbulence (described by the standard deviation of the longitudinal wind speed over a 10-minute time duration) has a significant

impact on the extreme and fatigue design envelope of the wind turbine. The wind parameters (mean and standard deviation

ity-longitudinal
and therefore structural reliability anal

or uncertainty quantification assuming-the-wind-parameters-are-independent—A—properrequires these wind parameters to be
correlated stochastic parameters. An accurate probabilistic model should be established to model the correlation among wind

wind speed over 10-min time duration) are not independent stochastic variables sis

parameters. Compared to univariate distributions, theoretical multivariate distributions are limited and not flexible enough
to model the wind parameters from different sites or direction sectors. Copula-based models are used often for correlation
description, but existing parametric copulas may not model the correlation among wind parameters well due to limitations of
the copula structures. The Gaussian mixture model is widely applied for density estimation and clustering in many domains,
but limited studies were conducted in wind energy and few used it for density estimation of wind parameters. In this paper,
the Gaussian mixture model is used to model the joint distribution of mean and standard deviation of 10-minute-wind-speed
longitudinal wind speed over 10-min time duration, which is calculated from 15 years of wind measurement time series data. As
a comparison, the Nataf transformation (Gaussian copula) and Gumbel copula are compared with the Gaussian mixture model
in terms of the estimated marginal distributions and conditional distributions. The Gaussian mixture model is then adopted to
estimate the extreme wind turbulence (wind parameters for extreme load), which could be taken as an input to design loads
used in the ultimate design limit state of turbine structures. The wind turbtlenee-parameter contour associated with a 50-year
return period computed from the Gaussian mixture model is compared with what is utilized in the design of wind turbines as
given in the IEC 61400-1. The Gaussian mixture model is able to model the joint distribution of wind parameters well, where
the estimated tail distributions of both the marginal distributions and conditional distribution have good accuracy, and it is a
good candidate for extreme turbulence estimation.

1 Introduction

Wind turbulence is characterized by the turbulence kinetic energy, its dissipation rate, and the length scale. This is modeled

using three-dimensional anisotropic spectra that captures the auto-correlation and cross-correlation of the spatio-temporal
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wind speed variation such as through the Mann model (Mann, 1994). Such models assume the wind turbulence is a Gaussian
process, whereby several frequencies of wind velocity variations may occur resulting in different wind velocities distributed as
a function of time and space. Usually, the wind turbulence for wind turbine design is specified over a 10-minute time window
and the stochastic process is assumed to be stationary. The occurrences of extreme turbulence can then be categorized based
on its return period. In wind turbine design, the wind turbulence with a 50-year return period is used in ultimate limit state
analysis (IEC, 2019).

Many uncertainties exist in the evaluation of the design loads of wind turbine components. The IEC 61400-1 standard lists
several load cases of the relevance of ultimate limit state analysis, wherein the load cases under normal operation usually
require a partial safety factor (PSF) of 1.35 applied to the characteristic loads. Such PSFs are determined by quantifying
the uncertainties in the load evaluation (Sgrensen and Toft, 2014) and the underlying distributions of the relevant inputs. An
important load-case towards determining ultimate design loads on wind turbine structures is the Design Load Case (DLC)
1.3, in which the turbine is under normal operation under 50-year extreme wind turbulence. While relationships to evaluate
the extreme turbulence level are provided in the IEC 61400-1, there has been much debate on its accuracy and quantification;
with the edition-3 of the IEC 61400-1 specifying a lognormal distribution for turbulence and edition-4 specifying it as a
Weibull distribution. Several studies (Dimitrov et al., 2017; Abdallah et al., 2016) have proposed different models for extreme

wind turbulence based on site measurements and a large uncertainty can be seen in determining the long-term behavior of

wind turbulence. Mathematically, an issue with the modelling of wind turbulence has been that the IEC 61400-1 standard and
literature has-have mainly focused on the probability distribution of wind-speed-standard-deviation-the standard deviation of

the wind speed (o) conditional on the mean wind-speed-of the longitudinal wind speed over a 10-minute time duration (u),

whereas it is required that the joint distribution of ¢,, and v is properly modeled.

joint distribution model could be used for modelling
multivariate random variables and generating random samples. Theoretical bivariate distributions are limited and not flexible
enough. (Menahan;264+8)-Monahan (2018) model the joint probability distribution of wind speeds at different locations using
bivariate Rice distribution and bivariate Weibull distribution. The joint distribution of random variables could also be described

by the univariate marginal distribution functions and a copula. A copula is a multivariate cumulative distribution function, where
the marginal distribution follows uniform distribution on the interval [0,1]. Copulas are used for modelling the dependency
among the random variables. Several families of copulas have been proposed in the literature, e.g., Gaussian copula (Nataf
transformation (Xiao, 2014)) and Archimedean copulas (Bouyé et al., 2011). Using marginal distributions and copula to model

the multivariate distributions is feasible, but the marginal distributions should be flexible enough to represent the wind inflow
under varying environmental conditions, and the tail of the fitted distribution should be well representative of the actual inflow

behavior. The copula structures should also be flexible enough to model different correlation structures. It is not clear as to

which copula model (Abdallah, 2015) to choose to determine the joint distribution, given marginal distributions.
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turbulenee-aceurately,the-To model the extreme turbulence well, both the main body and the tail of the joint probability dis-
tribution of o, and u smustshould be accurately representedio-smalt-exceedanceprobabilities-of the-orderof 16— TFhe-,
Gaussian mixture model (GMM) is broadly used for clustering tasks (Zhang et al., 2021). GMM is a flexible model which can

also perform density estimation on multivariate data with different marginal distributions and eerrelations—GMM-correlation
structures. It is widely applied to different fields of study, e.g., speech and audio processing (Reynolds and Rose, 1995),
image classification (Permuter et al., 2003), density estimation of microarray data in bioinformatics (Steinhoff et al., 2003),
cancer classification (Prabakaran et al., 2019) and finance (Miyazaki et al., 2014). GMM is less commonly applied in wind
energy i i
%%%@WMMMNMSw neural network for short-term wind power fore-
cast, {Cui-et-al52048)-Cui et al. (2018) used GMM for fitting the probability distribution of wind power ramping features-
loads forecast-—Feor, and Srbinovski et al. (2021) used GMM for modelling the site-specific wind turbine power curves. GMM
has been rarely adopted for wind parameters modelling, {Wahbah-et-al-2618)-Wahbah et al. (2018) used univariate GMM for

wind speed probability density estimation, where the joint distribution of wind speed with other parameters was not investi-

gated. Few published literature uses GMM for density estimation of wind inflow parameters and GMM has not been used for
modelling the joint distribution of mean-wind-speed-and-standard-deviationu and og,,.

In this paper, aGMM is used for modelling the joint distribution of wind parameters si-e+0-minute-u and o,,. The-GMM is
firstly used for density estimation of a random sample from theoretical bivariate ¢ distribution. Then it is used for modelling the
wind parameters from both offshore and onshore sectors. The-GMM is benchmarked to the measurement data by comparing the
marginal distributions and the conditional distributions. The wind parameter contour with a 50-year turbuleneereturn period is

also computed from the-GMM-medel-GMM model with IFORM analysis (Winterstein et al., 1993). For the wind parameters
from the offshore sector, Gaussian copula (Nataf transformation) and Gumbel copula are also compared.

2 Gaussian mixture model

Fhe-GMM (McLachlan and Peel, 2000) is a mixture of several weighted Gaussian distributions and has been used for cluster
analysis (Janouek et al., 2015) and density estimation (Steinhoff et al., 2003). The-GMM could be used for hard clustering
and soft clustering of data. For hard clustering, each observation is assigned to the component returning the highest posterior
probability, where each observation is assigned to exactly one cluster. Soft clustering, as opposed to hard clustering, assigns
each observation to more than one cluster and each observation is assigned a responsibility (relative density). In terms of density
estimation, FThe-the GMM is useful for multivariate distribution representations with multiple modes, but this does not prevent
it from also being used for single mode distributions. The-GMM is a linear combination of multivariate Gaussian distribution

components, where each component is defined by its mean and covariance. Even though a weighted sum of Gaussian random

variables is a Gaussian random variable, a weighted Gaussian distribution is not necessarily Gaussian. When there are more
than two components for GMM, it is multi-modal and is not Gaussian distributed. The probability distribution function (pdf)
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of a d-dimensional multivariate Gaussian is

N o) = e (-3 ) 0

where  is the 1-by-d mean vectors, and 3" is the d-by-d covariance matrix. The pdf of GMM is

k
PO = D (xluy, ) ?
j=1
where £ is the number of components, which is a hyper parameter, and 7; is the component coefficient (weight) and follows
k
d mi=1 0<m, <1 3)
j=1

Some information criteria are proposed in the literature (Akaike, 1998; Schwarz, 1978) to determine k, butfurtherresearch

is-needed-to—properly-apply—them—where £ is selected as a balance of overfitting and underfitting. Nevertheless, when the

sample size is too large, the criteria are not effective and further research is required. To use GMM for density estima-
tion and also for random sample generation, the model parameters {7, 15,5 ;,j = 1,2,...,k} should be estimated from the

data sample {x,,,n =1,2,..., N}, where IV is the sample size. The initial model parameters are estimated-by-the-following

stepscalculated from the clusters evaluated by the k-means clustering algorithm (Arthur and Vassilvitskii, 2006

by the Expectation-Maximization (EM) algorithm (McLachlan et al., 2019) as follows:

and optimized

1. Assign the N observations to the k clusters using the k-means clustering algorithm. Compute 415, 3; and 7; from the

observations within each cluster.

k-means clustering assigns N observations to k clusters, which are defined by the centroids. Each data point x,, with
the closest centroid is assigned to the corresponding cluster. The centroids are recalculated and the data points are
reassigned until the clusters do not change or the maximum iteration number is met. This is a hard clustering, and within
each component, the y; and 3= ; are calculated, and the 7; is calculated as the number of data points in the current cluster
divided by N.

2. Expectation-Maximization (EM) algorithm

The model parameters {7}, /1;,> s d =12, k} are found by an iterative EM algorithm (Dempster et al., 1977) to have

a maximum likelihood estimation.

(a) E step
Evaluate the responsibilities using the current model parameters. The responsibility ;(x,,) is the probability that

component j takes for explaining the observation x,,, which is calculated as:

S TN (X i, 35)

Vi (Xn) = (4)
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(b) M step
Update the model parameters using the responsibilities from E step. The mean for component j is calculated as:
N
Zn:l i (Xn)Xn (5)
N
Zn:l FY] (Xn)

The covariance for component j is calculated as:

K=

SN (%) (X — 13) (% — 1)
n (6)
Yo7 (Xn)

and the j component coefficient is calculated as:

1 N
=5 2 () (7)
n=1

3. Repeat step 2 until the model parameters converge or the maximum number of iterations is met.

2=

3 Results

to model the joint distribution of u and ¢,,, where the estimation error is small at both the main body pdf and the tail distribution.
To verify the use of GMM, it is firstly used to recover the multivariate ¢ distribution from a ¢ distribution random sample. The

flexibility of GMM (especially for modelling non-Gaussian joint distribution) and the demonstration of the procedure of usin

GMM for density estimation is detailed. To sample from the fitted joint-distribution is very important as many reliability
analysis and uncertainty quantification applications require random samples as inputs. The random samples from GMM are
compared with the random sample from the ¢ distribution and wind parameters. To compute the number of components k, it is
increased from 1 until the estimated density function converges.

Using copulas to develop non-Gaussian joint-distributions—joint distributions of the u and g, is initially attempted. A joint

robability distribution of the v and o, is then modelled by GMM. For estimating the extreme turbulence (wind parameter

the accuracy of tail distribution is important. The probability of exceedance of o

contour with 50-year return period
conditional on u from GMM is thus compared with the measurement data. To further examine the flexibility of GMM, the

wind measurement data from both the offshore and onshore sectors are investigated and the 50-year wind parameter contours
are compared.

31 Multivariate ¢ distribution

The pdf of the d-dimensional multivariate Student’s ¢ distribution is
1 1 I'((v+d)/2 x > 1x
f@202| ( V)G+z ) )

sV2 /(wr)d  T(v/2) v



where is a correlation matrix with a correlation coefficient 0.6, and v = 5 is the degrees of freedom. The multivariate

150 Student’s t distribution generalizes the univariate Student’s ¢ distribution, and its marginal distributions all have univariate

Student’s ¢ distribution. The marginal distributions of multivariate Student’s ¢ distribution have fatter tails than the normal

distribution. A random sample with size 10° is generated from the bivariate ¢ distribution, and GMM is used to fit the bivariate

¢ distribution.

Table 1. Initial GMM parameters

Component number (i

1 2 3. 4.
1 —1.972 _ ~2.037 1.978__1.966 —0.552 _ ~0.522 0.521__0.511

1.242  0.067

1.237 0.128 0.396  —0.155 0.384  —0.155

2

T 0107 0.111 0.388 0.395

The estimated density function converges when the number of components & = 4, and therefore, the k-means clusterin

155 algorithm is used to cluster the data points into & = 4 components. The mean, covariance, and the component coefficient

sample size at each component divided by the total sample size) calculated from each component are taken as initial parameters

for GMM, which are shown in Table. 1. The four clusters are plotted in Fig. 1, where the means are plotted in circles.
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Figure 1. k-means clustering of ¢ distribution sample

Following the procedure of EM algorithm (see section 2), the model parameters are estimated, which are shown in Table 2.

Fig. 2 shows the random sample from ¢ distribution and GMM, and Fig. 3 shows the corresponding contour plots. The random



160 sample from GMM has a similar correlation structure with the theoretical ¢ distribution. For probability densities higher than

105, GMM agrees well with the theoretical ¢ distribution; for lower densities, there is some deviation, which is due to the

small sample size and sample variation.

Table 2. Final GMM parameters

Component number (i

1 2. 3. 4
n —1.80 _ —0.736 0.016__0.001 —0.011 _~0.004]  [0.014__0.015

24.655 11.076 4.794 2.937 1.505 0.891 0.586 0.354
hoN

t distribution GMM

Figure 2. Random sample from ¢ distribution and GMM
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Figure 3. Contour plot of ¢ distribution and GMM
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3.2 Wind measurements

The wind measurements from the Hgvsgre Test Centre for Large Wind Turbines in western Denmark (Bimitrev-et-al-+2047);
Hannesdéttiret-al«(26019)-(Dimitroy et al., 2017; Hannesddttir et al., 2019) are used in this study. The +0-mintte-10-min high-
frequency time series of three-dimensional wind velocities at a height of +06-m-100 meters is selected. The period of measure-
ments is from 1 January, 2005 to 1 January, 2020, i.e. 15 years of measurement data (Hannesdéttir et al., 2019). Each10-minute
time-series-is-used-to-caleutate-the-u eomponent-mean-wind-speed-;-and-and g, which is linearly detrendedto-caletlate-the
standard-deviation—o;, are calculated from 10-min time series. The wind parameters from the offshore sector (225° to 315°)
and onshore seetorsectors (150° to 180° and 45° to 135°) are studied here. Outliers and potentially missing data elements are
omitted. The sensors on the Hgvsgre mast have been replaced regularly and calibrated, the data used in this paper is calibrated
data (Pefia et al., 2016). The sample size is about 2.43 x 10° for the offshore sector, 4.09 x 10* for the onshore sector (150° to
180°), and 1.41 x 10° for the onshore sector (45° to 135°).

to be stationary, and non-stationary wind conditions are not included in this study.
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Figure 4. Marginal distribution of v with Weibull fitting

The marginal distributions to be used are to be defined and the correlation between the variables is modelled by the copula
structure. Here, a Weibull distribution is used for modelling the marginal distribution of u, where the scale parameter is 11.61
and the shape parameter is 2.35. The plots are shown in Fig. 4. The lognormal distribution is used for modelling the marginal
distribution of o,,, where the mean and standard deviation of logarithmic values are -0.61 and 0.52. The plots are shown in
Fig. 5. Both the linear and logarithmic scales are plotted, where the main body pdf and tail distribution could be compared.
It eeuld-can be seen that Weibull and lognormal distributions are fairky-good fits for the v and o, respectively. The univariate

Gaussian distribution is also used here to fit the distribution of u and o, but it is not a proper fit, which also indicates that the
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Figure 5. Marginal distribution of o, with lognormal fitting

multivariate Gaussian distribution is not a good candidate for modelling the joint distribution of the wind parameters. The Nataf
transformation (Xiao, 2014) and Gumbel copula are used here to model the joint distribution of v and o, and generate random
samples. The generated random sample is shown in Fig. 6, where the left figure is the scatter plot of the measurement data, the
middle figure is the Nataf transformation generated sample, and the right figure is the Gumbel copula generated sample. The
Nataf transformation and Gumbel copula generated samples have the same sample size as the measurement data. They have

the same fitted marginal distributions, but different copula structures, as is demonstrated in Fig. 6.

Measurement Nataf transformation Gumbel copula

o (m/s)
o (m/s)

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
u (m/s) u (m/s) u (m/s)

Figure 6. Nataf transformation and Gumbel copula random samples for offshore sector

The different copula structures lead to different conditional distributions. The Nataf transformation and Gumbel copula
estimated probability of exceedance of o,, conditional on u are shown in Fig. 7 and Fig. 8 respectively. Only the distributions
u > 16 m/sms ! are plotted as they are close to the tail and affect the 50-year turbulence estimation most. with-As-As is
seen in Fig. 7, the probabilities of exceedance of o, conditional on u deviate from the measurement data significantly. Using
a Gumbel copula as is shown in Fig. 8, even though there is a reasonable agreement when u ranges from 16 m/s-ms~" to 20
m/sms ', alarger discrepancy arises for higher mean wind speeds. The differences in the conditional distribution between the
copula-estimated and measurement data indicate that using copula could lead to a biased 50-year turbulence estimation and

large model uncertainty for DLC 1.3 simulations.

10
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Figure 8. Gumbel copula probability of exceedance of o, conditional on u

Even though other copula structures are available, they are not flexible enough to represent the joint distribution of u and
o, from different measurement sites or even the same site for different wind direction sectors. The correct copula to use to
generate the joint distribution of u and o, for tail estimation requires further research. However, instead of fitting the joint

distribution using copula methods, a multivariate distribution is another option. To perform density estimation on univariate

11
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random variables, many theoretical probability distributions are available, e.g., normal, Weibull, lognormal, Rayleigh distribu-
tion, and the methods in (Zhang et al., 2020; Low, 2013), etc. On the other hand, fewer probability distributions are available for
multivariate density estimations. This creates a similar limitation of copula models, i.e., theoretical multivariate distributions
are limited and not flexible enough to model the v and o, measurements that possess different correlation structures.
The-GMM on the other hand is quite flexible since a number of Gaussian distributions with corresponding weights could

be used to estimate the probability densities for multivariate variables and generate correlated samples. The-GMM-is-applied
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3.3 GMM based estimation of wind parameters for the offshore sector

It is important to model the joint distribution of wind parameters, which could be used for uncertainty quantification, structural
optimization, and reliability analysis of wind turbines. The joint distribution should have a small estimation error for a realistic

50-year turbulence estimation. For the copula examples in section 3-13.2, the marginal distributions are estimated well, but not

the correlation structure, which leads to inaccuracies in the conditional distribution. H-the-foeeus-is-on-the-marginal-distribution

Using GMM does not have the same limitation, as a good joint distribution estimation will estimate both marginal distributions
and correlation structures with small estimation errors. B

Measurement GMM

0 10 20 30 40 0 10 20 30 40
u (m/s) u (m/s)

Figure 9. Measurement data and GMM random sample for offshore sector

The-GMM is adopted here to model the joint distribution of v and o,,. The measurement data and the-GMM random samples
are shown in Fig. 9, where the correlation structure of the measurement data is well captured. The marginal distribution of « is
shown in Fig. 10 and the marginal distribution of ¢, is shown in Fig. 11. Compared to Figs. 4 and 5, the marginal distributions
from GMM has smaller difference with the measurement data at both the main body pdf and the tails. The univariate Gaussian

distribution is not a good fit for either of the marginal distribution, but GMM is a good fit as its marginal distribution is a linear

13



combination of univariate Gaussian distributions (not necessarily Gaussian distribution), which is more flexible compared to a
stngle-Gaussian distribution. For marginal distribution estimation, which theoretical distribution to choose remains a problem,
especially when the sample size is small and the tail might exhibit different shapes. GMM does not have the trouble of selecting

260 distributions for marginal distribution estimation.
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Figure 11. Marginal distribution of o, for offshore sector

The probability distribution of o, conditional on u is plotted in Fig. 12. The probability of exceedance of o, conditional
on wu is plotted in Fig. 13. Both the main body pdf and the probability of exceedance from GMM agree quite well with the
measurement data, for the bins when u =26 m/sms ', the tail of the measurement data is not accurate due to the small sample

size (412).
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Figure 13. GMM probability of exceedance of o,, conditional on u for offshore sector
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The 10-minute-turbuleneetevel-10-min turbulence level (wind parameter contours) associated with a return period of 50

years is-as provided in the IEC 61400-1 and as computed by GMM are shown in Fig. 14. The 50-year—turbulencelevels
atoti-contour labelled IEC (blue ’+’) uses a reference

turbulence intensity I,of = 0.12 (corresponding to wind turbine class C) as input to perform IFORM analysis dEC;2005)
(Winterstein et al., 1993; IEC, 2005), where  is modeled by Weibull distribution and the probability distribution of o, con-
ditional on u is modeled by lognormal distribution (IEC, 2005). The IEC (data) (yeHew—+green ’x’) is the same as the IEC
(blue ’+’) except that I..¢ = 0.057, which is calculated as the expected value of turbulence intensity at a mean wind speed
of 15 mf&glvgzlw from the measurement data (IEC, 2005). The contour labelled IEC (data) has lower values than the contour
labelled IEC, since I,.c¢ is smaller (0.057 vs 0.12). The 50-year contour estimated using the-GMM-GMM with IFORM analysis
(Winterstein et al., 1993) is realistic as it has a similar shape to the scatter plot of the measurement data and bounds the data
points. The marginal distributions agree well with the measurement data (as are shown in Figs. 10 and 11), the conditional
distributions are validated in Figs. 12 and 13. The IEC contour happens to be aligned with the-GMM, but the IEC 61400-1 does
not prescribe a joint probability distribution or the marginal distribution for o,,. As the I,..¢ used is much larger than obtained
through the measurement data (0.12 vs 0.057), it could be inferred that the use of a lognormal distribution conditional on the
mean wind speed or the empirical formulas in (IEC, 2005) might not be accurate. The fourth edition of the IEC 61400-1 (IEC,
2019) does not increase the accuracy with the Weibull distribution for turbulence conditional on the mean wind speed, as the

50-year turbulence level is still unchanged.

50-year turbulence (225° - 315°)

- Measurement data

+ 1EC

41| * IEC (data) R
GMM AR

u

o (m/s)

0 5 10 15 20 25 30 35 40
u (m/s)

Figure 14. GMM and IEC 50-year turbulence estimation for offshore sector

17



285

290

295

3.4 GMM based estimation of wind parameters for the onshore seetersectors

It is worth investigating the applicability of GMM to other wind direction sectors, where the wind parameters have different
correlation structures due to different terrains. The wind-veloeity-and-turbulenceu and ¢, in the onshore section (150° to 180°)
is-modeHed-using-the-are modelled using GMM. The measurement data and a random sample from GMM are shown in Fig.
15, where the correlation structure is different from the offshore sector in Fig. 9. The marginal distribution of u is shown in
Fig. 16 and the marginal distribution of ¢, is shown in Fig. 17. Negligible differences could be seen from the comparison of
the main body pdfs and the tails. The probability distribution of o, conditional on w is plotted in Fig. 18. The probability of
exceedance of o, conditional on  is plotted in Fig. 19. Note that the sample size is smaller than the offshore sector (4.09 x 10*
vs 2.43 x 10%), so the tail distribution of the onshore measurement data has lesser accuracy as compared to the offshore sector,
but still performs better than using the method of copulas. The 50-year turbulence contour is shown in Fig. 20, where the left
figure shows the 50-year turbulence estimated from the measurement data from the sector with direction from 150° to 180°,
and the right figure is from the sector with direction from 45° to 135°. A slightly larger 50-year contour is estimated from the
45° to 135° sector. Figures 18 ;+9;-and—- 20 show that the-GMM is indeed flexible and can be used to model wind-speed-and

tarbulenee-u and g, for different wind conditions, albeit for flat terrains.

Measurement GMM

0 5 10 15 20 25
u (m/s)

25

Figure 15. Measurement data and GMM random sample for onshore sector

Note that #-isset-te-eight-the estimated density function converges when k = 8 for all the wind-parametersjoint-distribution
estimation-joint distribution estimations of wind parameters using GMM. More components are needed compared to the theo-

retical ¢ distribution (8 vs 4) as the correlation structure between the u and o, is more complex.
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Figure 20. GMM and IEC 50-year turbulence estimation for two onshore sectors

4 Conclusions

Fhe-GMM is proposed to model the joint distribution of wind parameters, i.e., t0-mintte-mean-wind-speed-and-turbulencey

and g, and it is readily implementable and provides realistic 50-year turbulence levels. This model has been validated using
multi-year high frequency wind velocity measurements at one site for offshore climate and for flat land terrains. Copula-based
joint probability models were not found to have the flexibility to accurately model the tails of the-wind-turbulence-distribution
conditional-on-the-mean-wind-speedo,, conditional on u.

A procedure using GMM that properly captures the joint distribution of wind parameters is proposed. Both the marginal
distributions of mean—wind-speed-and-standard-deviationu and g,, and the distribution of standard-deviation-conditional-on
mean-wind-speed-o,, conditional on u were shown to reflect the multi-year wind measurements. This model allows a good
estimation of the 50-year turbulence (validated by the marginal and conditional distributions), which serves as an input to
wind turbine design load cases. The procedure of GMM is demonstrated by fitting the theoretical multivariate ¢ distribution.
Fhe-GMM is then used to estimate the probability distribution of offshore wind parameters and two-sector ef-onshore wind
parameters. There is a good agreement between the-GMM estimated probability distribution and the measurement data. The
50-year turbulenee-wind parameter contour is estimated from the-GMM and compared with the corresponding values based on
the IEC 61400-1. The applicability to different sectors of the wind measurement data demonstrates its flexibility and shows its
potential for modelling the joint distribution of wind parameters. Compared to copula methods, it has less estimation error for
the estimated marginal distributions and conditional distributions.

The determination of the optimal number of components for GMM requires further research. In this paper, four parameters-is
used-for-components was found to be required to sufficiently model the theoretical ¢ distribution and eight fer-fitting-the-mean
wind-speed-and-turbuleneecomponents were required to model the wind parameters for both offshore and onshore sectors of
the chosen site. As more components are used, the pdf of the- GMM will converge ;-but-with-to the target distribution, but will
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require more computational efforts (several minutes on a standard laptop computer). Another limitation for GMM is that it
might not extrapolate well for certain correlation structures, especially if the sample size is small, even though the model is

quite flexible.
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