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Abstract. Optimizing turbine layout is a challenging problem that has been extensively researched in literature. However,

optimizing the number of turbines within a given boundary has not been studied as extensively and is a difficult problem

because it introduces discrete design variables and a discontinuous design space. An essential step in performing wind power

plant layout optimization is to define the objective function, or value, that is used to express what is valuable to a wind power

plant developer, such as annual energy production, cost of energy, or profit. In this paper, we demonstrate the importance of5

selecting the appropriate objective function when optimizing a wind power plant. We optimize several different wind power

plants with different wind resources and boundary sizes. Results show that the optimal number of turbines varies drastically

depending on the objective function. For a simple, one-dimensional, land-based scenario, we found that a wind power plant

optimized for minimal cost of energy produced just 72% of the profit as the wind power plant optimized for maximum profit,

which corresponded to a loss of about $2 million each year. This paper also compares the performance of several different10

optimization algorithms, including a novel repeated-sweep algorithm that we developed. We found that the performance of

each algorithm depended on the number of design variables in the problem as well as the objective function.

1 Introduction

Wind energy provides several advantages to the sustainable energy grid of the future. While producing power, wind turbines

produce zero carbon dioxide or other air pollution, require no external fuel, and require little to no water. Additionally, wind15

plants have an energy payback time of less than a year and can produce energy in an economically efficient manner (Razdan

and Garrett, 2017; Vestas, 2020). In fact, wind energy has been a central focus of research and development in past decades

such that, currently, wind is one of the cheapest sources of energy available (Lazard, 2018). Because of its many benefits, but

in large part due to the economic drivers, wind energy installations have grown throughout the world as has the relative share

of energy produced by wind. In coming years, wind energy technology is projected to improve, and wind energy capacity and20

market penetration are to increase even further (U.S. Energy Information Administration, 2019).

Because of economies of scale, utility-scale wind turbines are deployed in groups to minimize costs. This provides reduced

cabling costs, easier construction and maintenance, and reduced land requirements. However, building turbines close together

also introduces some challenges. One of these challenges is wake interaction between turbines. A wind turbine removes kinetic

energy from the air around it and converts this energy to electricity, creating a wake of slow-moving and turbulent wind25
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behind it. When turbines are built close together, their wakes can reduce the amount of energy available in the wind, causing

downstream turbines to produce less energy as a result. One way to reduce wake interactions between turbines is through wind

power plant layout optimization. This optimization process involves determining the number of turbines to build in a wind

power plant and their locations in order to reduce wake interactions and maximize performance. Finding an optimal wind

power plant layout is a challenging, nonconvex problem with many interacting design variables. It is difficult to solve this30

problem without mathematical optimization tools because it often requires not-so-obvious trade-offs to reach a solution.

Appropriate methods of determining turbine locations within a wind power plant have been intensively studied, and re-

searchers have demonstrated several methods that can be used to effectively optimize a wind power plant layout. The literature

demonstrates a preference for gradient-free optimization methods applied to wind power plant layout optimization, and dif-

ferent studies showed success using genetic algorithms, particle swarm methods, and random search to determine improved35

wind power plant layouts (Hou et al., 2019). A common layout optimization method is to divide the wind power plant domain

into a grid that defines possible turbine locations (at the center of the grid cells or at the intersections of the lines). One of the

previously mentioned optimization methods is then used to determine at which of the predefined locations a turbine should

be placed. In more recent years, some studies also showed success optimizing wind power plant layouts with gradient-based

methods. This type of optimization requires a continuous design space and computationally or analytically provided gradi-40

ents that increase the complexity of the problem formulation. However, the computational expense required for gradient-based

optimization scales favorably with increasing numbers of design variables compared to gradient-free methods for which the

computational expense scales very poorly.

Layout optimization studies are almost always performed assuming that the number of turbines in the wind power plant is

previously known. Determining the optimal number of turbines in a wind power plant is a much more difficult problem to solve45

because it requires the optimization of at least one integer design variable or a discontinuous design space. Although it has

not been discussed in the literature as much as layout optimization determining turbine placement, optimizing the number of

turbines in a wind power plant has also been addressed in previous studies. Mosetti et al. (1994) first addressed this issue when

they divided a wind power plant domain into 100 square cells as candidate turbine locations then used a genetic algorithm

to determine the optimal number of turbines and at which of the potential locations they should be placed. Since this seminal50

paper was published, many other researchers proposed improvements to Mosetti’s methodology and were able to find improved

results, mostly by using new and better optimizers (Grady et al., 2005; Zergane et al., 2018; Ituarte-Villarreal and Espiritu, 2011;

Moorthy and Deshmukh, 2015). Additionally, some applied a similar methodology to optimizing turbine number and layout

at real geographical locations (Şişbot et al., 2010; Khanali et al., 2018). The vast majority of these more recent studies kept

the same general optimization strategy, performed by dividing the wind power plant domain into a grid that defines potential55

turbine locations and using some optimizer to determine the best layouts.

Selecting the appropriate optimization methodology is a vital part of the wind power plant layout optimization process

because it will determine the quality of the final solution as well as the required computational expense. In addition to the

optimization algorithm, a critical step is to appropriately select the objective function. For wind power plant layout optimization

studies, objectives that are often considered are annual energy production (AEP) or cost of energy (COE). With a fixed number60
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of turbines, the objective may not have much of an effect on the final solution. However, when the number of turbines is also

being optimized, the objective function can have a profound effect on the final optimized layout. For one set of optimizations

discussed in Sec. 6.4, the optimal number of turbines ranges from 15–54, and the annual costs range from $6.75 million to

$21.96 million, depending on if the plant was optimized for AEP, COE, or profit.

In this paper, we studied two specific considerations in optimizing the number of turbines and their layout in a wind power65

plant. First, we studied how different objective functions alter the optimized number of wind turbines and their layout in a wind

power plant. As far as we are aware, this is the first paper that starts to explore the effect of the objective on the final wind power

plant design. The objective can greatly affect the final layout and performance of an optimized wind power plant. Second, we

compared using different problem formulations and optimization algorithms in finding a solution. Previous papers have begun

to research this topic but, in this paper, we specifically study how different algorithms perform depending on the objective and70

the size of the optimization problem. We compare a genetic algorithm and a greedy algorithm in a gridded wind power plant

domain, two commonly used wind power plant optimization methods, as well as a genetic algorithm with the boundary-grid

method and a new repeated-sweep algorithm in a gridded domain.

2 Wake Model

The wind speed downstream of a turbine is reduced because turbines extract energy from the flow and from the complex75

physics of the wakes they produce. In this paper, the desirability of the wind power plants we examined were dependent, to a

large extent, on energy production. This energy production is a function of the wind speeds throughout the wind power plant.

To calculate the wind speeds to be used in turbine power calculations, we used an analytic Gaussian wake model (Bastankhah

and Porté-Agel, 2016; Abkar and Porté-Agel, 2015; Niayifar and Porté-Agel, 2016). The wake calculations were performed

using FLOw Redirection and Induction in Steady State (FLORIS), which is a computationally inexpensive, controls-oriented80

tool to calculate the steady-state flow field in a wind power plant (NREL, 2020). We include a brief description of the Gaussian

wake model in this paper but, for more details, refer to the original model paper (Bastankhah and Porté-Agel, 2016).

Using the Gaussian wake model, the velocity of the wake behind a turbine is computed with the following analytical expres-

sions:

u(x,y,z)
U∞

= 1−Ce−(y−δ)2/2σ2
y−(z−zh)2/2σ2

z (1)85

C = 1−
√

1− (σy0σz0)CT
σyσz

(2)

where u is the velocity at a desired location (x,y,z), C is the velocity deficit at the wake center, U∞ is the freestream velocity,

δ is the wake deflection, zh is the hub height of the turbine, σy defines the wake width in the y direction, and σz defines the

wake width in the z direction. Each of these parameters is defined with respect to each turbine. The subscript “0” refers to the90

initial values at the start of the far wake, which is dependent on ambient turbulence intensity, I0, and the thrust coefficient, CT .
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For additional details on near-wake calculations, refer to the original paper describing this model (Bastankhah and Porté-Agel,

2016). The velocity distributions σz and σy are defined as:

σz
D

= kz
(x−x0)

D
+
σz0
D

where
σz0
D

=
1
2

√
uR

U∞+u0
(3)

95

σy
D

= ky
(x−x0)

D
+
σy0
D

where
σy0
D

=
σz0
D

cosγ (4)

where D is the rotor diameter, uR is the velocity at the rotor, u0 is the velocity behind the rotor, γ is the rotor yaw angle (which

is assumed to be 0 in this paper), ky defines the wake expansion in the lateral direction, and kz defines the wake expansion

in the vertical direction. For this study, ky and kz are set to be equal and the wake expands at the same rate in the lateral and

vertical directions. The wake deficits were combined using the traditional sum of squares method (Katić et al., 1986). Equation100

1 defines the wind speed, u, at a single desired point. To determine the average rotor wind speed used to calculate the power

production of a wind turbine, we averaged the wind speeds sampled at nine locations across the swept rotor area, which is the

default in FLORIS.

For this study, we used a 2.5 -MW turbine definition. The turbine parameters are shown in Table 1, and the power and thrust

coefficient curves, as well as the power curve, are shown in Fig. 1. As seen in the power curve, the rated wind speed is near

Table 1. Wind turbine parameters.

rated power 2.5 MW

rotor diameter 117.8 m

hub height 88 m
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Figure 1. Left: CP and CT curves for the 2.5-MW turbine used in this study. Right: the power curve for this same turbine.

105

10 m/s.

4

https://doi.org/10.5194/wes-2021-15
Preprint. Discussion started: 18 March 2021
c© Author(s) 2021. CC BY 4.0 License.



3 Objective Functions

In this paper, we explored three different objective functions in our wind power plant optimizations: 1) AEP, 2) COE, and 3)

annual profit. In this section, each objective function will be described in detail. We acknowledge that the models we used in

this paper are simplistic. These simplified models are sufficient for this demonstration and investigation into varying results110

from different objectives; however, more detailed models can be easily included, depending on the use case and data available.

3.1 Annual Energy Production

AEP is a standard objective in wind power plant optimization (Pérez et al., 2013; Gebraad et al., 2017; Thomas and Ning, 2018).

For problems where the value of energy produced by the wind power plant is fixed throughout its lifetime and independent

of the time of day, and where the project cost remains constant or is not an important consideration, AEP is a reasonable115

objective. AEP optimization simply aims to maximize the energy production for some fixed cost. For example, AEP is a

common objective for wind power plant layout optimization where the turbine number and design are fixed. Typically to

calculate AEP, the wind directions and wind speeds are grouped into discrete bins in order to numerically calculate the integral:

AEP = 8,760
nd∑

i=1

ns∑

j=1

Pf (φi,U(φi)j)fifj (5)120

where 8,760 is the number of hours in a year, nd is the number of wind direction bins, ns is the number of wind speed bins per

wind direction, Pf is the power production of the wind power plant, phi is the wind direction, U is the wind speed, and fi and

fj are the frequency of wind associated with a given direction and speed.

The power of an individual turbine is calculated as follows:

Pt =
1
2
ρAV 3CP (V ) (6)125

where Pt is the power produced by a single turbine; ρ is the density of air, which we assumed is 1.225 kg/m3; A is the rotor

swept area of the wind turbine; CP is the power coefficient of the turbine; and V is the effective wind speed across the swept

area, which was calculated with the wake model discussed in Sec. 2. When there is a variable number of turbines, we expect

that a wind power plant optimized for maximum AEP will have many turbines spaced close together, filling the available land.

If there are no penalties for costs considered in the optimization, additional turbines will lead to an improved objective, even if130

they are extremely inefficient and operate with high wake interference.

3.2 Cost of Energy

In some optimization problems, AEP may not be an appropriate objective as it does not account for the added cost or complexity

required to achieve gains in AEP. An example of this is wind turbine blade design, for which an increase in AEP comes at

the cost of additional mass and, therefore, cost. In a situation like this, it may be more appropriate to perform multi-objective135

optimization or include both AEP and cost into a single objective. COE is another common metric used in wind power plant
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design that captures both energy production and costs (Chen and MacDonald, 2014; Fleming et al., 2016; Stanley and Ning,

2019a). We calculated COE as a combination of costs divided by the AEP:

COE =
cost
AEP

(7)

140

cost = FCR(TCC + BOS) + O&M (8)

where FCR is the annual fixed charge rate, which we assumed was 9.7% (Previsic, 2011); TCC is the turbine capital cost,

which we assumed is $829 per kW of plant capacity (Wiser et al., 2020); O&M is the operation and maintenance cost, which

we assumed is $44 per kW of plant capacity per year (Stehly and Beiter, 2020); and BOS is the balance of station cost. For this

paper, we created a simple relation of BOS costs as a function of the installed wind power plant capacity from a set of higher145

fidelity BOS cost data (Key et al., 2020). This BOS cost function is shown in Fig. 2. As shown in the figure, the cost per kW

decreases as the total capacity increases because of economies of scale. We expect a wind power plant optimized for COE to
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Figure 2. The balance of station (BOS) cost model (per kW of installed wind power plant capacity) as a function of the total power plant

capacity (Key et al., 2020).

have fewer turbines than one optimized for AEP. This objective heavily considers the additional costs from adding turbines to

the wind plant. Extra turbines are only beneficial if the economies of scale from a cost perspective outweigh the losses from

additional wake interference that is introduced.150

3.3 Annual Profit

Another metric that may be used for an objective function is annual profit. Like COE, this objective can take into account both

energy production and costs. Additionally, an objective of profit can consider more refined measures of the value of energy,
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such as time-of-day pricing where the price of electricity varies depending on the time of day it is produced. This objective

would likely be of most interest to wind power plant developers, as opposed to AEP or COE previously discussed. For this155

paper, we defined profit simply with a fixed power purchase agreement as:

profit = AEP ∗PPA− cost (9)

where PPA is the power purchase agreement, which determines the monetary value of the energy produced. For this paper, we

assumed that the PPA is a constant, although we will vary this constant to study its effect during different optimizations. We

expect a wind power plant optimized to maximize profit to have fewer turbines than one optimized for maximum AEP, but160

more turbines than one that is optimized for minimum COE. This objective still penalizes costs from adding more turbines, but

will find solutions with slightly suboptimal COE as long as the AEP gains lead to sufficiently increased revenue.

4 Design Variable Parameterizations

In this paper, in addition to the objective function, we explore different optimization techniques, and how they affect the final

solution and the computational expense required to find it. One important part of any optimization is how to parameterize165

the design variables. In this section, we explain the two different parameterization methods we used in this paper: a gridded

domain, where the number of design variables increases as the grid refinement squared; and a boundary-grid method, where

the number of design variables remains constant at 11, regardless of the size of the domain or the number of turbines.

4.1 Gridded Domain Design Variables

The first set of design variables that we used in our optimization are similar to those initially used by Mosetti et al. (1994)170

and involve dividing the domain into a square grid of potential turbine locations. In this problem formulation, each of the

grid points is a design variable, with the possible integer value of 1 (meaning a turbine exists in the associated position) or 0

(meaning the associated position is empty). Figure 3 shows this gridded domain for a square boundary with 8 row and column

grid discretizations. Each of the blue points represents a design variable and is a potential location for a wind turbine. The

computational expense required to optimize a problem generally scales poorly as the number of design variables increases.175

So, the grid must be refined enough to sufficiently search the design space, but not so refined that the optimization becomes

computationally infeasible. Note that the number of design variables increases as the grid refinement squared, indicating that

the number of design variables can quickly become impossible to optimize if the grid becomes too refined.

4.2 Boundary-Grid Design Variables

The second parameterization that we optimized with was a modified version of the boundary-grid method. The boundary-grid180

parameterization is a simple method to define the layout of turbines in a wind power plant with very few design variables

and still achieve layouts that perform just as well as wind power plants designed with more complex layout optimization

techniques. In essence, it consists of placing some of the turbines around the boundary and the rest regularly arranged in a grid
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Figure 3. A square wind power plant that has been discretized with a square grid for wind turbine number and layout optimization.

(Stanley and Ning, 2019b). The boundary-grid parameterization has the huge benefit of keeping the same number of design

variables regardless of the number of turbines being optimized. This means that the layout of large wind power plants with185

hundreds or even thousands of wind turbines could be optimized without prohibitively high computational expense. In its

original formulation, the boundary-grid method was defined for use with a gradient-based optimizer. This required the user to

predefine some of the discrete variables that could not be optimized with gradients. Because we used gradient-free optimization

in this paper, we slightly reformulated the boundary-grid method allowing integer variables and a discontinuous design space.

In total, there are 11 design variables that describe the location of every turbine and are shown in Fig. 4.190

The turbines in the interior of the wind power plant are arranged in a grid that is defined with 9 variables. First is the

grid border, B, shown in Fig. 4a. The grid border is a number between 0 and 1 that defines the fraction of the boundary

that will contain the inner grid turbines. When B = 1, the grid border is exactly the same as the wind power plant boundary,

and proportionally decreases in size until B = 0, meaning the grid border vanishes in the center of the plant. The rest of the

variables that describe the interior grid turbines define a complete distorted square grid of turbine locations; however, only195

those that are inside of the grid border are used. Figure 4b represents the other 8 variables used to define the locations of the

interior grid turbines. The grid height and width are represented by h and w, respectively. The center of the grid is shown as the

point (cx,cy), and the grid shear is shown in this figure as φ. The grid rotation (about the center (cx,cy)) is given by θ. Finally,

the number of rows and columns are also design variables used in the optimization. Figure 4c shows how the design variables

in Figs. 4a and 4b are combined to obtain the turbine locations. Turbines are placed at all of the grid intersection points that200

are inside of the grid border, shown by the blue dots. No turbines are placed at the grid intersection points outside of the grid

border, indicated by the red dots in the figure.

The turbines around the boundary of the plant are equally spaced, traversing the perimeter of the plant. The boundary turbine

locations are defined by two design variables represented in 4d. First, the number of turbines placed on the boundary is a design
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B

a

(cx,cy)

h

w

b c

s

d

integer variables:
number of rows
number of columns

integer variable:
number of turbines
on the boundary

e

Figure 4. A description of the variables in the boundary-grid parameterization. 4a shows the grid border variable, B, and 4b shows the grid

definition variables, h, w, (cx,cy), φ, and θ, which represent the grid height, width, center, shear, and rotation, respectively. The number

of grid rows and columns are also variables. 4c shows how all of the grid variables in 4a and 4b combine to define the interior grid turbine

locations. 4d shows the boundary turbine variables, which are the boundary start location, s, and the number of boundary turbines. 4e shows

the combined results of the boundary turbines and the interior grid turbines.

variable. Second, the starting location of the first boundary turbine, represented as s in Fig. 4d, is a design variable. The starting205

location is the distance from a constant anchor point at which the first boundary turbine is placed. Because the turbines are

spaced equally around the wind power plant boundary, defining the location of this first boundary turbine implicitly defines

the location of the rest of the boundary turbines. Figure 4e shows the final turbine locations defined by the boundary-grid

parameterization variables shown in the rest of the figure. Notice that this is the combination of the boundary turbines in

Fig. 4d and the blue inner grid turbines from Fig. 4c.210
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5 Optimization Algorithms

In this section, we discuss the details of the optimization algorithms we used in this paper. There are many algorithms that

can be used to solve the wind power plant layout optimization problem, including determining the optimal number of wind

turbines. In this paper, we chose to compare the performance of three gradient-free optimizers: a greedy algorithm, a genetic

algorithm, and a novel repeated-sweep algorithm.215

5.1 Greedy Algorithm

The first optimization algorithm that we used was a greedy algorithm. Several researchers in the past implemented a greedy

algorithm in performing wind power plant layout optimization, making this a good benchmark (Changshui et al., 2011; Song

et al., 2015; Chen et al., 2016). We applied our greedy algorithm to the gridded plant parameterization. For this algorithm,

we started with one turbine placed in a random location within the plant domain. We then found the optimal location to place220

one additional turbine by evaluating the plant performance from placing the extra turbine at every potential turbine location

in the grid. This process of adding one extra turbine was then repeated until adding an additional turbine did not cause an

improvement in the objective. This algorithm is shown in Algorithm 1.

5.2 Genetic Algorithm

The second algorithm we used to optimize was a genetic algorithm. As with the greedy algorithm, genetic algorithms have also225

been a popular choice when performing wind power plant layout optimization studies with a discretized plant domain (Mosetti

et al., 1994; Grady et al., 2005; Chen et al., 2013). For the results shown in this paper, we performed single-point crossover

and used a mutation rate of 2%. For the gridded plant domain, adjacent bits in the chromosome were adjacent in the plant

domain. This helped create offspring that did not violate spacing constraints, as entire sections of the wind power plant that

were traded during crossover would remain feasible (as long as they were feasible to begin with). After each generation, the230

entire population, consisting of parents and offspring, were ranked in order of performance. The better-performing half of the

entire population was kept to act as parents for the next generation. Convergence was assumed after the best performance was

within a tolerance of 10−3 for 25 generations. As the genetic algorithm was used for both the gridded parameterization and

the boundary-grid method, continuous variables were binary encoded with 8 bits each. This means that for the boundary-grid

parameterization, the variables were encoded into 76 bits—3 bits for the integer number of rows, 3 bits for the integer number235

of columns, 6 bits for the integer number of turbines on the boundary, and 8 bits for each of the 8 continuous variables. A rule of

thumb for genetic algorithms is to use a population size of 10 times the number of design variables (Martins and Ning, 2020).

For the gridded plant domain, we followed this rule of thumb exactly because there was a large number of design variables. For

the boundary-grid parameterization, we used a population of 100, which was slightly less than 10 times the number of design

variables. This gave us good results for our formulation. The genetic algorithm is represented is Algorithm 2.240
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Algorithm 1 Greedy Algorithm

Input:

number of bits: n

objective function: obj

1: initialize the best set of design variables A, an array of zeros of length n

2: place a 1 in a random index of A

3: initialize the best fitness value: f= obj(A)

4: while not converged do

5: set the iteration minimum to best fitness value: m= f

6: for i= 1 : length(n) do

7: set temporary array B equal to A

8: switch index i of B (from 0 to 1 or 1 to 0)

9: evaluate the objective function with temporary array B: g= obj(B)

10: if g< m then

11: redefine the iteration minimum: m= g

12: define the iteration minimum array: C= B

13: end if

14: end for

15: if m= f then

16: converged

17: else

18: redefine the best fitness value: f= m

19: redefine the best set of design variables: A= C

20: end if

21: end while
Output:

best fitness value: f

best set of design variables: A
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Algorithm 2 Genetic Algorithm

Input:

number of bits: n

objective function: obj

population size: pop_size

maximum generations: n_gens

crossover rate: crossover

mutation rate: mutation

tolerance: tol

convergence generations: conv_gens

1: initialize the parent population parent_pop, a 2-D array of size pop_size by n

2: initialize the offspring population offspring_pop, the same size as parent_pop

3: initialize the generation counter, generation = 1

4: initialize the convergence criterion, difference = 1

5: while not converged and generation < n_gens do

6: perform crossover to create offspring population

7: mutate (leave the best individual unmutated)

8: evaluate fitness of offspring

9: rank the fitness of the total population

10: evaluate difference, |best fitness of current generation − best fitness of generation conv_gens ago|
11: if difference ≤ tol then

12: converged

13: else

14: keep the best individuals between the current parent population and the offspring population as the parents for the next generation

15: end if

16: end while
Output:

best fitness value

best design variables associated with the best fitness value
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5.3 Proposed Method: Repeated Sweep Algorithm

The last optimizer we used was a novel repeated sweep algorithm. As far as we are aware, no method similar to our proposed

repeated sweep algorithm has been used in past research for wind power plant layout optimization. Like the greedy algorithm,

this optimizer was only used with the gridded plant parameterization, where each of the design variables is an integer, either 0

or 1. The repeated sweep algorithm consisted of three phases. First was a single search phase, followed by two trade phases.245

In the search phase, one by one and in a random order, the value at each potential turbine location was switched from 1 to 0

or from 0 to 1. If the objective improved, the swapped value was kept; if not, the design variable retained its original value. This

was done until every potential turbine location had been evaluated, and the value had been changed or retained. In both trade

phases, each potential turbine location was again searched through one by one. However, in these phases, instead of exploring

adding or removing turbines (like in the search phase), the potential turbine location traded values with the cell adjacent to it. In250

the way we formulated the problem, in the first trade phase, each position traded places with the cell to the right; in the second

trade phase, each position traded places with the cell above it. As with the search phase, if a trade resulted in an improvement

in the objective, the trade was kept. If not, the trade was rejected and the original locations were retained. Also, as with the

search phase, the trades were done in a random order until a trade at each location had been evaluated. The three phases were

repeated in order, search-trade-trade, until the objective function did not improve after a complete cycle of all three phases.255

The repeated sweep algorithm is shown in Algorithm 3.

5.4 Gradient-Based Optimization

The optimization algorithms discussed previously were gradient-free, which simultaneously optimize the number of turbines

and their layout in a wind power plant. Another way to optimize turbine number and layout in a wind power plant is with

gradient-based optimization. Gradient-based algorithms cannot optimize integer design variables or discontinuous design260

spaces—both of which are conditions that apply to the problem addressed in this paper. However, it is possible to repeat a

gradient-based optimization multiple times with different numbers of wind turbines, then choose the overall best solution for

the given objective. This process is computationally expensive for two main reasons. First, a priori, it is difficult to determine

the approximate number of turbines that will be optimal. This means it would be necessary to repeat the optimization many

times, using different numbers of wind turbines. Second, gradient-based optimizers are especially susceptible to converging265

to local minima in the design space. This problem is also prevalent in gradient-free optimization, but is more pronounced in

gradient-based optimization. The problem can be mostly accounted for by repeating the optimization many times with different

randomly initialized design variables, but this requires even more computation.

In this paper, our purpose was to compare some gradient-free methods that could be effectively used to solve for the optimal

turbine number and placement in a wind power plant. However, for one small case discussed in Sec. 6.2 we also used gradient-270

based optimization in order to compare the results. For the optimizations in this section, the function calls were very fast,

allowing us to quickly perform the hundreds of optimizations necessary to explore the design space. To perform the gradient-

based optimization, we swept through all of the possible numbers of wind turbines that could fit in the wind power plant without

13

https://doi.org/10.5194/wes-2021-15
Preprint. Discussion started: 18 March 2021
c© Author(s) 2021. CC BY 4.0 License.



Algorithm 3 Repeated-Sweep Algorithm

Input:

number of rows and columns: n, m

objective function: obj

1: randomly initialize a feasible array of design variables A, a 2-D array of size n-by-m with 1s and 0s. The 1s in the matrix correspond to

the physical locations of turbines in the wind power plant. Ensure that this initialized matrix satisfies all of the constraints.

2: initialize the fitness: f= obj(A)

3: while not converged do

4: cycle to the next step: search, trade rows, trade columns. Loop back to the search step after completing trade columns. We started with

the search step.

5: for sweep through all of the indices of A in a random order do

6: set temporary array B equal to A

7: if search step then

8: change the value of the current index of B from 0 to 1 or 1 to 0

9: else if trade rows step then

10: trade the value of the current index of B with the value on its right

11: else if trade columns step then

12: trade the value of the current index of B with the value above it

13: end if

14: if obj(B)< f then

15: keep the switched matrix A = B, and update the fitness value f = obj(B)

16: end if

17: end for

18: if three consecutive steps are completed (in any order) without improving the fitness value then

19: converged

20: end if

21: end while
Output:

best fitness value: f

best set of design variables: A
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violating the spacing constraints, which was 2–18 turbines. For each number of turbines, we performed 50 optimizations with

randomly initialized turbine locations. This gave us relatively high confidence that the solution we found with the gradient-275

based optimization was near the global solution. We used finite-difference gradients for these optimizations, which do not

perform as well as analytic gradients, both in quality of the final solution and in computational expense. However, for the case

in which we used the gradient-based optimizer, the wind rose is simple and the number of design variables is relatively small,

meaning the finite-difference gradients perform sufficiently well. For the results in this paper, we used the open-source SLSQP

optimizer available in SciPy (Virtanen et al., 2020).1280

5.5 Constraints

In our layout optimizations, we assumed there were only two constraints—a spacing constraint and a boundary constraint. The

turbines were constrained to be at least two rotor diameters apart from each other. This minimum spacing constraint implicitly

defined the maximum number of turbines that could be placed in the wind power plant. Additionally, turbines were constrained

to remain inside a prescribed boundary.285

6 Results

In this section, we discuss the results our wind power plant simulations and optimizations. Included in this section are a simple,

one-dimensional (1D) sweep of the different objective functions versus the number of wind turbines, then full two-dimensional

(2D) wind power plant layout optimizations run for the different objectives and with the different optimization algorithms. The

wind plants that we optimized and discuss in this section are a small wind power plant with a unidirectional wind rose, a large290

wind power plant with a unidirectional wind rose, and a large wind power plant with a full wind rose. Finally in this section,

we present results from optimizing wind power plants for maximum profit with varying PPAs.

6.1 1D Example

First we discuss a simple, 1D example to demonstrate the effect different objective functions have on the optimal solution. For

this example, we simulated a single row of wind turbines in line with the wind, which had a constant speed of 10 m/s. The295

length of this row was fixed at 25 km, and the turbines were equally spaced. For this scenario, we calculated the value of each

objective as a function of the number of wind turbines in the simple wind power plant; results are shown in Fig. 5.

This figure is particularly interesting when you notice that the optimal number of turbines for each objective is very different.

Obviously, a wind plant designed for maximum AEP will look very different than wind plants designed with other objectives

in mind. When maximizing AEP, there is no penalty for the extra costs associated with building extra turbines. As long as300

adding another turbine produces more energy, it is superior—no matter how marginal the increase in energy and how large the

increase in cost. It makes sense that the wind power plant optimized for AEP has the most wind turbines, 23 in this example,

because more turbines are added until the wake effect from adding an extra turbine outweighs the additional power it provides.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Figure 5. Different objectives as a function of the number of turbines in the wind power plant. For this example, the turbines are in line with

the wind direction and are equally spaced in a wind power plant with a fixed length. From left to right, the objectives represented here are

annual energy production (AEP), cost of energy (COE), and annual profit.

On the other hand, when COE is the objective, the optimal number of wind turbines is just nine, much lower than for the AEP

objective. If the cost of the wind plant was modeled as a linear function of the number of turbines, the optimal COE solution305

would be just one turbine. A single turbine would have no wake interference from other turbines and would, therefore, produce

energy for the lowest cost. However, there are some economies of scale involved with wind plant development, represented in

our cost model by the decrease in BOS costs with increasing power capacity. This means there is some optimum greater than

one where the wake interference is still relatively low and the costs per turbine in the wind plant are decreasing steeply with

additional turbines.310

Finally, a completely different solution is obtained when optimizing the wind power plant for maximum profit. While the

COE objective optimizes the ratio between the value a wind plant produces and the cost, the profit objective optimizes the

difference between the value a wind plant produces and the cost. At first, it may seem nonintuitive that the solution for optimal

profit is different than the solution for optimal COE because minimized costs should be related to more profit. In Fig. 5, notice

that the optimal COE solution is 9 turbines and produces a COE of about $23/MWh. In this case, energy generation and,315

therefore, revenue generation, are limited because of the small number of turbines. For 18 wind turbines, a slightly higher COE

is achieved of about $25/MWh. From a COE perspective, this is suboptimal. However, the additional revenue produced from

the extra turbines outweighs the increase in COE. The exact number of turbines for optimal profit depends on the monetary

value of the energy, which is defined with the PPA. This means that the optimal solution is different depending on the PPA,

represented by the different colors in the subfigure on the right.320
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As described previously, Fig. 5 shows different metrics as a function of the number of turbines in a 1D wind power plant.

In addition to the number of turbines shown on the bottom axis, this figure also shows the turbine spacing in rotor diameters

on the top axis. While this axis is useful in understanding the results from a more familiar perspective, one must be careful not

to interpret these values incorrectly. The optimal turbine rotor diameter spacing reported in this figure is around 10 for AEP,

24 for COE, and between 12 and 18 for profit. These are very large turbine spacings for a wind plant and are likely infeasible325

because of land or cabling constraints. One must remember that these results were obtained from a very simple design space

sweep with all wind turbines exactly in line with the wind. Because real wind power plants are built in two dimensions, with

full wind-direction variability, it is actually possible to build turbines much closer together than is indicated in Fig. 5.

As demonstrated in Fig. 5, when determining the number of wind turbines to build in a wind power plant, an appropriate

objective is essential to achieving a desirable solution. This is true of any optimization problem, but it is particularly important330

to remember for this application. COE is an extremely common objective function in wind plant design—and rightfully so.

However, as demonstrated in this simple example, the optimal number of turbines to minimize COE is suboptimal if the aim

is to maximize annual profit, which may (or may not) be what is most important to those designing the wind power plant. In

this specific example, the optimal number of turbines for COE results in $5.1 million of annual profit with a PPA of $50/MWh,

just 72% of the optimal profit of $7.1 million. This significant difference in the optimal performance and wind plant design335

for different objectives has important implications for techno-economic considerations in wind plant design. Economic factors

drastically change the optimal solution, which highlights the importance of having accurate cost models, and again identifying

the correct objective for design and optimization.

Historically, capacity expansion models consider the price of power and land availability but assume a constant power density

for a single turbine configuration and do not vary with PPA price or cost. This work illustrates not only the difference in capacity340

density for a COE minimization versus a profit maximization, but also the relationship of increasing energy prices on capacity

in land-constrained scenarios. Aggressive carbon reduction scenarios or other renewable energy goals typically result in higher

energy prices for renewables. These results in Fig. 5 show that for scenarios where energy prices increase, capacity densities

may also increase. Similarly, where project costs increase because of smaller plant sizes and higher construction costs, projects

may tolerate lower energy production from lower wind resource quality and higher wake losses in order to maintain a constant345

PPA price.

6.2 Small Plant with Unidirectional Wind Rose

With the 1D sweep of the design space complete to provide some intuition about the different objective functions, we will

now discuss a simple layout optimization for a small wind power plant with a unidirectional wind rose. As stated before, we

performed the optimization of each objective using a gridded domain, optimized with a greedy algorithm, a genetic algorithm,350

and a repeated sweep algorithm. We also optimized a boundary-grid layout parameterization with a genetic algorithm. Also, as

mentioned before, for this small wind plant, we optimized the layouts using gradient-based optimization.

For this small wind power plant optimization, we assumed the domain was square with 800-m sides. The wind came from a

direction of 300 degrees, or 30 degrees north of west. The wind speed was assumed constant at 10 m/s, which is close to the
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rated wind speed for our turbine model. The PPA was assumed to be $30/MWh. For the gridded design variables, the domain355

was discretized into a 10-by-10 grid. We ran each optimization method five times to convergence because the final solution

is dependent on the randomly initialized population or design space. Because each of the optimization algorithms has some

stochastic qualities, with enough time and randomly initialized starts, each optimization method will potentially be able to find

a very good solution. However, we believe that five optimizations for each is enough to give a good idea of their performance

relative to each other for each of the objective functions.360

Results for the small wind power plant optimizations with a unidirectional wind rose are shown in Table 2 and Fig. 6. Table 2

shows the optimization results and the computational expense associated with each optimization method and for each objective

function. The first column shows the objective function, and the second column shows the optimization method. The third

column provides the optimized number of turbines in the wind plant in bold and the average turbine spacing in rotor diameters

associated with that number of turbines. The fourth column provides the best solution from the 5 optimizations in bold, along365

with this same value normalized by the best solution out of all of the optimization methods for the given objective. In this

column, the best solution is highlighted in blue and the worst solution is highlighted in red. Finally, the fifth and sixth columns

provide the total time and the total number of function calls to run the 5 optimizations for each optimization method. The gray

rows in this figure show the gradient-based optimization results. Notice one cell in a gray row is blue, indicating the gradient-

based optimization found the best solution for the maximum profit objective. Figure 6 shows the flow field for the best layout370

for each objective function. These are the layouts corresponding to the blue highlighted cells in Table 2. These flow fields show

a horizontal slice of the wind power plant at the turbine hub height. The black lines represent the wind turbines, the red areas

represent faster freestream wind speed, and the blue areas represent a slower waked wind speed. We did not include a color

legend because we only wish to demonstrate qualitative information with this figure; therefore, exact values are not important

for this purpose.375

6.2.1 Small Power Plant with Unidirectional Wind Rose: Different Objectives

First, we will discuss the differences between the optimal solutions for the different objective functions. For optimal AEP, the

best solution has as many turbines as the optimizer can fit into the wind power plant without violating spacing constraints.

As can be seen in the top subplot of Fig. 6, the optimal layout has turbines that are spaced very close together. Wakes are

strong in the flow field, which contains several turbines that are fully or partially waked. For this objective, it doesn’t matter380

if some turbines are greatly affected by wakes as long as their energy contribution is positive. Now, in this case, the optimal

solution had the maximum number of turbines as could fit into the boundary. However, from Fig. 5 we see that even for the

AEP objective, there is a point where adding additional turbines actually becomes detrimental. We also see from Fig. 5 that this

could occur at a relatively large turbine spacing, between 9-10 rotor diameters. For the 1D sweep, the turbines are all exactly in

line with the wind. Additionally, rather than having two or three turbines waked in line, there are many in line with each other.385

This indicates that, in large part, the AEP is determined by deep array effects. For the small wind plant layout optimization

discussed in this section, there are at most three turbines in line with each other. In this case, adding turbines, even if they are
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Table 2. Complete optimization results for the small wind power plant with unidirectional wind rose.

objective optimization num. turbines/

avg. spacing (D)

optimal value/

normalized

time (s) function

calls

AEP
(GWh)

greedy grid 12/2.76 238/0.792 15 2,267

genetic grid 16/2.26 293/0.973 1,867 105,872

sweep grid 15/2.36 270/0.897 4 204

genetic BG 16/2.26 301/1.000 1,022 50,519

GB 17/2.17 299/0.993 12,082 651,265

COE
($/MWh)

greedy grid 10/3.14 22.16/1.015 11 1,860

genetic grid 11/2.93 21.84/1.000 1,443 106,755

sweep grid 10/3.14 21.88/1.002 8 656

genetic BG 9/3.40 22.16/1.014 319 26,604

GB 11/2.93 21.93/1.004 12,071 655,392

annual profit
($MM)

greedy grid 11/2.93 1.88/0.918 15 2,208

genetic grid 12/2.76 1.99/0.971 1,306 95,687

sweep grid 12/2.76 1.76/0.860 5 341

genetic BG 14/2.48 1.85/0.905 532 36,510

GB 13/2.61 2.04/1.000 13,130 702,650

fully waked, increases the AEP. If we were to repeat the optimization for a much larger domain we would see results similar to

Fig. 5, where having too many turbines could actually be detrimental for AEP.

While the wind power plant optimized for AEP maximizes the number of turbines in the design space, the wind plant390

optimized for minimum COE looks very different. This wind plant has 11 turbines, as opposed to 16 for maximum AEP. The

turbines are arranged such that waking is minimal, if it exists at all. For this objective, it appears that the optimizer maximizes

the number of unwaked wind turbines. We can conclude that when the turbines are waked, the loss in energy production

outweighs the benefits gained from economies of scale in the cost model. Therefore, additional turbines are good if they meet

some minimum power production requirement, which is dictated by the cost model.395

For the last objective, profit with a PPA of $30/MWh, the optimized number of turbines is 13. This is between the optimal

number of turbines for the COE and AEP objectives. When optimizing for profit, the solution appears to be a balance between

minimizing COE and maximizing AEP. A turbine is allowed to be waked as long as the gains from the energy it produces

outweigh the costs of adding the extra turbine. As will be discussed in more detail in Sec. 6.6, the point where adding an

additional turbine is no longer profitable is determined by the PPA. A lower PPA will drive the solution for maximum profit400

toward the solution for minimum COE, while a higher PPA will drive it toward the solution for maximum AEP.

We want to emphasize that the results we show are not meant to demonstrate exact solutions or guidelines for determining

the number of turbines in a wind power plant. Specific solutions will depend on wind resources, turbine parameters, boundary
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Figure 6. The optimal layouts for each objective for the small wind power plant with a unidirectional wind rose. From top to bottom, the

associated objective functions are AEP, COE, and profit. The text within each figure provides the values for all three metrics for each wind

plant.

shape and size, PPA, constraints, and other factors. Our purpose is to demonstrate that the optimal number of turbines and their

layout are completely different depending on the objective. The true objective must be carefully formulated when optimizing405

the layout of a wind power plant. Figure 7 shows how the wind plants optimized for the three different objectives compare in

other metrics. We demonstrated objectives of AEP, COE, and profit, and how they all produce different solutions. All of the

wind plants optimized for a specific metric greatly underperform in the other metrics that we calculated. The one exception is

the optimal profit solution, which also accomplishes a relatively low COE.
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Figure 7. A comparison of the performance metrics of the three different wind power plants optimized for different objective functions.

These results are shown for the small wind plant with a unidirectional wind rose.

While we included three specific objective functions in this paper, there are many other considerations that could be included410

in the objective. For example, it may be desirable to maximize the profit generated by each turbine in the wind power plant

above some minimum value. This would keep the optimizer from adding a turbine that only provided a marginal return on

investment. One could also optimize for profit or COE while constraining the AEP to be above some desired minimum value.

When using mathematical optimization, the objective function must be designed to truly represent the desired performance

because this will drive the final solution.415

6.2.2 Small Power Plant with Unidirectional Wind Rose: Different Algorithms

In this section, we will discuss the performance of the solutions found with each optimization strategy and their computational

expense. This information is presented in the last three columns of Table 2. As explained previously, the third to last column

shows the optimized solution in bold, as well as the normalized value, to easily see how the optimized solutions compare to

each other. The last two columns are different measures of the computational expense. The time column is straightforward and420

is the total wall time required to run the optimizations. For this paper, everything was run without parallelization on a laptop

with a 2.4 GHz 8-core Intel processor. However, just the time as a measure of computational expense may be misleading. There

is other overhead in the optimization time other than just objective function calls; therefore, we included a column for total

objective function calls and run time, which together give a decent representation of the total computational expense of each

algorithm.425

For this small wind power plant with the unidirectional wind rose, the greedy and repeated sweep algorithms do not perform

very well. Although they are by far the best when it comes to required computational resources, both algorithms find com-

paratively poor solutions. Both of these algorithms rely on placing turbines far apart to get the maximum benefit possible at

each step of the optimization. Because the domain is small, this makes it difficult to add additional turbines without violating
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the spacing constraint. Doing so would require adjusting the location of multiple turbines at once to make room, which is not430

something the algorithms can do.

The genetic algorithm with the gridded plant domain performs very well for each objective function. It even outperforms the

gradient-based optimization for the COE objective and performs within 3% of the best solution found for the AEP and profit

objectives. However, the computational expense was high, requiring the most time of any of the gradient-free algorithms and by

far the most function calls. However, because this problem is relatively small, the computational expense was not prohibitive.435

The boundary-grid optimization solved with a genetic algorithm performs in the middle of the pack for the gradient-free

algorithms. It performs very well with the AEP objective, but poorly with the COE and profit objective. This is because of the

small wind plant area. The boundary-grid formulation forces turbines to be equally spaced around the boundary. With a unidi-

rectional wind rose, this means that some turbines will always be in the back of the power plant relative to the incoming wind.

As discussed before, waked turbines were very detrimental for COE and, by extension, detrimental from a profit perspective440

as well.

Finally, the gradient-based optimizer, while sweeping across the number of wind turbines, performs well for each objective

function. Because this algorithm allows the most freedom, permitting each turbine to be placed wherever the optimizer deems

best, we always expected the gradient-based optimizations to perform well. In fact, we expected this optimizer to perform

the best of all for each objective, making it quite surprising that it is outperformed for both the AEP and COE objectives.445

Even though the gradient-free algorithms did not provide as much freedom, they were able to find the best solution for these

objectives.

At this point, we would like to reiterate that the results shown in Table 2 are for a limited number of starting optimizations.

They do not indicate that the solutions found are the best solution that each optimizer is capable of finding. These results simply

show the optimizer performance with a small sample size. That said, for a small number of discretizations, finding the optimal450

number and layout of wind turbines for various objectives can be achieved with a simple genetic algorithm.

6.3 Large Power Plant with Unidirectional Wind Rose

The performance and required computational expense of optimization algorithms can vary dramatically depending on the

problem size. In this section, we will present another set of optimizations we ran for a larger domain. This wind power plant is

a square with 1.6-km sides. For the gridded domain, the plant is divided into a 20-by-20 square grid, which maintains the same455

spacing between grid points as in the small wind plant example. For a wind plant of this size, we did not run the gradient-based

optimizer because of the large computational expense required to run the sweep across all of the possible optimal number of

turbines. We only ran the optimizations for the four gradient-free methods we previously discussed. As in the previous section,

we ran each optimization method 5 times to convergence for each objective. The wind resource and PPA for this wind power

plant were also assumed to be the same as for the small wind plant. The results for this wind power plant optimization are460

presented similarly to those for the small wind plant, with full results shown in Table 3, and the best layout for each objective

shown in Fig. 8.
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Table 3. Complete optimization results for the large wind power plant with unidirectional wind rose.

objective optimization num. turbines/

avg. spacing (D)

optimal value/

normalized

time (s) function

calls

AEP
(GWh)

greedy grid 40/2.55 663/0.920 746 34,012

genetic grid 23/3.58 450/0.624 2,539 44,095

sweep grid 47/2.32 710/0.985 113 1,220

genetic BG 48/2.29 721/1.000 3,310 48,824

COE
($/MWh)

greedy grid 22/3.68 20.51/1.007 423 28,393

genetic grid 16/4.53 21.00/1.031 2,656 63,104

sweep grid 20/3.91 20.37/1.000 119 4,895

genetic BG 18/4.19 20.73/1.018 1,002 35,814

annual profit
($MM)

greedy grid 31/2.97 4.98/0.979 592 31,902

genetic grid 20/3.91 3.33/0.655 2,826 47,977

sweep grid 31/2.97 4.93/0.970 116 2,528

genetic BG 33/2.86 5.09/1.000 2,126 52,869

6.3.1 Large Power Plant with Unidirectional Wind Rose: Different Objectives

The general trends that we observed from the smaller wind power plant optimizations hold true for this larger wind plant as

well. The wind plant optimized for AEP has as many wind turbines in the plant as possible without violating the spacing465

constraints, leading to a large number of turbines. The wind plant optimized for COE has turbines that are minimally waked,

leading to a very small number of turbines. The wind plant optimized for profit is a middle ground between the previous two

objectives. One main difference between the results for this large wind plant and the small wind plant is in the optimal solution

for minimum COE. For the large wind plant, some of the turbines in the layout optimized for COE are more waked than in the

small wind plant. However, these waked turbines are far downstream of the waking turbine, meaning that the wind speed in the470

wake has recovered much of the way back to the freestream wind speed. In the small wind plant, there was not much space for

the wakes to recover, meaning any amount of waking on a turbine was more detrimental to COE.

Figure 9 shows several metrics for the three wind power plants that were optimal for the different objective functions.

Although the trends in this figure are similar to those in Fig. 7, the differences in metrics are more extreme for the different

objective functions. While all of the metrics are interesting, there are a few specific observations that are worth pointing out.475

First, the COE for the wind plant optimized for profit is relatively low, which is impressive because COE was never directly

minimized. Second, the profit for the wind plant optimized for AEP is very low. Even though the plant produces a lot of

energy, the tight turbine spacing causes high wake losses and inefficient turbines; thus, the high costs are not offset by the high

energy production. Third, the wake losses for the wind plant optimized for minimum COE are very low, less than 2%. This is

impressively low and is only possible because of the unidirectional wind rose.480
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Figure 8. The optimal layouts for each objective for the large wind power plant with a unidirectional wind rose. From top to bottom, the

associated objective functions are: AEP, COE, and profit. The text within each figure provides the value of all three metrics for each wind

plant.

6.3.2 Large Power Plant with Unidirectional Wind Rose: Different Algorithms

While the general trends found for the solutions with different objectives were similar between the small and large wind power

plants, the computational expense and performance of different algorithms were not. In the last three columns of Table 3, we see

how well each optimization method performs. The most glaring difference is seen in the performance of the genetic algorithm

with the gridded turbine domain. While with the small wind plant, this method provided the best or near-best results for each485
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Figure 9. A comparison of the performance metrics of the three different wind power plants optimized for different objective functions.

These results are shown for the large wind plant with a unidirectional wind rose.

objective, in this larger domain it severely underperformed compared to the other optimization methods. While the genetic

algorithm was easily able to handle the 100 design variables from the 10-by-10 grid of the small wind plant, it appears unsuited

to find a good solution for the 20-by-20 grid of the large wind plant. This observation agrees with our previous intuition with

genetic algorithms in that they tend to perform poorly as problem complexity increases.

Next, the greedy algorithm and the repeated sweep algorithm both perform relatively better in the larger wind plant than490

they did in the smaller wind plant. For the AEP and profit objectives, these algorithms do not perform the best, but produce

respectable results. For the COE objective, there are three different algorithms that provide basically the same result with

optimal solutions within 1% of each other.

Finally, the boundary-grid algorithm performs excellently for each objective function for this large wind power plant op-

timization. The organized structure forced by the boundary-grid method is able to fully take advantage of the unidirectional495

wind rose and create layouts with the appropriate number of turbines where waking is minimal. Even though it uses a genetic

algorithm, the boundary-grid optimization performance does not suffer with the increased size of the wind plant. With this

formulation, the number of design variables remains constant, independent of the number of turbines being modelled and the

size of the domain.

6.4 Large Power Plant with Full Wind Rose500

The final scenario in which we will examine the performance of each optimization algorithm is for the large wind power plant

domain. Unlike the previous examples, the optimization results shown in this section include a full wind rose, discretized into

72 wind direction bins and shown in Fig. 10. The wind speeds are still assumed to be uniform at 10 m/s from each wind

direction. Everything else for this optimization scenario is the same as in Sec. 6.3, including the wind plant dimensions, the

grid discretizations, number of random starts, and PPA. The results for this section are shown in Table 4 and Fig. 11. Because505

the wind resource was unidirectional in the previous wind power plant layout figures, only one figure was needed to represent
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the flow field associated with each layout. Because this section includes optimization results that were run with a full wind

rose, we show two wind directions in Fig. 11, with each column representing the two dominant wind directions of west and

south-southeast (shown in Fig. 10). This wind rose is similar to the one used in the first International Energy Agency (IEA)

Task 37 wind plant layout optimization case study, with more finely discretized bins (Baker et al., 2019). The wind rose was510

specifically chosen to have a dominant wind direction in line with the upper and lower wind plant boundaries. Because the

boundary-grid method is formulated to place turbines around the wind plant boundary, we wanted to see how it would perform

with an unfavorable wind rose.

E

NE

N

NW

W

SW

S

SE

0.02

0.04

Figure 10. The full wind rose used for the optimizations in this study. The wind rose is divided into 72 bins with dominant wind directions

from due west and from south-southeast.

6.4.1 Large Power Plant with Full Wind Rose: Different Objectives

Again, many of the general trends for the different objectives are the same as the results for the unidirectional wind rose cases.515

In this section, we will only focus on the key differences between the results for the large wind power plant with a unidirectional

wind rose and the results for the large wind plant with the full wind rose. There are two observations we would like to point

out. First, and most importantly, the optimal number of turbines for the COE and profit objectives is much lower for the full

wind rose than for the unidirectional rose. For the unidirectional rose, the optimal numbers of turbines for COE and profit were

20 and 33, respectively. For the full wind rose, these numbers were 15 and 24, respectively. With the full wind rose, turbines520

will always be unfavorably waked for some wind directions. It is impossible to find a turbine layout in which all of the turbines

are always unwaked. For the unidirectional rose, the turbines can be very closely spaced in directions not aligned with the wind
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Table 4. Complete optimization results for the large wind power plant with full wind rose.

objective optimization num. turbines/

avg. spacing (D)

optimal value/

normalized

time (s) function

calls

AEP
(GWh)

greedy grid 43/2.44 582/0.928 38,329 35,680

genetic grid 26/3.31 429/0.685 37,208 48,739

sweep grid 50/2.24 604/0.964 5,560 1,166

genetic BG 54/2.14 627/1.000 157,191 41,175

COE
($/MWh)

greedy grid 14/4.95 22.61/1.002 10,434 21,561

genetic grid 11/5.86 22.90/1.015 28,386 46,823

sweep grid 15/4.73 22.57/1.000 7,400 7,812

genetic BG 12/5.51 22.74/1.007 25,260 37,071

annual profit
($MM)

greedy grid 23/3.58 2.68/0.967 22,020 29,538

genetic grid 19/4.04 2.27/0.821 34,824 47,266

sweep grid 24/3.48 2.77/1.000 8,277 4,201

genetic BG 24/3.48 2.59/0.936 60,995 40,959

and still avoid wakes and perform well in each objective. This luxury does not exist for the full wind rose. Turbines spaced

close together will perform poorly at least some of the time. Therefore, fewer turbines are placed in the optimal wind plants

so that the average spacing can be higher and reduce the wake effects. Second, notice that the optimal number of turbines525

for the AEP objective is higher for the full wind rose than for the unidirectional wind rose. This is simply an artifact of our

methodology. For the AEP objective, the unidirectional wind rose would also benefit from having more turbines spaced closer

together. However, the optimizer didn’t find this solution from the five optimizations that we ran.

Similar to Fig. 7 and Fig. 9, Fig. 12 shows the different wind power plant performance metrics for each optimal wind plant

with the different objectives. The general trends are similar to Fig. 9 with a few differences. First, and most apparent, the profit530

for the wind plant optimized for AEP is extremely low. In fact, this wind palnt loses more than $3 million each year because

both the costs and wake losses are so high. There are at least two reasons for this extreme negative value for profit: 1) Our cost

model has low economies of scale. At large numbers of turbines, the cost reductions for adding more turbines is low. And, 2)

our minimum spacing constraints for this paper were extremely low, only two rotor diameters. At this close spacing, the wake

losses are high. For wind plants where the minimum spacing is much larger (5 or more rotor diameters), a wind plant optimized535

for AEP would still perform well in the other objectives. The second difference in general trends is that the wake losses for

these wind plants are much higher than for the optimal wind plants and the unidirectional wind rose. The reason for this was

previously mentioned—with multiple wind directions, there will always be some wind directions for which a turbine operates

within a wake.
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Figure 11. The optimal layouts for each objective for the large wind power plant with a full wind rose. From top to bottom, the associated

objective functions are AEP, COE, and profit. The text within each figure provides the value of all three metrics for each wind plant. The two

columns represent the flow field for each objective from the two dominant wind directions.

6.4.2 Large Power Plant with Full Wind Rose: Different Algorithms540

There are three main differences we observe between the unidirectional wind rose algorithm performances and those for the full

wind rose. First is the expected increase in computational time. The function calls for each algorithm and for each objective are

very close for the different wind roses. However, the computational time for the full wind rose is significantly and expectedly

higher. The computational expense of each function call for the full wind rose is about 72 times that of the unidirectional rose—
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Figure 12. A comparison of the performance metrics of the three different wind power plants optimized for different objective functions.

These results are shown for the large wind plant with a full wind rose.

72 being the number of wind direction bins. The reason the time doesn’t scale exactly linearly with the number of function545

calls is the certain amount of infeasible layouts that are produced during the optimization that do not call the full wake model.

These calls are very fast, but not instantaneous, and do add up over time.

The second observation is about the impressive performance of the boundary-grid problem formulation, even though the

wind rose is specifically selected to put this method at a disadvantage. As expected, the boundary-grid method tremendously

outperforms the other methods for the AEP objective because this formulation can add many turbines to the wind power plant550

with very small adjustments to the design variables. For the COE objective, the boundary-grid optimization performs well,

within a percent of the best solution found. The boundary-grid optimization performs the worst for the profit objective, about

6.5% worse than the best solution found. For many wind plants, the boundary-grid method would perform much better because

prominent wind directions will not always be aligned with the wind plant boundaries.

The third and final observation is about the performance of the repeated-sweep algorithm. For the AEP objective, this555

algorithm performs worse than the boundary-grid method, but still produces a wind power plant layout that performs favorably

compared to the overall optimal, within 4%. The repeated-sweep algorithm is ineffective at placing as many turbines as possible

into the wind plant, but still performs relatively well. For the COE and profit objectives, the repeated-sweep algorithm finds

the best solution. For the COE objective, the greedy, repeated-sweep, and boundary-grid optimizations all perform similarly.

However, for the profit objective, the repeated-sweep algorithm impressively outperforms all of the other algorithms. With a560

full wind rose and objectives that favor solutions where the turbines are minimally waked, this algorithm performs extremely
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well. Because the best solutions have turbines that are spaced farther apart, the optimizer is able to search the design space

without violating the turbine spacing constraints. In addition to finding superior optimal solutions, the repeated sweep algorithm

required much less computational expense. For this problem size, the repeated-sweep algorithm performed the best overall. In

short, the boundary-grid method performed relatively well even with an unfavorable wind rose and boundary. The repeated-565

sweep algorithm performed well for the COE and profit objectives and optimized very quickly compared to the other methods.

6.5 Overall Algorithm Performance

In this section, we will discuss the overall performance of each optimization algorithm for the small wind power plant with a

unidirectional wind rose, the large wind plant with the unidirectional wind rose, and the large wind plant with the full wind

rose. Figure 13 shows the overall performance of each algorithm and the computational expense for each objective and size of570

wind plant. Much of this information has been discussed in previous sections, but we will review each of the algorithms from

an overall perspective.
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Figure 13. Overall performance representations of the different optimization algorithms. The different colors represent the different opti-

mization methods. The top figure shows the best solution quality, and the bottom figure shows the number of function calls required.

30

https://doi.org/10.5194/wes-2021-15
Preprint. Discussion started: 18 March 2021
c© Author(s) 2021. CC BY 4.0 License.



The greedy algorithm performed poorly for the small wind power plant and better for the larger wind plant, although it never

performed the best. The computational expense for this algorithm was very low for the small wind plant, but greatly increased

for the large wind plant. We can conclude that the computational expense of the greedy algorithm scales poorly with increasing575

design variables.

The genetic algorithm with the gridded plant domain performed very well for the small wind plant and was close to the best

solution for each objective. However, for the larger wind plants, this optimization method performed very poorly. We want to

be absolutely clear that part of the reason this optimization method performed so poorly was because we kept the convergence

criteria the same for the small and large wind plants. Individual parameters could be altered to get better performance with the580

gridded domain and the genetic algorithm; however, it is unlikely that it would perform as well as the other algorithms. Genetic

algorithms typically have a hard time finding a good solution with large numbers of design variables.

Like the greedy algorithm, the repeated-sweep algorithm performed comparatively poorly for the small wind power plant,

but much better for the large wind plants. In fact, this algorithm achieved the best, or close to the best, solution for all of the

objectives for each of the large wind plant optimizations. In addition, the computational expense for this algorithm was by far585

the lowest for the problem sizes included in this paper. That said, similar to the greedy algorithm, the number of function calls

required for the repeated-sweep algorithm increased greatly from the small wind plant to the large wind plants. Even though it

is computationally efficient for the problem sizes in this paper, as the problem grows, the computational expenses will grow as

well and eventually limit the size of wind plant that can be optimized.

The boundary-grid optimization consistently performed the best for the AEP objective. It generally performed poorly for the590

COE objective, and its performance for the profit objective varied. For the large wind power plant and unidirectional wind rose,

the boundary-grid method found the best solution for the profit objective. However, with the full wind rose, the boundary-grid

method performed the worst for the profit objective. This is largely because, for our specific case, the full wind rose had a

dominant wind direction directly in line with the wind plant boundaries. This is not always the case; for most other cases, the

boundary-grid method will perform comparatively well. The primary reason that the boundary-grid method is so effective is595

that the required function calls do not change with the problem size. While the greedy and repeated-sweep algorithms require

many more function calls as the wind plant domain increases in size, the boundary-grid method remained constant between the

small and large wind plants. At some point, the boundary-grid method will be more computationally efficient than any of the

other algorithms because the number of design variables always remains constant.

6.6 Varied Power Purchase Agreement600

The final set of results we present in this paper explores how the optimal profit solution is affected by the PPA. For this

section, the problem formulation was identical to the previous section, including using the full wind rose shown in Fig. 10, the

wind speed (10 m/s), the wind power plant size (1600-by-1600 m square), grid discretization (20-by-20), and the number of

randomly initialized optimizations run (5). However, in this section, instead of assuming a PPA of $30/MWh, we repeated the

optimization while varying the PPA from $25/MWh–$100/MWh. Because the repeated-sweep algorithm performed the best for605

the profit objective in Sec. 6.4, combined with this algorithm’s low computational expense, we performed these optimizations
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only with the repeated-sweep algorithm and did not compare these with the performance of the other algorithms. The results

for these optimizations are shown in Fig. 14. From top to bottom, this figure shows the optimal number of turbines, profit

(which was the objective of the optimizations), AEP, and COE as a function of the PPA.
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Figure 14. The effect of PPA on the optimal solution for wind power plants optimized for profit. From top to bottom are the number of

turbines, profit, AEP, and COE as a function of the PPA.

As the value of the energy produced increases (represented by increasing the PPA), the optimal number of turbines in the610

wind plant also increases. With a low PPA, the optimal solution resembles the optimal COE solution from the previous section.
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Wakes are avoided as much as possible, and the number of turbines in the wind plant is low. With a higher PPA, the solution

begins to approach the optimal AEP solution. Gains in AEP can be worthwhile with higher PPA—even if they come at the

expense of reducing the overall efficiency of each individual turbine.

Some typical PPAs in the United States are shown in Fig. 15, including the levelized PPA for various projects since 2010. For615

the data shown in this figure, the levelized PPA does not take into account any federal tax credit. The different colors represent

projects in different parts of the country, which indicates that projects in the central states tend to have lower PPAs. A decade

ago, the range of PPAs in the United States was quite large, from around $40/MWh all the way up to $120/MWh; however,

more recent PPAs are much lower, closer to $20/MWh–$40/MWh.
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Figure 15. The PPAs for wind power plants built in the United States since 2010. Different colors represent wind plants in different regions

of the United States.

6.7 Empirical Considerations620

The wind power plant layout optimizations in this paper assume a fixed land area in which the wind turbines must remain inside.

This is typically referred to as a land-constrained site and empirically represents a scenario where terrain, resource availability,

social and siting considerations, or other factors limit the amount of land that is available for wind turbine installations. These

factors, combined with installed project cost, project size, power purchase prices, and others, all influence capacity density.

As shown in Fig. 14, as PPA price increases for a constant project area, so does the optimal number of turbines. At these625

high turbine densities, the AEP gain from adding additional turbines is minimal because of large wake losses. The minimal
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gains of AEP can justify the extra costs in these scenarios because the value of the small amount of additional electricity is so

high. The optimal solutions that we found for our results greatly depend on the assumptions and models we used.

Another driving factor that can determine the capacity density of a given wind plant is market competition, which was not

considered in this analysis. Wind plant developers and owners have target profitability values that they wish to achieve. In any630

energy market, the competition between developers will result in a range of profitability values that results in limited variation

in capacity for a specific location. Variations in PPA prices for actual projects are typically due to variations in resource and

cost.

Although there are many sites in the United States that are capacity constrained (limited by the capacity of the transmission

interconnection), the wind plants optimized for this paper assume land-constrained sites, which are also found throughout the635

United States. Examples of land-constrained sites in the United States with high turbine density are New England and San

Gorgonio, California. The high turbine densities are driven by high PPAs in New England and exceptional wind resources and

high-capacity transmission in San Gorgonio. Projects in New England are typically built on ridgelines or other terrain features

that limit siting, while those in the San Gorgonio Pass have limited land availability because of terrain and the concentrated

wind resource. Many of these wind plants have capacity densities between 5 MW/km2 and 10 MW/km2 compared to regional640

averages in the interior United States and the Great Lakes Region between 1.5 MW/km2 and 3 MW/km2.

Many of the optimal solutions presented in this paper place wind turbines very close together. As turbine scale and cost,

energy prices, incentives, social considerations, land availability, resource, and transmission availability vary in the future, the

power density of wind power plants in the United States will vary as well. Increasing turbine capacity while maintaining a

constant specific power has been shown in some cases to increase potential capacity density. This can include setbacks from645

structures and other infrastructure as a function of tip height and constant minimum relative rotor spacing between turbines

(Bons et al., 2019). Innovations such as wake steering may allow siting flexibility and may increase power densities and

increase energy capture.

7 Conclusions

In this paper, we presented our research on wind power plant layout optimization, including optimizing the number of wind650

turbines. We specifically discussed the effect of different objective functions on the optimal solution as well as the pros and

cons associated with using different problem formulations and optimizers to solve the problem. We explored optimizing several

different wind plants for objectives of AEP, COE, and profit. The number of turbines in each optimal solution varied dramati-

cally. The plants optimized for AEP tended to have the most wind turbines, those optimized for COE had the least, and those

optimized for profit were somewhere in between. The purpose of this research is not to provide an optimal wind plant layout655

for a specific wind plant boundary and wind conditions, nor is it to suggest general rules of thumb for designing wind plants

with different objective functions. The purpose is to clearly demonstrate that the solution from optimizing a wind plant can be

heavily influenced by the objective function, particularly when considering the number of wind turbines as a design variable.

Specific solutions and layouts will be determined by the models and problem parameters, but the objective must be carefully
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chosen to represent the desired outcome because any mathematical optimizer will exploit this objective. From the models we660

used in this paper, the optimal number of turbines for a square wind plant with a full wind rose was 15, 24, or 54, depending

on the objective of COE, profit, or AEP, respectively.

The other area that we discussed in this paper is problem formulation and algorithm selection for performing the optimization

of turbine number and wind power plant layout optimization. We also presented a very simple repeated-sweep algorithm that

performs well, especially for the larger design spaces and for a full wind rose. For a coarse wind plant discretization, in665

this paper we used a 10-by-10 grid and found that a simple genetic algorithm performed extremely well in selecting turbine

number and location, even compared to a gradient-based optimizer. However, for a more finely discretized wind plant, the

genetic algorithm performed poorly. A greedy algorithm and the presented repeated-sweep algorithm performed well for the

COE and profit objectives, particularly with a full wind rose leading to turbines that are spaced farther apart on average. At least

for the wind plant sizes that we used in this paper, the computational expense of the greedy and repeated-sweep algorithms670

scaled favorably with finer grid refinement. The boundary-grid problem formulation optimized with a simple genetic algorithm

performed well regardless of the size of the wind plant, but it performed comparatively better for the larger wind plant size.

Another benefit of the boundary-grid method is that the number of function calls required to optimize the plant stayed relatively

constant as the size of the wind plant domain changed. As long as the time required for the function calls is reasonable, or

can be made reasonable, optimizing with the boundary-grid method will produce a layout that performs well regardless of the675

objective.
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