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Abstract. Wake steering is an emerging wind power plant control strategy where upstream turbines are intentionally yawed

out of perpendicular alignment with the incoming wind, thereby “steering” wakes away from downstream turbines. However,

trade-offs between the gains in power production and fatigue loads induced by this control strategy are the subject of continuing

investigation. In this study, we present a multifidelity multiobjective optimization approach for exploring the Pareto front of

trade-offs between power and loading during wake steering. A large eddy simulation is used as the high-fidelity model, where5

an actuator line representation is used to model wind turbine blades and a rainflow counting algorithm is used to compute

damage equivalent loads. A coarser simulation with a simpler loads model is employed as a supplementary low-fidelity model.

Multifidelity Bayesian optimization is performed to iteratively learn both a surrogate of the low-fidelity model and an additive

discrepancy function, which maps the low-fidelity model to the high-fidelity model. Each optimization uses the expected

hypervolume improvement acquisition function, weighted by the total cost of a proposed model evaluation in the multifidelity10

case. The multifidelity approach is able to capture the logit function shape of the Pareto frontier at a computational cost only

30% that of the single fidelity approach. Additionally, we provide physical insights into the vortical structures in the wake that

contribute to the Pareto front shape.

1 Introduction

As wind energy systems have matured, plant-level control has emerged as a new paradigm, where groups of turbines are15

controlled in coordination to maximize collective power production. This is in contrast to more traditional control strategies,

where individual turbines are controlled to maximize their own power production. A potentially promising form of such plant-

level control is “wake steering,” where upstream wind turbine yaw positions are intentionally misaligned from the incoming

wind, “steering” the wake away from downstream turbines. A counter-rotating pair of vortices is generated by the lateral thrust

of the wind turbine rotor, which is determined by the yaw offset direction (Fleming et al., 2018; Martínez-Tossas and Branlard,20

2020). This allows the performance of wind power plants to be improved by diverting wakes away from downstream turbines

It is speculated that wake steering may produce more power while inducing less total fatigue on all turbines when compared

to the baseline strategy of aligning each turbine with the incoming wind (Howland et al., 2019; Hulsman et al., 2020). However,

very few studies have quantified the trade-offs between power and damage. Hulsman et al. (2020) used an actuator line model
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to train polynomial chaos surrogates for optimization of a weighted sum of power and damage equivalent loads. Yin et al.25

(2020) present a multiobjective genetic algorithm for the maximization of power and minimization of total thrust. Damiani

et al. (2018) performed a detailed analysis of a single wind turbine, finding that negative yaw offsets tended to increase fatigue

loading more than positive yaw offsets, but cautioned that this result could not be generalized given the dependence on incident

conditions. Other studies have provided additional evidence supporting the notion that positive yaw misalignment results in

less edgewise loading of downstream turbine blades than the corresponding negative yaw misalignment strategy (Zalkind and30

Pao, 2016; López et al., 2020). Wang et al. (2020) demonstrated the potential of individual pitch control to alleviate loads

induced from intentionally offsetting the turbine yaw. Van Dijk et al. (2017) used the FLORIS and CCBlade tools to examine

trade-offs between power produced and the edgewise and flapwise fatigue loading induced through wake steering. Lin and

Porté-Agel (2020) utilize a large eddy simulation (LES) framework to construct the Pareto set between power and flapwise

bending moment loading through a comprehensive parameter sweep. While these studies all provide insights into the trade-35

offs between power and loading, there is still a need for an efficient optimization algorithm to quantify these trade-offs using

computationally-intensive simulations.

Despite its promise, plant level control via wake steering involves complex physics and is challenging to model. Engineering

wake models have dubious accuracy when predicting fatigue loading, which higher-fidelity models predict more accurately

Rinker et al. (2021). In this study, we propose a multifidelity multiobjective optimization framework to address this challenge40

and explore trade-offs between power and loading in wake steering strategies. In practice, power and loading will likely be

optimized in real time using a singular weighted objective. The relative weights may be decided upon by exploring trade-offs

between power and loading using multiobjective optimization to estimate the Pareto frontier. When searching for the Pareto

set, an efficient algorithm must balance exploration and exploitation. Several models have been developed that may be used to

study the effects of control strategies with various levels of mathematical detail and real-world accuracy (i.e., fidelity) (Annoni45

et al., 2018; Martínez-Tossas et al., 2019; Hulsman et al., 2020).

Multifidelity optimization exploits the correlation between low- and high-fidelity models to reduce the overall computational

cost of optimization. For instance, Andersson and Imsland (2020) present a real-time modifier adaptation approach for wake

steering design, where a Gaussian Process (GP) is used to iteratively learn the difference between observed operational data and

the predictions of an engineering wake model. Ariyarit and Kanazaki (2017) present a two-objective bifidelity approach that50

iteratively builds a GP discrepancy function. Huang et al. (2006) and Rajnarayan et al. (2008) employ an augmented expected

improvement formulation, including three factors to account for the correlation between the low- and high-fidelity models, the

observed error, and the cost ration between the low- and high-fidelity models. It is not always clear when a proposed low-

fidelity model is appropriate for use in multifidelity optimization, though it is common to assess candidate low-fidelity models

by measuring their correlation with the high-fidelity model (Giselle Fernández-Godino et al., 2019).55

The novelty of the present study is the application of this multifidelity technique to wind energy systems, resulting in new

insights into wake steering flow physics. The present approach uses the low-fidelity model to first explore the full parameter

space, then iteratively builds the low- and high-fidelity model surrogates to gain the most improvement in the Pareto front per

model evaluation costs. While this framework is similar to that presented by Ariyarit and Kanazaki (2017) and Andersson and
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Imsland (2020), the exact framework outlined here is new and this is the first demonstration of any such approach in the context60

of wind energy systems.

2 Optimization Framework

A Bayesian framework for multiobjective multifidelity optimization is presented. Throughout this section, we assume that

minimization of functions is the objective of the optimization procedure (as opposed to maximization).

This study employs GP models to approximate power and loading dynamics. A GP is a collection of random variables, any65

finite number of which have a joint Gaussian distribution (Rasmussen and Williams, 2006). The simulated power and loads,

fi, are approximated using individual Gaussian process surrogate models, ggg, which are defined as

gi(γγγ)∼ GP [µi(γγγ),ki(γγγ,γγγ
′)] , (1)

where γγγ is a vector of proposed yaw angles (with dimension equal to the number of turbines), γγγ′ is an arbitrary vector of yaw

angles, µi(γγγ) is the GP mean function, ki(γγγ,γγγ′) is the GP kernel covariance function, and the index i refers to power (i= 1)70

or loading (i= 2) objectives.

We perform Bayesian inference on functions by conditioning the GP on a set of observed input-output pairs Di = {ΓΓΓ,YYY i},
where ΓΓΓ = [γγγ(1),γγγ(2), . . . ] is a matrix of simulated yaw offsets, and YYY i = [fi(γγγ

(1)),fi(γγγ
(2)), . . . ] is a vector of observations of

simulated power or loading outputs. We use the scikit-learn Gaussian Process implementation (Pedregosa et al., 2011), which

is a well-validated open-source project. The power and loading outputs are normalized to have zero mean and unity variance75

during a preprocessing step. After conditioning on Di, we obtain Gaussian distributions at test locations γγγ∗ with the following

posterior estimates of the mean

µi(γγγ
∗ | Di) = kkkTi,∗KKK

−1
i YYY i (2)

and variance

σ2
i (γγγ∗ | Di) = ki(γγγ

∗,γγγ∗)−kkkTi,∗KKK−1i kkki,∗ , (3)80

where kkki,∗ = ki (ΓΓΓ,γγγ
∗) is a vector andKKKi = ki (ΓΓΓ,ΓΓΓ) is a matrix.

The kernel covariance function encodes prior knowledge about structural properties of the underlying signal, such as smooth-

ness, periodicity, and stationarity. In this study, we employ an anisotropic radial basis function kernel (Rasmussen and Williams,

2006) for ki, given by

ki(γγγ,γγγ
′) = exp

1

2

dim(γγγ)∑
j=1

(γj − γ′j)2

l2ij

1/2
 , (4)85

where the correlation scale, lij , is estimated by maximizing the log-marginal likelihood function (Pedregosa et al., 2011).
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2.1 Single-Fidelity Approach

In Bayesian optimization, an acquisition function is defined to maximize a metric representing both exploration and exploitation

(Shahriari et al., 2015). A popular acquisition function for single objective optimization is the expected improvement (EI),

which is the expected value of an improvement function (Zhan and Xing, 2020) with respect to the predicted uncertainty of90

a GP. This acquisition function is employed by the Efficient Global Optimization (EGO) algorithm (Jones et al., 1998). The

improvement function, I , quantifies the improvement in the objective function for a new evaluation, as compared to the best

sampled objective, and is zero if the new objective does not outperform all of the previously sampled points. This results in

I(γγγ) = max[f∗− f(γγγ),0] , (5)

where f∗ is the minimum sampled value and f(γγγ) is the function value, which is generally unknown and must be predicted by95

a GP.

There is a range of potential outcomes from sampling a new point, and the GP framework conveniently estimates this un-

certainty. These uncertainties are used to compute the expected value of the improvement function. It is important that the

improvement function contain the maximum function; otherwise, there would be no exploration of regions of larger uncer-

tainty. Other acquisition functions available include the knowledge gradient (Ghoreishi and Allaire, 2018), expected quantile100

improvement (He et al., 2017; Picheny et al., 2013), improved expected improvement (Qin et al., 2017), entropy search (Hennig

and Schuler, 2012), and minimization of the predictor (Andersson and Imsland, 2020).

The expected improvement may be extended to a multiobjective context. This is done by introducing a hypervolume function,

H , which measures the volume of a given Pareto front, A, using a reference point, rrr. The expected hypervolume improvement

(EHVI), introduced by Emmerich et al. (2006), is the multiobjective counterpart to the expected improvement acquisition105

function used in the EGO algorithm and is given by

EHV I(γγγ,ggg) = Eggg(γγγ){HV I[fff(γγγ)]} . (6)

Here, Eggg(γγγ)[·] represents the expectation with respect to a normal distribution, ggg(γγγ), and is expressed as

Eggg(γγγ){HV I[fff(γγγ)]}=

∞∫
−∞

∞∫
−∞

HV I([P,L])
1

σ1(γγγ)
√

2π
e
− 1

2

[
P−µ1(γγγ)

σ1(γγγ)

]2 1

σ2(γγγ)
√

2π
e
− 1

2

[
L−µ2(γγγ)

σ2(γγγ)

]2
dPdL, (7)

where µ1 and σ1 are the mean and standard deviation, respectively, of the powers modeled by g1, and µ2 and σ2 are the mean110

and standard deviation, respectively, of loads modeled by g2. The hypervolume improvement indicator (HVI) function is the

multiobjective counterpart to the improvement indicator function. It is given as

HV I([P,L]) =H(A∪{[P,L]})−H(A) , (8)

where A is an estimated Pareto frontier, A∪{[P,L]} is a new Pareto set that potentially includes [P,L], H is a hypervolume

function, which measures the volume spanned by the Pareto set of objective functions relative to a reference point, rrr, which115
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must not be dominated by A∪{[P,L]}. The Pareto frontier is defined as the set of all function values that are not strictly

dominated by other function values. The formal definition is

A=

{
yyy′ ∈ {yyy ∈ Rdim(fff) : yyy = fff(γγγ),γγγ ∈ Ωγγγ} : {yyy′′ ≺ yyy′,yyy′′ 6= yyy′}= ∅

}
, (9)

where Ωγγγ is the set of allowable yaw offsets, ≺ denotes Pareto dominance (that is, if yyy′′ ≺ yyy′, then y′′i ≤ y′i for all values of i

and y′′i < y′i for at least one value of i (Voorneveld, 2003)), and ∅ is the empty set.120

The hypervolume, H , measures the extent of the Pareto set as the volume of the Pareto-dominated space bounded by a

reference point, rrr, namely,

H(A) = Vol
(
{yyy ∈ Rdim(fff)|yyy′ ∈A≺ yyy and yyy ≺ rrr}

)
. (10)

In practice, the Pareto set is computed by filtering a set of discrete inputs so that only non-dominated points remain,

A=

{
yyy′ ∈ YYY : {yyy′′ ≺ yyy′,yyy′′ 6= yyy′}= ∅

}
, (11)125

where YYY is a matrix of observed function values. This filters out observed samples that are Pareto dominated by other observed

samples.

Although these ideas may also be extended to more objectives, assuming two objectives simplifies the problem. In this case,

the observed Pareto set is defined as A≈ (yyy1, yyy2, . . . , yyyn) such that y11 < y21 < · · ·< yn1 . The hypervolume is estimated using

rectangular quadrature as130

H(A)≈
n−1∑
i=1

(yi+1
1 − yi1)(r2− yi2) + (r1− yn1 )(r2− yn2 ) , (12)

where n is the number of points in the given Pareto set and r1 and r2 are the components of the reference point. In this study,

the EHVI is approximated through Monte Carlo simulation by

EHV I(γγγ,ggg)≈ 1

Ns

Ns∑
k=1

[
H
(
A ∪{N [µµµ(γγγ),σσσ(γγγ)]}(k)

)
−H(A)

]
, (13)

where Ns is the number of Monte Carlo samples and {N [µµµ(γγγ),σσσ(γγγ)]}(k) is draw k from the GP model of power and loading,135

ggg.

Once the EHVI is estimated, it must be maximized. This is not necessarily trivial, as the EHVI computation is complicated

and difficult to vectorize, and the cost of the optimization grows exponentially with the number of design variables. The EHVI

optimum may be determined using a grid search, random sampling, direct optimization, or surrogate-based optimization. While

a grid search is the most comprehensive option, the latter approaches are more computationally efficient for high dimensional140

design inputs.
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2.2 Multifidelity Approach

The multifidelity approach introduces computationally cheaper but lower fidelity representations of the high-fidelity model,

which allow for greater control between exploration and exploitation in the Bayesian optimization. Samples of the low-fidelity

model are adaptively refined throughout the optimization as a cheap means for exploration of the high-fidelity function space.145

Throughout this section, we assume a known hierarchy of model fidelities, (f1k ,f
2
k , . . . ,f

N
k ), where f1k is the lowest-fidelity

model of power/loading, N is the number of different fidelity models, and fNk is the highest-fidelity model of power/loading.

When a model is evaluated at a point, γγγ, we assume that all lower-fidelity models will also be evaluated at this point.

The lowest-fidelity model, f1k , is approximated using a GP, g1k, resulting in the following output distribution:

g1k(γγγ)∼N
[
µ1
k(γγγ),σ1

k(γγγ)
]
, (14)150

where µ1
k and σ1

k are the mean and standard deviations, respectively, associated with the lowest-fidelity power/loading model.

Higher-fidelity models, f ik(γγγ), are approximated using additive discrepancy functions that map the next lowest fidelity function,

f i−1k (γγγ), to f ik(γγγ):

f ik(γγγ)≈ f i−1k (γγγ) + δik(γγγ) ∀i > 1 , (15)

where δik(γγγ) is the discrepancy function associated with objective k and fidelity i,155

δik(γγγ)∼N
[
µik(γγγ),σik(γγγ)

]
∀i > 1 , (16)

where µik and σik are the mean and standard deviations, respectively, modeled by the discrepancy function GP associated with

fidelity i.

New GPs are defined to extend the EHVI to a multifidelity context. No matter which fidelity is to be sampled next, the

ultimate goal is to minimize the highest fidelity functions, so each GP is constructed to predict the high-fidelity outputs.160

However, GPs associated with lower-fidelity models should not take into account uncertainties associated with higher-fidelity

models, as these uncertainties will not be collapsed if the lower-fidelity model is sampled. Sampling the highest-fidelity model

must take all sources of surrogate uncertainty into account, as a high-fidelity model evaluation will be associated with sampling

all lower-fidelity models at the same point. So, new GP models, hhhi, are constructed to predict the high-fidelity output while

encoding different uncertainty information. The GPs associated with each fidelity are defined as165

hik(γγγ)∼N

{
N∑
j=1

µjk(γγγ),

√√√√ i∑
j=1

[
σjk(γγγ)

]2}
. (17)

Putting the above formulations together, it is natural to define a multifidelity multiobjective acquisition function as the ratio of

EHVI per evaluation cost:

J(γγγ,i) =−EHV I(γγγ,hhhi)∑i
j=1Cj

, (18)
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where J is the optimization acquisition function, which is a function of a set of proposed yaw offsets and model fidelity, to be170

minimized with respect to yaw offsets, γγγ, and model fidelity, i, in each optimization iteration, and Ci is the computational cost

associated with model i.

In this study, we examine the bifidelity case (N = 2), where

h1k(γγγ)∼N
[
µ1
k(γγγ) +µ2

k(γγγ),σ1
k(γγγ)

]
(19)

and175

h2k(γγγ)∼N

{
µ1
k(γγγ) +µ2

k(γγγ),
√

[σ1
k(γγγ)]2 + [σ2

k(γγγ)]2

}
. (20)

The bifidelity workflow is visualized in Figure 1. The EHVIs associated with the low-fidelity (hhh1) and high-fidelity (hhh2)

GP models are maximized. Then, the EHVI per cost is maximized with respect to fidelity in the comparative step, which

corresponds to minimizing J(γγγ,i). If the EHVI per cost associated with evaluating the low-fidelity model is greater than the

EHVI per cost associated with evaluating the high-fidelity model, the low-fidelity model is evaluated. Otherwise, the high-180

fidelity model is evaluated. In the figure, hhh1 is represented by GPLF, hhh2 is represented by GPHF, C1 is represented by CLF,

and C2 is represented by CHF.

Figure 1. Workflow visualization for the bifidelity optimization case. hhh1 is represented by GPLF, hhh2 is represented by GPHF, C1 is

represented by CLF, and C2 is represented by CHF.
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3 Numerical Approach

This section outlines the numerical approaches used in this study. Section 3.1 presents the flow modeling framework employed.

Section 3.2 introduces the specific power and loading objective functions used in this study. Section 3.3 presents the approach185

used to maximize the multiobjective acquisition function. Section 3.3.1 outlines the sampling approach and Section 3.3.2

presents a correlation analysis used to determine the low-fidelity loading proxy.

3.1 Flow Modeling

We use the WindSE framework (National Renewable Energy Laboratory, 2021) to model flow within the wind power plant.

We investigate a two-turbine case, with a single wind direction and speed, where the turbines are spaced 7 rotor diameters apart190

and the wind direction is such that the front turbine directly wakes the back turbine. The large turbine spacing was chosen to

ensure that solutions associated with optimal power production were inside of the boundaries of allowable yaw offsets. When

turbines are spaced tightly, it is common for the optimal power to be associated with the largest allowable yaw offset of the

front turbine, which is a less challenging optimization case. The inflow boundary is modeled using a logarithmic profile with a

hub height wind speed of 7.5 m/s. The top, side, and outflow boundaries are specified as no-stress boundaries and the ground195

is specified as a no-slip boundary. We consider turbine representations of the IEA 3.4 MW reference turbine (Bortolotti et al.,

2019), with hub heights of 120 m and rotor diameters of 130 m. The turbine blades are represented as actuator lines with 15

force nodes. This analysis does not consider the turbine nacelle or tower and the turbine blades are modeled as being rigid.

There is no turbine controller, and the rotor speed and blade pitch angles are modeled as constants. The domain is represented

with a 2260× 2000× 520 m3 mesh, corresponding to a 301 s flow-through time. The mesh is refined near the center of the200

domain and where the turbines are located. A target Courant–Friedrichs–Lewy condition of 0.98 is specified. All simulations

were initiated with the same atmospheric conditions.

The simulations solve the filtered conservation of mass and Navier-Stokes equations given by

∇ · (ρũuu) = 0 , (21)

Dũuu

Dt
=−1

ρ
∇p̃+

(
µ

ρ
+ νt

)
∇2ũuu+FFF , (22)205

where D/Dt= ∂/∂t+ ũuu · ∇ is the material derivative, ũuu is the velocity, t is time, xxx is the spatial location, ∇ is the spatial

gradient, ρ is the density, p̃ is the pressure, µ is the dynamic viscosity, νt is the turbulent viscosity, andFFF is the turbine forcing.

The density is specified as ρ= 1 kg m−3 and the dynamic viscosity is specified as µ= 1.8× 10−5 kg m−1 s−1. The turbulent

viscosity, νt, is modeled using the Smagorinsky–Lilly LES model as

νt = C2
s∆2|SSS| , (23)210

where Cs = 0.17, ∆ is the grid cell size, and SSS is the strain rate tensor given by

SSS =
1

2

[
∇ũuu+ (∇ũuu)T

]
, (24)
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and |SSS|= (2SSS :::SSS)1/2.

The turbine forcing is computed as

FFF(xxx) =

dim(γγγ)∑
k=1

3∑
b=1

Nnodes∑
j=1

fffkbj(xxx)
1

π3/2ε3
exp

[
−|d
ddkbj(xxx)|2

ε2

]
, (25)215

where Nnodes is the number of actuator nodes per blade, ε is the characteristic width of the actuator forces (specified as 2 m

in this study), dddkbj(xxx) is the distance from node j associated with blade b and turbine k, and fffkbj(xxx) is the actuator force on

node j associated with blade b and turbine k, which is computed based on the wind speed, angle of attack, and the reference

airfoil lift and drag coefficients, as well as a tip loss correction, as described by Allen et al. (2022).

Low- and high-fidelity models were developed for this study using the WindSE framework. A Cartesian discretization of the220

computation domain is specified, where the grid is refined twice in the wake region as well as near the turbine rotors. Each high-

fidelity simulation is run to 1,200 s using Taylor-Hood elements (Ern and Guermond, 2004). The power and loading results

only use information from the final 600 s of simulation time. These time parameters were justified by comparing power and

loading computed over time intervals of 600-900 s and 900-1,200 s, resulting in relative differences of only 2.6% for power and

4.2% for loading when γγγ = (15◦,0◦). These time parameters were chosen to obtain a reasonably efficient optimization problem225

for the present demonstration, accepting the possibility that the optimization results could be slightly different if different time

parameters were chosen. For example, using a time interval from 1,200-1,800 s, instead of the present 600-1,200 s resulted

in changes to the hypervolumes of the Pareto fronts discovered by the single-fidelity and multifidelity optimizations of less

than 0.5%. The low-fidelity model was selected using the same grid as the high-fidelity model, but runs to 400 simulation

seconds and uses piecewise linear elements. The power is averaged after 300 s and the loading is estimated using the front230

and back turbine moments past 300 s. This cut-in time and the total low-fidelity model simulation time were selected to avoid

initial transient effects while minimizing the computational cost of the low-fidelity simulation. Using 8 processors, the high-

fidelity model was measured to take 5.4 hours to run and the low-fidelity model was measured to take 0.24 hours to run. This

corresponds to a cost ratio of approximately 0.05. The flow fields produced by the low- and high-fidelity models are compared

in Figure 2.235

3.2 Objective Functions

The objective of the optimization is to minimize negative power, −P , and loading, L, with respect to each turbine yaw offset

such that the yaw offset angles, γγγ, are bounded between −30◦ and 30◦.

Power and loading are quantified using the actuator line model results, discarding an initial transient period. Power is

computed as the average total power after the initial transient period. While there are several ways to quantify loading, this study240

provides a demonstration of the optimization framework by summarizing the time history of the flapwise bending moment of

one blade in the front and back turbines after the same initial transient period. Using the high-fidelity model, loading is

computed as the sum of damage equivalent loads (DELs) (International Electro-technical Commission, 2015) associated with

the front and back turbine flapwise bending moments. The power and flapwise bending moment are computed from the actuator

9



Figure 2. Time averaged velocity magnitude fields at the turbine hub height associated with the low- and high-fidelity models. The top

panel shows the flow field associated with the low-fidelity model and the bottom panel shows the flow field associated with the high-fidelity

model. In both cases, the front turbine is offset by 30◦ and the back turbine has no yaw offset. Brighter colors correspond to faster velocity

magnitudes. Turbine positions are shown with dark lines.

force as245

Pk(t) = ω

3∑
b=1

Nnodes∑
j=1

rj (fffkbj · n̂nnθ,k) (26)

and

Mk(t) =

Nnodes∑
j=1

rj (fffk1j · n̂nnn,k) , (27)

where Pk(t) is the power associated with turbine k, Mk(t) is the flapwise bending moment associated with turbine k, ω is the

angular speed of the rotor (which is a constant 11.6 rotations per minute in this study), rj is the radial location associated with250

node j, n̂nnn,k is the unit vector orientated outward from the rotor plane associated with turbine k, and n̂nnθ,k is the unit vector

oriented in the direction of rotation of turbine k.

The average power production of each turbine is computed as

Pk,avg =
1

tf − t0

tf∫
t0

Pk(t)dt , (28)

where Pk,avg is the average power associated with turbine k, t0 is the initial time considered, and tf is the final time of the255

data set. The total power, measured in megawatts, is computed as the sum of the powers produced by each wind turbine,

P =

dim(γγγ)∑
k=1

Pk,avg . (29)

Each DEL is computed using the rainflow counting algorithm as

DEL(Mk) =

(
100∑
i=1

Rmi
ci
∆t

)1/m

, (30)
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where i loops through each cycle found using the rainflow counting algorithm, Ri is a load range, ci is the number of cycles260

associated with the ith range bin of the moment load spectrum, ∆t is the time elapsed in seconds, and m is the Wöhler Expo-

nent. In this study, m is set as 10, and Ri and ci are computed using the fatpack Python package (Frøseth and Capponi, 2021),

utilizing 100 loading bins. The loading objective is computed as the sum of the flapwise bending moment DELs associated

with the front and back turbines as

L̂HF =

dim(γγγ)∑
k=1

DEL(Mk) (31)265

The loading objective, L, is normalized to be negative and on a similar scale to power, as

L= L̂/107− 10 (32)

where L̂ is the load prior to normalization, which is computed in Newton-meters. This normalization was chosen to ensure that

power and loading are of similar scale and that both are negative. Because the EHVI is an area produced by the two objectives,

we do not expect different values in this scaling function to affect the results of maximizing the acquisition function, provided270

that all sampled objective values are always less than the associated reference value.

3.3 Optimization Implementation

Here we use a simple optimization approach for simplicity of demonstration. In each iteration, the lll correlation scale parameter

in Eq. (4) is selected based on the maximum likelihood function (Pedregosa et al., 2011), with a lower bound of 5◦ and an upper

bound of 30◦. The reference point, rrr, in Equation 12 is specified as (0◦,0◦). In our formulation, we minimize J(γγγ, l) using a275

grid-based search for the maximum value. The grid is evenly spaced with 31 inputs per yaw offset dimension. Individual grids

are considered for all values of l. The EHV I is computed using Monte Carlo sampling with 1,200 samples taken from the GP.

The EHVI may also be computed through numerical quadrature (Emmerich et al., 2011; Hupkens et al., 2015). When dealing

with inputs of larger dimension, the EHVI may be maximized using an optimization algorithm, such as a genetic algorithm

or the EGO approach. After the optimization, the Pareto set was refined using B-spline interpolation in SciPy (Virtanen et al.,280

2020).

3.3.1 Initial Sampling

Initial sampling points are selected using a heuristic approach, where an assumed kernel is used to progressively minimize the

standard deviation of the predictor. The simplest approach to initializing the optimization procedure is to randomly sample

the low-fidelity and discrepancy functions. Random initial sampling may affect the optimization results, so a deterministic and285

symmetric sampling strategy is used as a test case. An isotropic kernel is used with a correlation scale of 10◦. The GP model is

initialized with the point (0◦,0◦). A 100 by 100 grid of inputs ranging between −30◦ and 30◦ degrees is used to find the next

point that minimizes uncertainty in the predicted variance. This process was repeated iteratively to generate 100 points. These

points were used to naively estimate the optimal power and loading and Pareto hypervolume as a reference. The first 5 points
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Table 1. Correlations observed between high-fidelity DEL and different loading proxies of the low-fidelity model using 100 heuristic samples.

Proxy DEL µ σ µ+σ µ+ 2σ µ+ 3σ µ+ 4σ µ+ 5σ µ+ 6σ

Correlation 0.742 0.103 0.800 0.479 0.745 0.857 0.892 0.899 0.896

were used as the initial high-fidelity samples and the first 20 points are used as the initial low-fidelity samples. This heuristic290

sampling approach is also used to generate 100 samples for use in a correlation analysis and as a naive, baseline approach to

searching for the Pareto set.

3.3.2 Low-Fidelity Loading Model

We considered several different low fidelity model forms for loading, and selected the one with the highest correlation to the

high fidelity model, as that is known to result in the best multi-fidelity performance. We used 100 samples obtained using295

the heuristic sampling method described in Section 3.3.1 to test the correlation. In practice, this correlation test would not be

part of the optimization procedure and reasonably accurate models would be identified based on past experience and/or expert

opinion. The correlation analysis revealed a correlation of 0.976 between the low- and high-fidelity power predictions. Using

the DEL as the load proxy in the low-fidelity model yielded a low correlation between the low- and high-fidelity models.

We explored other potential loading proxies—applying the proxy to both the front and back turbine moment histories then300

summing the results—and the results of each correlation analysis are presented in Table 1. We used the proxy associated with

the highest-measured correlation, namely

L̂LF = µt
[
M front(t)

]
+ 5σt

[
M front(t)

]
+µt

[
Mback(t)

]
+ 5σt

[
Mback(t)

]
, (33)

where µt and σt are the mean and standard deviation, respectively, with respect to time. The DEL is purposely replaced with

lower-order moment functions to avoid the influence of the spurious oscillations caused by the low-fidelity loading model. The305

DEL is essentially a high-order moment, which is especially susceptible to these oscillations. The lower-order moments in

Eq. (33) were less susceptible to the spurious oscillations, which is why larger correlations ares observed.

4 Results and Discussion

4.1 Pareto Set Computation

The convergence of the single-fidelity and multifidelity optimization approaches are compared in Figure 3. The dashed lines310

show the hypervolume, best-sampled load, and best-sampled power found from 100 sampled points using the heuristic sampling

approach, which the single-fidelity and multifidelity approaches both outperformed. The EHVI associated with the multifidelity

approach was generally lower than the EHVI associated with the single-fidelity approach. The multifidelity approach took less

than a third as much total time to estimate the optimal power and loading compared to the single-fidelity approach. The optimal
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power is achieved with 26◦ offset in the front turbine and 2◦ offset in the back turbine. The optimal loading is achieved with315

22◦ offset in the front turbine and −30◦ offset in the back turbine. We also performed several shorter optimizations as part of

the development process using random initial samples, confirming that the multifidelity approach consistently determined the

correct hypervolume in fewer iterations than the single fidelity approach.

Figure 3. Convergence history of the single-fidelity and multifidelity approaches. The left plots show the EHVI, hypervolume, and best-

observed power and loading. The right plots show the yaw configurations associated with the best-observed power and loading.

Figure 4 compares the Pareto sets found using 50 equivalent high-fidelity evaluations using the single-fidelity and multifi-

delity approaches. The multifidelity approach captures five Pareto points and the single-fidelity approach captures four Pareto320

points. The estimated Pareto sets are very similar, although the single-fidelity approach captures more of the Pareto set close

to the optimal power and the multifidelity approach captures more of the Pareto set close to the optimal loading. The results of

the single-fidelity and multifidelity approaches are combined to show a single Pareto set, which has a shape similar to a logit

function.
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Figure 4. Sampled inputs and outputs associated with power greater than 3 MW and loads less than 3 MN-m. Points associated with the

single-fidelity approach are shown using blue square markers, and points associated with the multifidelity approach are shown using green

circular markers. A Pareto set constructed from the single-fidelity and multifidelity results is highlighted with hollow circles, where darker

(magenta) circles correspond to Pareto points with lower loads and lower powers.

Although the primary goal of the present study is to develop and demonstrate a multifidelity multiobjective optimization325

framework, once several of the points in the Pareto set are identified the set can be further refined using a grid search. As

a demonstration of this additional step, the Pareto set resulting from the combination of the single-fidelity and multifidelity

approaches was interpolated to create refinement samples using B-spline interpolation (Virtanen et al., 2020) with 10 interpo-

lation points. To pick up more of the Pareto set, this interpolation was offset in the γ1 direction by −2◦, −1◦, 1◦, and 2◦ when

creating the input refinement set.330

The Pareto set resulting from these additional refinement samples is visualized in Figure 5. The resulting Pareto set has three

more points than the Pareto set found combining the single-fidelity and multifidelity approaches. The optimization algorithm

did not originally fill in these points because they reside in a relatively flat portion of the Pareto set (i.e., dP/dL is small), where

adding points would not be expected to increase the Pareto set hypervolume based on the rectangular quadrature employed in

this study. Adding these points increased the hypervolume of the discovered Pareto set by a very small amount, on the order335

of 0.002%. Even when using such a refined set of inputs, there are several points where the Pareto set jumps from one yaw

position to another; attention would be needed for an operator to control the turbines to operate along the Pareto set.

The multifidelity approach was successful in quantifying the trade-offs between loading and power, and was shown to be

more efficient than its single-fidelity counterpart. From the presented results, we find that loading may be reduced by 4% while

only reducing the optimal power by 0.3%. The accuracy of the single-fidelity and multifidelity GP models are quantified using340

a leave-one-out analysis in the Appendix. Table 2 shows the power and front and back turbine DELs associated with several
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Figure 5. Sampled inputs and outputs associated with power greater than 3 MW and loads less than 3 MN-m. Points associated with

the single-fidelity approach are shown using blue square markers and points associated with the multifidelity approach are shown using

green circular markers. Refinement points are shown as black triangles. A Pareto set constructed from the single-fidelity, multifidelity, and

refinement samples is highlighted with hollow circles, where darker (magenta) circles correspond to Pareto points with lower loads and lower

powers.

Table 2. Observed power and loads for various yaw configurations

γ1 (◦) γ2 (◦)

Power

(MW)

Load

(M-Nm)

Front Turbine

Power (MW)

Back Turbine

Power (MW)

Front Turbine

DEL (M-Nm)

Back Turbine

DEL (M-Nm)

30 0 3.24 3.53 1.84 1.40 0.78 2.75

−30 0 2.99 5.59 1.84 1.15 0.93 4.66

26 2 3.45 1.92 2.12 1.33 0.61 1.31

26 0 3.44 1.87 2.12 1.32 0.61 1.27

26 −2 3.44 1.85 2.12 1.32 0.61 1.24

26 −30 3.25 2.18 2.12 1.13 0.61 1.57

22 0 3.26 3.55 2.21 1.05 0.52 3.03

22 −30 3.13 1.63 2.22 0.91 0.52 1.11

strategies. Slight adjustments to the back turbine angle result in substantial differences in the back turbine loading. These small

changes in yaw position adjust the turbine thrust away from the flow, reducing the total thrust imparted on the back turbine.
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4.2 Flow Physics Insights

Figure 6 shows the flow fields associated with neutral, −30◦, and +30◦ yaw offsets in the front turbine, with the back turbine345

aligned with the wind direction. When the front turbine is offset, two structures are produced: a pair of counter-rotating vortices

as well as a coherent structure that is drawn from the boundary layer. The direction of vortex rotation is determined by the

direction of thrust the turbine imparts on the incoming air. Induced vortices generally rotate in the opposite direction from the

blades that generated them, and the location of the vortices is determined by their rotational direction and the direction of blade

rotation. The upper vortex associated with the positive yaw offset is lower in elevation than the upper vortex produced by the350

negative yaw offset. The upper vortex also drifts less in the crossflow direction when using the positive yaw offset than when

using a negative yaw offset. The bottom vortex drifts similarly in both the positive and negative offset cases. All this amounts

to a larger and more extreme velocity deficit encroaching on the back turbine when using the negative yaw offset, rather than

the positive yaw offset, resulting in more loading and less power.

Figure 6. Flow fields associated with the extreme and neutral offsets in the front turbine, viewed from upstream. The ∆x term indicates the

distance downstream from the front turbine in terms of rotor diameters. Brighter colors show faster velocities. Streamlines show the direction

of the crossflow and vertical velocity components. In each plot, the vertical and crossflow location of the back turbine is shown as a white

circle. The turbines rotate clockwise when viewed from upstream. A diagram is shown on the left depicting the direction of positive yaw

offset when viewing the turbine from above.
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Time-averaged flow fields associated with the optimal power, γγγ = (26◦,2◦), and optimal loading, γγγ = (22◦,−30◦), solutions355

are compared in Figure 7, which shows vertical slices of the flow field before the flow reaches the back turbine. The lesser

front turbine yaw offset angle in the γγγ = (22◦,−30◦) case results in less lateral movement of the wake, and the wake structure

has greater overlap with the back turbine than in the γγγ = (26◦,2◦) case. The stronger vortical motion resulting from the

γγγ = (26◦,2◦) case results in the boundary layer being convected further inwards. This boundary layer structure also impacts

the back turbine less in the γγγ = (22◦,−30◦) case because of the reduced back turbine projected area. As the wake convects past360

the back turbine, additional vorticity is added to the flow. In the γγγ = (22◦,−30◦) case, the boundary layer structure appears to

be pushed back down by the rotation of the bottom vortex.

Figure 7. Time-averaged flow fields associated with the optimal power (left) and loading (right) found by the optimization, viewed from

upstream, 6 rotor diameters (top) away from the front turbine, one rotor diameter upstream of the downstream turbine. Brighter colors

indicate faster velocity magnitudes. In each plot, the vertical and crossflow location of the back turbine are shown as a white ellipse.

Figure 8 shows time histories of the flapwise bending moment associated with the front and back turbines for various wake

steering strategies. The spikes in the back turbine loading history are caused by the wake impacting the back turbine. When

γγγ = (−30◦,0◦), the back turbine shows greater downward spikes in loading than when γγγ = (30◦,0◦), because of the greater365

velocity deficit discussed above. The γγγ = (26◦,0◦) case yields smaller downward spikes associated with the back turbine

loading than when γγγ = (30◦,0◦), because the strength of the counter-rotating vortices is such that the structure convected from

the boundary layer does not impact the back turbine as adversely. The γγγ = (22◦,0◦) offset case has larger downward spikes

in the back turbine loading than the γγγ = (26◦,0◦) offset case, because the latter steers the wake further away from the back

turbine. When the back turbine is offset to −30◦, the back turbine thrust and associated moments are generally reduced. With370

this extreme back turbine yaw offset, there is less variation in the back turbine loading when the front turbine is offset by 22◦

than when it is offset by 26◦, because the former case results in greater variation of velocity across the back turbine rotor plane.

These results are specific to the specified spacing between turbines and atmospheric conditions.
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Figure 8. Loading histories associated with different yaw offset strategies (values of γγγ).

5 Conclusions

This paper has demonstrated a multifidelity multiobjective optimization approach for wake steering strategies. Actuator line375

simulations were carried out using the WindSE tool, using a coarser simulation as the low-fidelity model. The high-fidelity

loading was characterized as the sum of flapwise bending moment DELs on blades on the front and back turbines. Due to

oscillations in the low-fidelity simulations, characterizing the low-fidelity loading with a DEL resulted in a relatively low

correlation between the low- and high-fidelity loading predictions, so a different low-fidelity surrogate was developed with a

higher correlation.380

The multifidelity multiobjective optimization approach was effective in exploring the trade-offs between loading and power

when developing a wake steering design. Convergence was achieved in the multifidelity optimization case after approximately

30% as many equivalent high-fidelity model evaluations as in the single-fidelity case. Future work should apply this approach

and a low-fidelity loading function to more complex wind plant layouts to confirm their effectiveness. Exploring the solutions

in the final Pareto sets guided insights into the fundamental flow physics. Given the specified turbine spacing and atmospheric385

18



conditions, a positive front turbine yaw offset is more effective at reducing loading and increasing power than a negative yaw

offset because the counter-rotating vortices associated with the negative front turbine yaw offset produce a greater velocity

deficit in the downstream wake. The boundary layer is convected by the counter-rotating vortices, adversely affecting loading,

and this may be avoided using less-extreme front turbine yaw offsets. Slightly modifying the back turbine yaw offset reduced

loading by 4% and only reduced power by 0.3%. Greater offsets in the back turbine also led to less overall loading, with390

significantly less power generation.

It is well known that yaw position errors can adversely affect the performance of wake steering strategies. This is especially

true when it comes to turbine loading. A 30◦ yaw offset is already an aggressive strategy, and unfavorable yaw position errors

may result in even more aggressive yaw offsets in practice. Yaw offset errors are generally extreme in lower wind speeds,

which is when wake steering strategies are most efficient at increasing power. Previous work has examined the potential of395

considering yaw error uncertainties in the wake steering optimization problem (Quick et al., 2017, 2020). The multifidelity

optimization approach presented in this paper could conceivably be extended to optimization under uncertainty, using the final

GP models to propagate yaw position uncertainty, and potentially even modifying the EHVI definition to include uncertainty

information. Incorporating uncertainty will likely change the shape of the discovered Pareto front.

A drawback of the presented approach is that it requires sequential high-fidelity model evaluations. In practice, it is often400

feasible to evaluate a high-fidelity model several times in parallel, and the greatest expense is time needed to run the optimiza-

tion. This framework may be extended to allow for parallel function evaluations. A simple approach is to use predictions of

the GP as stand-ins for future model evaluations, iteratively using these points to construct the next iteration of the GP and

the associated EHVI (Ginsbourger et al., 2010). Yang et al. (2019) propose dividing the input space into separate regions for

parallelization of EHVI optimization. Another intuitive approach could be to include refinement points during each iteration.405

Refinement points could be selected using the Pareto set predicted by the GP models or interpolated along the observed Pareto

set. Care should also be taken when applying this method to ensure convergence of the Pareto set with respect to convergence

of the underlying simulation.

In future work, this framework can be applied to a larger array of turbines using more realistic control strategies with

different turbine spacings and atmospheric conditions. While considering more turbines presents additional complications in410

maximizing the EHVI, we anticipate there will be even greater cost savings from the multifidelity approach as the number of

turbines increases. Additionally, the framework can be extended to allow for optimization under uncertainty, as it is not realistic

to assume perfect control of wind turbine yaw positions. Finally, the framework can incorporate more lower-fidelity models

and be combined with layout optimization to realize the full benefits of multifidelity multiobjective wake steering optimization.
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7 Appendix

A leave-one-out analysis was performed to assess the accuracy of the single-fidelity and multifidelity GP models. For each point425

considered, the model was trained using the remaining points available, excluding the point of interest. Then, the accuracy of the

prediction was quantified by comparing it to the observed value. The single-fidelity and multifidelity approaches were analyzed

using the data associated with the optimization case study. When assessing the accuracy of the multifidelity model, the low-

and high-fidelity samples associated with each point considered in the leave-one-out analysis were removed. Figure 9 shows

results of the leave-one-out analysis associated with the single-fidelity GP. Figure 10 shows the results of the leave-one-out430

analysis associated with the multifidelity GP.

Based on these results, both GPs served as reasonably accurate surrogates. Many of the sampled errors are less than 0.1 MW

and 0.1 MN-m, particularly in the region of the discovered Pareto set, which correspond to 3% of the maximum power and 6%

of the minimum loading, respectively. The multifidelity approach yielded higher maximum errors and lower minimum errors

than the single-fidelity approach. This analysis focused on the final results of the optimization, and we generally expect the435

leave-one-out errors to shrink as the optimization progresses.
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Figure 9. Results of the single-fidelity leave-one-out analysis. The left panel shows the leave-one-out prediction errors associated with power

and loading, and the points are colored by the sum of both errors. The same points are plotted in the right panel, showing their associated γ1

and γ2 values.
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