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We thank both the reviewers for their critical assessment of our work. Before answering all the
comments in detail, we summarise the changes made in the revised manuscript. The major changes
are the following:

• Section 2.2 containing the description of the LES wind field has been completely rewritten
to be self-contained and the simulation parameters for a second LES wind field with stable
stratification has been added.

• Section 2.4 (Quantifying the Accuracy of the Reduced Order Model) has been split and
rewritten in

1. Section 3.4.1, where a detailed description of the three-parameter model is provided.

2. Section 3.4.3, where a justification of the selection of the three-parameter model to assess
model accuracy and to provide interpretation of the modes is discussed.

• Parts of Section 3 have been rewritten and several figures have been extended to also include
the stable inflow case results and an inter-comparison with the unstable case results.

• Section 4 discussion has been updated with

1. The results of the stable LES wind field.

2. Advantages of a POD based wind field reconstruction model over parameterisation mod-
els.

3. Applicability of POD based strategies in practice.

• An Appendix A has been added where the practical application of the model is described
along with a discussion on the predictive capabilities of the method.

Smaller changes are addressed at the end of minor comments. A revised version of the manuscript
is available along with a document to track changes between the old and the revised version. We
hope these changes will positively benefit the manuscript.
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Reviewer 1

In their paper ”Modelling the Wind Turbine Inflow with a Reduced Order Model based on Spin-
nerLidar Measurements”, the authors present a POD-based representation of the turbine inflow
from virtual lidar measurements. The paper is original and of interest to the community. The
paper is well-written and easy to read. The conclusions are properly supported by the findings.
My main comment however is that it is not clear to me how the presented methodology could
be used in practice, and that the presented work is focused on exploring the low rank structure
from SpinnerLidar measurements rather than resulting in a practical inflow reconstruction method.
Furthermore, the paper is based on a single simulation setup, which is lacking some information
for reproducibility. The paper would benefit from a clarification in these areas. This is further
explained in my comments below.

We thank the reviewer for their critical assessment of our work. In the following we address
their concerns point by point. Comments to the reviewer points are made in blue.

Main Comments

Comment 1: It is not clear to me how the model could be used to reconstruct turbine inflows in
practice. Reconstruction capabilities of the POD model are shown solely for a data set which the
modes were fitted on, so one could say the authors do not present a model but rather the presence of
low-rank structure/ compressibility of the lidar data as the result of a fitting/interpolation exercise.
This is of course valuable information, but the true merit of such a ROM would lie in the application
and performance for unseen data.

Reply: Our main objective of the paper was indeed the identification of spatial modes from which
a low-rank description of the wind turbine inflow could be obtained. This model reduction would be
the first step necessary to develop simplified dynamic inflow models. We try to identify modes that
capture important flow aspects while yielding the necessary dimensional reduction as the accuracy of
the reduced model depends on its dimensions. By performing upstream velocity measurements from the
wind sensor, the temporal evolution of the POD modes can be estimated in advance if the mode shapes
are known.
The ability of the POD modes to approximate complex flow is dependant on the information contained
in the snapshot data required to generate the POD modes. As wind turbines operate in the atmospheric
boundary layer characterised by continuously changing atmospheric and wind conditions, special con-
siderations must be given to adopting the modes to account for inflow changes. This can be achieved
through two approaches as first laid out by Bergmann et al. [2005]. The first approach would be to
uniformly distribute the ensemble snapshot velocity matrix among the range of atmospheric conditions
that define the inflow. This approach requires many simulations of the higher dimensional CFD model
or a large SpinnerLidar dataset for generating snapshots. The second approach describes an adaptive
method in which new snapshots are regularly collected and the new POD modes are calculated when
the effectiveness of the existing POD ROM to represent the inflow becomes insufficient. Both these
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approaches can be applied to the SpinnerLidar data that is collected in real-time operation. As the daily
flow variations due to stability changes are relatively slow processes, the modes can be recalculated in
longer moving time intervals. As the computational expense of calculating POD modes for a particular
inflow state is in the order of a few seconds, POD based dynamic inflow models can be used to adapt
and use the SpinnerLidar sensor data during the real-time phase.
We have added Appendices A1 and A2, where we describe how this method can be used in practice and
investigate the reconstruction performance for unseen data. We see that the POD model can reconstruct
the previewed wind field very accurately if suitable POD modes are available while the reconstruction
accuracy suffers while unsuitable POD modes are used.

Comment 2: Could the authors clearly indicate, perhaps using a diagram with the flow of data
and information, how the proposed method could be used in practice?

Reply:

Figure 1: Flowchart of the integration of the POD ROM into the turbine control system.

Figure 1 illustrates the flow diagram of the proposed method. The turbine inflow is measured with
the SpinnerLidar and the velocity snapshots are used to determine the POD modes utilising the two
approaches described in Comment 1. The recorded inflow data could be used to generate the ensemble
snapshot matrix to determine generalised POD modes. As large amounts of data need to be processed
to cover the entire operational range, it is beneficial to perform this calculation offline and use the
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generalised modes for the online control. A reduced order model can be created based on the POD
modes and their temporal evolution from the line-of-sight velocity measurements of the SpinnerLidar.
While using the adaptive method, it is necessary to decide when the POD ROM has to be adapted to
a new inflow condition. This can be either done by verifying the accuracy of the ROM, for instance
by comparing the reconstructed wind fields with the full lidar data. This step can be bypassed by
recalculating the POD modes at certain predefined time intervals.
As the SpinnerLidar measurements are performed upstream of the turbine, the reduced velocity fields
can be realised before the wind field reaches the rotor plane. Thereby the state of the inflow in the near
future is known hence facilitating a feed-forward control mechanism that determines the operational
point of the turbine based on the preview wind information and regulates the turbine operation.
We have added Appendix A1 where the integration of the POD ROM into the turbine control system
is discussed along with the flowchart.

Comment 3: Can the authors elaborate on the three-parameter function Ŷ (t), presented in Eq.
10.

Reply: The operator Ŷ (t) refers to the simplified three-parameter function defined and validated by
Kapp [2017]. This method proposes a parameterisation of the inflow wind field using 3 parameters to
achieve the slightest possible deviation from the actual inflow field.
A more precise explanation of the three-parameter model is now available in Section 3.4.1 of the revised
manuscript.

Comment 4: The merit of the proposed method seems to be mainly the fact that feeding the
lidar data in a truncated POD basis, rather than feeding the entire signal, into these Ŷ (t) functions
allows the lidar data to be compressed and reduces the amount of data to be processed. Does this
result in significant cost savings justifying the computation of the POD modes in the first place?
Some indications on where the proposed method excels over using the full lidar data are necessary.

Reply: The main objective of the paper is to identify the lower rank representation of the inflow.
Hence, the metrics used to quantify the accuracy of the reconstructed lower rank wind field should
depend on the inflow parameters that have the most effect on the turbine operation, i.e.,ueff , δh and sv.
While these parameters could be directly calculated from the lidar data, we use them instead as metrics
to quantify the accuracy of the reconstructed wind field. The true benefit of this method lies in the
fact that the dynamics of the spatially inhomogeneous wind field can be described with a few modes
making this approach attractive for higher harmonics IPC control or trailing edge flap control Ungurán
et al. [2019]. Furthermore, the temporal dynamics of the weighing coefficients could be evaluated to
detect local events such as gusts faster than evaluating the full lidar measurements or a simple wind
field reconstruction model.
In the discussion section at p. 25, l 556-570 of the revised manuscript, we elaborate on the advantages
of a POD based inflow model over other wind field reconstruction approaches and full lidar data.

Comment 5: Could the POD modes be used outside of the dataset which they were fitted on?
Or are the reconstruction capabilities of the model only available as a post-mortem processing? The
authors mention in line 390 that converged POD modes could be re-obtained on the fly relatively
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easily. However, reconstructing the wind field also requires the time-evolving coefficients in Eq. 7,
for which the full signal V ′(x, t) is again necessary.

Reply: In general, POD modes cannot be used outside the dataset they were fitted on. The calculated
modes are valid for a particular inflow condition and need to be updated to account for the state
changes. The validity of the POD modes to represent the inflow has been addressed in Comments 1
and 2 whereby methods to update the POD modes or to obtain generalised POD modes are detailed.
In the revised manuscript, we have added Appendix A2 that addresses the predictive capabilities of the
method and the validity of POD modes to represent flow states outside which it was calculated. In
general, with the availability of appropriate modes, the inflow wind field is predicted with high accuracy
while the usage of wrong POD modes to describe the inflow introduces prediction errors.

Comment 6: The authors build their argumentation based on a single simulation setup of an
NREL 5MW turbine with a DTU SpinnerLidar in an unstable boundary layer.
Have the authors considered adding a second lidar to mitigate the cyclops dilemma? Please com-
ment on this in the paper.

Reply:

• Single LES wind field : We have included one more LES wind field of stable stratification to extend
our argumentation and investigate the model performance for two stability cases. We also address
this in Comment 7.

• Cyclops dilemma: We did not consider multiple lidars. In principle, it should be possible to
extend the approach to multiple lidars, e.g., ground-based or integrated in the blades. While
having an additional ground-based lidar or lidars scanning synchronously with the turbine-mounted
SpinnerLidar could be used to resolve the 2D or even 3D velocity components, we constrain our
analysis only to velocity measurements of a turbine-mounted SpinnerLidar as lidar-based feed-
forward systems rely on a single turbine-mounted lidar measuring the inflow.

Comment 7: The details of the precursor simulation could be improved. The paper would
benefit from including information of the following:
- The authors use unstable stratification, what is the surface heat flux? Why did the authors opt
for unstable stratification?
- How are the precursor simulations initialized? (temperature + velocity?)
- What is the boundary layer height after the spinup time? (Could you include snapshots of the
precursor velocity field? (x,y) ; (x,z))
- p. 159, what do the ’default settings’ of PALM imply? Please make the description of the setup
self-contained.
- I’m assuming the precursor is periodic in x and y, please confirm.

Reply: Section 2.2 in the revised manuscript has been completely rewritten to make the description,
simulation setup and the characteristics of the two LES wind fields self-contained.

1. We chose an unstable stratification as the amount of turbulent kinetic energy is larger in com-
parison to neutral and stable flows while the most energetic motion also occurs on larger scales
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[Vollmer et al., 2016]. Due to the larger energy content and convective mixing, this case would
require more POD modes to capture all the TKE in the wind field. The kinematic sensible heat
flux at the surface was fixed at 0.023 Kms−1.

2. The simulation is initialised with vertically constant geostrophic winds, cyclic lateral boundary
conditions, temperature profiles and surface heat fluxes. The wind speed and wind direction
variation with height are obtained due to a combination of Coriolis forces, ground friction and
stratification after several hours of spinup time. We specify a geostrophic wind ug = 11.81 m/s,
vg = -1.12 m/s and a surface potential temperature of 290 K.

3. The boundary layer height for the unstable case is 1416 m at the end of the spinup time. As one
more LES case to the manuscript, we have decided not to show precursor velocity field, but instead,
we updated Fig. 4 (a) to show the 1-D profiles of the horizontal wind speed, wind direction and
potential temperature as a function of height for both the cases. We have also added Table 1
with the wind inflow characteristics (wind speeds, TI, veer and shear) that are more commonly
used for defining the inflow.

4. We agree that ”default settings” is not an apt description of the simulation set-up. The descrip-
tion is updated in the revised manuscript in Section 2.2.

5. Yes, the precursor run is periodic in the x and y directions. This information has been added to
the revised manuscript in Section 2.2.

Comment 8: I feel the paper would benefit from adding a second case in neutral or stable
stratification, where turbulence structure will be significantly different from the large convective
structures in the present case. If however the authors expect this would not influence their findings,
they should at least discuss this in detail.

Reply: To address the inflow variability and the effectiveness of the POD method in reconstructing
the wind inflow, we have also added one stable stratified LES wind field in our analysis and discuss its
results compared to the unstable case.

Minor Comments

Comment 1 — - Figure 7, cumilative → cumulative

Reply: This has been fixed in the manuscript.

Comment 2 — Figure 8, units

Reply: Units have been added to the figure.

Comment 3 — - p. 10, l 245: having has the largest... → having the largest

Reply: This has been fixed in the manuscript.
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Comment 4 — - p. 10, l 245: cov → cov

Reply: This has been fixed in the manuscript.

Comment 5 — - p. 11, l 262: ”... start to converge around n = 3500 samples due to temporal
correlations in the wind field.” What do the authors mean by these temporal correlations causing
convergence? Is this convergence caused by having snapshots that are separated by smaller time
intervals when increasing the amount of samples, or are the n=1000 samples spaced equally as the
n=3500 samples?

Reply: The convergence is tested by investigating the sensitivity of the results to the number of samples
with the same time separation used for the estimation. The convergence is caused by increasing the
number of snapshots equally spaced at 1 Hz which is the sampling rate of the SpinnerLidar. As the flow
conditions remain relatively consistent while taking a large enough snapshot velocity set, the temporal
variations in the inflow are smoothed and hence the eigenvalue magnitudes remain relatively constant.

Comment 6 — - p. 13, l 277: The authors mention that ”energy is distributed over different scales
and its representation might require an enormous amount of POD modes.” This is an interesting
comment. There is indeed a wide range of scales, but the energy cascade with decreased energy
at small scales is effectively what allows us to do LES. On the other hand, it is true that further
dimensionality reduction is notoriously difficult, perhaps even more so than widely considered in
literature. A good reference here would be Bauweraerts, Pieter, and Johan Meyers. ”Study of
the energy convergence of the Karhunen-Loeve decomposition applied to the large-eddy simulation
of a high-Reynolds-number pressure-driven boundary layer.” Physical Review Fluids 5.11 (2020):
114603.

Reply: Indeed resolving the larger scales and modelling the small scale turbulence is what makes LES
possible. Thank you for pointing us towards this reference. We have added this reference to our revised
manuscript.

Comment 7 — - p. 14, l 297: The authors claim that the M=1 reconstruction only allows to
properly reconstruct the mean. Since the mean is not considered in the POD decomposition (Eq.
4), I suspect it is added afterwards to the POD reconstructions of the POD modes. Does this imply
that the first mode offers no significant reconstruction information at all?

Reply: Indeed the mean is not considered for the POD decomposition. As can be seen in Fig. 8, the
first two modes are associated with the variations of the line-of-sight velocities in the scan due to the
inclination angle of the laser beam with respect to the inflow. A better wording would be to say that
the first two modes reconstruct the spatial fluctuations in the effective wind speed (Fig. 11). This has
been updated in the manuscript in p18, l 375-376.

Comment 8 — - p. 19, Figure 12 caption: uprojected refers to equation 1. But is not defined
there. Please be more precise.

Reply: The uprojected velocity is obtained from Eq. (1) by assuming that the longitudinal wind speed
u is dominant over the cross-wind components.

uprojected =
vlos

cos(χ) cos(δ)
(1)

This has been updated in the revised manuscript in the caption of Figure 13.
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Reviewer 2

This manuscript deals with the POD analysis of synthetic wind data, specifically lidar radial ve-
locity, obtained with the virtual lidar technique applied to a single LES dataset. A truncated POD
base is then used to approximate the time-series of wind parameters typically used for wind turbine
control. The authors have nicely shown how they master the use of POD on wind synthetic data;
however, I have some comments on this work.

We thank the reviewer for their critical assessment of our work. In the following, we address
the concerns point by point. Comments to the reviewer points are made in blue while modifications
to the manuscript are made in red.. A short overview of the changes in the revised manuscript is
also available at the beginning of this document.

Comment 1: How this study is representative for the broad range of atmospheric and wind
conditions experienced by a wind turbine? Specifically, the daily cycle of atmospheric stability
leads to significant variations in velocity integral length scale, and energy distribution across scales
and heights. The POD modes will vary significantly for the different conditions, and different POD
modes may dominate specific conditions. Furthermore, a different number of POD modes might be
needed to reconstruct a certain wind condition. Therefore, I am not sure about the applicability
of this approach for real wind energy applications

Reply: Wind turbines operating in the atmospheric boundary layer experience a wide range of inflow
conditions. We agree that a study based on a single LES wind field does not cover the wide range of
inflow conditions that a turbine experiences in operation. The modes will differ in shape and energy
content based on the inflow conditions and this has been seen based on our analysis of other inflow
situations and also from full field experimental data.
To address the inflow variability we have added one more stably stratified wind field as a second LES
case to show the variations due to different stratification conditions. The practical implementation and
application of the model to real wind energy applications has been added as an appendix. In Appendix
A1, we discuss how a POD based reduced order model can be integrated into a feed-forward controller
and propose two methods for recalculation of the POD modes with changes in inflow conditions. As
changes in atmospheric stabilities are relatively slow processes, the modes could be recalculated at spe-
cific time intervals or when the ability of the modes to represent the inflow is diminished.

Comment 2: I am not sure about the predictive capabilities of this POD approach. In practice,
the authors have carried out post-processing of wind data without providing any prediction for
next-time occurrences. The authors mentioned that they plan to use this technique “on-the-fly”.
Even assuming that this would be computationally feasible, why you want to approximate the wind
parameters with POD when you can already estimate them from the actual lidar data, and maybe
with less computational costs?

Reply: We only use the wind parameters as metrics to quantify the accuracy of the wind field recon-
struction. While calculating wind field parameters directly from the lidar data is less computationally
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expensive than estimating the reduced velocity field, and then the wind parameters, the true benefit of
this method lies in the spatial velocity field estimation in a reduced basis, which the parameterisation
models cannot provide. For instance, the three-parameter model fits spatially constant parameters over
the whole measurement area, which (i) does not take full advantage of the entire rotor plane scan pro-
vided by the SpinnerLidar, and (ii) consequently cannot detect in-homogeneous inflow situations such
as partial wake impingement. A POD based model will reconstruct the in-homogeneous spatial velocity
field based on a few signals. Hence, by a POD based reduced order model, more detailed wind field
information can be retrieved compared to parameterisation models that can be subsequently used for
higher harmonics control (e.g. 2P IPC) or trailing edge flap control [Ungurán et al., 2019].
We have added an Appendix section where we discuss the prediction capabilities of a POD based model
which is possible due to the advance inflow wind measurements provided by the SpinnerLidar. In Ap-
pendix A2 we investigate the predictive capabilities for three different scenarios when appropriate POD
modes to describe the inflow are available and when wrong POD modes are used. In general, with the
availability of appropriate modes, the inflow wind field is predicted with high accuracy while the usage
of wrong POD modes to describe the inflow introduces prediction errors.

Comment 3: I would also add that writing should be significantly improved throughout the
manuscript. Several sentences should be rephrased and there is a large number of typos. Please
find below some comments, which might help for further revisions.

Reply: We thank the reviewer for the comments to help with the manuscript revision.

Minor Comments

Comment 1 — L 11, “. . . we find that a 10 mode ROM could accurately describe most spatio-
temporal variations in the inflow”. Can you comment on how this statement can be generalized for
different wind/atmospheric conditions, and to rotors with different diameters and, thus, affected
by structures with different sizes?

Reply: A general statement cannot be derived without analysing a large enough dataset that considers
variations in wind/atmospheric conditions and rotor sizes. We do not have such a large dataset available.
However, we see that a generalised ten mode ROM is sufficient to capture the inflow irrespective of
the inflow conditions from the inflow LES situations in the revised manuscript and available free-field
experimental data.
We try to approach the generalisation first from the perspective of the inflow. For the two LES wind
fields of different stratification’s, a reduced-order model with the first ten modes captures most of
the spatio-temporal variations in the inflow. The statement holds also for SpinnerLidar measurements
performed at a shorter focus distance in full field experiments. To back this statement, we show the
eigenvalue distributions from two free-field measurement cases performed in 2016 and 2017 respectively.
In this campaign, the SpinnerLidar measured 37 m upstream while installed on the spinner of a turbine
with a rotor diameter of 114.9 m (lidar is measuring at approximately 0.32 D). More details of this
measurement campaign can be found in Bromm et al. [2018]. We analyse the SpinnerLidar measured
inflow on two days spaced half a year apart as tabulated in Table 1. The energy distribution against the
mode number in Figure 2 exhibits the same behaviour seen in the LES cases as well. With 10 modes,
94% of the energy in the wind field is recovered for the unstable case and 89% for the stable case with
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similar results for the other metrics which we do not show here for brevity.

Measurement Period fspilol (m) u0 m/s δh (°) TI (-) Stratification

Case 1 09:00-10:00 on 15-11-2016 37 9.1 0.7 0.20 Unstable

Case 2 09:00-10:00 on 24-05-2017 37 8.2 0.3 0.135 Stable

Table 1: Overview of the free field measurement cases.

Figure 2: Energy distribution for the two full field measurement cases.

The effect of larger scanning area required for larger turbines and the representation of larger at-
mospheric flow structures should be further analysed. For such an analysis, the parameters of the
SpinnerLidar should be changed to increase the measurement range and decrease the probe volume at
larger distances.

Comment 2: L 12-14, “The reduced order modelling was accomplished using the inherent volume
averaging property of lidar devices that attenuates high frequency turbulence with lower importance
for the overall turbine response thus allowing significant data compression”. I have two comments
on this statement: 1) I am not sure how the spatial averaging of the lidar is connected with the
ROM accuracy, at least not from this statement; 2) Recent works on lidar spatial averaging, see
e.g. Cheynet et al., Remote Sens., 2017; Puccioni and Iungo, AMT 2021, have shown that the
variance of the radial velocity can be even halved from its actual value depending on lidar range
gate, wind conditions and sampling height. Therefore, I would disagree that underestimation of
wind turbulence due to the lidar spatial averaging is of lower importance for the turbine response.
Please comment.

Reply:

1. The spatial averaging property of a lidar low-pass filters the high-frequency turbulence present in
our measurements, i.e., turbulent structures smaller than the measurement volume along the laser
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beam direction cannot be measured. Hence the filtered variance measured by a lidar is less than
the unfiltered variance in the wind due to the averaging effect along the laser beam direction.
For a cw lidar, Sjöholm et al. [2009], show that the lidar measured spectra is dominated by noise
at high frequencies after the drop-off frequency. By neglecting the higher modes that contain
contributions from the higher frequencies in the lidar measured spectrum, a spatial filtering is
applied to the data. As our interest lies in structures larger than the measurement volume, this
spatial filtering works in our favour exploiting the synergy between the method and the device.
A more clear description of the ROM accuracy and the suitability of the ROM for representing
inflow details relevant for the turbine is available at p. 25, l 571-581 of the revised manuscript.
Moreover, we have changed the text at p. 1, l 12-14 to the following to make it less ambiguous:

The reduced-order modelling was accomplished using the inherent volume averaging property of
lidar devices that attenuates high-frequency turbulence thus allowing significant data compression.

2. The underestimation of turbulence significantly impacts lidar-based load validation as the turbu-
lence intensity is the primary driver of fatigue loads. Bossanyi et al. [2014] show that for control
purposes, however, the volume averaging effect is actually beneficial for the calculation of rotor
averaged quantities as it resembles a spatial averaging of the wind field by the rotor. With scan-
ning lidar systems, sampling points distributed with the movement of the laser beam covers a
larger rotor area than perfectly focused measurements. Moreover, due to wind evolution, track-
ing high-frequency turbulent structures smaller than the measurement volume from the upstream
measurement location to the rotor plane is not possible. However, the lidar can easily measure
the larger turbulent structures that remain relatively unchanged as they move towards the rotor.
We have added the following text to the discussion at p. 24, l 515:
Please note that while the volume averaging induced turbulence attenuation is beneficial for con-
trol purposes due to the spatial averaging on the rotor area [Bossanyi et al., 2014] , it has a
significant impact on lidar-based load validation as the turbulence is the primary driver of fatigue
loads.

Comment 3: L 18, “have attracted greater attention”, add some representative references.
Similarly at L 21 “feed-forward lidar-assisted control”

Reply: Reference Schlipf et al. [2011] added to text.

Comment 4: L 22, maybe fiber-based

Reply: Text has been changed.
Substantial amount of research has been done on lidar-assisted wind turbine control following advances
in photonics-based communications for fiber-based lidar technologies that emerged during the early
2000’s

Comment 5: L 31, “with high spatial and temporal resolutions”, provide some reference values
and references.

Reply: Text has been changed and corresponding references have been added to the revised manuscript.
With such advanced devices available, it is possible to measure the inflow of a large wind turbine with
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high spatial and temporal resolutions with the SpinnerLidar capable of measuring 500 points in one
second.

Comment 6: L123, “for small yaw misalignment and tilt angles”. 30 degrees is not a small
angle. I understand the simplification of neglecting v and w; however, remove the statement that
this is doable based on the small lidar angles. It’s only an approximation with a certain error.

Reply: The calculation of the projected longitudinal wind speed component is indeed an approximation.
Text has been changed.
”the lateral velocities are assumed to be zero as the longitudinal component is dominant (u � v, w)
for nacelle or spinner-based lidar measurements for small yaw misalignment angles.”

Comment 7: Fig. 4, Please report figure coordinates in non-dimensional fashion with D.

Reply: The axis of the figure has been non-dimensionalised based on the rotor diameter of the NREL
5 MW turbine.

Comment 8: L 161, you mentioned that this LES case corresponds to an unstable atmospheric
regime. Then, I assume you imposed and/or quantified the respective Richardson number, Obukhov
length, and surface heat flux at the terrain. Please provide these specifications of the LES

Reply: The values of the Gradient Richardson number, Obukhov length, and surface heat flux are
0.176, -452.03 m, 0.023 Kms−1 respectively. This information has been added to Section 2.2 of the
revised manuscript.

Comment 9: Sect. 2.2, I believe that important details on the sampling of the spinner lidar
from the LES dataset are missing. I believe that the spinner lidar samples much faster than for the
LES sampling frequency of 5 Hz. How did you deal with the different sampling frequencies for the
various lidar beams? Furthermore, how the lidar spatial averaging is implemented in the virtual
lidar?

Reply: We have added more details on the lidar simulator in Section 2.2 of the revised manuscript.
The lidar simulator emulates the lidar measurements inside the LES wind field while taking account of
the volume averaging effect and producing 312 measurement points distributed along the rosette scan
pattern. For every measurement point, the lidar simulator freezes the wind field and performs linear
interpolation to obtain the projection along the laser beam direction. The lidar spatial averaging is de-
scribed as a Lorenzian function as described by Sjöholm et al. [2009] for continuous-wave lidars. From
the lidar properties and the focus distance, the length of the measurement volume is defined. The wind
field is then interpolated over this volume and the wind velocities along the line-of-sight are weighted
based on the Lorenzian function.

Comment 10: L 186, the square of the norm of V is not its TKE, rather the square absolute
value. You should first define the velocity mean according to the Reynolds-averaging approach, as
you are doing next with V’

Reply: Indeed ||V (X, t)||2 is the square of the absolute velocity value while the fluctuating part is
related to the TKE. We have removed this statement.

12



Comment 11: L 187, Please provide details on how you define the mean velocity field.

Reply: We remove the mean velocity field to obtain a snapshot matrix of the flow fluctuations. The
mean is defined as the time-averaged velocity field over the SpinnerLidar measurement trajectory for
the total simulation duration. We have modified the text to:
Here, 〈V (X, t)〉 denotes the spatial velocity field averaged over time.

Comment 12: L 274-275, again, this is not TKE. If you remove the mean of the flow, you will
see that the energy captured by the first 10 POD modes will be much smaller than 96.6%.

Reply: Thank you for pointing this out. We do indeed recover the fluctuating kinetic energy in the
wind field. We have rephrased this accordingly.
It is clear from Fig. 7, the first 10 modes contribute 96.6% of the turbulent kinetic energy (TKE) of
the field V ′ while the first 100 modes accounts for 99.95%.

Comment 13: L 360, What is the projected longitudinal wind speed, and why it is connected
with the rotor speed?

Reply: The standard definition of the uprojected velocity is obtained from Eq. (1) by assuming that the
longitudinal wind speed u is dominant over the cross-wind components. While this is an approximation
as pointed out in Comment 9, it is a very common approach to write

uprojected =
vlos

cos(χ) cos(δ)
. (2)

Collecting the projected longitudinal velocities by following a point on the blade as it slices through
the wind results in a time series of the rotationally sampled velocity, i.e., the velocities the blade will
experience as it slices through the wind.
We have added the definition of the projected longitudinal speed to the caption of Figure 13.

Comment 14: L 390 – 394, You are suggesting using POD in real-time “on-the-fly” while
collecting lidar data. So my question is, why do you want to approximate the wind parameters
(ueff, sv, deltah) with POD when you can estimate them directly from the lidar data, and with
less computational costs? Am I missing something?

Reply: Please refer to our answer to Comment 2 where we state that we use these parameters to
quantify the accuracy of the reduced velocity field. The true advantage of this method lies in the
estimation of the spatial velocity field in a reduced sense which the three-parameter method does not
provide. We have rewritten this part of the discussion in p. 25, l 556-570 of the revised manuscript,
where the advantages of using a POD based inflow model over parameterisation models and full lidar
data is discussed in detail. The challenges with the online calculation of POD modes and the predictive
capabilities are explained in Appendices A1 and A2.
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of a wind turbine in different atmospheric stabilities: an les study. Wind Energy Science, 1(2):
129–141, 2016. doi: 10.5194/wes-1-129-2016.

14


