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Abstract 

The bearing behaviour of large-diameter monopile foundations for offshore wind turbines under lateral cyclic loads in 

cohesionless soil is an issue of ongoing research. In practice, mostly the p-y approach is applied in the design of monopiles. 

Recently, modifications of the original p-y approach for monotonic loading stated in the API regulations have been proposed 

to account for the special bearing behaviour of large-diameter piles with small length-to-diameter ratios. However, cyclic 10 

loading for horizontally loaded piles predominates the serviceability of the offshore wind converters, and the actual number of 

load cycles cannot be considered by the cyclic p-y approach of the API regulations. This research is therefore focusing on the 

effects of cyclic loading on the p-y curves along the pile shaft and aiming to develop a cyclic overlay model to determine the 

cyclic p-y curves valid for a lateral load with a given number of load cycles. A “Stiffness Degradation Method (SDM)” is 

applied in a three-dimensional finite element model to determine the effect of the cyclic loading by degrading the secant soil 15 

stiffness according to the magnitude of cyclic loading and number of load cycles based on the results of cyclic triaxial tests. 

Thereby, the numerical simulation results are used to develop a “cyclic overlay model”, i.e. an analytical approach to adapt 

the monotonic (or static) p-y curve to the number of load cycles. The new model is applied to a reference system and compared 

to the API approach for cyclic loads.  

1 Introduction 20 

The conversion of energy supply to the extensive utilization of renewable energies can only be realized by further expansion 

of offshore wind energy. In this regard, it is crucial to minimize the costs for offshore wind energy exploitation. Significant 

cost savings are possible by optimizing the foundation elements of offshore wind energy converters.  

In the last years, the monopile foundation, consisting of a circular steel pipe of very large diameter (Fig. 1), was proven to be 

an economic and robust foundation solution for water depths of up to around 40 m. At the time being, projects are realized 25 

with monopiles of up to 10 m outer diameter. However, there are still basic uncertainties in the design of such monopiles. In 

practice, usually the p-y method is applied in the calculation of the monopile behaviour. This is a special subgrade reaction 

method, which utilizes nonlinear and depth-dependent spring characteristics, the p-y curves. Here p is the resultant soil 

resistance (horizontal bedding stress times pile diameter) at a certain depth and y is the corresponding horizontal pile 

displacement. In offshore guidelines like e.g. API (2014) approaches to derive p-y curves dependent on the parameters of the 30 

present soil are given. For piles in sand, the only parameters required are the buoyant unit weight ’ and the angle of internal 

friction ’. However, several investigations in recent years showed that these approaches, which have been calibrated by field 

test results of slender, flexible piles, cannot be used without modification for the large-diameter and almost rigid monopiles. 

This applies both to the p-y approaches for static (monotonic) and cyclic loads.  
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Fig. 1: Monopile foundation of an offshore wind energy converter and p-y method used in design (schematic) 

2 State of the art 

In the classic approach for piles in sand according to API (2014), a tangent hyperbolic function is used to describe the 

dependence of bedding resistance p on horizontal displacement y at a certain depth below sea bottom z:  

𝑝 = 𝐴 ∙ 𝑝𝑢 ∙ tanh (
𝑘∙𝑧

𝐴∙𝑝𝑢
∙ 𝑦)                                 (1) 40 

Here pu is the theoretical maximum value of bedding resistance, which basically is the passive earth pressure times pile 

diameter D. This value is calculated from Eq. 2 as a minimum of two values for shallow and deep failure modes pus and pud, 

which depend on buoyant unit weight ’ and three coefficients C1, C2 and C3 correlated with the angle of internal friction ’ 

(Fig. 2 left).  

𝑝𝑢 = 𝑚𝑖𝑛 {
𝑝𝑢𝑠 = (𝐶1 ∙ 𝑧 + 𝐶2 ∙ 𝐷) ∙ 𝛾 , ∙ 𝑧

𝑝𝑢𝑑 = 𝐶3 ∙ 𝐷 ∙ 𝛾 , ∙ 𝑧
                                            (2) 45 

The k-value in Eq. 1 is a stiffness parameter and is in API (2014) also given dependent on the angle of internal friction (Fig. 2 

right). 

For the factor A in Eq. 1, the API approach distinguishes static and cyclic loading conditions. For static loading, 𝐴𝑠𝑡𝑎𝑡 = 3.0 −

0.8 ∙ (𝑧 𝐷⁄ ) ≥ 0.9 applies, whereas for cycling loading the constant factor (independent of depth) 𝐴𝑐𝑦𝑐 = 0.9 shall be used. 

 50 

 

Fig. 2: Coefficients C1, C2, C3 (left) und parameter k (right) according to API (2014) 
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Several investigations have shown that for large-diameter piles the pile-soil stiffness obtained with the static p-y method is 

overestimated under extreme loads and underestimated under smaller operational loads (cf. e.g. Thieken et al. 2015a). 

Therefore, new static p-y approaches for monopiles in sand have been proposed in recent years. Sørensen (2012) replaced the 55 

k-value of the API guidelines by a k-value depending on depth z, the soil’s oedometric stiffness Es and the pile diameter D, 

which for large-diameter piles leads to greater displacements under service loads than the API approach. Kallehave et al. (2012) 

also suggested a modified initial stiffness formulation, but their target was to avoid an underestimation of stiffness under small 

operational loads, which is usually applied for the determination of the natural frequency of the whole structure. Here, the 

parameter k is formulated dependent on depth z and pile diameter D. This modified p-y formulation results in a considerably 60 

“stiffer” behaviour than the API formulation. Thieken et al. (2015b) proposed a more sophisticated p-y curve approach, in 

which also the soil’s greater stiffness for small strains is considered and which accounts for the effect of the pile deformation 

on the p-y curves by an iterative procedure. He showed that this approach gives reasonable results both for small operational 

and large service loads. Recently, Byrne et al. (2017) also proposed a new p-y approach especially developed for monopiles 

in sand soil (see also Byrne et al. 2015, Burd et al. 2020). Herein, besides p–y springs also rotational springs and a pile tip 65 

spring are introduced to the beam-spring model. However, the spring characteristics are to be determined by calibration with 

a numerical model, which makes the approach not straightaway applicable to a certain system.  

 
Cyclic loading of a pile can lead to both an increase of pile deformation with the number of load cycles and a reduction of the 

pile capacity, whereby in sand soils the effect on deformation usually dominates the design. Cyclic loading effects are 70 

considered in design by applying cyclic p-y curves in the calculation. As shown above, in the approach of API (2014) cyclic 

loading is considered by a reduction of the parameter A and hence the bedding resistance p down to a depth of z = 2.625 D. 

However, since the parameter A also affects the argument of the tanh-function, also displacements are affected, which means 

that the API consideration for cyclic loads is a mixture of p- and y-multiplier methods. The approach bases on field tests, in 

which for the determination of cyclic loading effects only limited load cycle numbers (at maximum around 200) were realized 75 

(Cox et al. 1974). It is generally assumed that the approach represents the pile behavior due to around 100 load cycles.  

Apart from the fact that the cyclic API approach is not validated for large-diameter monopiles, the consideration of just one 

cyclic p-y curve valid for 100 load cycles is not sufficient for the design of piles for offshore wind foundations. These 

foundations are subject to intense cyclic loading induced by wind and wave loading. The design checks for cyclically 

accumulated deformations and in particular rotations of the foundation structure is quite important for wind energy structures. 80 

In most wind farm projects, a maximum permanent rotation of the tower of 0.5° is required. Thus, an accurate prediction of 

the accumulated pile rotation of the monopile to be expected over the whole lifetime of the structure is necessary. This means 

that the deformations must be calculated under consideration of the actual number of load cycles. 

Dührkop (2009) conducted model tests with almost rigid monopiles in sand under cyclic loading. Based on the results, he 

proposed a modification of Eq. 1 for the case of cyclic loading as follows:  85 

𝑝 = 𝐴̃𝑐𝑦𝑐 ∙ 𝑝𝑢 ∙ tanh (
𝑘∙𝑧

0.9∙𝑝𝑢
∙ 𝑦)                                             (3) 

with 𝐴̃𝑐𝑦𝑐 = 𝑟𝐴 ∙ (3 − 1.143 𝑧/𝐷) + 0.343 𝑧/𝐷. 

The factor rA is dependent on the number of load cycles. With rA = 1, the API approach for monotonic loading and with rA = 0.3 

for cyclic loading is obtained. Thus, rA = 0.3 can be used for a load cycle number of N = 100. For greater load cycle numbers, 

rA decreases. For N > 105, rA shall be set to zero (Dührkop 2009). With this approach, the monopile deflection can be calculated 90 

dependent on the actual number of load cycles. However, the given Acyc-function is valid only for the model test boundary 

conditions realized by Dührkop. For a certain system with different boundary conditions model tests or numerical 

investigations are necessary. 

Besides from local approaches modifying the p-y curves, also global approaches predicting the increase of pile head deflection 

or rotation can be applied. In general, the increase of head deflection due to one-way loading with full unloading can be 95 
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described by the following equation:  

𝑦𝑁 = 𝑦1 ∙ 𝑓𝑁(𝑁)                                                                                                                               (4) 

Here yN and y1 are the horizontal pile head deflections after N load cycles and after 1 load cycle (monotonic loading), 

respectively. fN (N) is a function which describes the increase of deflections with the number of load cycles. As long as the 

cyclic load amplitude is well below the ultimate pile capacity, sedation behaviour can be expected, which means that the 100 

deflection rate decreases with increasing number of load cycles. The most common functions of displacement of structures 

under cyclic loading that are found in literature are of the exponential type such as Eq. (5) (e.g. Little and Briaud 1988) and of 

logarithmic type such as Eq. (6) (e.g. Hettler 1981):  

𝑓𝑁 =  𝑁𝑚                                                                                                                                                          (5) 

𝑓𝑁 = 1 + 𝑡 ∙ ln 𝑁                                                                                                                                                          (6) 105 

Here m and t are empirical accumulation parameters. Assuming that these parameters are constants, Eq. (5) and (6) imply that 

the function of load cycle number is independent of the load amplitude. 

A few investigations regarding the above accumulation parameters exist. In addition to the above mentioned works, Lin and 

Liao (1999) and Long & Vanneste (1994) should be mentioned. However, it is not clear how pile geometry (in particular, pile 

rigidity) and soil conditions affect the accumulation parameters. Based on model tests, LeBlanc et al. (2010) showed that the 110 

rate of deformation accumulation also depends on the load level, i.e. the ratio of maximum cyclic load to the ultimate pile 

capacity. In contrast, model test results of Peralta & Achmus (2010) did not show a significant effect of the load level. 

For practical design, a simple-to-use approach for the derivation of cyclic p-y curves would be highly desirable, which just 

modifies a chosen static p-y curve by p- or y-multipliers depending on the number of load cycles and other relevant parameters. 

Such an overlay model describes just the change of static p-y curves with increasing load cycle numbers and could be applied 115 

to arbitrary static p-y curve approaches.  

A calculation approach termed “Stiffness Degradation Method” (SDM) combining numerical simulations and cyclic triaxial 

tests has been developed at the authors institute (Achmus et al. 2009). This method allows the calculation of pile deflection 

lines dependent on the actual number of cycles of a given load and with that also the derivation of p-y curves for a given 

number of load cycles. This method is applied in the paper at hand for the development of a cyclic p-y overlay model. Therefore, 120 

the SDM is briefly described in the following section. 

3 “Stiffness Degradation Method” (SDM) 

The SDM is described in detail in Kuo (2008) and in other publications, e.g. Achmus et al. (2009) and Kuo et al. (2012), and 

thus here the method shall be outlined just briefly. A 3-dimensional finite element model is used to calculate the pile 

deformation behaviour. The soil behaviour under static load is modelled by an elastoplastic material law with Mohr-Coulomb 125 

failure criterion and stress-dependent stiffness. The stiffness modulus, i.e. the oedometric stiffness determined under 

constrained lateral strain, is defined as follows: 

𝐸𝑠 =  𝜅 𝜎𝑎𝑡  (
𝜎𝑚

𝜎𝑎𝑡
)

𝜆

                                                                                                                                                                      (7) 

Herein at = 100 kN/m² is a reference (atmospheric) stress, m is the current mean principal stress in the considered soil element 

and  and  are soil stiffness parameters. 130 

For describing the increase of the plastic strain of soil with the number of load cycles in element tests (cyclic triaxial tests) an 

approach by Huurman (1996) is used. The decrease of the (secant) stiffness modulus of the soil with the number of cycles can 

be approximated by the following equation: 

𝐸𝑠,𝑁

𝐸𝑠,1
=  𝑁−𝑏1𝑋𝑏2

                                                                                                                                                                              (8) 

Herein N is the number of cycles, b1 and b2 are regression parameters and X = 1,cyc/1,f is the cyclic stress ratio, whereby 1,cyc 135 

is the maximum of the principal stress in a cycle and 1,f is the main principal stress at failure (in a static test). For each element 
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of the finite element model, from the consideration of the initial stress state and the stress state after applying the horizontal 

load a cyclic stress ratio quantifying the intensity of cyclic loading is derived. With the reduced stiffness values obtained from 

Eq. (8), the system’s behaviour under the lateral load is calculated again. The result represents the increased pile deformation 

after the considered number of cycles. An illustration of the procedure is given in Figure 3. 140 

For cyclic one-way loading and drained conditions the SDM allows the evaluation of the pile deformation behaviour under 

consideration of the site specific soil conditions as well as the loading conditions and the number of cycles. The application 

requires the definition of six material parameters accounting the soil behaviour under static loading, for which comprehensive 

experiences exist, and two parameters b1 and b2 describing the stiffness degradation under cyclic loading.  

 145 

 

Fig. 3: Calculation steps of the Stiffness Degradation Method 

The method has been validated by back-calculation of various series of model tests in medium dense as well as in dense sand 

(see Albiker 2016, Albiker & Achmus 2018). From these back-calculations, it could be concluded that for comparable relative 

densities of the soil also consistent sets of values for b1 and b2 have to be chosen. Value sets for medium dense and dense sand 150 

were determined by comparison of calculations and experimental measurements, and the ranges of values were also verified 

by regression values derived from cyclic triaxial tests (Albiker 2016). 

4 Numerical simulations 

4.1 General 

The constitutive law for sand used in the SDM is a simple elastoplastic material law with Mohr-Coulomb failure criterion and 155 

stress-dependent formulated stiffness. Consequently, this constitutive law is also used in the simulations presented here. It was 

proven that this model yields reasonable results regarding the behaviour of monopiles under horizontal and moment loading 

(e.g. Achmus et al. 2009). Actually, a high accuracy of the simulation model for static loading is not crucial, since only the 

differences between static and cyclic pile behaviour are of relevance here. Basically, the overlay model to be developed shall 

be applicable to any static p-y approach.  160 

The numerical calculation is done for half of the system (Fig. 4) and is divided in several phases: 

 In the first calculation phase, the initial stress state in the soil is generated, considering the coefficient of earth pressure 

at rest 𝐾0 = 1 − sin 𝜑, in the determination of horizontal stresses. Based on this initial stress state, the oedometric 

stiffness modulus of each soil element is calculated from Eq. (7). Afterwards, the soil elements located at the location 

of the monopile are replaced by steel elements. 165 

 In the second phase, the horizontal loading on the system is applied incrementally. After each load step, the horizontal 

stresses acting on the pile are integrated over certain depth sections of the pile in order to determine the p-values 

belonging to the current load for the considered depths. Plotting the p-values for different loading steps over the 

corresponding pile deformations y at the same depth give the p-y curves for static loading.  
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 For the derivation of cyclic p-y curves, the stress conditions in the soil are evaluated after each load step in order to 170 

determine the degraded soil stiffness dependent on the considered load cycle number N according to Eq. (8). The 

numerical simulation is then repeated under consideration of the reduced stiffness until the static load level is again 

reached. This procedure yields for each point of the static p-y curve a corresponding point of the cyclic p-y curve 

belonging to the load cycle number N. The calculations presented here were carried out for load cycle numbers of N 

= 1 (static), 10, 100, 1000 and 10000. 175 

The parameters of the sand used in the numerical simulations are given in Table 1 for three different relative densities. These 

are typical parameters for sands. The regression parameters b1 and b2 of the SDM model were chosen according to the 

evaluation of cyclic triaxial tests given in Albiker (2016).  

 

Table 1: Material parameters used for sand with three different relative densities 180 

Relative Density 𝐷𝑟  very dense dense medium dense 

Buoyant unit weight 𝛾 , (𝑘𝑁/𝑚3) 10.31 10.00 9.76 

Friction angle 𝜑, (°) 40.0 37.5 35.0 

Cohesion 𝑐 ,  (𝑘𝑁/𝑚2) 1.0 1.0 1.0 

Poisson’s ratio 𝜈 0.2 0.225 0.25 

Oedometric stiffness parameter 𝜅 900 600 400 

Oedometric stiffness parameter 𝜆 0.50 0.55 0.60 

Regression parameters 𝑏1 and 𝑏2   0.12; 0.32 0.134; 0.65 0.15; 0.5 

 

Generally, p-y curves are dependent on the load conditions (e.g. lever arm, which is the ratio of bending moment and horizontal 

load) and on the deformation mode (deflection line) of the pile. Therefore, a procedure also applied by Thieken et al. (2015b) 

was followed, in which at first p-y curves (and here the corresponding overlay model) for purely translatoric displacement of 

a rigid pile are derived. Afterwards, variable load conditions and hence variable deformation modes are considered in order to 185 

derive correction functions accounting for the actual pile deflection line. 

4.2 p-y curves for constant deflection – basic overlay model 

The basic p-y curves and the basic overlay model apply to a constant horizontal deflection of the pile, which was achieved by 

assigning identical prescribed displacements to all the pile nodes. By that, the effect of a pile rotation and pile bending is 

switched off.  190 

The pile diameter was varied between D = 3 m and D = 8 m in 1 m-steps. The pile length was set to L = 25 m in all calculations. 

Due to the enforced rigid body motion, wall thickness and pile bending stiffness plays no role.  

The simulations were conducted with the finite element code Abaqus (Abaqus 2016) using 8-noded volume elements (C3D8). 

Only one half of the three-dimensional cylindrical system was modelled, hereby utilizing symmetry conditions. The sufficient 

size of the model domain and sufficient fineness of the finite element mesh was proven by preceding sensitivity analyses. For 195 

instance, the model for the pile with 5 m diameter and a length of 25 m had a width of 100 m (dimension in direction of the 

horizontal load), a breadth of 50 m and a depth of 50 m. At the edges of the domain, horizontal supports were considered for 

the nodes in the vertical planes and vertical supports for the nodes in the bottom plane. 
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Fig. 4 shows the distribution of horizontal displacements and horizontal stresses for a monopile with 5 m diameter in very 

dense sand under static loading (N = 1) as an example. The evaluation of these calculation results yields for each considered 200 

depth along the monopile axis one point of the p-y curve.  

 

 

Fig. 4: Horizontal displacements (top) and stresses (bottom) for a monopile D = 5 m under static load in very dense 

sand (N = 1, prescribed pile displacement y = 0.42 m)     205 

Fig. 5 shows the derived p-y curves at 4 different depths for the pile with D = 5 m in very dense sand). The maximum realized 

displacement was 0.42 m, which is more than 8% of the pile diameter. As to be expected, the bedding resistances and thus the 

spring stiffness increase with increasing depth. Also as expected, cyclic loading leads to greater displacements and thus reduced 

spring stiffness. It is noteworthy that the relative difference of the cyclic curves to the static curve seems to be quite similar in 

all depths.  210 
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Fig. 5: p-y curves for different cycle numbers (monopile D = 5 m, L = 25 m, very dense sand) 

Since the applied SDM method accounts for cyclic effects by a stiffness reduction of the soil, it is deemed logical trying to 215 

transfer the static to the cyclic curves by a y-multiplier. Fig. 6 shows the determined yN/y1-values for the results shown in Figs. 

4 and 5. Also regression curves are presented. Evidently, the same function yN/y1=N0.091 independent of absolute displacement 

and depth can well approximate the calculation results. 

 

 220 

Fig. 6: y-multipliers for a monopile D = 5 m, L = 25 m in very dense sand  

Fig. 7 depicts the effects of varying pile diameters and soil relative densities. Fig. 7 left shows for varied pile diameter and 

relative depth the y-multiplier determined at a representative point of the respective p-y curve (yN =0.42m). Obviously, the 

same function already presented in Fig. 6 gives a good approximation also for piles of other diameters than 5 m. Eventually, 

Fig. 7 right shows the calculated bandwidths of y-multipliers for varying relative densities of the sand, which were derived in 225 

the same manner as described above. A considerable dependence of the y-multipliers on relative density can be seen, which 

was expected because different regression parameters b1 and b2 in the SDM apply for different relative densities. A lower 

relative density leads to stronger relative accumulation of pile displacements and hence to a stronger cyclic degradation of the 

p-y curves. 

 230 
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Fig. 7: y-multipliers for variable pile diameters (left) and for different relative densities of the sand (right) 

The approach for the derivation of cyclic p-y curves from a given static p-y curve valid for constant lateral displacement of a 

pile (basic overlay model) can be summarized as follows: 

 𝑦𝑁/𝑦1 = 𝑁𝐴, 𝐴 = {

0.091 (𝑣𝑒𝑟𝑦 𝑑𝑒𝑛𝑠𝑒)
0.1077 (𝑑𝑒𝑛𝑠𝑒)

0.1126 (𝑚𝑒𝑑𝑖𝑢𝑚 𝑑𝑒𝑛𝑠𝑒)
                                                                                                                          (9) 235 

with: 𝑁: Cycle numbers (𝑁 = 1 − 10000). 

Accounting for the internal friction angles ’ of the sands considered in the numerical simulations (cf. Table 1), the exponent 

𝐴 can be expressed by 

𝐴 = 0.1127 ∙ sin(0.133𝜑, + 15.73)                                                                                                                           (10) 

with 𝜑,: Internal friction angle of sand in [°] (𝜑, = 35.0° − 40.0°). 240 

4.3 p-y curves for arbitrary loading conditions – advanced overlay model 

In the next step, the effects of load eccentricity, pile bending stiffness and normalized pile length L/D shall be considered. 

Hence, a parametric study was conducted, in which monopiles were loaded by a horizontal force and a bending moment applied 

at the point of embedment (Fig. 8, the bending moment is the product of horizontal force and considered load eccentricity). 

In the following, results for a reference system with a diameter of D = 5 m in very dense sand are presented. A wall thickness 245 

of t = 7 cm was assumed, which is a typical value for monopiles of such diameter. Load eccentricities e/L = 0, 0.4, 0.6 and 1.0 

and normalized pile lengths L/D = 5, 6, 7 and 8 were considered. Linear elastic behaviour was assigned to the steel elements 

of the pile with Young’s modulus Epile = 2.1∙108 kN/m2 and Poisson’s ratio of pile = 0.3. For the very dense sand, the parameters 

given in Table 1 were applied. 

 250 

Fig. 8: System and applied loading for the advanced overlay model 
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Fig. 9 elucidates exemplarily how correction factors to be applied to the basic overlay model were derived. Depth-dependent 

p-y curves for varied number of loading cycles were determined for given geometry and loading conditions. The curves were 

then compared to the curves of the basic overlay model. It was again found that the transfer from the basic curves to the actual 

curves could be well approximated by application of a y-multiplier independent of load level (cf. Fig. 9 right). Hence, a 255 

correction factor  was defined as follows: 

Ω(N) =
𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑁)

𝑦𝑏𝑎𝑠𝑖𝑐(𝑁)
                                                                                                                                                                          (11) 

with 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑏𝑎𝑠𝑖𝑐 : pile displacements at a given depth z for the actual pile and load configuration and pile displacement for 

the same p-value according to the basic overlay model. 

Fig. 9 shows that for the considered depth z = 0.4 L the actual p-y curves are stiffer than the curves determined with the basic 260 

overlay model. This means that the correction factors are smaller than unity.  

 

 

Fig. 9: Exemplary comparison of p-y curves for constant horizontal displacement (bold lines) and p-y curves for the 

actual configuration (monopile in very dense sand)  265 

The correction factors determined for the system given in Fig. 9 are presented in Fig. 10 (top right), together with the factors 

determined for other depths. It can be clearly seen that the correction factor is both dependent on the relative depth and on the 

number of load cycles. The deviation of the actual and the basic p-y curves increases with increasing number of load cycles. 

Correction factors greater than unity, which mean a softening of the p-y curves, apply only to shallow depth (z < 0.2 L). Below, 

only correction factors less than unity are found, which decrease almost linearly with increasing depth. The point of rotation 270 

of the monopile lies for the considered configuration in the region around z = 0.8 L. Due to the very small deformation in this 

region, reliable p-y curves and corresponding correction factors cannot be determined. In the region below the rotation point 

down to the pile tip, the correction factors are smaller than right above the rotation point and can as a first approximation be 

considered as constant over depth. 

Fig. 10 also shows correction factors determined for monopiles with different eccentricities of the applied horizontal load. 275 

Evidently, the dependence of the correction factors on depth and number of load cycles is similar in all cases, but the values 

of the correction factors differ. Hence, the correction factors depend not only on depth and number of load cycles, but also on 

load eccentricity and normalized pile length. 
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 280 

Fig. 10: Correction factors  for monopiles with L/D = 5 and different load eccentricities (very dense sand) 

The Figs. 11 to 13 show the depth-dependent correction factors determined for relative monopile embedment lengths of L/D 

= 6, 7 and 8. Evidently, also the embedment length of the monopile at least slightly affects the correction factors. In all cases, 

correction factors greater than unity apply only at shallow depths down to approximately z/L = 0.2. However, the inclination 

of the correction factor curve above the rotation point increases with increasing L/D and the almost constant values below the 285 

rotation point decrease slightly with increasing L/D. 
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Fig. 11: Correction factors  for monopiles with L/D = 6 and different load eccentricities (very dense sand) 290 

 

 

 

Fig. 12: Correction factors  for monopiles with L/D = 7 and different load eccentricities (very dense sand) 

 295 
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Fig. 13: Correction factors  for monopiles with L/D = 8 and different load eccentricities (very dense sand) 

The following approach for calculation of the correction factor was found by systematic evaluation of the results of the 

parametric study conducted here: 300 

Above the rotation point:  

If  𝑧/𝐿 < 0.2: Ω(𝑧, 𝑁, 𝑒, 𝐿) = 1 − (0.3 log(10𝑁) + 0.38 𝑒 𝐿⁄ + 0.06𝐿/𝐷) ∗ (𝑧/𝐿 − 0.2) 

If  𝑧/𝐿 > 0.2: Ω(𝑧, 𝑁, 𝑒, 𝐿) = 1 − (0.3 log (0.1𝑁) + 0.38 𝑒 𝐿⁄ + 0.06𝐿/𝐷) ∗ (𝑧/𝐿 − 0.2)                                                         (12) 

Below the rotation point: Ω(𝑁, 𝐿, 𝐷) = 𝑁−0.007𝐿 𝐷⁄  

with: 305 

𝑧: Depth below sea bottom 

𝐿: Embedment length of the pile (𝐿 𝐷⁄ = 5 −  8) 

𝑁: Cycle numbers (𝑁 = 1 −  10000) 

𝑒: Load eccentricity (𝑒 𝐿⁄ = 0.0 − 1.0) 

With the purpose of determining a suitable cyclic p-y curve under true loading conditions, this correction factor Ω has to be 310 

applied to the y-multiplier of the basic overlay model. Hence, the following equation for the determination of cyclic y-

multipliers eventually results: 

𝑦𝑁/𝑦1 = 𝑁𝐴 ∙ Ω                                                                                                                                                                          (13) 

Users can apply these values on the displacements of a static p-y curve which was chosen by themselves to determine the cycle 

p-y curves at a desired cycle number.  315 

It must be stated that Eq. (12) for the Ω-value was yet calibrated only for a pile diameter of D = 5 m and very dense sand. 

Supposedly, the relative density of sand has not a great effect on the Ω-values, but this has to be checked. A confirmation or 

extension of the Ω-approach for piles of other diameters than 5 m will be done in a next step of the work. 
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5 Model application and discussion 

The derived cyclic overlay model is an easy-to-use approach to predict the translocation of p-y curves due to lateral cyclic load 

for any static p-y approach. In the following, the overlay model is applied to the static p-y approach stated by API (2014) (cf. 

section 2, Equations 1 and 2). The resulting deflections, bending moments and p-y curves can be compared to the results of 

the cyclic API approach, which is usually assumed to represent approximately 100 load cycles. 325 

A monopile with a diameter of D = 5 m and an embedded length of L = 25 m (L/D = 5) in very dense sand (’ = 40°, ’ = 

10.31 kN/m3, cf. Table 1) is considered. A constant wall thickness of t = 7 cm and a load eccentricity e/L = 0.6 is assumed. 

Fig. 14 shows deflection lines and bending moments for a horizontal load of H = 10 MN, calculated with the static API 

approach, the cyclic API approach and the cyclic overlay model for load cycle number of N=100, 1000 and 10000. The cyclic 

API approach predicts an increase of the pile head deflection (Fig. 14 left) with respect to the static approach of 30.5%, which 330 

is in rather good agreement with the result of the cyclic overlay model for N = 100 (22.1%). However, the overlay model also 
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predicts pile head deflections for other load cycle numbers. For N = 1000 and 10000, the head displacement increases by 35.6% 

and 51.1%, respectively.  

 

 335 

Fig. 14: Comparison of pile deflection lines (left) and bending moments (right) 

Fig. 14 right shows that the cyclic API approach overestimates the maximum bending moment of the monopile. Compared to 

the cyclic overlay model with N = 100, a 5.6% greater maximum bending moment is gained. Also the bending moments of the 

cyclic overlay model with N = 1000 and 10000 are considerably smaller than for the cyclic API approach. 

Fig. 15 shows the reason for that. Here, the p-y curves at four distinct depths along the monopile are depicted. The cyclic API 340 

approach results in a severe degradation of bedding resistance and stiffness in shallow depth. In contrast, in greater depth (in 

this example below z/L = 0.525) no modification of the p-y curves is to be considered. For a stiff or almost rigid pile, this is 

of course unrealistic. It should be noted that the cyclic API approach was calibrated on lateral load tests on small and flexible 

piles. According to the cyclic overlay model, the p-y curves are subject to softening along the whole pile length. Therefore, at 

shallow depths much stiffer p-y curves apply, which results in considerably smaller maximum bending moments.  345 
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Fig. 15: Comparison of cyclic p-y curves        

6 Conclusions 350 

By comparison of numerical simulations of monopile behaviour once under monotonic and once under cyclic loading with a 

defined number of load cycles (utilizing the SDM), a cyclic p-y overlay model for monopiles in sand soils could be developed. 

Applying the derived equations for y-multipliers, arbitrary p-y curves for monopile behaviour under monotonic loading can 

be adapted to a given number of load cycles. The y-multipliers are formulated as a product of a term valid for constant 

horizontal deflection and a correction term accounting for the actual deflection line and loading conditions. 355 

It was found that the first term could be formulated dependent only on the load cycle number and the angle of internal friction 

of the sand. In contrast, the second term was found to depend on load cycle number, monopile geometry (length-to-diameter 

ratio), load eccentricity and relative depth. 

The new cyclic overlay model gives plausible results and can be applied to any monotonic p-y approach for monopiles in sand. 

However, an experimental validation of the model is yet missing. It is planned to do this by cyclic large scale pile load tests in 360 

an ongoing research project. 
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