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Abstract. To assess the structural health and remaining useful life of a wind turbine within wind farms one would require

site-specific dynamic quantities such as structural response and modal parameters. In this regard, a novel inverse problem-

based methodology is proposed here to identify the dynamic quantities of the drive train main shaft, i.e., torsional displace-

ment and coupled stiffness. As a model-based approach, an inverse problem of a mathematical model concerning the coupled

shaft torsional dynamics with SCADA measurements as input is solved. It involves Tikhonov regularisation to smoothen the5

measurement noise and irregularities on the shaft torsional displacement obtained from measured rotor and generator speed.

Subsequently, the regularised torsional displacement along with necessary SCADA measurements is used as an input for the

mathematical model and a model-based system identification method called the collage method is employed to estimate the

coupled torsional stiffness. It is also demonstrated that the estimated shaft torsional displacement and coupled stiffness can

be used to identify the site-specific main shaft torsional loads. It is shown that the torsional loads estimated by the proposed10

methodology is in good agreement with the aeroelastic simulations of the Vestas V52 wind turbine. Upon successful verifica-

tion, the proposed methodology is applied to the V52 turbine SCADA measurements to identify the site-specific main shaft

torsional loads and damage equivalent load. Since the proposed methodology does not require a design basis or additional

measurement sensors, it can be directly applied to wind turbines within a wind farm irrespective of their age.

1 Introduction15

Monitoring of wind turbines within wind farms is increasingly becoming very important due to the need to detect specific

turbines that show anomalous behavior, plan inspections or preventive maintenance, and to compute the remaining useful life

of specific structures. However, addition of new instrumentation to existing turbines, such as installation of strain gauges,

accelerometers can be costly and also require repetitive calibration and synchronization of their measurement signals with the

turbine computer. Most wind farm operators also do not possess the aeroelastic design parameters of their wind turbines and20

hence cannot simulate the mechanical loads acting on their wind turbine. Monitoring of turbine primary structures through

existing Supervisory Control and Data Acquisition (SCADA) system based measurements can allow cost effectiveness and

provide valuable information to the wind farm operator. Usually such monitoring through SCADA only provides information

on power performance and not regarding turbine structural integrity. Here we develop mathematical models for the main shaft

of a wind turbine that can determine both the coupled torsional stiffness of the main shaft and its torsional displacement in25
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continuous time-domain, using existing time series measurements of the rotor speed and generator speed. This is a novel

methodology that can potentially benefit wind farm owners, since both the property of the structure in terms of its stiffness,

and the structural response can be determined without requiring additional sensors or information from the wind turbine

manufacturer.

There are many studies available in the literature on system identification of wind turbines (Koukoura et al., 2015; Pahn et al.,30

2017; Norén-Cosgriff and Kaynia, 2021). All of the studies employed output-based operational modal analysis (OMA) (Wang

et al., 2016) technique on the measured structural response to estimate the modal parameters of the structure. OMA meth-

ods can be broadly classified into two categories: (i) Time domain-based methods, and (ii) Frequency domain-based methods

(Zhang et al., 2010). Time-domain based OMA methods are based on the calculation of auto and cross-correlation functions

of the response time histories. Since they possess similar properties as frequency response functions, modal parameters can35

be extracted from those correlation functions. Several algorithms are available to perform this task and few such methods are

natural excitation technique (NExT) (James et al., 1995), random decrement technique (RDT) (Ibrahim, 1977), auto-regression

moving average vector model (ARMAV) (Andersen, 1997) and stochastic subspace identification (SSI) method (Van Overschee

and De Moor, 1993). Frequency-domain based OMA methods are peak picking method, enhanced frequency domain decom-

position method(FDD) (Brincker et al., 2001) and frequency and spatial domain decomposition method (FSDD) (Wang et al.,40

2005). A recent comprehensive review on various time domain and frequency domain-based OMA methods can be found in

Zahid et al. (2020). However, to the best of the authors’ knowledge, there is no such study available on estimating the structural

response of a wind turbine component from SCADA measurements. Thus, a novel model-based approach is proposed here for

the wind turbine drive train main shaft to estimate both the structural response and the modal parameters simultaneously.

A mathematical model concerning the shaft torsional dynamics will be utilized to obtain the system response from SCADA45

measurements. In this context, the concerned mathematical model comprised of differential equations will be solved for the

shaft torsional velocity. Subsequently, the main shaft torsional displacement is obtained by numerically integrating the shaft tor-

sional velocity. However, these time integration schemes are based on time-marching algorithms, the lack of initial conditions

make the displacement reconstruction an ill-posed problem (Hong et al., 2008). Further, these time marching algorithms are

sensitive to measurement noise and they even get amplified during the time marching procedure which results in inadmissible50

errors in the reconstructed displacement. Also, this inaccurate displacement leads to drastic errors in the system modal pa-

rameter estimation. Hence, one needs to go for regularisation techniques to smoothen the reconstructed displacement. Hansen

(2005) discussed the nature of various ill-posed problems and presented a number of solution methodologies. Though there are

many regularisation techniques available, Tikhonov, Truncated singular value decomposition (SVD), and nuclear norm are a

few of the popular techniques (Aarden, 2017). Among all these regularisation techniques, Tikhonov regularisation (Tikhonov,55

1963) has been widely used in many engineering applications (Ronasi et al., 2011; Hào and Quyen, 2012; Bangji et al., 2017;

Nieminen et al., 2011) and also it has been studied extensively in the field of inverse problems (Hansen, 2005). Hence, the

same has been employed in the present work. Tikhonov regularization minimizes the error using the least-square criterion and

by means of a numerical damping, it also minimizes the effect of the measurement noise.

2

https://doi.org/10.5194/wes-2021-25
Preprint. Discussion started: 27 April 2021
c© Author(s) 2021. CC BY 4.0 License.



Together with regularised shaft torsional displacement, the same mathematical model is utilized to obtain the shaft stiffness.60

For this purpose, a model-based system identification technique called the collage method is used in the present study (Kunze

and Vrscay, 1999; Groetsch, 1993). The model-based collage method have been successfully applied for system identification

in various differential equations based problems such as boundary value problems (Kunze et al., 2009), reaction-diffusion

problems (Deng et al., 2008) and elliptic problems (Kunze and La Torre, 2016). The collage method is used to convert the

inverse problem of system identification into a minimization problem of a function of several variables (for example unknown65

system parameters) and then the corresponding minimization problem is solved using a suitable algorithm. The minimization

procedure is referred to as Collage coding and it is a greedy algorithm that seeks to construct an approximate solution to a

target solution in one go. Hence, unlike other inverse problem methods, one need not solve the forward problem in an iterative

manner (Deng and Liao, 2009).

One of the key benefits of estimating the shaft torsional stiffness and displacement is that it can be used to identify the site-70

specific shaft torsional load and the remaining useful life (RUL) (Ziegler et al., 2018) of the main shaft. Also, the main shaft

torsional load can significantly affect the fatigue performance of other drive train components such as gearbox and planetary

bearings (Dong et al., 2012; Gallego-Calderon and Natarajan, 2015; Ding et al., 2018). Hence the same site-specific torsional

load can also be used to quantify the RUL of gearbox and other drive train components as well. Also, several older turbines

possess only SCADA measurements by default and they lack measurement sensors, the proposed methodology can be used for75

estimation of the site-specific loads of them.

The rest of the paper is organised as follows: the problem formulation consisting of the Tikhonov regularisation and the

collage method is given in section 2; section 3 presents the verification of the proposed formulation; application of the proposed

formulation on measurements are presented in section 4.

2 Problem formulation80

As mentioned in the previous section, the main objective is to identify the shaft torsional displacement and coupled stiffness

from SCADA measurements. This is achieved by solving the shaft torsional dynamical equations using a suitable inverse

problem algorithm and the estimated shaft torsional displacement θ and torsional stiffness K will be utilized for the shaft

torsional load estimation. For this purpose, a two-mass model (refer Fig. 1) (Boukhezzar et al., 2007; Berglind et al., 2015)

which governs the main shaft torsional dynamics subjected to the rotor and generator torques Tr and Tg , respectively, is85

considered, and the mathematical model is given by Eqs. (1-3). It is assumed that the gearbox is perfectly stiff while transferring

deformations on the main shaft and the gear ratio, N is only considered as a parameter to proportionally adjust the force and

torsional displacement between the high-speed and main shafts. The main shaft is modelled by an inertia free viscously damped

torsional spring. Further, the edgewise flexibility of the blade and the torsional stiffness of the main shaft is assumed to be
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Figure 1. A two mass model of wind turbine drive train.

combined in K.90

Jrω̇r = Tr −Kθ−Cθ̇, (1)

Jgω̇g = −Tg +K/Nθ+C/Nθ̇, (2)

θ̇ = ωr −ωg/N. (3)

Here, Jr represents the inertia of the rotor, Jg represents the collective inertias of the high-speed shaft, the gearbox, and the

generator, ωr and ωg are the rotor and generator speeds, respectively, C is the shaft damping coefficient and θ is the shaft95

torsional displacement.

For normal operation of the wind turbines, the shaft torsional dynamics is mainly influenced by the low frequency modes

such as blade edgewise and shaft free-free modes and the high frequency gearbox dynamics do not play a significant role in it.

Hence, the two-mass model is sufficient enough to model the shaft torsional dynamics for the wind turbine normal operations

as it includes both the low frequency modes. Also, given the system parameters and rotor and generator torques, the two-mass100

model is capable of predicting the shaft torsional displacement (θ) as close as that of the full-fledged aeroelastic simulation as

shown in Fig. 2. Here, the aeroelastic simulation is performed in the DTU in-house tool called HAWC2 (Larsen and Hansen,

2007) and the results are obtained for the Vestas V52 (Vestas) wind turbine at a mean wind speed of 8 m/s.

In forward problem approach, given the modal parameters (Jr,Jg,C,K) and external torques (Tr and Tg), Eqs (1-3) are

solved for ωr,ωg and θ. But given only SCADA measurements, one has to solve Eqs. (1-3) inversely for θ and modal param-105

eters. In general, the available SCADA measurements are ωr,ωg,P,β,U . Here, P,β,U are, respectively, the generator power,

blade pitch angle and wind velocity.

2.1 Collage method

Given ωr and ωg , it is straightforward to use Eq. (3) to obtain θ̇ and then θ. The next step is to estimate the modal parameters

that are required for the load calculation. The collage method (Kunze and Vrscay, 1999; Groetsch, 1993) is used for the same110
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Figure 2. Comparison of the estimated shaft torsional displacement (θ) with the aeroelastic simulation result.

in the present study since it is a model-based approach. For a given initial value problem (IVP),

x(t) = f(x,t),x(0) = x0, (4)

that admits a target solution x(t), the associated Picard integral operator T is given by,

(Tu)(t) = x0 +

t∫

0

f(u(s),s)ds. (5)

The assumptions regarding the parameter estimation problem using the collage method are listed as follow (Deng and Liao,115

2009):

1. x(t) ∈ [t0, tn] is a bounded solution; where, t0 and tn are positive constants satisfying t0 < tn.

2. fi(u,D,x,t,λ1, · · · ,λm)(0≤ i≤ n) are continuous, where, λm is the unknown modal parameter.

3. The exact solution x(t) of the system (4) exists uniquely.

It is important to note that the fixed point ū(t) of this Picard operator is the unique solution of the given IVP (Kunze120

et al., 2004). Accordingly, the collage distance becomes, (x−Tx) and then the optimal solution is the one which minimizes

the squared collage distance i.e., L2 collage distance. Also, unlike the conventional inverse problem which minimises the

approximate error d(x− x̄), the collage method minimizes the collage distance d(x,Tx) which is an useful change as one

cannot find x̄ for a general T (Kunze et al., 2004). Further, the optimality of the collage distance minimization is ensured as

shown by Kunze et al. (2004). Minimising the L2 collage distance using least square method yields a stationarity condition,125
d(x−Tx)

dλm
= 0, which results in a set of linear equations in terms of the unknown modal parameters (λm). By solving these

equations, the modal parameters are estimated.

When concerning the shaft dynamics, the rotor equation (Eq. 1) cannot be used for the parameter estimation as there is no

information about the rotor torque. Instead, the collage method is applied on generator equation (Eq. 2) to estimate the modal

5
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Wind turbine Design K (N.m) Estimated K (N.m) % error

DTU-10 MW 2.317E09 2.1785E09 5.98

Vestas V52 - - 6.98
Table 1. Comparison of estimated K with design K for a turbine variant where only the main shaft is flexible.

parameters as the generator torque (Tg) can be readily obtained from SCADA data as, Tg = P/ωg . Accordingly, the Picard130

integral for Eq. (2) becomes,

(Tu)(t) = Jg[ωg −ωg0 ] +

t∫

0

Tg dt−K
t∫

0

θdt−C
t∫

0

θ̇dt, (6)

where, t is the time variable and ωg0 is the generator speed at time, t= 0. Modal parameters will be obtained by minimizing

Eq. (6) using the least square method.

2.1.1 Application of the Collage method135

To the best of the authors’ knowledge, this collage method has not been used in the context of wind turbine system identification

and hence it is important to check the applicability of this method for the same. This is done by estimating the modal parameters

using the collage method for the following two wind turbines and verifying with its design values, (i) DTU 10-MW (Bak et al.)

and (ii) Vestas-V52. For facilitating a comparison of the main shaft response alone, the rigid variant of the turbine is chosen

and this implies that the rotor and tower are rigid and the main shaft alone is considered to be flexible. By performing HAWC2140

aeroelastic simulations on these turbines, the shaft torsional displacement θ is obtained. Then, by minimising Eq. (6) concerning

the modal parameters, K,C, and Jg are obtained. Since for the estimation of shaft torsional load, only K is needed among all

the modal parameters, hence the same is compared with the design values. The estimated shaft stiffness and the stiffness from

the aeroelastic model of the DTU 10-MW turbine along with percentage error are tabulated in Table. 1. Due to confidentiality

policy, only the percentage error is given for the Vestas V52 turbine. As seen in the table, the estimated values match well with145

the design values. If the torsional displacement (θ) is known, then the determination of torsional stiffness (K) from Eq. (6)

is readily feasible as explained. However in practice, the shaft torsional displacement is unknown, and therefore the collage

equations may not be directly used to determine the shaft stiffness.

2.2 Regularisation

As explained earlier, with ωr and ωg , θ̇ is obtained by using Eq. (3) and then by using time integration schemes on θ̇, the150

shaft torsional displacement (θ) is obtained. However, these time integration schemes are based on time-marching algorithms,

they require initial condition on displacement which are usually unavailable or inaccurate in real situations. The effect of the

lack of initial conditions on the reconstructed displacement obtained using the time integration scheme is shown in Fig. 3.

As seen in the figure, the numerical error is multiplicatively increased with time which results in a drift in the reconstructed

displacement. As mentioned in the introduction, to minimize the numerical error due to the lack of initial conditions and to155
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subsidize the effect of measurement noise, a widely used regularization technique called Tikhonov regularization (Tikhonov,

1963) is employed here.
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Figure 3. Comparison of time integration displacement with actual displacement.

Implementation of Tikhonov regularization on the velocity to obtain the displacement is not readily available in the literature,

the same is presented here for the sake of completeness. By definition, the velocity θ̇ is expressed as,

θ̇(t) =
dθ
dt
≈ ˙̃
θ(t), (7)160

where, ˙̃
θ(t) is the velocity obtained from Eq. (3) which can be considered as a measured velocity. As explained earlier, the

lack of initial conditions in addition to the measurement noise leads to erroneous displacement. In order to minimise the error,

following minimisation problem has to be solved,

Min ΠE(θ) =
1
2

t2∫

t1

(θ̇(t)− ˙̃
θ(t))2 dt. (8)

Here, θ̇ is the calculated velocity. By means of the trapezoidal rule, Eq. (8) is discretised as follows (Hong et al., 2008),165

ΠE(θ)≈ ‖La(θ̇− ˙̃θ)‖22∆t, (9)

where ∆t is the time interval of the discretization and La is the diagonal weighing matrix of order (n+ 1) as,

La =




1/
√

2

1
. . .

1

1/
√

2




. (10)
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Further, the calculated velocity θ̇ is discretised by the central difference rule and written in matrix form as,

1
∆t

Lcθ = θ̇, (11)170

where, the central difference matrix Lc of size (n+ 1)× (n+ 3) and the displacement vector θ of size (n+ 3) are given as,

Lc =




1 0 1 . . .

−1 0 1
. . .

−1 0 1

. . . −1 0 1




, θ =




θ−1

θ0
...

θn

θn+1




. (12)

Here, the time steps denoted by −1 and (n+ 1) are fictitious nodes. Substitution of Eq. (11) into Eq. (9) leads to,

Min ΠE(θ)≈ 1
2

∥∥∥∥
1

2∆t
LaLcθ−La

˙̃θ
∥∥∥∥

2

2

∆t=
1
2

∥∥∥∥
1
2
Lθ−La

˙̃θ∆t
∥∥∥∥

2

2

1
∆t

, (13)

where, L = LaLc. This minimisation problem is regularised for solution boundedness with a parameter λ, and given as,175

Min ΠE(θ)≈ 1
2

∥∥∥∥
1
2
Lθ−La

˙̃
θ∆t

∥∥∥∥
2

2

+
λ2

2
‖θ‖22. (14)

The above minimisation problem is known as the Tikhonov regularisation and λ is referred to as the regularisation parameter.

Minimising Eq. (14) as,

dΠE

dθ
=

1
2

(
L2θ

2
−LLa

˙̃θ∆t
)

+λ2θ = 0, (15)

yields the following quadratic equation in θ,180

θ =
(

L2

4
+λ2I

)−1 LLa
˙̃
θ∆t

2
, (16)

where, I is the identity matrix of order (n+ 3). Since ten-minute SCADA measurements with a sampling frequency of 50 Hz

are considered for θ(t) estimation, n becomes 30000.

The choice of regularisation parameter (λ) plays a crucial role in getting an optimal fit for the solution. Based on the

knowledge about measurement errors, Hansen (2005) proposed two classes for the estimation of λ:185

– methods based on knowledge of measurement errors

– methods that do not require details about measurement errors.

In the present scenario, the information regarding the measurement error is unknown, hence class two is used for the current

study. In class two, there are three widely used methods (Nieminen et al., 2011): (i) quasi optimality criterion, (ii) Generalized

gross validation (GCV), and (iii) L-curve method. Compared to the GCV method, the other two methods give a better estimate190
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of λ (Gao et al., 2016). Further, for larger problems, the quasi optimality method is computationally expensive than the L-

curve method. Owing to this fact, the L-curve method is used here for estimating λ. In L-curve method, the optimal λ is the

one which gives the maximum curvature in the L-curve between norm of the regularized solution α(λ) = ‖θreg‖2 and norm of

the residual β(λ) =
∥∥∥∥ 1

2Lθ−La
˙̃θ∆t

∥∥∥∥
2

and the curvature of the L-curve is given by (Nieminen et al., 2011),

κ(λ) =
α̈β̇− β̈α̇

[α̇2 + β̇2]3/2
. (17)195

Substituting the optimal λ obtained by finding the maximum curvature of Eq. (17) and ˙̃
θ(t) obtained from Eq. (3) in Eq. (16),

the regularised displacement (θreg) is obtained. The obtained regularised torsional displacement is compared with the actual

displacement in Fig. 4. Also, the displacement obtained from the numerical integration technique also presented in the same

figure. As seen in the figure, result using Tikhonov regularisation matches closely with the actual displacement as compared to

the displacement obtained by numerical integration.
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Figure 4. Comparison of the Tikhonov and time integration displacements with actual displacement.

200

Upon obtaining θ using the Tikhonov regularisation, Eq. (2) is then solved inversely with regularized θ using the collage

method for the estimation of K and then the torsional load is obtained as Mz =Kθ. This entire methodology is shown as a

flow chart in Fig. 5.

3 Verification of the method on V52 turbine simulations

To verify the proposed methodology for the torsional load estimation described in section 2, aeroelastic simulations are per-205

formed for Vestas V52 turbine corresponding to the design load case (DLC 1.2) (Hansen et al., 2015) in HAWC2. The DLC

1.2 consists of 18 simulations (three yaw directions and six turbulent wind seeds ) for each mean wind speed and the mean

wind speed is ranging from 4 m/s to 26 m/s in the interval of 2 m/s, which results in total 216 simulations. From these

216 simulations, the inputs (ωr,ωg , and Tg) for the proposed methods are obtained and by following the procedure depicted

in Fig. 5, the torsional loads are obtained and the same is compared with the simulation results. From the simulated ωr and210
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Figure 5. Flowchart depicting the inverse problem algorithm.

ωg , the torsional velocity θ̇ is obtained using Eq. (3) and then the corresponding θ for each simulation is obtained by using the

Tikhonov regularisation. By assuming that the same level of noise presents in all the simulations of a particular mean wind

speed, the optimal λ is estimated only once per mean wind speed. The estimated regularisation parameter (λ) for each mean

wind speed is presented in Fig. 6. As seen in the figure, a higher value of λ at higher wind speeds indicates that more numerical

damping is needed to suppress the numerical noise.
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Figure 6. Estimated λ for each mean wind speeds.

215

At this point, it is important to realize that the static component of the displacement does not have any effect on the torsional

velocity and hence only the dynamic component of the torsional displacement θdyn can be reconstructed from θ̇ using the
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Figure 7. Comparison regularized θdyn with the results from aeroelastic simulation.

Tikhonov regularisation. The regularized θdyn for two representative mean wind speeds are compared with the dynamic com-

ponent of simulated torsional displacement in Fig. 7. By removing the static displacement from the simulated displacement,

the resulting dynamic component can be compared with the regularised θdyn as shown in Fig. 7. As seen in the figure, the regu-220

larised θdyn matches well with the simulated dynamic displacement for most of the time except for the peak amplitudes. After

obtaining θdyn, Eq.(2) is solved inversely using the collage method for K for all the 216 simulations. Owing to uncertainty

associated with θdyn estimation along with the collage method, three skewed (outliers) distributions for K can be determined

at different mean wind speeds. For the distributions with outliers, mode is the better estimate of the central tendency as it is

least biased by the outliers (Hedges and Shah, 2003). Ideally, there exists only one torsional K value for the wind turbine main225

shaft and hence by taking the mean of modes of the resulting pdfs some stability can be gained for the resultant estimate of K.

The relative error between the estimated K value obtained by taking the mean of modes and the design value of the turbine is

12.06 % and the values are not presented here due to confidentiality policy. At this point, it is important to remember that the

estimated K value is a combination of the main shaft and blade edgewise stiffness.

In order to obtain the site-specific torsional load, it is important to estimate the static displacement (θstat), since the torsional230

load is given by Mz =Kθ =K(θstat + θdyn). This is achieved by considering the static equilibrium of Eq. (1) as follows,

Kθstat = Trmean
=
Tgmean

ηgen
, (18)

where, ηgen is the generator efficiency, which is 94.4 % for the V52 turbine and from Eq. (18), θstat is obtained as,

θstat =
Tgmean

Kηgen
. (19)

Hence, by using θstat and θdyn, the total torsional load is obtained as,235

Mz =K(θstat + θdyn), (20)

At this stage, the estimated torsional loads can be compared with the simulated torsional loads. The comparison of the

torsional loads for two representative mean wind speeds are shown in Fig. (8). In the figure, confidential values such as load
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Figure 8. Comparison reconstructed time series and frequency spectra of the torsional load for two different mean wind speeds.

amplitude and frequency are not presented. As seen in the figure, all the important aspects of the time-series variation and the

dominant frequency dynamics (low-frequency components - upto first three peaks ) are captured quite well in the estimated240

torsional load.

Upon estimating the torsional load, the torsional damage equivalent load (DEL) at each mean wind speed is calculated using

the following equation:

DEL=
(

1
Nref

Nsim∑

i=1

(
1

Nsim

) kn∑

k=1

Ni,kS
m
i,k(0)

Tsim

) 1
m

, (21)

where, Tsim is the duration of the load case,Nsim is the number of simulations at each mean wind speed, kn is the total number245

of load cycles in a given time series,Ni,k are the number of cycles at load amplitude Si,k(σ) determined with rain flow counting

and m is the Wöhler exponent. The zero mean load amplitude is obtained as (Veldkamp, 2006), Si,k(0) = Si,k(σ) +MSm,

where, Sm is the mean load and M is the mean stress sensitivity. The turbine shaft is made up of cast iron and Veldkamp

(2006) has reported that for such material, the mean stress correction factor is M = 0.19. For the 1 Hz torsional DEL of a

ten-minute time series,Nref becomes 600 cycles andm= 6 is used for the present computation. Using Eq. (21), the computed250

torsional DEL for DLC 1.2 is compared with the simulated DEL and is shown in Fig. (9). For most of the means wind speeds,

the estimated DEL is in good agreement with the simulated DEL and the absolute error between these two at each mean wind

speed ranges from 4% to 12 %. Higher error at higher mean wind speeds is due to the fact that the peak amplitudes in θdyn are
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Figure 9. Comparison of the predicted DEL with the DEL computed from aeroelastic simulations over all mean wind speeds.

Minimum rotor speed 1.7 (rad/s)

Minimum power 100 W

Mean wind speed 4 (m/s)

Wind direction [280◦-320◦]
Table 2. Normal operation filter conditions.

not captured well using the Tikhonov regularisation. This could be due to fact that the pitch control will be active beyond the

rated wind speed and hence the instantaneous changes in the pitch angle affects the rotor speed.255

4 Application on V52 turbine measurements

Now, using the verified methodology, the torsional loads for the drive train main shaft are estimated from the SCADA mea-

surements. For this purpose, SCADA measurements of the Vestas V52-850 kW research turbine installed at the DTU Risø site

will be utilized. In particular, measurements taken for the period of January 2019 consisting of 4459 ten minute recorded cases

are used for this study. Since the interest is on normal operations of the turbine, the measurement data is filtered based on the260

conditions given in Table 2 that results in 627 cases.

It is important to note that based on the site sector assessment, the V52 turbine is in wake free condition between 280◦ and

320◦ wind directions. Further, speed sensors of the rotor measures the rotational speed with a low sample rate which results in

a piecewise constant signal. This type of signal has to be converted as a differentiable signal which is achieved by increasing

the sample rate followed by a spline interpolation.265

13

https://doi.org/10.5194/wes-2021-25
Preprint. Discussion started: 27 April 2021
c© Author(s) 2021. CC BY 4.0 License.



0 100 200 300 400 500 600

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

R
e
g
u
a
lr
iz

e
d
 

 (
ra

d
)

(a) WSP = 6m/s

0 100 200 300 400 500 600

Time (s)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

R
e
g
u
a
lr
iz

e
d
 

 (
ra

d
)

(b) WSP = 18m/s

Figure 10. Regualrized θdyn for two mean wind speeds.
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Figure 11. Identified torsional loads (Mz) for two mean wind speeds.

Now, the filtered SCADA measurements are utilized to obtain the torsional loads using the proposed methodology. Using

the measured rotor speed and generator speed, θdyn is calculated using the Tikhonov regularisation method. The obtained θdyn

for two representative mean wind speeds are shown in Fig. 10.

Similar to the V52 simulations, the regularisation parameter is obtained for each wind speed measurements using the L-curve

criterion and the obtained values not presented here for the sake of brevity. Subsequently, by applying the collage method on270

Eq.(2) for all the 627 cases, the K values are estimated for each load case and then the resultant K value is obtained by taking

the mean of modes of the resulting pdf as described in the previous section. The relative error between the estimated and design

K values is 3.6 %. With the estimated K value, θstat is calculated for each load case using Eq. (19) and then the torsional

load is obtained from Eq. (20). The calculated torsional loads for two representative wind speeds are shown in Figs. (11a, 11b).

After estimating the torsional loads for all the 627 cases, the identified loads are grouped according to the mean wind speeds275

range from 6 m/s to 22 m/s which are subdivided into 9 wind speed bins of 2 m/s width each. Subsequently, the 1 Hz

torsional DEL is calculated for each mean wind speed using Eq. (21) and the same is shown in Fig. (12). It is important to note

that the DEL given in Fig. 9 (Simulation) being the design load and the DEL given in Fig. 12 being the site-specific load, the

difference between these two will give an estimate about the remaining torsional fatigue life of the main shaft under normal

operating conditions. Decisions regarding RUL of the drivetrain may be taken considering the estimated main shaft torsional280
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DEL as an input. It is also feasible to reconstruct the torsional moment time series, which may be used an input to gearbox

design tools to predict the loading within the gearbox.
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Figure 12. Estimated torsional DEL from SCADA measurements of Vestas V52 turbine.

5 Summary

A novel inverse problem-based approach is developed for estimating the shaft torsional displacement and stiffness by using

the SCADA measurements. A mathematical model describing the coupled shaft torsional dynamics is used for this purpose.285

Numerical errors and the effect of measurement noise on the displacement reconstruction are minimized through the Tikhonov

regularization technique. Subsequently, the collage method is used to estimate the main shaft coupled torsional stiffness. The

estimated main shaft quantities are then used to identify the main shaft site-specific torsional load. The proposed formulation

is successfully verified for the main shaft torsional loads with the aeroelastic simulation of the Vestas V52 turbine. Upon

verification, the methodology is extended to identify the site-specific main shaft torsional loads of the same turbine by using290

SCADA measurements. For this purpose, the measurement data from the DTU Risø site is utilized and the measurement data

is filtered and calibrated for the turbine normal operation. Using the identified torsional loads, the torsional DEL is obtained.

Depending on the prior information about the stiffness value, one can either use the entire proposed methodology or follow the

torsional displacement estimation part of the proposed methodology for the torsional load identification. Since the site-specific

SCADA measurements are used in the analysis, the obtained loads can give a better estimate of the remaining fatigue life which295

can help in the life extension decision-making process. Besides monitoring the estimated loads can help in inspection planning

and scheduling maintenance activities. As the proposed methodology does not require any design basis, it can be used for any

older turbines for the estimation of the main shaft torsional RUL.
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