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Abstract. 

Light detection and ranging (notably Doppler lidar), hasLidars have become a valuable technology to assess the wind resource 

at hub height of modern wind turbines. However, because of their measurement principlethe assumption of homogeneous flow 

in their wind vector reconstruction algorithms, common wind profile Doppler lidars suffer from errors at complex terrain sites. 10 

This study analyses the impact of the five main influencing factors at on lidar measurement errors in complex terrain, i.e. 

orographic complexity, measurement height, surface roughness and forest, atmospheric stability and half-cone opening angle, 

in a non-dimensional, model-based parameter study. 

In a novel approach, the lidar error 𝜀 is split up into a part 𝜀𝑐, caused by flow curvature at the measurement points of the lidar 

and a part 𝜀𝑠, caused by the local speed-up effects between the measurement points. This approach , e.g., allows for a systematic 15 

and complete interpretation of the influence of the half-cone opening angle 𝜑 of the lidar on the total lidar error 𝜀. It also 

provides information about the uncertainty of simple lidar error estimations that are based on inflow and outflow angles at the 

measurement points. 

The model-based parameter study is limited to two-dimensional Gaussian hills with hill height 𝐻 and hill half-width 𝐿. 𝐻/𝐿 

and 𝑧/𝐿, with z being the measurement height, are identified as the main scaling factors for the lidar error. Three flow models 20 

of different complexity are used to estimate the lidar errors. The outcome of the study provides manifold various findings that 

enable an assessment of the applicability of these flow models. 

The study clearly shows that orographic complexity, roughness and forest characteristics, as well as atmospheric stability, have 

a significant influence on lidar error estimation. Based on the error separation approach it furthermore allows for an in-depth 

analysis of the influence of reduced half-cone opening angles, explaining contradiction in the previously available literature. 25 

The choice and parameterization of flow models and the design of methods for lidar error estimation are found to be essential 

to achieve accurate results. The use of a RANS CFD model in conjunction with an appropriate forest model is highly 

recommended for lidar error estimations in complex terrain, since forest (and roughness) tend to reduce the lidar error. If 

atmospheric stability variation at a measurement site plays a vital role, it should also be considered in the modelling. When 

planning a measurement campaign, an accurate estimation of the prospective predicted lidar error should be carried out in 30 

advance to choose a reasonable measurement location. This will decrease measurement uncertainties and maximize the value 

of the measurement data. 
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1 Introduction 

Vertical profiling monostatic Doppler lidars are by far the most often used lidar systems in wind energy applications because 

they are readily available, flexible and easy to use even at remote locations (Gottschall et al., 2011; Klaas et al., 2015; Clifton 35 

et al., 2018). 

Due to the assumption of homogeneous flow in their wind vector reconstruction algorithmstheir principle of measurement, 

common Doppler lidar profilers suffer from erroneous reconstruction of the horizontal wind vector reconstruction in 

inhomogeneous flow conditions that are usually found at complex terrain sites (Bradley et al., 2015). However, many wind 

farms are nowadays planned at such sites (Callies, 2014). It is, therefore, necessary to test lidars at these sites to assess their 40 

applicability, identify challenges, and find solutions in order to be able to keep measurement uncertainty on acceptable levels. 

The most promising approach to account for their lack of accuracy at complex terrain sites is the application of wind flow 

models (Bradley et al., 2015). Different studies on this approach are considered in the following literature overview that is a 

summary of the literature study carried out within the dissertation of the first author (Klaas, 2020). The literature review aims 

at identifying the most important influencing factors on the lidar error, which are then concluded at the end of the introductory 45 

chaptersection. 

 

In order to be able to reconstruct the horizontal wind speed, Doppler lidars measure the radial velocity at different locations in 

the atmosphere. Under the assumption of equivalent identical wind speed at these locations (so-called “homogeneous flow 

assumption”), simple trigonometric functions can be used to calculate the horizontal wind speed. This assumption is not valid 50 

for measurement sites with significant spatial changes in wind speed, e.g. complex terrain sites (Courtney et al., 2008; Clive, 

Peter J. M., 2008). 

One of the first relevant comparisons between a lidar and a 100 m mast was carried out by Antoniou et al. (2007). A ZephIR 

lidar was placed at a complex terrain test station in Greece. While showing correlation comparable to flat terrain studies on the 

one hand (compare e.g. Smith et al., 2006), a significant underestimation of the wind speed by the lidar was observed on the 55 

other hand. Courtney et al. (2008) stated that errors in the determination of mean wind speed in the order of 5-10 % are not 

uncommon for complex terrain sites. As a solution, they proposed to reduce the lidar cone angle from 30° to 15° in order to 

reduce flow complexitythe distance  between the measurement points and consequently the magnitude of the difference in 

wind speed at the measurement points. 

A first attempt to explain and model the error of monostatic remote sensing instruments in complex terrain (lidar and sodar) is 60 

presented by Bradley (2008). He applies a simple two-dimensional potential flow model to estimate the wind flow and uses 

the model results to correct the error due to the homogeneous flow assumption. Depending on the shape of the hill and the 

measurement height, he finds sodar errors between 5 and 20 % for a cone angle of 20°. Contrary to his hypothesis (and the one 

from Courtney et al. (2008)), there is no significant increase in the magnitude of the errors when increasing the cone angle to 

30° (which is typical for most lidars). 65 
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Bingöl et al. (2009) study the lidar error at two complex terrain sites in Greece. Here the lidar errors of a ZephIR reach up to 

a magnitude of 10 % depending on wind direction and for heights between 30 and 80 m. An algorithm is implemented into 

WAsP Engineering (WEng) that uses the model results to calculate an estimation for the lidar error at the two sites. Although 

the model is simple and limited to low slopes only, the estimated errors fit well to the observed results for the main wind 

directions. For the wind directions with increased slope (south-west), the results do not fit very well, which is attributed to 70 

limitations in WEng. In a simple, two-dimensional analytical consideration, Bingöl et al. (2009) also show that the lidar error 

is not dependent on the cone angle, but only on the horizontal homogeneity of the flow. These analytical findings are verified 

by Foussekis (2009), who compares the results for the ZephIR and two Windcube lidars, one with a 30° and one with a 15° 

cone angle against a 100 m mast at the complex terrain CRES test station in Greece. Here, an underestimation of about 6 % is 

found for all three lidars, independent of measurement principle (CW and pulsed) and cone angle (15° or 30°). Additionally, 75 

the study states that the lidar error is independent not dependent of on height at this site (Foussekis, 2009). 

For the ZephIR and the Leosphere Windcube lidar, lidar error estimation methods using the Reynolds-averaged Navier-Stokes 

(RANS) computational fluid dynamics (CFD) models WindSim and Meteodyn WT were developed and tested over the years 

(Harris et al., 2010; Meissner and Boquet, 2011; Bezault et al., 2012; Jokela et al., 2013; Kim and Meissner, 2017). The lidar 

error estimation approaches are comparable to that proposed by Bingöl et al. (2009). The results emphasize that WEng tends 80 

to overestimate the lidar error, especially for steep slopes. The CFD code provides a better estimate for the inhomogeneous 

flow above the terrain and corrected lidar data mostly shows a better agreement between to the reference data after application 

of the CFD correction. The authors conclude that these findings show the limitations of the WEng model in terms of terrain 

complexity (compare e.g. Harris et al., 2010). Other studies rely on different CFD software to correct for the lidar error. For 

example, Boquet et al. (2010) use a CFD model called “ARIA” to correct the lidar error at a complex site for three different 85 

heights (56, 78 and 100 m). For all three heights, the correction significantly reduces the bias between lidar and mast. 

Contrary to that, bBased on his previous study, Bradley (2012) extends his potential flow model to sodar and lidar data on a 

simple two-dimensional hill and an escarpment. Additionally, the results from the simple model are compared to more 

advanced RANS CFD models (WindSim and OpenFOAM) from Behrens et al. (2012) at two different complex terrain sites 

in Scotland and New Zealand. Results show that the simple potential flow model is mostly sufficient to estimate the lidar error 90 

at these sites (Bradley, 2012), although there are some cases where RANS CFD provides better results (Behrens et al., 2012). 

For the Windcube v2, Leosphere introduced a proprietary method called “flow complexity recognition” (FCR) to correct for 

the lidar error in complex terrain already during the measurement. First, the principle of this method was not revealed due to 

confidentiality (Foussekis, 2011, p. 10). With FCR the bias between lidar and mast is significantly reduced in the study of 

Foussekis (2011). FCR was also tested by Wagner and Bejdic (2014) at a complex terrain site. Here, wind speeds are 95 

underestimated by 4 % in default mode. With FCR turned on, there is a slight overestimation of 1.5 %, which means at this 

site FCR over-corrects for the lidar error. According to the authors, this has also been observed in previous studies (Wagner 

and Bejdic, 2014). In an inter-comparison of FCR results for sites of various complexities, this effect is also evident for several 

sites, although the magnitude of the bias is mostly reduced by FCR. It is interesting to note that in this study, FCR heavily 
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over-corrects the measurement data at the highly-complex site by 20 %, which implicates that FCR might not be suitable for 100 

this site (Krishnamurthy and Boquet, 2014). In 2017, Leosphere revealed the method behind FCR in a detailed technical report 

(Leosphere, 2017). It uses the 3D wind field model “SWIFT” to calculate the wind flow in the closer proximity of the lidar to 

estimate the lidar error. It is, therefore, comparable to the other model-based correction approaches. Leosphere also states that 

FCR is limited to moderately complex terrain and low surface roughness (Leosphere, 2017). In its complexity, the model is 

comparable to WEng, which might explain its incapability to be applied at very complex and forested sites. 105 

A systematic review over the at that time available studies and open research questions regarding remote sensing in complex 

terrain is given in Bradley et al. (2015). The study concludes that simple models, e.g., potential flow models, can often correct 

for the lidar error acceptably well. However, as soon as recirculation or detached flow situations occur, more sophisticated 

models are needed that are capable of modelingmodelling those flow features. Also, more detailed characteristics of the 

atmospheric boundary layer flow (e.g., low-level jets or atmospheric stability) are so far not treated in the context of remote 110 

sensing in complex terrain (Bradley et al., 2015). 

 

 

Based on this literature review, it becomes obvious that the performance of lidar error estimation approaches based on flow 

modelling is heavily dependent on the actual site characteristics. Five governing influencing factors on the lidar error in 115 

complex terrain must be considered: Orographic complexity, terrain roughness and vegetation, atmospheric stability, 

measurement height and half-cone opening angle. 

In all available studies on lidar-mast comparisons at complex terrain sites, it is found that the lidar error is dependent on 

orographic complexity. Lidar errors measured at sites of different complexity and for distinct wind directions vary in magnitude 

and can either be negative or positive (e.g Antoniou et al., 2007; Bingöl, 2009). The respective literature lacks a systematic 120 

comparison of lidar measurement accuracy concerning different orographic complexities. Existing experimental studies mostly 

focus on the results from a single site. Comparing different studies with sites of different orographic complexity is difficult, as 

the used anemometry and equipment, as well as the methods and definitions for data preparation and analysis, are usually not 

the same. In addition to that, it is not always the same type or even technology of wind lidar that is used for the evaluation, 

and the results (e.g., from pulsed and continuous-wave lidars) are not directly comparable. 125 

Measurement sites do not only differ in terms of orographic complexity but also in land cover and, therefore, terrain roughness 

and vegetation. Many complex terrain sites that are used for current wind energy projects are located in forested terrain (Callies, 

2014). It is well known that terrain roughness and especially forest heavily influence the wind flow above the terrain (Finnigan 

and Belcher, 2004; Belcher et al., 2008). Roughness elements and forest induce turbulence and shear in the wind profile or 

even enhance the formation of flow separation zones (Belcher et al., 2012; Shannak et al., 2012). With this in mind, the 130 

assessment of the individual influence of single parameters of different sites on the actual lidar error is challenging. Comparing 

the accuracy of lidar measurements between sites of different orographic complexity, for example, is hindered by the influence 
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of terrain roughness and vegetation. For example, results from Klaas et al. (2015) at a forested site show much smaller lidar 

errors than those found in Bingöl et al. (2009) or Foussekis (2011), which are both not forested.  

Nearly all studies have in common that the reference masts are lower than or equal to 100 m, as these are common and 135 

economically feasible mast heights. Contrary to that, wind turbines have been increasing in both hub height and rotor diameter, 

leading to upper tip heights of modern wind turbines in the range of 200 m (Rohrig, 2018).  

Another aspect that has not yet been treated in literature is the influence of atmospheric stability on lidar measurement 

accuracy. Although it is stated in a few studies that there might be an effect from this (e.g., Bradley et al. (2015)), the author 

is not aware of any piece of work that examines the dependence of lidar measurement accuracy in terms of varying atmospheric 140 

stability in any kind. However, there is a significant influence of atmospheric stability on the wind profile and the wind flow 

patterns over or around hilly terrain (Ross et al., 2004; Leo et al., 2016), that might very well influence lidar measurement 

accuracy. Atmospheric stability does have an influence on both: Speed-up effects and flow curvature which are the main 

reasons for lidar errors in complex terrain (Ross et al., 2004; Emeis, 2018). 

Within the context of measurement height, tThe half-cone opening angle of the lidar is another factor that must be considered 145 

in lidar error estimation. With increasing measurement height, the distance between the measurement points of the lidar also 

increases significantly. Courtney et al. (2008) are were proposing to reduce the half-cone opening angle from 30° to 15° in 

order to reduce the lidar error in complex terrain. This suggestion is interrogated and tested experimentally by Bingöl et al. 

(2009) and Foussekis (2009), who come to the conclusion that the half-cone angle does not influence the lidar error. Also, 

Bradley et al. (2015) derive lidar error estimations that are solely dependent on flow curvature and independent of the half-150 

cone opening angle. However, these findings are based on the assumption of symmetric flow and constant flow curvature. For 

flow simulations that consider surface roughness and forest as well as atmospheric stability, these assumptions are not 

necessarily valid (compare e.g. Ross et al. (2004) and Belcher et al. (2008)).  

 

In all studies mentioned above, mast-based cup anemometry is used as a reference to quantify the lidar errors in complex 155 

terrain and to evaluate the correction methods. In this context it is important to consider that the uncertainty of cup anemometers 

is significantly higher at complex terrain sites than in flat terrain (Dahlberg et al., 2006). Anemometer classifications according 

to IEC 61400-12-1 should be applied to assess the total uncertainty of cup anemometers in comparison to that from lidar 

profilers (International Electrotechnical Commission, 2017). 

 160 

The study presented here aims at providing a guideline for lidar users in the wind energy sector to assess the applicability of 

lidars at complex terrain sites. Although there are some studies that compare lidar correction with different flow models in 

complex terrain, a holistic examination of the limits of these models concerning their ability to estimate the lidar error does 

not exist. The overall aim is a systematic expansion of knowledge and understanding of the applicability and limits of current 

Doppler lidars for wind measurements in complex terrain under consideration of the above-explained influencing factors. To 165 

understand their particular influence, it is vital to examine them separately. 
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The is study firstly analyses the influence of the most governing factors on lidar errors in complex terrain in a systematic way 

revealing the actual influence and importance of each. Secondly, it combines these findings to an overall perspective that can 

be used as a practical guideline for the application of lidars in the terrain of various complexities. To the knowledge of the 170 

author, there is no comprehensive assessment like this so far. The findings of Klaas et al. (2015) were a trigger to intensify 

research on model parameterization in the context of lidar error estimation, which is done in the present study. 

 

Moreover, due to the model-based approach of the study, it can also answer questions of the applicability and limitations as 

well as the strengths and weaknesses of the different flow models that are used to estimate the lidar error. It, therefore, provides 175 

helpful guidance on the necessary complexity of the flow model to be used for lidar error estimation in a particular situation 

or at a specific site. 

Especially the work on atmospheric stability and its impact on the lidar error in complex terrain has not been treated in literature 

so far. The study therefore closes a gap between the knowledge about the influence of atmospheric stability from a 

meteorological perspective on the one hand and its implications on the lidar error on the other hand. 180 

 

Furthermore, the lidar error estimation follows a novel approach where the lidar error is separated into its two main parts: 

Lidar error due to flow curvature effects and lidar error due to speed-up effects. A comparable approach was not found in the 

relevant literature. This approach gives a more detailed and structured insight into the flow effects that cause lidar errors in 

complex terrain. Especially the question, if the lidar half-cone opening angle is an important parameter that has to be 185 

considered, can be answered by this approach. 

2 Methods 

2.1. General considerations 

As already stated in the introduction, one of the main methods to correct for lidar errors in complex terrain is based on the use 

of computational wind flow models. However, uUsing such computational flow models models, e.g. for wind resource 190 

assessments, presumes knowledge about the optimal parameterization to fit the model to the considered site and measured 

wind profiles. From that, model results can be used for vertical and horizontal extrapolation of the wind conditions (Ayotte, 

2008). From geodata, maps and site visits, information about land-use is gathered and transferred into surface model parameters 

such as roughness length and forest model parametrizations. Based on the experience of the consultant and literature knowledge 

these are used to set up the flow model. 195 

 

Wherever possible, modelled wind profiles are compared to those from measurements available at the site in order to improve 

the accuracy of the model results (e.g. Palma et al., 2008). It is necessary to estimate the overall uncertainty in the measurement 
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data, including additional uncertainties due to complex terrain, when comparing it to the model. Generally speaking, 

measurement data uncertainties are higher in complex terrain than in flat terrain for both, cup anemometers and lidars . If only 200 

lidar measurements are available at a complex terrain site, the measured data is additionally affected by the complex terrain 

lidar error. Because of that, additional uncertainties occur when using this data for model validation. It is necessary to estimate 

the uncertainty in the lidar data due to complex terrain before comparing it to the model. Alternatively, a correction of the lidar 

data can be carried out, but then the additional uncertainty of this correction must be estimated considered as well (FGW e.V., 

2017; Clifton et al., 2018). 205 

 

For the latter, an evaluation of uncertainties of currently used correction methods is necessary. Recent studies only state the 

“best” results that can be achieved by using a parameter set optimized for the actual measurement site. In order to do so, the 

model parameterization has either been validated against a measured wind profile from a close-by mast or the accuracy of the 

lidar error correction method itself is validated by a mast-lidar comparison at the site (e.g., Bingöl et al., 2009; Klaas et al., 210 

2015). To the knowledge of the author, there is no systematic evaluation available that analyses the influence of model 

parameterization on the results of lidar error corrections. Furthermore, there is no comprehensive uncertainty assessment of 

the lidar error estimation. 

 

2.2. Flow modelling methods 215 

In this study, three different common flow models are used. In the following, the results from a parameter study are presented 

that systematically compares correction results based on three different common flow models. and dDifferent parameter 

settings are applied  to accomplish a systematic understanding of flow model parameter variations on the resulting lidar error 

estimations.  

 220 

Wind flow is modelled above simplified, two-dimensional Gaussian hills as e.g. used in Feng and Shen (2014) with hill height 

𝐻 and hill half-width 𝐿 (see Figure 1Figure 1 and Table 1Table 1): 

𝑧 = 𝐻 ∗ exp (−
𝑥2

𝐿2
𝑙𝑜𝑔(2)) (1) 

 

Using Gaussian or Cosine hills as a basis for simplified terrain models is well established in literature. A recent review on this 

topic can be found in Finnigan et al. (2020). In order to make the results applicable to, e.g. arbitrary hill geometries and 225 

measurement heights, the rResults are presented in a non-dimensional way wherever possible. Under consideration of the 

measurement height 𝑧, two non-dimensional parameters are derived that allow for a well-arranged presentation of the results: 

𝐻/𝐿 as a parameter that expresses orographic complexity and 𝑧/𝐿 that relates the measurement height to the actual size of the 
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hills. Further parameters that are analysed are terrain roughness 𝑧0, forest height ℎ and forest density, atmospheric stability 

and half-cone opening angle 𝜑 of the lidar. The lidar is placed on top of the hill in this study. 230 

 

 

Figure 1: Exemplary sketch of a Gaussian hill used in the parameter study. Each hill is defined by its height 𝑯 and its hill half-width 

𝑳. A representation of the lidar geometry for measurement height 𝒛 and a half-cone opening angle 𝝋 is shown as well. In this 

example, 𝑯 is 100 m and 𝑳 is 250 m resulting in an 𝑯/𝑳 ratio of 0.4 and for the measurement height 𝒛 of 150 m in a 𝒛/𝑳 ratio of 0.60. 235 

 

Table 1: Set of Gaussian hill geometries used in the parameter study. The table provides information about the hill height 𝑯, the hill 

half-width 𝑳 and the corresponding ratio 𝑯/𝑳. Addtionally the maximum slope (maximum terrain inclination) at the flanks of the 

hill is calculated for the four different used ratios. 

H/L L [m] 50 100 150 200 250 500 750 Max. slope 

0.1 

H [m] 

5 10 15 20 25 50 75 0.07 

0.2 10 20 30 40 50 100 150 0.14 

0.3 15 30 45 60 75 150 225 0.21 

0.4 20 40 60 80 100 200 300 0.29 

 240 

 

Three different steady-state flow models are used that differ in terms of complexity. This enables to analyse the influence of 

additional parameters and model extensions (e.g. a forest model) in reference to the simpler approaches. 

First, the simple, two-dimensional potential flow model from Bradley (2008) is used to analyse the terrain effects on the wind 

flow over two-dimensional Gaussian hills. The model is frictionless and symmetric and does therefore not cover any effects 245 

of roughness, forest or other more complex properties of the atmospericatmospheric wind flow. It was run with a constant 

resolution of 5 m in the vertical and 10 m in the horizonalhorizontal direction. It is used as a baseline or reference case to 

depict the influence of the diverse parameters on the results of the other, more complex models. The model is implemented 

and adapted to the correction approach described below. 

The second model that is used, WEng, is based on linearized Navier Navier-Stokes Equations and a very common model for 250 

wind energy applications (Mann et al., 2002). It is able to model the influence of roughness on the wind flow. However, with 

regards to the available literature, the model is recommended to be used only for slightly complex terrain and there is no forest 

model implemented (Mann et al., 2002; Dellwik et al., 2006). A displacement height has is not been used within this study. 

The model is also used by Bingöl et al. (2009), who provide a script with their correction algorithm, which is. This script is 
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modified in order to adapted it to the correction approach used in the present study. The two-dimensional hill shape was 255 

extended perpedicularperpendicular to the wind direction in order to generate a quasi-two-dimensional flow. Results were 

taken from the domain centercentre. The model is run on a grid resolution of either 5 or 10 m, depending on the domain size, 

which had to be extended for larger hills, to decrease the number of cells.. 

The third model, Meteodyn WT, is a RANS CFD model, that is able to model roughness and forests (Meteodyn, 2014). It has 

also a simplified method to account for atmospheric stability. This model is more and more used for wind resource assessments 260 

and is considered to be more appropriate for complex and forested sites. More details about the model can either be found in 

technical reports from the developer (Meteodyn, 2007) or the dissertation of the author (Klaas, 2020). For Meteodyn WT there 

is also a proprietary lidar correction method available. However, this method is not used in the present study, but tThe 

correction approach described below is implemented and applied to the flow model results from Meteodyn WT. As in 

WengWEng, the two-dimensional hill shape was extended perpendicular to the wind direction in order to generate a quasi-265 

two-dimensional flow. A constant horizontal resolution of 10 m was used in the proximity of the lidar location and the 

minimum resolution is 25 m. The vertical resolution decreases with increasing height above ground. However, the first 10 cell 

layers have a constant resolution of 4 m and then increase by a factor of 1.2 per layer. This results in about 22 m resolution at 

150 m and 318 m at the final 35th layer at about 2 km height above ground. 

 270 

For the two models WEng and Meteodyn WT surface and flow parameters have been varied according to Table 2. Three 

different roughness legnthslengths were analysed for both models, ranging from smooth bare soil surface characteristics to 

bushes. For Meteodyn WT the forest model has been used with three heights of 10, 20 and 30 m. Additionally the forest 

density, i.e. the drag force coefficient 𝐶𝑑 has been varied between the three pre-defined settings (low, medium and high) with 

𝐶𝑑 equal to 0.001, 0.005 and 0.01 which corresponds to low, medium and high forest density. and detailed . In any case, the 275 

surface and forest parameterization is applied in the whole model domain, i.e. not only on the hill surface but also on its 

surroundings. Detailed results on this can be found in Klaas (2020).  

 

Table 2: Roughness lengths 𝒛𝟎 of the different roughness maps that were used in the flow models. The purpose of the maps is also 

given, which includes the corresponding tree heights in Meteodyn WT. Surface characteristics were taken from Troen (1989). 280 

Roughness 

length [m] 

Surface 

characteristics 
Tree height [m] Used in WEng Used in Meteodyn WT 

0.005 bare soil - yes yes 

0.100 farmland - yes yes 

0.500 bushes, suburbs 10 yes yes (forest and roughness) 

1.000 city, forest 20 no yes (forest) 

1.500 city, forest 30 no yes (forest) 
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As shown in Table 3, the atmospheric stability model in Meteodyn WT has also been used to change the stability class which 

is attributed to a certain Obhukov length 𝐿∗ in the model. In order to save computation time, Tthis was only done for three 

selected cases: a low roughness case with 𝑧0 = 0.005𝑚, a case with high roughness of 𝑧0 = 0.5𝑚 and a forested case with a 

tree height of 30m and high forest density., to This allows to assess the influence of atmospheric stability for different surface 285 

characteristics. Only results for the latter case are shown exemplaryly within the this study. More detailed results can be found 

in Klaas (2020). All parameterizations were modelled for the different hill geometries given above in order to analyse the 

overall influence for the available combinations of 𝐻/𝐿 and 𝑧/𝐿. 

 

Table 3: Selected Aatmospheric stability classes from Meteodyn WT (Meteodyn, 2014). 290 

Stability class Stability 𝑳∗[m] 

0 Very unstable -80 

1 Unstable -500 

2 Neutral 10.000 

3 Slightly Stable 1.500 

4 Stable 800 

5 Stable 500 

6 Stable 300 

7 Very Stable 200 

8 Very Stable 130 

9 Strongly Stable 60 

 

2.3. Lidar error correction 

A definition of the lidar error and its parts can be derived based on the measurement geometry of common Doppler wind lidars, 

such as the Leosphere Windcube. Figure 2 defines the measurement geometry and the coordinate system, as well as the azimuth 

angle 𝜃  and the half-cone opening angle 𝜑 . It also illustrates the three dimensional measurement geometry with four 295 

measurement points. This measurement geometry has been simplified to two-dimensional flow from west to east. 
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Figure 2: Lidar measurement geometry and definitions of the local coordinate system (𝒙, 𝒚, 𝒛) and the wind vector components 

(𝒖, 𝒗, 𝒘) as well as the half-cone opening angle 𝝋 and the azimuth angle 𝜽 (here for the second measurement location, 90° from the 300 
north). The measurement locations are numbered starting from North (N) clock-wise to West (W). The measurement locations are 

shown for an example measurement height at a plane defined by the circle. This measurement geometry equals the one that is used 

in the Leosphere Windcube v1. In the successive version Windcube v2, a fifths measurement location has been added with 𝝋 = 𝟎 

directly above the origin at measurement height. 

 305 

A typical complex terrain flow case is shown in Figure 3 with a lidar placed on top of an abritraryarbitrary hill. The 

reconstructed horizontal wind speed 𝑢̂ can be calculated based on the two radial wind speeds and the half-cone opening angle. 

However, for a given measurement height 𝑧 it can be noted, that the inflow wind speed at the western measurement point is 

tilted upwards and the outflow wind speed at the eastern measurement point is tilted downwards. The flow inclination, i.e. the 

vertical wind speed component, contributes to the radial wind speed and therefore introduces and error component. 310 

Additionally, due to the speed-up of the wind speed between the two measurement points and the measurement location at 

measurement height directly above the lidar an additional error occurs. 
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Figure 3: Generic flow case with a lidar placed on a hill-top. As a typical complex terrain example, this case shows a lidar placed on 315 
top of a hill within symmetric flow conditions. The changing vertical wind speed component introduces a lidar error. Additionally, 

there is a speed-up effect on the horizontal component, which causes a part of the total lidar error. 

 

Based on the above-given explanations, the lidar error 𝜀 for the two-dimensional case can generally be defined as follows: 

𝜀 =
𝑢̂ − 𝑢𝐿

𝑢𝐿

=  𝜀𝑐 + 𝜀𝑠 (2) 

 320 

with 𝑢̂ being the reconstructed horizontal wind speed and 𝑢𝐿 the actual horizontal wind speed at the reconstruction point. 

Following this definition, an underestimation of the actual wind speed at the reconstruction point will lead to a negative lidar 

error and an overestimation will lead to a positive lidar error. In order to separate the two effects, the lidar error can be divided 

into a part being caused by flow curvature (𝜀𝑐) and another part due to speed-up effects (𝜀𝑠). As presented in the results 

chaptersection, this distinction will give insight into the influence of the half-cone angle on the lidar error. 325 

 

The equation for wind vector reconstruction can be rewritten for the two-dimensional case as follows (compare Figure 3): 

𝑢̂ =
𝑣𝑟,𝑖𝑛 − 𝑣𝑟,𝑜𝑢𝑡

2 sin 𝜑
=

𝑉𝑖𝑛 sin(𝜑 − 𝛼) + 𝑉𝑜𝑢𝑡 sin(𝜑 + 𝛽)

2 sin 𝜑
 (3) 

 

Here the radial wind speeds left and right from the lidar (inflow and outflow) are referenced to as 𝑣𝑟,𝑖𝑛 and 𝑣𝑟,𝑜𝑢𝑡 and the 

magnitude of the wind vector at the same points as 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡. The inflow and outflow inclination angles of the flow are 330 

defined as 𝛼 and 𝛽 and combined with the half-cone opening angle of the lidar 𝜑. 
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For simplification of the above-given equation (3)(3), the following relationship can be derived: 

𝑢𝐿 =
𝑢𝑖𝑛 + 𝑢𝑜𝑢𝑡

2
=

𝑉𝑖𝑛 cos 𝛼 + 𝑉𝑜𝑢𝑡 cos 𝛽

2
 (4) 

 

By making use of this equation and by defining the factor 𝑘 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 equation (3)(3) can be written as: 

𝑢̂ = 𝑢𝐿(1 −
1

tan 𝜑

sin 𝛼 − 𝑘 sin 𝛽

cos 𝛼 + 𝑘 cos 𝛽
) (5) 

 335 

Neglecting changes in the magnitude of wind speed between the two measurement points here (they will be considered in the 

second part of the error equation later) by assuming 𝑘 = 1, results in an equation that is independent of the actual wind speed, 

but only dependent on geometric properties of the wind flow and the lidar: 

𝜀𝑐 ≅= −
tan

𝛼 − 𝛽
2

tan 𝜑
 (6) 

 

And, with 𝛼 = 𝛽, as it is the case in symmetrical flow situations the equation reduces to 340 

𝜀𝑐 ≅= −
tan 𝛼

tan 𝜑
 (7) 

 

The speed-up of the horizontal wind speed component between a measurement location 𝑖 and the reconstruction point can be 

written as 

∆𝑢 =  𝑢𝐿 − 𝑢𝑖 (8) 

 

Keeping in mind that the speed-up between both, the inflow and the outflow measurement point and the reconstruction point 345 

have to be considered, the lidar error due to speed-up can be defined by 

𝜀𝑠 =
𝑢𝑖𝑛 + 𝑢𝑜𝑢𝑡

2𝑢𝐿

− 1 (9) 

 

Here the difference between inflow and outflow horizontal component of the wind flow is considered as 𝑢𝑖𝑛 and 𝑢𝑜𝑢𝑡. 

 

Combining equations (6)(6)  and (9)(9) leads to the equation used for the assessment of the total lidar error due to complex 350 

terrain in this study: 

𝜀 = [−
tan

𝛼 − 𝛽
2

tan 𝜑
] + [

𝑢𝑖𝑛 + 𝑢𝑜𝑢𝑡

2𝑢𝐿

− 1] (10) 
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In the results section, the lidar error 𝜀 and also its parts due 𝜀𝑐 (flow curvature) and 𝜀𝑠 (speed-up) are usually plotted against 

the ratio of measurement height over the hill half-width 𝑧/𝐿. By this, it is possible to extract results for different measurement 

height as well as different hill dimensions from a single non-dimensional figure. The amount of terrain inclination is in most 355 

figures shown for groups of a constant ratio of hill height over the hill half-width 𝐻/𝐿. In reference to Table 1, mainly four of 

these groups are analyzed for slight slopes up to high slopes in the order of 0.3. 

43 Results and Discussion 

In the following, the main results of the non-dimensional parameter study are presented, starting with those from the inviscid 

potential flow model and low surface roughness results for WEng and Meteodyn WT.  360 

Tthe influence of the half-cone opening angle is analysed based on results from the potential flow model and one example 

from Meteodyn WT. Then the influence of terrain roughness is shown for both, WAsP EngineeringWEng and Meteodyn WT. 

Finally, exemplary results concerning the influence of forest height and atmospheric stability are discussed. More detailed and 

complete results can be found in the dissertation of the author (Klaas, 2020).  

The lidar error 𝜀 and also its parts due 𝜀𝑐 (flow curvature) and 𝜀𝑠 (speed-up) are mostly plotted against the ratio of measurement 365 

height over the hill half-width 𝑧/𝐿. By this, it is possible to extract results for different measurement height as well as different 

hill dimensions from a single non-dimensional figure. The amount of terrain inclination is in most figures shown for groups of 

a constant ratio of hill height over the hill half-width 𝐻/𝐿. In reference to Table 1Table 1, mainly four of these groups are 

analysed from slight slopes up to high slopes in the order of 0.3. 

 370 

4.1.3.1. Influence of orographic complexity and measurement height 

Figure 4 (left) shows the results for the lidar error 𝜀 from the potential flow model versus the ratio 𝑧/𝐿 for four different 𝐻/𝐿 

ranging from 0.1 to 0.4. With increasing 𝑧/𝐿, the curves follow a distinct shape: The lidar error constantly increases until it 

reaches a maximum in the range of 𝑧/𝐿 between 0.5 and 0.6. The exact position is slightly dependent on the 𝐻/𝐿 ratio and 

increases with increasing 𝐻/𝐿. Then the lidar errors starts to decrease for all 𝐻/𝐿 ratios. Also, the maximum lidar error 375 

significantly increases with increasing terrain inclination. For a 𝐻/𝐿 ratio of 0.1, it is slightly larger than -3 %. For a 𝐻/𝐿 ratio 

of 0.4, it reaches up to about -11 %. 

 

Results from the two more sophisticated models WEng and Meteodyn WT for a low roughness length 𝑧0 of 0.005 m are given 

in Figure 5Figure 5. The black lines indicate the results from the inviscid potential flow model as a reference. The shape and 380 

the magnitude of the resulting lidar errors are comparable to those from the potential flow model. However, there are clear 

differences for both of the models. 
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The results from WEng (Figure 5Figure 5, left) show larger lidar errors for 𝐻/𝐿 ratios of 0.3 and 0.4, i.e. the most complex 

cases, particularly in the region of 𝑧/𝐿 between 0.5 and 1. Maximum lidar errors reach up to -12 % for an 𝐻/𝐿 ratio of 0.4. 

Results from Meteodyn WT on the other hand show smaller lidar errors for all 𝐻/𝐿 ratios when compared to the potential flow 385 

model. The difference between the two model results increases with increasing 𝐻/𝐿, and for 𝐻/𝐿 = 0.4 the maximum lidar is 

about -9.5 %. 
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a) 

b) 

c)

 

Figure 4: Left: Lidar error ε in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 5. Results are based on the potential flow 390 
model. The two dashed lines mark a typical uncertainty of wind measurements (-2 %) and a reasonable limit for acceptable lidar 

errors in wind resource assessments (-10 %). Right: Results from the potential flow model for L=50 m (a), 250 m (b) and 750 m (c) 

for an 𝑯/𝑳 ratio of 0.3. The lidar position is marked at the top of the hills and the beams are tilted by a half-cone opening angle 

φ=30°. The measurement points are located at z=150 m above the lidar. The points, therefore, are equal to 𝒛/𝑳 ratios of 3 (a), 0.6 (b) 

and 0.2 (c). 395 

 

Figure 4 (left) contains two dashed lines: The -2 % line marks a typical uncertainty of wind measurements based on cup-

anemometers as a reference (Basse et al., 2017). Lidar measurement errors below -2 % are in the same order as uncertainties 

of mast-based measurement. Such small errors will not add much uncertainty to the wind measurement. However, because 

lidar errors are systematic, a correction is mandatory also in case of small errors. The -10 % line marks an approximate upper 400 

limit for a reasonable correction of lidar errors in complex terrain, which is based on the estimation that the uncertainty in lidar 

correction will not allow for a reasonable resource assessment with lidar errors in this magnitude. 

From Figure 4 (left), it can be noticed that the 2 % line is crossed for the steepest hills (𝐻/𝐿 of 0.4) at a 𝑧/𝐿 of about 4.5 and 

for the lowest slopes (𝐻/𝐿 of 0.1) at 𝑧/𝐿 of 1.5. For low 𝑧/𝐿 ratios (broadest hills), the three lines for 𝐻/𝐿 of 0.2, 0.3 and 0.4 

are crossing the 2 % line close together between 0.04 and 0.07. For the least complex hill, the lidar error already decreases 405 

below 2 % at a 𝑧/𝐿 of 0.16. 
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Following this, it can be concluded that for a small 𝐻/𝐿 of 0.1, only a very limited parameter range between 𝑧/𝐿 of 0.16 and 

1.5 is relevant for correction. Additionally, the necessary corrections are relatively small, with maximum errors in the range 

of -3 %. For more complex terrain and therefore larger 𝐻/𝐿, a much larger parameter space must be considered. Significant 410 

lidar errors can be found for large hills down to a 𝑧/𝐿 of 0.04 and also very narrow but steep hills in the range of 𝑧/𝐿 from 2 

to 4.5 for 𝐻/𝐿 between 0.2 and 0.4. The magnitude of the lidar errors for those terrains is also much higher. The -10 % line is 

only crossed by the maximum error for the steepest terrain of 𝐻/𝐿 of 0.4 cases between 𝑧/𝐿 between 0.35 and 0.9. 

 

The righthand side of Figure 4 illustrates three selected Gaussian hills with an 𝐻/𝐿 ratio of 0.3 and a measurement height 𝑧 of 415 

150 m. Based on this, the relationship between measurement height and hill size, i.e. hill half-width can be analysed in detail. 

Increasing 𝑧/𝐿 ratios can be interpreted in two ways:  

First, the hill size decreases for increasing 𝑧/𝐿 ratio when keeping the measurement height constant. For a given measurement 

height the maximum lidar error is then found for a hill size with 𝐿 in the range of 1.6 to 2.0 times 𝑧. Lidars errors decrease 

strongly for broader hills (smaller 𝑧/𝐿) and also for more narrow hills (large 𝑧/𝐿). 420 

Second, when keeping 𝐿 constant, increasing 𝑧/𝐿 can be interpreted as increasing measurement height. From this perspective, 

lidar errors are relatively small for low measurement heights and increase strongly up to a 𝑧 equal to 50-60 % of 𝐿. Beyond 

the maximum point, lidar errors decrease continiously until they become insignficant as terrain influence on the wind flow 

diminishes. 

Deduced from these observations, the shape of the lidar error curves can be explained as follows: For very low measurement 425 

heights (or very broad hills) both, the local speed-up effects and the flow inclination angles are small and so are the resulting 

lidar errors. With increasing 𝑧/𝐿, both effects significantly increase, because either the measurement point distance increases 

with increasing measurement height or – from the perspective of hill size – the hill becomes more narrow and flow inclination 

and local speed-up effets in the vicinity of the lidar increase. Then, with 𝑧/𝐿 increasing above 0.6, the terrain influence 

diminishes for increasing measurement heights. From the perspective of terrain scaling, for narrow hills, the lidar measurement 430 

points move left and right towards the flanks of the hill and therefore to positions where flow inclination decreases. For very 

small hills additionally speep-up effects become less important. 
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Figure 5: Left: Lidar error ε in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 3 for a roughness length of 𝒛𝟎 of 0.005 m. 

Left: Based on results from WAsP Engineering. Right: Based on results from Meteodyn WT. The black lines show results from the 

potential flow model. 435 

 

4.2.3.2. Separation of the two lidar error parts 

As defined in the methods section, the lidar error 𝜀 can be subdivided into a part 𝜀𝑐 caused by flow curvature and a part 𝜀𝑠 

caused by speed-up between the measurement points. Figure 6 illustrates results from the potential flow model for 𝜀𝑐 and 𝜀𝑠 

next to each other in the same way that 𝜀 is presented above. 440 

 The general shape of the four curves is similar to that presented in Figure 4. The maximum errors 𝜀𝑐 (Figure 6, left) are slightly 

smaller compared to 𝜀. For an 𝐻/𝐿 ratio of 0.4, the error is no longer exceeding the -10 % line. For a 𝐻/𝐿 of 0.1, the maximum 

error is about 2.5 %. The maximum error is now located between 𝑧/𝐿 of 0.45 and 0.51. Also, the point of intersection with the 

2 % line on the right-hand side is significantly shifted downwards. 

Looking at Figure 6, right, which shows the speed-up part 𝜀𝑠, it becomes obvious that this part is much smaller in magnitude 445 

than the curvature part. However, it reaches up to -1.95 % for a 𝐻/𝐿 ratio of 0.4 and also the magnitudes for 𝐻/𝐿 ratios 0.2 
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and 0.3 are not negligible. The position 𝑧/𝐿 position of the maximum error due to speed-up is between 0.9 and 1.0. The lidar 

error caused by speed-up, therefore,and shifts the resulting curves for the total lidar error 𝜀 slightly upwards. 

For small 𝑧/𝐿 the share of 𝜀𝑠 of the total lidar error is about 10 %. With increasing 𝑧/𝐿 the share increases up to about 30 %. 

For large 𝑧/𝐿, i.e. for relatively small or narrow hills, the speed-up part becomes more important in the overall lidar error 450 

correction. For small 𝑧/𝐿, i.e. large hills (or low measurement heights), correction appraoches solely based on flow curvature 

might be sufficient. 

 

  

Figure 6: Lidar error 𝜺𝒄 (left) and 𝜺𝒔 (right) in dependence of the ratio 𝑯/𝑳 between 𝒛/𝑳 ratios from 0 to 5. Results are based on the 

potential flow model. Note the different scaling of the x-axes. 455 

 

4.3.3.3. Influence of the half-cone opening angle 

Figure 7 is illustrating the influence of changing the half-cone opening angle 𝜑 of the lidar measurement geometry on 𝜀, 𝜀𝑐 

and 𝜀𝑠. To separate and  the individual contribution of local speed-up effects and flow inclination angles with varying 𝜑, the 

separation of the lidar error is very . Results are presented for the potential flow model onlyfirst, in order to analyse and explain 460 

the basic principle. 
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Figure 7 (left) shows the lidar error 𝜀 for the four 𝐻/𝐿 ratios and the three different half-cone opening angles 30°, 20° and 10°. 

When decreasing the half-cone angle, there is also a slight decrease in the lidar error. This is particularly true for 𝑧/𝐿 ratios 

between 0.3 and 1.0, which is in the range of the maximum lidar error. For larger 𝑧/𝐿 ratios, the influence of 𝜑 on the lidar 

error decreases. For small 𝑧/𝐿, the influence is also only marginal. 465 

Figure 7 (middle and right), which shows the lidar error split up into 𝜀𝑐 and 𝜀𝑠, enables to retrace of the individual contribution 

of flow curvature and speed-up effects on the total lidar error 𝜀. It becomes obvious that decreasing the half-cone opening 

angle significantly decreases 𝜀𝑠. While 𝜀𝑠 reaches up to -2 % for an 𝐻/𝐿 ratio of 0.4 for a 𝜑 of 30°, it falls below -0.25 % for 

all 𝐻/𝐿 ratios for an angle of 10°. 

Decreasing 𝜑 has a contrary influence on 𝜀𝑐. While there is almost no influence for the lowest two 𝑧/𝐿 ratios, there is an 470 

increase of 𝜀𝑐 for half-cone angles of 20° and 10° when compared to the original 30°. This difference is largest for 𝑧/𝐿 above 

0.5 and persists up to 𝑧/𝐿 of 3. 

The superposition of the two opposing effects results in the total effect on 𝜀 as it is shown in Figure 7 (left). 

 

Figure 8Figure 8 provides an example result based on Meteodyn WT with three different half-cone opening angles for an 𝐻/𝐿 475 

ratio of 0.3 and a roughness length 𝑧0 of 0.005 m. Here results for both, the 30° and 20° angle are approximately the same. 

However, a further decrease to 10° results in smaller lidar errors for 𝑧/𝐿 ratios below 0.6 and larger lidar error above. 

 

   

Figure 7: Lidar error 𝜺 (left), 𝜺𝒄 (middle) and 𝜺𝒔 (right) in dependence of the 𝑯/𝑳 ratio for the half-cone opening angles 𝝋 of 30° 

(solid lines), 20° (dashed lines) and 10° (dot-dashed lines) between 𝒛/𝑳 ratios from 0 to 3 (left). Results are based on the potential 480 
flow model. 
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Figure 8: Lidar error 𝜺 for an 𝑯/𝑳 ratio of 0.3 for the three different half-cone angles 𝝋 of 30°, 20° and 10° between 𝒛/𝑳 ratios from 

0 to 3 (left). Results are based on Meteodyn WT for a roughness length 𝒛𝟎 of 0.5 m. 485 

 

4.4.3.4. Influence of surface roughness 

The influence of roughness length on the lidar error has been analysed for the results from WAsP EngineeringWEng and 

Meteodyn WT for the three different used values of 0.005 m, 0.1 m and 0.5 m. They are exemplarily shown for an 𝐻/𝐿 ratio 

of 0.3 in Figure 9. 490 

The general shape of the lidar error curve is comparable to that from the potential flow model. However, the maximum lidar 

error based on the WEng simulations exceeds that found with the potential flow model. Here the maximum value found at 𝑧/𝐿 

of 0.6 is about -10 %, which is significantly larger than in the referencepotential flow model, especially for the lowest 

roughness. The estimated lidar error decreases strongly for smaller and larger 𝑧/𝐿. 

 495 

Figure 9 (right) shows the influence of the roughness length 𝑧0 in Meteodyn WT. While the curve for the lowest roughness 

length has a pronounced maximum value and the shape of the curve is comparable to that from the potential flow, this is no 

longer the case for higher roughness length. For a 𝑧0 of 0.1 m, the lidar errors are generally smaller for all 𝑧/𝐿 ratios, except 

the lowest two 0.2 and 0.3. For these, the model results are very close to each other. At the maximum point, the lidar error is 

decreased by about 1 one percentage point for the medium roughness length . The decrease of 𝜀 is even stronger for a roughness 500 
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length of 0.5 m. Here, 𝜀 is decreased by another 1 percentage point for all 𝑧/𝐿 ratios. However, the general shape of the error 

curve stays similar. For the highest roughness length, the lidar error decreased below 2 % for a 𝑧/𝐿 of 2.5. 

 

  

Figure 9: Model comparison between WAsP Engineering (left) and Meteodyn WT (right) for different roughness lengths for a 𝑯/𝑳 

ratio of 0.3. Lidar error 𝜺 in dependence of the roughness length 𝒛𝟎 between 𝒛/𝑳 ratios from 0 to 3. Results from the potential flow 505 
model (black) are shown as a reference. 

 

4.5.3.5. Influence of forest 

Figure 10 shows the impact of different tree heights on the total lidar error. The results are shown for a 𝐻/𝐿 ratio of 0.3, 

however the influence of the forest on the lidar error is different, depending on terrain inclination. 510 

The total lidar error ε shows a significant dependence on tree height. Highest lidar errors are found for small tree heights of 

10 m and. When increasing the tree height to 20 m and 30 m, 𝜀 decreases for all 𝑧/𝐿 ratios but the largest. Although maximum 

values for the lidar error can still be seen around 𝑧/𝐿 ratios of 0.6, the shape of the curves is not entirely comparable with that 

from the potential flow model as a reference. 

 515 
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Figure 10: Lidar error ε in dependence of tree heights 𝒉𝒕 (left) and atmospheric stability (right) between 𝒛/𝑳 ratios from 0 to 3. 

Results are based on Meteodyn WT (colored) for medium forest density and the potential flow model (black) for an 𝑯/𝑳 ratio of 0.3. 

Results for different atmospheric stabilities are shown for the forested case with a tree height 𝒉𝒕 = 𝟐𝟎 𝒎 and medium forest density. 

 

 520 

4.7.3.6. Influence of atmospheric stability 

In order to analyzeanalyse the influence of different atmospheric stability conditions, the stability class in Meteodyn WT has 

been modified for a part of the simulation cases. The influence of the stability parameter is most severe for medium to large 

𝐻/𝐿 ratios. The results presented in Figure 1111 sum-up these results for the four chosen stability classes very unstable (0), 

neutral (2), stable (6) and strongly stable (9) (compare Table 3Table 3), exemplarily for a forested case and an 𝐻/𝐿 ratio of 525 

0.3. These four out of ten possible stability classes in Meteodyn WT cover the whole possible range. Calculations have been 

carried out for all stability classes in-between those four, but the effects found are systematic and it is, therefore, sufficient to 

show only this excerpt. 

 

A clear tendency of reduced lidar errors for increasing atmospheric stability can be seen. Largest lidar errors occur for very 530 

unstable stability conditions, with a clear maximum at a 𝑧/𝐿 ratio of 0.6 and a lidar error ε of about -6 %. Coming to neutral, 

stable and strongly stable cases, the maximum is again shifted towards lower 𝑧/𝐿 ratios. The maximum error for strongly 
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stable cases is -2.3 % and can be found at a 𝑧/𝐿 ratio of 0.3. Below and above the maximum, there is a relatively sharp decrease 

in lidar errors, which pronounces the maximum points. For the largest 𝑧/𝐿 ratio of 3.0, the influence of atmospheric stability 

is relatively small. 535 

 

 

Figure 11: Lidar error ε in dependence of atmospheric stability between 𝒛/𝑳 ratios from 0 to 3. Results are based on Meteodyn WT 

(colored) and the potential flow model (black) for an 𝑯/𝑳 ratio of 0.3. Results are shown for the forested case with a tree height 𝒉𝒕 =
𝟐𝟎 𝒎 and medium forest density. 

 540 

 

4 Discussion 

As described in section 2.2, this study is focussed on the complex terrain error of a lidar placed at the top of a Gaussian hill. 

This simple setup allows to illustrate and discuss the influence of terrain complexity and model parameterization in a systematic 

way. A key finding is that regardless of the model and its parameterization as well as the complexity of the hill all results show 545 

that lidars underestimate the wind speed at measurement height above the lidar location. In other words, a convex flow pattern 

in the proximity of the lidar causes an underestimation of the wind speed. Contrary to that, concave flow (e.g. in valleys) will 

result in an overestimation of the wind speed at the measurement location. 
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Obviously, lidars are not always placed on top of a hill in real-world applications. Moving the lidar location to the flanks of 550 

the hill will influence the resulting lidar error because both, the inflow and outflow angles at the measurement points and the 

speed-up will change. For flow fields symmetric to the hill centre, moving the lidar upwind or downwind will change the lidar 

error, which can be demonstrated e.g. with the potential flow model (compare Bradley (2008)). However, for more complex 

flow situations the streamlines are no longer symmetric. E.g. for forested cases their turning points shifts downwind (Figure 

1212 left), causing a more complex interconnection between the lidar position and the resulting errors. 555 

Beyond that, real complex terrain has an arbitrary, three-dimensional structure. Effects from surrounding hills, valleys, 

escarpments as well as changes in surface properties will influence the flow field at the lidar measurement location. In addition, 

the flow field changes with changing wind direction in the three dimensional case. Because of this flow complexity, it is 

necessary to run full three-dimensional wind flow models for all relevant wind directions to get a useful lidar error estimation. 

The overall terrain effects can e.g. be analysed in a “lidar error map” which shows the lidar errors for a given measurement 560 

height above the terrain. An example for this is given in Klaas et al. (2015).  

 

However, such complex approach are not suitable for fundamental parameter studies as presented here. However, based on 

the simple, two-dimensional Gaussian hill study it is possible to analyse the influence of main parameters of the measurement 

setup as well as the type and parameterization of the flow models used to estimate the lidar errors. 565 

As already described in section 3.1, the right-hand side of Figure 4 illustrates three selected Gaussian hills with an 𝐻/𝐿 ratio 

of 0.3 and a measurement height 𝑧 of 150 m. Based on this, the relationship between measurement height and hill size, i.e. hill 

half-width can be analysed in detail. Increasing 𝑧/𝐿 ratios can be interpreted in two ways:  

First, the hill size decreases for increasing 𝑧/𝐿 ratios when keeping the measurement height constant. For a given measurement 

height the maximum lidar error is then found for 𝐿 in the range of 1.6 to 2.0 times 𝑧. Lidars errors decrease strongly for broader 570 

hills (smaller 𝑧/𝐿) and also for more narrow hills (larger 𝑧/𝐿). For a typical measurement height of 150 m, the corresponding 

hill half-width is about 250 m for a hill height of 75 m at the point of maximum lidar error. 

Second, when keeping 𝐿 constant, increasing 𝑧/𝐿 reflect an increasing measurement height. From this perspective, lidar errors 

are relatively small for low measurement heights and increase strongly up to a 𝑧 equal to 50-60 % of 𝐿. Beyond the maximum 

point, lidar errors decrease continuously until they become insignificant as terrain influence on the wind flow diminishes. For 575 

the above given hill (𝐿 = 250, 𝐻 = 75𝑚), the lidar error is still about -2 % for a hypothetical measurement height of 600 m 

and reaches its maximum for a measurement height in the order of 150 m which is around hub height of modern wind turbines. 

 

Deduced from these observations, the shape of the lidar error curves can be explained as follows: For very low measurement 

heights (or very broad hills) both, the local speed-up effects and the flow inclination angles are small and so are the resulting 580 

lidar errors. With increasing 𝑧/𝐿, both effects significantly increase, because either the measurement point distance increases 

with increasing measurement height or – from the perspective of hill size – the hill becomes more narrow and flow inclination 
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and local speed-up effects in the vicinity of the lidar increase. Then, with 𝑧/𝐿 increasing above 0.6, the terrain influence 

diminishes for increasing measurement heights. From the perspective of terrain scaling, for narrow hills, the lidar measurement 

points move left and right towards the flanks of the hill and therefore to positions where flow inclination decreases (compare 585 

Figure 4 a). For very small hills, additionally speed-up effects become less important. The lidar error separation shown in 

Figure 6 also illustrates the importance of both, flow curvature and speed-up effects in dependence of 𝑧/𝐿. 

From a practical point of view, the above findings and considerations urge to carry out lidar error estimation for a given site 

for all relevant measurement heights. Depending on the actual site characteristics, the lidar error might well be dependent on 

measurement height. However, it is also possible that a height dependency is not visible in the data as for example in Foussekis 590 

(2009). The reason for this could be that uppermost measurement height is only 100 m where the actual 𝑧/𝐿 ratios are within 

a range of only small changes in lidar error with height or that the height dependency is superimposed by other flow features. 

 

These above discussed findings are supported by all three applied flow models, which show comparable behaviour for 

increasing 𝑧/𝐿 ratios (Figure 5Figure 5). Both of the more sophisticated models (WEng and Meteodyn WT) show a comparable 595 

shape of the error curves in dependence of 𝑧/𝐿. However, while WEng tends to give larger maximum errors for 𝐻/𝐿 ratios of 

0.3 and 0.4 than the potential flow model, Meteodyn WT shows smaller errors for all hill geometries. In comparison to the 

potential flow model the other two models are run with a small roughness length 𝑧0  of 0.005 m. Besides the general 

characteristics of the different flow models, this difference in parameterization might be a reason for the deviations between 

the models. Additionally, there is a general tendency of WEng to over-predict speed-up effects in complex terrain, which is 600 

well known in the literature (Bingöl et al., 2009; Foussekis, 2009). The reason for this is, that the tendency for flow separation 

in the lee of the hill is not predicted by WEng as it assumes attached wind flow (Bowen and Mortensen, 1996). This tendency 

becomes more important for increased terrain complexity, i.e. increased 𝐻/𝐿 ratios. However, there is no such tendency for 

the RANS CFD model Meteodyn WT and the consideration of surface roughness influences the flow patterns above the hills, 

which leads to decreased lidar errors. 605 

 

It is important to put the magnitude of the estimated lidar errors into the context of the overall uncertainties of wind 

measurements (regardless of the measurement technology used) and the total uncertainties of wind resource assessments. As 

already discussed in the introduction, e.g. the German Technical Guideline 6 on Wind Resource Assessment states, that an 

additional uncertainty for the correction of lidar errors in complex terrain should be considered that is 50 % of the estimated 610 

errors (FGW e.V., 2017). In practice, this approach provides an upper limit for terrain complexity where lidar measurements 

are still reasonable. However, it is difficult to provide exact values for maximum tolerable lidar errors since other uncertainties 

in the wind resource assessment have to be considered as well. On the other hand, also mast-based cup and sonic anemometers, 

which are often used for wind energy applications, are prone to increased uncertainties at complex terrain sites. For example 

increased turbulence and flow inclination increase cup anemometer uncertainties (Dahlberg et al., 2006). 615 
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Surface roughness is found to have a significant effect on the wind flow patterns over a hill and therefore changes the magnitude 

of the lidar error estimations. In both models – WEng and Meteodyn WT – increasing the roughness length results in decreasing 

lidar errors (Figure 9). Additionally, the presence of forest significantly decreases the estimated lidar errors. Both effects can 

be explained by the increasing asymmetry of the hill flow (Belcher et al., 2012; Ross and Vosper, 2005). In particular, the 620 

critical slope for flow separation is reduced by the influence of the forest (Ross and Vosper, 2005). Streamlines for three 

different tree heights are shown in Figure 1212 (left). It becomes obvious that the flow pattern on the lee side of the hill changes 

dramatically with the streamlines being shifted upwards. The effect is most severe for tall trees. But, in comparison to the 

potential flow model results, already small trees of 10 m height have a significant effect on the wind flow. Increasing the 

roughness length has comparable effects, although they are not as severe as effects from the forest. Generally, it can be deduced 625 

that both, increasing surface roughness and the presence of forest decreases the lidar errors. This also explains that the FCR 

method from Leosphere, described in section 1, overestimates the lidar error in complex terrain, in particular for high roughness 

or forested cases (Wagner and Bejdic, 2014; Leosphere, 2017). 

Additionally, it should be pointed out that the lidar error estimation is very sensitive to roughness and forest parameterization, 

i.e. roughness length, tree height and forest density. Detailed knowledge of the actual surface characteristics is needed to fit 630 

the model results to the measurement site. This becomes obvious e.g. Klaas et al. (2015), Figure 6, showing a range of results 

for different forest parameterizations and the resulting lidar errors at a complex terrain site. In comparison to the measured 

data, it becomes clear that it is mandatory to take into account these effects in lidar error estimation. Neglecting forest (or 

roughness) effects will result in severe overestimation of the actual lidar error. 

 635 

Atmospheric stability influences flow patterns above or around hilly terrain (Leo et al., 2016). The present model based study 

provides results on the influence of stable and unstable flow in comparison to neutral flow conditions (Figure 1212, right). 

Stable stratification suppresses the vertical exchange and therefore hinders the streamlines from being shifted upwards in the 

lee of the hill (Ross et al., 2004; Emeis, 2018: 86). Speed-up in stable conditions as well as flow inclination angles in the 

vicinity of the lidar increase which results in increased lidar errors. On the other hand, unstable stratification has contrary 640 

implications on the wind flow patterns. On the lee side of the hill the streamlines are elevated which is most severe for the 

“very unstable” case shown in Figure 1212. This results in decreased speed-ups and smaller (or even positive) flow inclination 

angles on the downwind side of the hill. In this flow pattern the lidar errors are reduced. However, the influence of atmospheric 

stability on the actual lidar error in complex terrain needs more investigation and the result presented in this study can only be 

seen as a starting point for this. Different atmospheric conditions are often related to specific wind directions. It is therefore 645 

very difficult to separate the effects of stability from those caused by complex orography, roughness or vegetation. 

 

Generally, real complex terrain sites are characterized by a combination of different influencing parameters. As an example, 

atmospheric stability will have different effects on the actual lidar error at a forested site than at a site without forest. As forest 

increases the tendency for flow separation, this will most likely be more important in unstable situations – or could be 650 
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suppressed in stratified flow conditions (compare Figure 1212, right). For an accurate estimation of the lidar error at a given 

complex terrain site it is therefore necessary to gather complete information on local weather and atmospheric condition 

statistics as well as reliable surface data. This will help to provide a detailed terrain model and to setup model parametrization 

in a way that covers all relevant wind conditions. The results presented in this study will help to prioritize available model 

parameters and to decide on whether it is necessary to consider e.g. atmospheric stability or to acquire more accurate forest 655 

data. 

 

The separation of the total lidar error 𝜀 into the two parts 𝜀𝑐, induced by flow curvature and 𝜀𝑠, induced by local speed-up 

effects is presented in section 3.2. To the knowledge of the authors there is no comparable study in the literature so far. The 

study therefore allows for an in-depth analysis and discussion of the contribution of these two effects for the first time. 660 

Splitting up the lidar error shows that flow curvature is responsible for the main part, causing 70 to 90 % of the total error, 

slightly dependent on the 𝑧/𝐿 ratio. Figure 6 exemplarily shows the error separation for results from the potential flow model. 

In Klaas (2020) the error parts for the two other models and different parameterizations are analysed as well. Results are 

comparable and indicate that the flow curvature induced error always is the main part of the total error. However, based on the 

overall results it becomes clear that lidar error estimation methods should consider both effects: Flow curvature and speed-up 665 

to achieve accurate prediction of the lidar errors. 

Splitting up the total lidar error, allows to discuss and understand the effects of smaller half-cone opening angles of the lidar 

geometry than the default 30°. However, results for the total lidar error 𝜀 for three different half-cone opening angles (10, 20 

and 30°) show only small differences in the potential flow model (Figure 7). Looking at the error parts 𝜀𝑐 and 𝜀𝑠 reveals the 

complex dependency between the half-cone opening angle and the resulting lidar errors. While the speed-up part diminishes, 670 

because the measurement points move closer together, the flow curvature part is increased by approximately the same amount. 

The measurement points are moved to a location where flow inclination angles are slightly larger, which causes 𝜀𝑐 to increase. 

In total, the two parts cancel out, resulting in almost no influence of the half-cone opening angle on the lidar error in symmetric 

flow conditions. Contrary to that, results from a forested (and therefore asymmetric) case in Meteodyn WT in Figure 8Figure 

8 shows that a reduction of the half-cone opening angle can have significant influence on the total lidar error. Here, a reduction 675 

from 30 to 10° reduces the lidar error at 𝑧/𝐿 = 0.3 by about 1 percentage point and causes the same increase at 𝑧/𝐿 = 3. 

The present study relaxes the assumption of a linear change in vertical wind speed that is used in Bingöl et al. (2009) and 

allows for more complex flow pattern with nonlinear and asymmetric changes in the vertical wind speed, as it can e.g. be 

observed in forested and stable flow cases (compare Figure 1212). This also results in lidar error equations that include the 

half-cone opening angle as a relevant factor (see section 2.3). Based on these findings it might be interesting to study the 680 

possibility of optimizing the half-cone opening angle for specific sites and measurement heights in order to further reduce lidar 

errors in complex terrain. In any case, the results emphasize the need for correction methods that include the half-cone opening 

angle. Simplified methods or models, based on the assumption of symmetric flow are insufficient to cover the effects of forest 

or stability at complex terrain sites. 
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 685 

  

Figure 12: Streamlines in dependence of tree height 𝒉𝒕  (left) and atmospheric stability class (right) for an 𝑯/𝑳  ratio of 0.3. 

Streamlines from Meteodyn WT (coloured) and from the potential flow model (black) are starting at 𝒛 of 50, 100, 150 and 200 m in 

front of the hill. Lidar measurement points at 150 m measurement height with a 𝝋 of 30 ° are marked in red. 

 

A complete validation of all results of this study would be a challenging task. A possible approach for validation would be to 690 

find an isolated hill or ridge with a comparable shape and erect a tall reference mast on top of it. However, diverse model 

parameterizations for roughness and forest would make it necessary to validate the results on many different sites that reflect 

the actual parameters. Beyond that, variable atmospheric stability conditions would be essential to validate the wind flow 

modelling and the lidar error estimation for these situations.  

These requirements for a validation project are hard to meet. A general validation of the applicability of the used flow models 695 

can therefore be a first step to support the findings with regards to lidar error estimation. A validation of the potential flow 

model is carried at by Bradley (2012). For two complex terrain sites the results show a comparable quality of error estimation 

as with more detailed RANS CFD models. However, as there is no consideration of surface roughness, vegetation, flow 

separation or atmospheric stability influence on the wind flow, the applicability of the potential flow model is limited. 

WEng and WAsP are extensively used for wind energy application for more than 20 years (Mann et al., 2002). Validations 700 

show that the accuracy of wind flow modelling with WAsP is strongly dependent on the orographic complexity of the terrain. 

Generally speaking WAsP should only be applied in neutral atmospheric conditions and gentle terrain where no flow separation 

occurs (Bowen and Mortensen, 1996). Additionally, there is no forest model in WEng. Although the estimation of speed-ups 

and wind shear can be improved by the introduction of a displacement height, more complex effects, such as enhanced flow 

separation caused by the forest cannot be resolved (Dellwik et al., 2006). Validations for Meteodyn WT show that e.g. the 705 

speed-up effects for high slopes and rough surfaces can be estimated with more accuracy by such a model (Ayotte, 2008). The 

flow model has been tested against measurement data e.g. from Askervein hill showing a good agreement (Meteodyn, 2007). 
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However, a detailed further discussion of the flow models is beyond the scope of this study. An extensive review of flow over 

complex terrain is for example given in Finnigan et al. (2020), also including an overview over numerical modelling. 

 710 

5 Conclusion and outlook 

Following a non-dimensional approach, the study allows for a comprehensive analysis of the effects of orographic complexity, 

measurement height, terrain roughness, forest, atmospheric stability as well as the half-cone opening angle of the lidar device 

on the resulting lidar error 𝜀. Results and conclusions shown here do not represent the complete contents; the reader is therefore 

encouraged to study the full text of the dissertation for more and detailed information. Nonetheless, the presented results allow 715 

for a broad overview on the estimation of lidar errors in complex terrain by the use of flow models. 

 

Unsurprisingly, the orographic complexity of the terrain, i.e. the 𝐻/𝐿 ratio of the considered hill geometries has by far the 

most influence on the resulting lidar error estimations. For all models and parameterizations, the lidar error significantly 

increases with increasing 𝐻/𝐿 ratio. Depending on the flow model used, the lidar error becomes about 4-5 times larger when 720 

increasing the 𝐻/𝐿 ratio from 0.1 to 0.4. 

 

Beyond that, the study introduces a novel approach that separates the total lidar error 𝜀 into its parts 𝜀𝑐 and 𝜀𝑠 which are caused 

by flow curvature and local speed-up effects. Based on this concept, it becomes clear that under most circumstances both parts 

contribute significantly to the total lidar error. In any case, the major part is caused by flow curvature, i.e. 𝜀𝑐. However, the 725 

actual share of 𝜀𝑠 is dependent on the 𝑧/𝐿 ratio and 10-30% of the total error can be attributed to local speed-up effects between 

the probe volumes. Resulting from this, error correction approaches for Doppler lidar profilers should always take into account 

both effects to minimize uncertainty in error estimations. Simplified approaches that rely solely on flow curvature or inclination 

might very well underestimate the total lidar error for specific terrain properties. 

 730 

The non-dimensional concept of this study allows for a comprehensive assessment of the influence of measurement height on 

the lidar error. Initially, lidar errors strongly increase with increasing measurement height because the distance between the 

measurement points increases. Flow curvature and local speed-up effects come into play and both contribute to the total error. 

On the other hand, for very large measurement heights, the influence of the terrain on the overall flow field diminishes. As a 

trade-off between these two effects, maximum lidar errors occur at a 𝑧/𝐿 ratio of approximately 0.6. This complex interaction 735 

between measurement height and the actual terrain shape makes a detailed preliminary assessment of lidar errors for a 

measurement campaign at a given site and for the planned measurement heights mandatory. 
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Flow model parameterization has shown to be crucial for the estimation of lidar errors. This applies for terrain roughness, 

forest height and density as well as atmospheric stability and consequently for any combination of these. Generally speaking, 740 

rough and forested terrain decreases lidar errors. Correction approaches should therefore include forest models. From the 

results it can be concluded that, the potential flow and linearized flow models should only be applied for unforested sites with 

small low terrain inclinations. Under the presence of forest and especially for steep terrain inclinations, those models will 

significantly overestimate lidar errors, because they are not able to capture effects from e.g. flow separation in the lee of the 

hill. Atmospheric stability, in particular stable stratification, has significant influence on the lidar error estimation. Given a site 745 

with strong variations in atmospheric stability, this should also be considered in the lidar error estimation approach. However, 

these findings need to be researched in more detail in the future, especially under consideration of measurement data and 

information about atmospheric stratification. 

 

In literature, the half-cone opening angle is usually considered to have negligible effects on the lidar error (Bingöl, 2009; 750 

Foussekis, 2009; Bradley, 2012). However, the concept of separating the total lidar error into a flow curvature and a speed-up 

part, it is possible to assess the impact of changing the half-cone opening angle in more detail. The analysis reveals opposed 

effects of decreased half-cone opening angles on 𝜀𝑐 and 𝜀𝑠. This explains the small influence on the total error that has been 

observed in other studies. 

 755 

As an overall summary, it can be concluded, that the findings of this study clearly show that orographic complexity, roughness 

and forest characteristics, as well as atmospheric stability, have a significant influence on lidar error estimation. This study 

provides helpful guidance on the choice and parameterization of flow models as well as on the design of methods for lidar 

error estimation. The results emphasize that the use of a RANS CFD model in conjunction with an appropriate forest model is 

crucial to achievinge reasonable lidar error estimations in complex terrain. If atmospheric stability variation at a measurement 760 

site plays a key role, the influence on the flow characteristics will also significantly affect the lidar error at those sites and 

should be considered in the modelling. In the context of a wind resource assessment, an accurate estimation of the prospective 

lidar errors should be carried out before the measurement campaign. It is then possible to make an early decision on whether 

a lidar measurement is feasible at the given site. 

 765 

However, for a better validation of the findings, a broader basis of measurement data would be beneficial. Ideally, a 

measurement campaign with the specific purpose to validate the key findings of this study could be designed at and around a 

forested hill. The measurement site should be carefully chosen under consideration of the dimensions 𝐻 and 𝐿 of the hill 

parallel to the prevailing wind directions. Furthermore, the possible 𝑧/𝐿 ratios should be examined, so that the dependence of 

the lidar error on height can be validated. 770 
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In particular, with regards to atmospheric stability, three-dimensional terrain could enable an investigation of more complex 

flow patterns in different stability situations. Especially for stable stratification, where the flow could tend to stream around 

the hill, rather than over it, the results might be different for three-dimensional terrain (Leo et al., 2016). 

Additional and more complex flow features such as flow separation, which might occur in very complex terrain situations, 

have not been treated within the context of this study. For this, a non-stationary flow model could be used to analyse the 775 

influence of periodic recirculation phenomena behind escarpments. Such a model, together with more advanced turbulence 

modelling, could also help to explain the scatter that occurs in ten-minute values of lidar measurement errors in real-world 

applications. 
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