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Abstract. To accurately plan and manage wind power plants, not only does the time-varying wind resource at the site of

interest need to be assessed, but also the uncertainty connected to this estimate. Numerical weather prediction (NWP) models

at the mesoscale represent a valuable way to characterize the wind resource offshore, given the challenges connected with

measuring hub height wind speed. The boundary condition and parametric uncertainty associated with modeled wind speed

is often estimated by running a model ensemble. However, creating an NWP ensemble of long-term wind resource data over5

a large region represents a computational challenge. Here, we propose two approaches to temporally extrapolate wind speed

boundary condition and parametric uncertainty using a more convenient setup where a mesoscale ensemble is run over a short-

term period (1 year), and only a single model covers the desired long-term period (20 year). We quantify hub-height wind

speed boundary condition and parametric uncertainty from the short-term model ensemble as its normalized across-ensemble

standard deviation. Then, we develop and apply a gradient-boosting model and an analog ensemble approach to temporally10

extrapolate such uncertainty to the full 20-year period, where only a single model run is available. As a test case, we consider

offshore wind resource characterization in the California Outer Continental Shelf. Both the proposed approaches provide

accurate estimates of the long-term wind speed boundary condition and parametric uncertainty across the region (R2 > 0.75),

with the gradient-boosting model slightly outperforming the analog ensemble in terms of bias and centered root-mean-square

error. At the three offshore wind energy lease areas in the region, we find a long-term median hourly uncertainty between 10%15

and 14% of the mean hub-height wind speed values. Finally, we assess the physical variability of the uncertainty estimates. In

general, we find that the wind speed uncertainty increases closer to land. Also, neutral conditions have smaller uncertainty than

the stable and unstable cases, and the modeled wind speed in winter has less boundary condition and parametric sensitivity

than summer.
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1 Introduction

Offshore wind energy keeps increasing its market penetration as an inexpensive and clean source of energy. In some areas

of the world, such as Northern Europe, offshore wind represents a well-established source of electricity, with a total installed

capacity of about 15 GW, and a planned increase of up to 74 GW by 2030 (van Hoof, 2017). As the cost of offshore wind

energy has been decreasing faster than expected (Stiesdal, 2016; Brandily, Tifenn, 2020), many other regions are currently30

planning to adopt offshore wind energy solutions to meet their energy needs. The United States fall within this group, with

its offshore technical resource potential being estimated to be about twice the present national energy demand (Musial et al.,

2016). While one single 30-MW offshore wind power plant has been operating since 2016 (Deepwater Wind, 2016), many

other offshore wind plants are being planned, mostly concentrated along the Eastern Seaboard and the Outer Continental Shelf

(OCS) off the coast of California, for a total of about 86 GW installed capacity expected by 2050 (Bureau of Ocean Energy35

Management, 2018).

Such extensive growth requires an accurate long-term characterization of the offshore wind resource (Brower, 2012). Direct

observations of the wind resource offshore are sparse, and oftentimes limited to buoys, which offer measurements at very

limited heights. While the emergence of floating lidars is expected to provide better characterization of the wind resource at

wind turbine hub height (Carbon Trust Offshore Wind Accelerator, 2018; OceanTech Services/DNV GL, 2020), especially40

considering recent proposed innovations for wind speed vertical extrapolation (Bodini and Optis, 2020; Optis et al., in review),

their prohibitive costs still represent a major challenge. Given these constraints, numerical weather prediction (NWP) models

at the mesoscale are often used to obtain a continuous, in space and time, mapping of the available offshore wind resource at

the heights relevant for commercial wind power plant deployment.

Tens of billions of dollars will be invested in the U.S. offshore wind energy industry in the coming years. In order to45

minimize the financial risk associated with such major investments, not only is a characterization of the time-varying offshore

wind resource needed, but an assessment of the uncertainty connected to this numerical prediction is of primary importance.

A 1% uncertainty change in the mean wind resource translates to a 1.6%–1.8% uncertainty for the long-term wind plant

annual energy production (Johnson et al., 2008; White, 2008; Holstag, 2013; Truepower, 2014), with a significant increase in

the interest rates for new project financing. However, assessing the uncertainty in modeled wind speed is a problematic task.50

NWP model ensembles tend to lead to an underdispersive behavior (Buizza et al., 2008; Alessandrini et al., 2013), so that

only a limited component of the actual wind speed error with respect to observations can be quantified. The full uncertainty

in NWP-model-predicted wind speed can be quantified only when direct observations of the wind resource are available. In

this scenario, the residuals between modeled and observed wind speed can be calculated, and the model error is quantified in

terms of its bias (i.e., the mean of the residuals) and uncertainty (i.e., the standard deviation of the residuals). The obtained55
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model uncertainty would then be added to the inherent uncertainty of the wind speed measurements by using a sum of squares

approach (JCGM 100:2008, 2008). However, as we have already mentioned, direct observations of the wind resource are not

always readily available, especially offshore, so that other ways to quantify at least specific components of the full wind speed

uncertainty are needed.

When considering NWP models, the choices of the model setup and inputs have a direct impact on the model wind speed60

prediction, and therefore on its uncertainty. Hahmann et al. (2020) recently provided a detailed analysis of the sensitivity in

wind speed predicted by NWP models, as part of the development of the New European Wind Atlas. Among the various sources

of uncertainty, the choices of the planetary boundary layer (PBL) scheme (Ruiz et al., 2010; Carvalho et al., 2014a; Hahmann

et al., 2015; Olsen et al., 2017) and of the large-scale atmospheric forcing (Carvalho et al., 2014b; Siuta et al., 2017) have been

shown to have a major impact. Model resolution (Hahmann et al., 2015; Olsen et al., 2017), spin-up time (Hahmann et al.,65

2015) and data assimilation techniques (Ulazia et al., 2016) have also been shown to contribute to the wind speed sensitivity.

The variability of modeled wind speed that derives from all the different model choices leads to what we will call boundary

condition and parametric uncertainty of the modeled wind speed. Optis et al. (2021) recently explored best practices for

quantifying and communicating NWP-modeled wind speed boundary condition and parametric uncertainty offshore. In their

approach, an ensemble of Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) simulations is created by70

considering different WRF versions, namelists, and external forcings, and the wind speed boundary condition and parametric

uncertainty is then quantified in terms of its across-ensemble variability. The use of numerical ensembles for uncertainty

quantification is not exclusive to the wind energy community, as it has been extensively applied in ample spectrum fields

(e.g., Zhu (2005); Parker (2013); Murphy et al. (2004)). However, running a NWP ensemble across a large region and for the

long-term period needed for an accurate characterization of the naturally varying wind resource is computationally prohibitive,75

and innovative and more computationally efficient ways are needed to quantify some components of the long-term wind speed

uncertainty.

Here, we consider wind speed characterization in the California OCS, and we propose and compare two innovative tech-

niques for modeled wind speed long-term boundary condition and parametric uncertainty quantification. To do so, we consider

a setup that is computationally more affordable, wherein WRF ensembles are only run over a short period (1 year), and are80

accompanied by a single, long-term (20 years) WRF simulation. First, we use a machine-learning algorithm to temporally

extrapolate the WRF-based boundary condition and parametric uncertainty from the ensemble year to the full 20-year period.

While machine learning has been successfully applied to various atmospheric (e.g., Xingjian et al. (2015); Gentine et al. (2018);

Bodini et al. (2020)) and wind-energy-related (e.g., Clifton et al. (2013); Arcos Jiménez et al. (2018); Optis and Perr-Sauer

(2019)) problems, this represents, to the authors’ knowledge, its first application for NWP uncertainty extrapolation. We com-85

pare the machine-learning-based approach with the predictions from the analog ensemble (AnEn) technique (Delle Monache

et al., 2013) to quantify uncertainty in the wind resource from the variability in modeled cases with similar atmospheric condi-

tions. Typical applications of AnEn include renewable energy probabilistic forecast, for both solar (Alessandrini et al., 2015a,

b; Cervone et al., 2017) and wind (Junk et al., 2015; Vanvyve et al., 2015) energy. The use of AnEn for long-term offshore

wind speed uncertainty quantification represents a novel application of the technique.90
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Figure 1. Map of the inner domain of the WRF numerical simulations for the California OCS. The current three wind energy lease areas are

shown in red.

In the remainder of this paper, we describe the experimental setup and our proposed methods to quantify and temporally

extrapolate modeled wind speed boundary condition and parametric uncertainty in Section 2. Section 3 validates the techniques

used, and compares the mean long-term predictions from the two approaches. Also, we discuss physical insights into the main

drivers for offshore wind speed boundary condition and parametric uncertainty. Finally, we conclude and suggest future work

in Section 4.95

2 Data and Methods

2.1 Numerical simulation setup

We consider a 20-year numerical data set recently developed by the National Renewable Energy Laboratory to provide accurate

cost estimates for floating wind in the California OCS (Figure 1). As described in detail in Optis et al. (2020), this product

includes a single WRF setup that is run for a 20-year period (2000-2019), and an additional 15 WRF ensemble members100

run over a single year (2017), which were selected because of strong data coverage from the network of buoy and coastal

radar observations used for model validation. All of the simulations are run with the common attributes in Table 1. A total of
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Table 1. Common specification for all of the WRF runs considered in the analysis.

Feature Specification

WRF version 4.1.2

Nesting 6 km, 2 km

Vertical levels 61

Atmospheric nudging Spectral nudging on a 6-km domain, applied every 6 hours

Microphysics Ferrier

Longwave radiation Rapid radiative transfer model

Shortwave radiation Rapid radiative transfer model

Topographic database

Global multiresolution terrain elevation data

from the United States Geological Service

and National Geospatial-Intelligence Agency

Land-use data Moderate resolution imaging spectroradiometer 30s

Cumulus parameterization Kain-Fritsch

over 200,000 grid cells are included in the WRF inner domain, which we consider in our uncertainty analysis. The 16 WRF

ensemble members are constructed based on variations of boundary conditions and key WRF model parameters that previous

research determined to have a primary impact on modeled wind speed:105

– Reanalysis forcing product: selected between ERA5, developed by the European Centre for Medium-Range Weather

Forecasts (Hersbach et al. (2020)), and the Modern-Era Retrospective analysis for Research and Applications, Version 2

( Gelaro et al. (2017)), developed by the National Aeronautics and Space Administration.

– PBL parameterization: chosen between the Mellor-Yamada-Nakanishi-Niino (MYNN, Nakanishi and Niino (2004)) and

the Yonsei University (Hong et al. (2006)) schemes.110

– Sea surface temperature product: selected between the Operational Sea Surface Temperature and Sea Ice Analysis (OS-

TIA) data set produced by the UK Met Office (Donlon et al., 2012) and the National Center for Environmental Prediction

Real-Time Global product.

– Land surface model: chosen between the Noah model and the updated Noah multiparameterization model (Niu et al.,

2011).115

The setup we chose to use for the single long-term WRF run is the result of a validation process. We compared and validated

the 16 model setups with observations from buoys from the National Data Buoy Center and coastal radar measurements from

the National Oceanic and Atmospheric Administration profiler network. While these are the only observations in the area

available for model validation, these data sets cannot be used for quantifying the model uncertainty in wind speed. In fact, both

data sources have significant limitations that do not allow for a direct comparison with offshore WRF data at heights relevant120
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for wind energy development. On one hand, buoys only measure wind speed close to the water level, which can have a very

different regime than the hub-height winds. On the other hand, the coastal radars measure at more relevant heights for wind

energy, but only at the interface between the ocean and land. Results from the validation (whose details can be found in Optis

et al. (2020)) revealed that the WRF setup providing the most accurate results is the one using ERA5 as reanalysis product,

MYNN as a PBL scheme, OSTIA as an SST product, and Noah as a land surface model. Therefore, we selected and adopted125

this WRF setup for the single 20-year WRF run.

In our analysis, we use hourly average data, and we quantify the WRF wind speed boundary condition and parametric sen-

sitivity in terms of the across-ensemble standard deviation of the WRF-predicted 100-m wind speed at any hour, t, normalized

by the hourly average 100-m wind speed itself:

σWS(t) =
1
N

∑N
i=1

(
WSi(t)−WS(t)

)2

WS1(t)
(1)130

where WSi is the mean hourly 100-m wind speed from each ensemble member, WS is the mean hourly wind speed averaged

across the 16 ensemble members, WS1 is the mean hourly 100-m wind speed from the WRF control run (i.e., the one used for

the long-term period), and N = 16 is the total number of WRF ensemble members. Within a numerical ensemble framework,

the use of (normalized) standard deviation as a primary uncertainty metric has been recommended by Optis et al. (2021), as it

provides more consistent estimates than the ensemble interquartile range. While we acknowledge that our quantification of the135

WRF wind speed boundary condition and parametric sensitivity is going to be limited by the finite number of choices made to

construct the ensemble members, we note how the considered set of settings represents either state-of-the-art products or the

most popular and widely accepted choices for WRF applied to wind resource characterization. In the next sections, we present

the two approaches we propose to temporally extrapolate this boundary condition and parametric uncertainty from 2017 (i.e.,

the only year where the uncertainty can be directly calculated from the WRF ensemble members) to the remaining 19 years.140

2.2 Machine-learning approach

The first approach we use to temporally extrapolate the boundary condition and parametric uncertainty in 100-m modeled

wind speed is a machine-learning gradient-boosting model (GBM) (Friedman, 2002). We select a GBM because ensemble-

based algorithms are known to provide robust and accurate predictions in nonlinear problems. Moreover, we have tested a set

of other machine-learning algorithms (random forest, generalized additive model), and the GBM provided the lowest prediction145

error. With this approach, at each of the more than 200,000 grid cells, we train the model on calendar year 2017 to predict the

WRF across-ensemble standard deviation of hourly average 100-m wind speed, normalized by the hourly average 100-m wind

speed itself (Eq. 1). We then apply the trained model to quantify the modeled wind speed boundary condition and parametric

uncertainty in the remaining 19 years where only the single WRF run is available (Figure 2). The input features we use to feed

the GBM are all taken (as hourly averages) from the single WRF setup that is run for the full 20-year period, and are:150

– Wind speed at 100 m aboveground level (AGL)
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 1999 Jan 1 2019 Dec 31 
2017 

Time 

Figure 2. Qualitative illustration of the concept used to temporally extrapolate the 100-m modeled wind speed boundary condition and

parametric uncertainty through the proposed machine-learning and analog ensemble approaches. Wind speed uncertainty is directly quantified

as its WRF across-ensemble normalized standard deviation (Eq. 1) on the single year in which ensembles were run, and then extrapolated to

the remaining 19 years, which were run with only a single WRF setup, using the proposed GBM and AnEn approaches.

– Sine and cosine1 of wind direction at 100 m AGL

– Air temperature at 40 m AGL

– Wind shear coefficient calculated between 10 and 200 m AGL

– Inverse of Obukhov length at 2 m AGL155

– 100-m wind speed standard deviation calculated from the preceding 2 hours

– 100-m wind speed standard deviation calculated from the preceding 6 hours

– Sine and cosine1 of the hour of the day

– Sine and cosine1 of the month.

The distribution of these variables is presented and discussed in Section 3.1. We acknowledge that correlation exists between160

some of the input features used. However, we found that including all the features produced the best model accuracy. Also,

principal component analysis could be applied to reduce the number of features used, but it is beyond the scope of our analysis.

1Sine and cosine are used to preserve the cyclical nature of this feature. Both are needed because each value of sine only (or cosine only) is linked to two

different values of the cyclical feature.
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Table 2. Hyperparameters considered for the gradient-boosting model.

Hyperparameter Meaning Sampled Values

Number of estimators Number of trees in the forest 100–300

Learning rate
Rate by which the contribution

of each tree is shrunk
0.05–1

Maximum depth Maximum depth of the tree 4–10

Maximum number of features
Number of features to consider

when looking for the best split
1–7

Minimum number of samples to split
Minimum number of samples

required to split an internal node
2–20

Minimum number of samples for a leaf
Minimum number of samples

required to be at a leaf node
1–20

The learning algorithm is trained using the root-mean-square error (RMSE) as a performance metric to tune the algorithm

weights. To avoid overfitting, we implement regularization during the training of the learning algorithm, using the hyperpa-

rameters and value ranges listed in Table 2. At each site, we sampled 20 combinations of hyperparameters using a randomized165

cross validation. More details about the validation of the results from the proposed approach are given in Section 3.1.

2.3 Analog ensemble approach

The second approach we use to quantify and extrapolate modeled wind speed boundary condition and parametric uncertainty

is based on the AnEn approach. At each site and for each hour (hereafter referred to as the "target hour") , the AnEn considers

a set of atmospheric variables, which are consistent between the AnEn and the machine-learning approach, in a 3-hour window170

centered on the considered time stamp. Then, the AnEn looks for analog atmospheric conditions at the considered site using

data from the single long-term WRF setup for year 2017. More in detail, the multivariate atmospheric state within the consid-

ered time window is compared with the atmospheric conditions modeled by the long-term WRF setup in all of the 3-hour time

windows in 2017. For each hour in 2017, the AnEn calculates a similarity metric, formally defined as a multivariate Euclidean

distance measure (Delle Monache et al., 2013):175

‖Ft,At′‖=
N∑

i=1

ωi

σi

√ ∑

j=−1,0,1h

(Fi,t+j −Ai,t′+j)
2
, (2)

where F is the WRF-modeled atmospheric state at the search window centered at time, t (where t varies over the full 20-year

period);A is the WRF-modeled atmospheric state over a window centered at time, t′ (where t′ varies in 2017);N is the number

of atmospheric variables being considered to identify the analogs; ωi is the predictor weight associated with the atmospheric

variable, i; and σi is the standard deviation of the atmospheric variable, i, calculated over the search period.180
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Table 3. Variability of the RMSE of two weight optimization schemes: site-specific optimization and general domain optimization.

Location
Variability RMSE (m/s)

Site-specific optimization General domain optimization

Morro Bay 0.5709 0.5723

Diablo Canyon 0.5523 0.5548

Humboldt 0.7240 0.7261

Once the similarity metric is calculated for all of the hours (t′) in 2017, the m analog hours with the highest similarity

are selected to form the analog ensemble. Finally, the WRF-modeled across-ensemble 100-m wind speed standard deviation

for each analog hour is considered. The average of these m values, normalized by the 100-m wind speed at that target hour

from the single long-term WRF run, is then used as the AnEn extrapolated uncertainty to associate with the initial target hour.

As previously mentioned, the AnEn approach is then repeated at each grid cell in the domain and target hour to generate a185

m-member ensemble forecast for the full long-term period.

The results from the AnEn approach are sensitive to the predictor weights, ωi, and the number of analog members, m (Junk

et al., 2015; Alessandrini et al., 2019). Therefore, the AnEn approach first needs to be trained to determine the optimal values

of these parameters, which maximize the accuracy of the AnEn predictions. In doing so, we use RMSE between 2017 AnEn-

predicted and WRF-predicted wind speed uncertainty as the score metric for the optimization process. Training AnEn at each190

grid cell over our large domain is a computationally challenging task (Hu et al., 2021a). Therefore, we explore whether the

same number of analogs and a single combination of optimized weights can be used over the whole domain. First, we perform

a site-specific weight optimization at three sites, one for each wind energy lease area in the California OCS (Figure 1). Then,

we alternatively tune a single combination of weights for all three sites, and we refer to this second approach as the general

domain optimization. We compare the RMSE values from the two approaches in Table 3. At each site, the RMSE from the195

general domain optimization is only slightly higher (< 0.5% increase) than that from the much more expensive site-specific

optimization. Therefore, we select the optimal number of analogs (m= 16, notably the same as the number of WRF ensemble

members) and weights resulting from the AnEn training at the three sites all together. The optimal weights are listed in Table

4.

3 Results200

3.1 Validation of the proposed approaches

As a first step, we need to assess the accuracy and validity of our proposed approaches for the wind speed boundary condition

and parametric uncertainty extrapolation. As an initial validation step, we compare the distributions of the atmospheric variables

used as inputs to the machine-learning and AnEn algorithms for 2017 with what is found in the full 20-year period. In fact, in

order for both approaches to be accurate, it is essential that the considered atmospheric variables in 2017 (i.e., where the models205
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Table 4. Optimal weights associated with each physical variable in assessing the closeness of the match metric to identify the analogs.

Physical Variable AnEn Weight

Wind speed at 100 m AGL 0.2

Wind direction at 100 m AGL 0.1

Temperature at 40 m AGL 0.1

Inverse of Obukhov length at 2 m AGL 0

Standard deviation of 100-m wind speed over preceding 6 hours 0.2

Standard deviation of 100-m wind speed over preceding 2 hours 0.2

Shear exponent calculated between 200 m and 10 m AGL 0.2

are trained) experience a range of variability representative of the full 20-year period (i.e., where the models are applied). By

qualitatively comparing the distributions of the seven atmospheric variables at one of the three wind energy lease areas (Figure

3), the variability found in 2017 appears similar to what is found in the long-term 20-year period. To quantitatively confirm this,

we apply a Levene’s test (Levene, 1961) to assess the equality of the variances of the two samples (2017 vs. 20-year period)

for each atmospheric variable. We find that for all the seven variables, the null hypothesis of homogeneity of variance cannot210

be rejected (with p-values <0.05), thus confirming that it is highly unlikely that the variability found in 2017 is significantly

different from the variability in the long term. Similar results are found at the two other wind energy lease areas (figures not

shown).

After proving that the basic assumptions of the proposed approaches are validated by the data, we need to test the accuracy of

their predictions. To do so, at each grid cell we quantify the mean bias, centered or unbiased root-mean-square error (cRMSE),215

and coefficient of determination, R2, between the machine-learning or AnEn predictions and the actual WRF ensemble vari-

ability. For the machine-learning approach, we calculate these error metrics over a testing set, obtained by training the learning

algorithm on 80% of the 2017 data, and then testing it on the remaining 20%. To minimize the effects of the autocorrelation

in the data, we select the testing set without shuffling the data. Also, to test the algorithm on the full seasonal variability of

the atmospheric variables, we create the test set by selecting a contiguous 20% of data for each month in 2017. We compare220

these results with the three error metrics calculated when applying the AnEn approach, at each grid cell, for 2017. The maps

of the various error metrics for the two approaches are shown in Figure 4. In general, the maps show how both approaches are

capable of providing accurate predictions of the WRF boundary condition and parametric uncertainty across the whole offshore

domain. We find that the uncertainty predicted by the machine-learning model has a negligible bias (which is expressed as a

percentage of the mean wind resource, the same as our normalized uncertainty metric) throughout the domain, whereas the225

uncertainty predictions from the AnEn approach are, on average, slightly lower than the WRF ensemble variability, with dif-

ferences less than 3% at the three wind energy lease areas. The bias from the AnEn approach is likely because of the reduced

length of the search period (1 year), which might be too limited for identifying a significant number (16) of analogs. This

setup constrains the AnEn ability to account for rare events (e.g., particularly high-wind-speed cases) when looking for similar
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Figure 3. Distributions of the atmospheric variables considered as inputs to the machine learning and AnEn algorithms from 2017 only and

from the full 20-year period for a single site within the Humboldt wind energy lease area. Data are expressed in terms of their probability

densities.

atmospheric conditions in such a short repository. Applying the bias correction proposed in Alessandrini et al. (2019) or using230

a machine-learning similarity for analog definition (Hu et al., 2021b) would likely reduce the AnEn bias. The machine-learning

approach also provides lower error after the bias is removed, especially closer to the coast, where the AnEn approach has local

cRMSE values as high as 40%. On the other hand, we see that the AnEn approach provides a slightly stronger correspondence

with the WRF data, with R2 > 0.80 at the vast majority of the sites, whereas for the machine-learning model, R2 > 0.75, with

slightly lower values near the coast.235

11

https://doi.org/10.5194/wes-2021-33
Preprint. Discussion started: 11 May 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 4. Map of testing bias, cRMSE, and R2 determination coefficient from the GBM model (left) and the AnEn approach (right). The

wind energy lease areas are highlighted in red.
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Figure 5. Median hourly boundary condition and parametric uncertainty for the 100-m wind speed, as derived from the machine-learning

approach (a), the analog ensemble (b), and the difference between the two (c).

3.2 Analysis of extrapolated wind speed boundary condition and parametric uncertainty

Now that the accuracy of both the proposed approaches has been assessed, we can analyze their long-term results. Figure 5

shows maps of the long-term median hourly boundary condition and parametric uncertainty for the 100-m wind speed predicted

by the two proposed techniques, as well as the difference between the two. A strong agreement between the two approaches

clearly emerges, with the AnEn approach predicting slightly lower values, as discussed from the analysis of the mean bias in240

Figure 4. In general, we find a larger uncertainty close to land, with values locally greater than 30% of the mean wind speed,

whereas in open waters the median hourly uncertainty is smaller than 10% of the WRF-predicted wind speed. The difference

between the median prediction from the two approaches also gets larger close to the land. For the current three wind energy

lease areas in the region, the machine-learning approach quantifies a long-term median hourly uncertainty between 12% and

14% at all three sites. On the other hand, the AnEn approach provides slightly lower values, between 10% and 13%, again with245

little variability across the three sites.
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Figure 6. Seasonal deviation in median hourly normalized uncertainty in 100-m wind speed for winter (December, January, February) and

summer (June, July and August), as derived from the machine learning approach (left) and the Analog Ensemble (right).

When focusing on offshore wind energy development, additional considerations are needed to understand how modeled

wind speed uncertainty varies for the most relevant scenarios for energy production. When segregating data, having a long-

term record allows for robust assessments of the variability among the considered classifications, which might otherwise have

been much murkier when considering data from a short-term period only. Therefore, the twenty-fold increase of the size of the250

uncertainty data set provided by our proposed approaches brings an essential advantage to this direction.

Seasonality has a primary importance for the energy market, especially in a region such as California, with a strong peak in

annual demand in summer, which recently led to detrimental rolling blackouts in the region. In this fragile scenario, assessing

the uncertainty in the naturally varying long-term wind speed predictions could help assess the value that offshore wind energy

can deliver to the California energy market, and achieve more accurate planning of the balance between supply and demand.255

Figure 6 compares maps of the seasonal deviation in median hourly normalized uncertainty for the 100-m wind speed in winter

(December, January, February) and summer (June, July and August). For each season, the values shown are the difference

between the median hourly uncertainty for that specific season and the overall median value (i.e., what is shown in Figure 5).

For most of the considered domain, we find a larger sensitivity in WRF-predicted wind speed in the winter months, with the

GBM showing a slightly larger seasonal deviation than the AnEn approach. At the Morro Bay and Diablo Canyon lease areas,260
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Figure 7. Daily distribution of atmospheric stability at the Humboldt wind energy lease area, as determined from the bulk Richardson number

calculated over the lowest 200 m from the 20-year WRF simulation.

the median winter uncertainty is between 2% and 8% larger than the annual median at the same locations. On the other hand,

the Humboldt lease area shows a near-zero winter deviation, with the machine-learning approach predicting slightly increased

winter uncertainty values, and AnEn predicting slightly negative ones. We find opposite results when considering the more

energy-demanding summer months. Both Morro Bay and Diablo Canyon show a lower boundary condition and parametric

uncertainty in summer, with a difference from their annual median values smaller than 4%. On the other hand, negligible265

variability is observed at the Humboldt lease area. We note that spring and fall months displayed intermediate results when

compared to summer and winter (figures not shown).

Finally, we quantify the impact of different stability regimes on the long-term wind speed uncertainty. Various approaches to

classify atmospheric stability offshore have been proposed and applied offshore (e.g., Archer et al. (2016)), including the shape

of the wind speed profile, the use of the Richardson number, and of turbulent kinetic energy. Here, we classify atmospheric270

stability based on the bulk Richardson number, RiB , calculated over the lowest 200 m, as done in Rybchuk et al. (2021) for

the same data set:

RiB =
g z200 (θ200− θ0)

0.5 (θ200 + θ0) WS2
200

(3)

where g = 9.81 m s−2 is the acceleration caused by gravity, z200 = 200 m, θ is potential temperature (K), and WS200 is the

200-m wind speed (m s−1). We consider stable conditions for RiB > 0.025, unstable conditions for RiB <−0.025, and near-275

neutral conditions otherwise. Figure 7 shows a histogram of the diurnal variability of the three stability regimes at the Humboldt

wind energy lease area. We see a predominance of near-neutral and stable conditions, with a very weak diurnal variability.

Similar conditions are found at the other two wind energy lease areas. The maps in Figure 8 quantify how wind speed boundary

condition and parametric uncertainty varies as a function of atmospheric stability. For each atmospheric stability class, the

values shown are the difference between the median hourly uncertainty for that specific stability condition and the overall280

median value (i.e., what is shown in Figure 5). The proposed approaches show a remarkable agreement. Neutral conditions
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Figure 8. Deviation in median hourly normalized uncertainty for the 100-m wind speed from the annual median, for different atmospheric

stability regimes, as derived from the machine-learning approach (left) and the AnEn approach (right).

show the lowest boundary condition and parametric uncertainty. At the three wind energy lease areas, we find uncertainty

values about 2%-4% lower than the overall median in near-neutral conditions. On the other hand, the rare unstable cases show

the largest uncertainty, with deviations up to +10% from the median at the considered wind energy lease areas. Finally, stable

conditions also show positive deviations in uncertainty throughout the considered domain, with differences on the order of285

+2-5% at the wind energy lease areas.
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4 Conclusions

As offshore wind energy becomes a widespread source of clean energy worldwide, the importance of having an accurate, long-

term characterization of the offshore wind resource is crucial, not only in terms of its mean value, but also of the uncertainty

associated with this estimate. In our analysis, we focused on the California Outer Continental Shelf (OCS), where a significant290

offshore wind energy development is expected in the near future, to propose innovative techniques to temporally extrapolate

hub-height wind speed boundary condition and parametric uncertainty from a short-term Weather Research and Forecasting

(WRF) ensemble to a long-term single WRF run. First, we propose a gradient-boosting model algorithm, in which a regression

model is trained over the short-term WRF ensemble to predict its variability and then applied to the long-term single WRF

run. We compare this technique with an analog ensemble (AnEn) approach, wherein the extrapolated uncertainty for each time295

stamp in the long-term run is calculated by looking for similar atmospheric conditions within the short-term WRF ensemble.

Adopting our proposed approaches for uncertainty extrapolation helps save significant computational resources as the desired

long-term boundary condition and parametric uncertainty information can be derived from a much simpler setup wherein the

computationally expensive numerical ensembles are only run over a short-term period.

We find that both our proposed approaches agree well with the WRF ensemble variability, thus providing a robust repre-300

sentation of the long-term wind speed boundary condition and parametric uncertainty. While AnEn has a slightly larger R2

coefficient with the WRF across-ensemble data, we find that the gradient-boosting model has lower bias and centered root-

mean-square error. However, we expect the AnEn performance to improve if the bias correction for rare events proposed in

Alessandrini et al. (2019) is incorporated in the analysis. In general, we find that the offshore wind speed boundary condition

and parametric uncertainty increases near the coast, especially for stable and unstable conditions. On average, the hourly un-305

certainty at the current three wind energy lease areas in the California OCS is between 10% and 14% of their mean hub-height

wind speed. Summer months also experience lower uncertainty, which will benefit the energy planning in a season with a

strong demand, which has, in the past, led to detrimental rolling blackouts.

Clearly, the magnitude of the boundary condition and parametric uncertainty component that we quantified in our analysis

is strictly connected to the (limited) number of choices sampled within the considered model setups. Given this underdisper-310

sive behavior of the numerical weather prediction ensembles (Buizza et al., 2008; Alessandrini et al., 2013), we expect the

uncertainty quantified from our ensemble to be lower than the model error with respect to measurements. Still, we note that

the same caveat would apply if the uncertainty was directly quantified by running a long-term numerical ensemble, and thus

the computational advantages of our proposed approaches still hold. Moreover, we emphasize how the choices made to build

our numerical ensemble represent either state-of-the-art resources or the most widely accepted choices within the wind energy315

modeling community. Also, a quantification and temporal extrapolation of the full uncertainty in modeled wind speed would

require concurrent observations (and the knowledge of the inherent uncertainty associated with them) to be computed. Given

all these considerations, many opportunities exist to further expand our work. While floating lidars with publicly available data

have only been deployed in the California OCS very recently, a few lidars have been deployed off the U.S. Eastern Seaboard

for more than 1 year. Our analysis could be expanded by first comparing the WRF-related boundary condition and paramet-320
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ric uncertainty with the full modeled wind speed uncertainty calculated by comparing WRF data and observations. Then, our

proposed approaches could be expanded to temporally extrapolate the full modeled wind speed uncertainty; for example, quan-

tified in terms of the variability of the residuals between modeled and observed wind. Also, the site specificity of the proposed

approaches would need to be investigated to understand if a learning model trained at a site e.g., one ocean basin) can still

provide accurate predictions when applied at a different location. Finally, analog-based techniques could be applied onshore,325

where the impact of more complex topography would likely need to be taken into account and incorporated in the algorithms.

Code and data availability. Data from the WRF simulations over the California OCS are available at https://developer.nrel.gov/docs/wind/

wind-toolkit/offshore-ca-download/. The code for the considered machine-learning model is available at https://github.com/nbodini/ML_
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