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Abstract. This paper presents a method to calculate offshore wind power at turbine hub height from Sentinel-1 Synthetic 

Aperture Radar (SAR) data using machine learning. The method is tested in two 70 km x 70 km areas off the Dutch coast 10 

where measurements from Doppler wind Lidars installed at the sea surface measurements from commercial instruments 

deployed for offshore wind energy site investigations Lidar measurements are available and can be used as a reference. Firstly, 

SAR wind speedss at surface level are improved with a machine learning algorithm using geometrical characteristics of the 

sensors and parameters related to the atmospheric stability extracted from a high-resolution numerical model. The SAR wind 

speed bias against Lidar measurements at 10 m above sea level is reduced from -0.42 m s-1 to 0.02 m s-1 , and its standard 15 

deviationRMSEstandard deviation from 1.41 m s-1 to 0.98 m s-1. After improvement, SAR surface wind speeds are extrapolated 

at higher altitudes with a separate machine learning algorithm trained with the wind profiles measured by the Lidars and 

additional parameters from the high-resolution numerical model. We show that, if profiling Lidars are available in the area of 

study, these two steps can be combined into a single one, in which the machine learning algorithm is trained directly at turbine 

hub height. Once the wind speed at turbine hub height is obtained, we assume the presence of an 810 MW turbine with a 20 

simplified typical power curve. the Thehe extractible wind power is  calculated by obtaining the wind speed Weibull 

distribution using with the method of the moments, and ato obtain the wind speed Weibull distribution, which is thenand then 

multiplying it  multiplied by the turbine power curve. The results are given assuming an 8 MW turbine typical power curve. 

The accuracy of the extractible wind power derived from SAR data when compared with Lidar measurements is ±(il ne maque 

pas qqch ici ?) in the range ± 33 - 4% when compared with Lidars. The additional error due to SAR satellites low temporal 25 

sampling is estimated at ±2%, but this error can be easily removed by using a numerical model to simulate the satellites’ 

passages and estimating it for this typical turbine. ThenFinally, wind power maps at 200 m are presented and compared with 

the raw outputs of the numerical model at the same altitude. The maps based on SAR data have a much better higher level of 

details, in particular regarding especially for the coastal wind gradient. The new revealed patterns show differences with the 

numerical model of as much as 10% in some locations over distances of the order of 20 km. We conclude that SAR data 30 
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combined with a high-resolution numerical model and machine learning techniques can improve the wind power estimation at 

turbine hub height, and thus provide useful insights for optimizing wind farm siting and risk management. 

 

 

1 Introduction 35 

Estimating the available extractible offshore wind power at turbine hub height is a challenging problem due to the difficulty 

in measuring the wind profile in the boundary layer over the sea. Currently, two main methods are used to estimate the offshore 

extractible power at hub heighit:  is estimated by using numerical models and/or Doppler wind floating Lidars installed at the 

sea surface pointing upwards (NREL, 2020). Floating Lidars provide direct measurements of the complete wind profile at one 

location with a high temporal sampling, but they are very expensive to operate. Therefore, only one or two are typically used 40 

to sound large areas. Conversely, numerical models provide outputs over the entire area of interest. However,,  they are not 

capable of resolving small scale phenomena due to their physics and resolution. As a result, their errors are not precisely known 

and may vary in time and space. This is particularly relevantproblematic in coastal areas where processes are more complex 

and where the wind gradient is stronginvolve smaller scales.  

but they tend to flatten heterogeneities and extremes. Moreover, their errors are not precisely known, primarily because of the 45 

lack of representation of sub-grid processes. As a resultDue to these limitations, considerable uncertainty remains about actual 

offshore wind resources, which can affect wind farm project planning and management. This is particularly relevant in coastal 

areas where processes are more complex and where the wind gradient is strong. 

The need to improve wind speed assessment, and thus estimating more precisely wind power availability throughout wind 

farms’ life cycle, has led to a growing interest in using remote sensingsatellite data to estimate wind resources (see, e.g., 50 

Hasager et al., 2015). Contrary to ground-based Lidars, spaceborne sensors have the advantage of sounding large areas with 

high spatial resolution. However, they are not perfect: their revisit period is typically low long (a couple of days for Sentinel-

1 in Europe, for example), and they use an indirect measurementmeasurement based ons by estimating the offshore surface 

wind from the sea state Radar backscatter. Therefore, their measurements are impacted by several sources of potential error 

(low temporal sampling, sensor geometry, currents, algae, bright targets, rain cells, bathymetry, turbulence, etc.). Moreover, 55 

the extrapolation of their measurements from the sea surface to hub height is not an easy task due to the variety of 

meteorological conditions that may impact the wind speed extrapolation ratio.  

Several studies have already attempted to assess offshore wind power potential with spaceborne scatterometers, such as ERS-

1, ERS-2, NSCAT, QuickSCAT, and ASCAT (Sánchez et al., 2007; Pimenta et al., 2008; Karagali et al., 2014; Bentamy and 

Croize-Fillon, 2014; Remmers et al., 2019). However, the resolution of these instruments is at best 12.5 km2, which is not 60 

adapted to coastal areas due to land contamination. In this context, Synthetic Aperture Radar (SAR) satellites are an interesting 

alternative because wind products derived from their measurements have a much finer resolution of 1 km. The potential of 
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SAR data has already been assessed by numerous studies (Hasager et al., 2002; Hasager et al., 2005; Hasager et al., 2006; 

Christiansen et al., 2006; Hasager et al., 2011; Hasager et al., 2014; Chang et al., 2014; Chang et al., 2015; Hasager et al., 

2020). However, validating SAR measurements with in-situ data has been limited (Ahsbahs et al., 2017; Badger et al., 2019; 65 

de Montera et al., 2020; Ahsbahs et al., 2020) and these studies concluded that important biases remained.  (in the context of 

this study, the term ‘in-situ instruments’ includes profiling Lidars, although technically they use remote sensing).Therefore, 

more research is needed to improve the estimation of wind resources at hub height with SAR data and convince the industry 

to use them. 

Regarding Concerning tTthe extrapolation of the surface wind speeds to higher altitudes, , interesting methods have been 70 

proposed in the literature based on power laws or the statistical theory of turbulence (Grachev and Fairall, 1996; Hsu et al., 

1994; Badger et al., 2016); however, the problem has not been satisfactorily resolved and becomes increasingly critical as the 

typical height of windmills increases. Therefore, more research is needed to improve the estimation of wind resources at hub 

height with SAR data and convince the industry to use them.  The extrapolation of surface wind speeds to higher altitudes is a 

challenging problem given the diversity of meteorological conditions and the variability of turbulence intensity in the boundary 75 

layer.  Tthe statistical theory of turbulence provides theoretical wind profiles (see, e.g., Grachev and Fairall, 1996). H. 

However, the problem has not been satisfactorily resolved and becomes increasingly critical as the typical height of windmills 

increases. Empirical evidence Data analysis from offshore meteorological masts measurements suggests that a simple power 

law could be sufficient to model the wind profile (Hsu et al., 1994). HoweverNevertheless, the analysis of our Lidar data shows 

that, above 40 m, thise power law model is no longer accurate. This limitation has led some authors to use numerical models 80 

to improve the extrapolation to higher altitudes (Badger et al., 2016). The advantage of numerical models is that they provide 

information about atmospheric stability through parameters like surface temperature and surface heat flux. In Badger et al. 

(2016), these surface parameters were averaged and combined with the similarity theory of Monin-Obukhov to extrapolate 

wind Weibull parameters. However, to our knowledge, this method was validated with only one meteorological mast in the 

Baltic Sea and not higher than an altitude of 100 m. Therefore, more research is needed to improve the estimation of wind 85 

resources at hub height at hub height with SAR data, and convince the industry to use them.Moreover, Optis et al. (2021) 

found that using machine learning was more efficient than using a theoretical approach. 

 

In this study, we propose a method to overcome these limitations by using machine learning. GivenDue the complexity of the 

relation between wind speed and the sea state and to the high number of possible sources of error in the retrieval of surface 90 

winds with SAR satellites, machine learning seemss appropriate to improve the accuracy of retrieval of surface wind speeds 

with SAR  surface wind speedssatellites. Regarding their extrapolation at higher altitudes, on land, machine learning has also 

been found to improve the accuracy of the wind speeds extrapolated at turbine hub height compared to classical extrapolation 

methods based on power laws or logarithmic laws (Türkan et al., 2016; Mohandes and Rehman, 2018; Vassallo et al., 2019). 

Moreover, Optis et al. (2021) also found that machine learning was more efficient at extrapolating offshore winds than 95 

theoretical approaches. Moreover, Iit has also been shown that, even if the algorithm is trained with a few in-situ instruments, 
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it can be applied in a large area around them without significantly degrading the accuracy (Bodini and Optis, 2020; Optis et 

al., 2021). Moreover, Optis et al. (2021) found that machine learning was more efficient at extrapolating offshore winds than 

theoretical approaches. Therefore, we also chose to use machine learning in order to findderive the wind speeds at hub height 

based onfrom the SAR surface winds. As in Badger et al. (2016), we take advantage of a numerical model to assess the 100 

atmospheric stability and provide the algorithm with the relevant meteorological parametersand by combining SAR data with 

a numerical model. . On land, machine learning has been found to give good results compared to classical extrapolation 

methods based on power laws or logarithmic laws (Türkan et al., 2016; Mohandes and Rehman, 2018; Vassallo et al., 2019). 

It has also been shown that, even if the algorithm is trained with a few in-situ instruments, it can be applied in a large area 

around them without significantly degrading the accuracy (Bodini and Optis, 2020; Optis et al., 2021).  105 

Section 2 describes the numerical model, the SAR data  used in this study(Sentinel-1 constellation satellites), the numerical 

model, the Lidar data used as a reference to train the algorithms, and the formulas used to compute the wind power. Section 3 

describes the two machine learning algorithms usdesigned to improve the accuracy of SAR surface winds and the second 

machine learning algorithm used to extrapolate the themsurface winds to hub height, respectivelyIn this paper, we use SAR 

data from Sentinel-1 A and B satellites that provide the surface wind over the sea and improve them with the random forest 110 

algorithm. The reason for separating the method into two stepsalgorithms is that tis the scarcity of offshore Lidar data. Since 

the first healgorithm improvement ofcorrecting SAR surface wind biases s utilizesdepends on geometric properties of the 

sensor, it may be improved by using a large network of classical metocean buoys as a training dataset in the future that are 

specific to the location. On the contrary, the algorithm extrapolating the surface winds to higher altitudes only depends on 

meteorological parameters related to the atmospheric stability. Therefore, it can be trained with a few Lidars in one location 115 

data obtained in one place and applied in other areas (if similar meteorological conditions are met), which is necessary given 

the scarcity of Lidar data. First, a method is proposed to deal with the case where only surface in-situ measurements are 

available. In that case, the method requires two separate random forest algorithms: the first one improves SAR winds at surface 

level and the second one extrapolates them at turbine hub height. The reason for separating the method into two steps is that 

the improvement of SAR winds utilizes geometric properties of the sensor that are specific to the location. On the contrary, 120 

the algorithm extrapolating the surface wind to higher altitudes only depends on parameters related to the atmospheric stability. 

It can therefore be trained with Lidar data as a reference and applied in other areas. In the case where profiling Lidars are 

available in the study area study, these two algorithms can be combined into a single algorithm trained directly at hub height.  

In Section 4, Both methods arethe method is tested in two areas off the Dutch coast where profiling Lidar data are available. 

The SAR wind speeds extrapolated at hub height are converted into a Weibull distribution, and the extractible power is obtained 125 

by simulating the presence of a typical 8 10 MW wind turbine operating at 200 m. The resulting maps are presented and 

compared with the output of the numerical model in order to estimate the benefit of using thisese methods compared with a 

state-of-the-art technique.  



5 
 

2 Data and Methodology 

2.1 High-resolution numerical model 130 

The two zones of study are located off the Dutch coast and presented in (Figure 1). They have an approximate size of 70 x 70 

km. Their geographic extent was defined in order to include some offshore profiling Lidars and a part of the coastline in order 

to observe observe the wind gradient. The WRF (Weather Research and Forecasting) ) Nonnon-Hydrostatic hydrostatic 

Mesomeso-scale Mmodel developed (Skamarock et al., 2019) by NOAA (National Oceanic and Atmospheric Administration) 

was run over these areas with a resolution of 1 km. The Planetary Boundary Layer (PBL) parametrization of the model was 135 

based on Hahmann etal., 2020. It was fueled forced at its boundary limits by a larger-scale model, the reanalyzed GFS (Global 

Forecast System) having a resolution of 0.5° developed by NCEP (National Centers for Environmental Prediction). This larger-

scale model was downscaled before using it to force the WRF model. This type of numerical model is representative of how 

wind resources are currently assessed by the industry. Here, it is used to estimate the atmospheric stability and extrapolate 

SAR data surface winds to turbine hub height. It was fueled at its boundary limits by a larger-scale model, the reanalyzed GFS 140 

(Global Forecast System) having a resolution of 0.5° developed by NCEP (National Centers for Environmental Prediction). 

This larger-scale model was downscaled before using it to force the WRF model. The WRF model was run over a period from 

January 2015 2017 to May December 201920. It provides the wind speed and direction from the surface and up to 200 m, 

inwith increments of 20 m. It also provides other meteorological variables, such as air and sea surface temperature, surface 

heat flux, relative humidity, and pressure. 145 

 



6 
 



7 
 

 

Figure 1: Locations of Zone 1 (bottom, latitude 51.50°N - 52.09°N / longitude 2.82°E - 3.77°E) and Zone 2 (top, latitude 52.15°N - 
52.74°N / longitude 3.71°E - 4.68°E) with the positions of the profiling Lidars. The colour represents the number of Sentinel-1 SAR 150 
Level 2 wind observations during years 2017, 2018 and 2019. floating Lidars and total number of Sentinel-1 SAR L2 wind 
observations during years 2017, 2018 and 2019. The black boxes represent Zone 1 (bottom, latitude 51.50° - 52.09° / longitude 2.82° 
- 3.77°) and Zone 2 (top, latitude 52.15° – 52.74° / longitude 3.71° – 4.68°).  

 

 155 

2.2 In-situ instruments 

The dataset used in this study comprises five ground-based floating profiling Lidars located off the Dutch coast (Figure 1). . 

They are named HKZA, HKZB, BWFZ01, EPL and LEG. HKZ stand for Hollandse Kust Zuid wind farm, BWF for Borssele 

Wind Farm Zone, EPL for European Platform, and LEG for Lichteiland Goeree platform. Zone 1 includes the Lidars BWFZ01, 

EPL and LEG, and Zone 2 includes the Lidars HKZA and HKZB. Lidars HKZA, HKZB, BWFZ01 are floating. Lidars EPL 160 

and LEG are installed on platforms. The wind speed and direction are 10-minutes averaged around the observation times. The 

datay were quality checked by our data provider C2WIND (for each time intervals, the minimum number of packets was set 

at 20 and the minimum availability at 80%). The wind speed and direction are 10-minutes averaged around the observation 

times. There are 7 Lidars in the dataset, respectively named HKZA, HKZB, BWFZ01, BWFZ02, EPL, LEG and IJM. HKZ 

stand for Hollandse Kust Zuid, BWF for Borssele Wind Farm Zone, EPL for European Platform, and LEG for Lichteiland 165 
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Goeree platform. Zone 1 includes the Lidars BWFZ01, EPL and LEG, and Zone 2 includes the Lidars HKZA and HKZB. 

Lidars HKZA, HKZB, BWFZ01 are floating and Lidars EPL and LEG are installed on platforms. The vertical sampling and 

the duration of these Lidar measurements varies between observation campaigns and are displayed in Table 1. Zone 1 includes 

the Lidars BWFZ01, BWFZ02, EPL and LEG, and Zone 2 includes the Lidars HKZA and HKZB. The IJM lidar provides a 

very long period of measurements, but unfortunately it stopped operating before the availability of the Sentinel-1 B data, and 170 

therefore was not used. Similarly, the Lidar BWFZ02 was functioning only for 4 months and its small quantity of data was 

found to be unreliable. 

 

 

Lidar Longitude Latitude First date Last date 
Number 

of levels 

First Lowest 

altitude 

Last 

Highest 

altitude 

HKZA 4.011°E 52.309°N 2016-06-05 2018-06-05 11 30m 200m 

HKZB 4.013°E 52.292°N 2016-06-05 2018-06-05 11 30m 200m 

LEG 3.667°E 51.917°N 2014-11-17 2017-03-31 10 61m 300m 

EPL 3.276°E 51.998°N 2016-05-30 2017-03-31 11 61m 290m 

IJM 3.436°E 52.998°N 2011-11-02 2016-03-09 14 26m 314m 

BWFZ01 3.033°E 51.71°N 2015-06-11 2017-02-27 10 30m 200m 

BWFZ02 2.952°E 51.65°N 2016-02-12 2016-06-22 10 30m 200m 

Table 1: Main characteristics of the 7 five floating profiling lidars 175 

 

 

For each Lidar, the wind measured at the first altitude level is used to estimate the surface wind below at 10 m above sea level 

(a.s.l.), which is the altitude of SAR data. The extrapolation to 10 m a.s.l. is performed using a classical power law:  

 180 

𝑈 = 𝑈 .           Eq. (1) 

 

where U10 is the wind speed at 10 m in m s-1, Umin the Lidar wind speed at the first altitude level in m s-1, and Zmin the altitude 

of the first level in m, and α a non-dimensional exponent. Hsu et al. (1994) recommend choosing an exponent of 0.11 over the 
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sea. We checked this hypothesis with HKZA and HKZB Lidars that were equipped with anemometers measuring wind speed 185 

at 4 m a.s.l.. This power lawexponent was found to be indeed correct on averagcorrect on averageunbiasede. However, in order 

to refine the wind speed values extrapolated at 10 m a.s.l., we adapted this the exponent depending on the current atmospheric 

stability. The empirical instantaneous exponents obtained with HKZA and HKZB Lidars were compared with the air-sea 

temperature difference provided by the high-resolution numerical model WRF. The relation was fitted with a second-degree 

polynomial (Figure 2) and then the adaptive exponents were used to obtain the wind speed at 10 m a.s.l.. The anemometers 190 

located at the base of the Lidars at 4 m a.s.l. do not have a high precision and may add some uncertainty, however, since the 

final machine learning algorithm presented in this study is trained with Lidar measurements at hub height, this uncertainty is 

included in our results.   
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195 

 

Figure 2: Exponent of the power law between the wind speeds at 4 m and 40 m as a function of the air-sea temperature difference 
fitted with a second-degree polynomial fit (red curve) with the following coefficients:. Y= 0.1137 + 0.0178 X + 0.001 X2. The colours 
represent the density of points. 

 200 
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2.3 Sentinel-1 SAR data 

Sentinel-1 A and B are two polar-orbiting satellites equipped with C-band SAR. This sensor, which records surface roughness, 

has the advantage of operating day and night at wavelengths not impeded by cloud cover. The Sentinel-1 Level 1 GRD (Ground 

Range Detected) product has a grid spacing of a few tens of meters, whereas the Level 2 wind products typically have a 205 

resolution of 1 km. The two satellites are located on the same orbit 180° apart and at an altitude close to 700 km. In Dutch 

coastal waters, the acquisition mode is an Interferometric Wide (IW) swath using the TOPSAR technique, which provides a 

better-quality product by enhancing the image homogeneity (De Zan and Guarnieri, 2006). All Sentinel-1 A and B SAR images 

in IW acquisition mode from 2014 to 2020 in the study areas were collected. The revisit rate is one passage every two days, 

which occurs usually in the morning around 5 AM or in the evening around 5 PM (UTC). The satellites pass in the morning 210 

or in the evening depending on the orbit orientation, descending or ascending, respectively. The exact acquisition time can 

vary by plus or minus 30 mn depending on the incidence angle under which the region of interest is observed. The constellation 

was only fully operational at the end of 2016. We collected aAll Sentinel-1 A and B SAR images in IW acquisition mode from 

for2014 to 2020 in the study areas were collected. 2017, 2018 and 2019 only to ensure a complete and homogenous annual 

sampling. The total number of samples over these three years for the areas of interest is shown in Figure 1, on which shows it 215 

can be seen that the coverage is not spatially uniform.  

The Level 1 images were calibrated and corrected from the instrument noise provided as metadata. A dedicated bright target 

filtering was applied to remove Radar echoes created by ships, wind farms and other structures at sea. An additional filter 

(Koch, 2004) was used to identify heterogeneous signatures not related to wind, like currents, Radar interferences, and 

remaining bright targets. However, this filter has an increased sensitivity at low wind speeds, therefore, the identified pixels 220 

were not removed to avoid disrupting the wind speed Weibull distribution, which is necessary to estimate wind power. The 

information provided by this filter was only used to create maps of areas where wind power estimates are unreliable, typically 

due to dense regions of wind turbines or mooring areas, which are well identified on average by the heterogeneity filtering. 

Then, Level 1 SAR products were degraded to a 1 km resolution and Level-2 surface winds at 10 m a.s.l. were obtained using 

a Bayesian inversion scheme using as inputs the wind speed obtained by inverting the SAR backscatter with the CMOD5.N 225 

Geophysical Model Function (GMF)geophysical model function (KNMI, 2008; ECMWF, 2008; Hersbach, 2010) and the 

outputs of ECMWF (European Centre for Medium-Range Weather Forecasts) NWP (Numerical Weather Prediction) model 

to constrain the wind direction. The Level 2 product tiles were combined into a gridded map over the areas of interest, in order 

to form a data cube where each pixel corresponds to a time series of SAR measurements.  

The revisit rate is one passage every two days, which occurs usually in the morning around 5 AM or in the evening around 5 230 

PM (UTC). However, Figure 3, which gives the number of passages per year, shows that the constellation was only fully 

operational at the end of 2016. Therefore, we used SAR data from 2017, 2018 and 2019 when estimating the wind power to 
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ensure a complete and homogenous annual sampling. Figures 4 and 5 show the number of samples over these three years for 

each of the areas of interest. 

 235 

 

Figure 3: Histogram of the number of SAR samples at Lidar HKZA’s location. Before 2017, the constellation was not fully 
operational. In 2020, only two months of data had been collected at the time of this study. Therefore, only 2017, 2018 and 2019 are 
complete with regular passes. 

 240 
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Figure 4: Number of Sentinel-1 SAR wind samples available over Zone 1 during 2017, 2018 and 2019. 

 

Figure 5: Number of Sentinel-1 SAR wind samples available over Zone 2 in 2017, 2018 and 2019. 
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 245 

2.4 Wind power estimation 

The average extractible wind power P, hereafter simply called wind power, is calculated by multiplying point-by-point the 

wind speed probability density function (pdf) by the power curve of a specific wind turbine, and then averaging the result. We 

chose to simulate an 8MW 10MW turbine with a simplified typical power curve: the DTU 10 MW Reference Wind Turbine 

V1 (see DTU Wind Energy, 2017, and https://github.com/NREL/turbine-250 

models/blob/master/Offshore/DTU_10MW_178_RWT_v1.csv, last accessed September 2, 2021): 0 MW until a cut-in speed 

of 4 m s-1, a linear increase until its nominal output at 15 m s-1, then a plateau at 8MW until 25 m s-1, and a storm mode for 

higher values during which the turbine stops to protect itself. A simple histogram could be used to estimate the wind speed 

pdf. However, due to the low number of SAR samples, a more efficient technique consists in using the SAR data to fit a 

Weibull pdf, which usually describes the wind speed accurately. The Weibull pdf is given by: 255 

 

𝑝𝑑𝑓(𝑈) =  𝑒 ( ⁄ )          Eq. (2) 

 

where  is a scale parameter in m s-1 and k a dimensionless shape parameter. These parameters can be obtained by maximum 

likelihood, or by the method of the moments with the following formulas (Pavia and O'Brien, 1986):  260 

 

𝑘 = (σ 𝜇⁄ ) .            Eq. (3) 

 

𝜆 =            Eq. (4) 

 265 

where  is the mean wind speed,  the wind speed standard deviation, both in m s-1, and  the Gamma function. 

The accuracy of these two methods was assessed with simulations. A random variable following a Weibull law with known 

parameters was generated and the equivalent wind power computed. For both methods, the results were compared with the 

wind power computed with the original parameters. Figure 6 3 shows the wind power mean absolute error in percentage as a 

function of the number of samples. With 500 samples, which is approximately the amount of available SAR data available in 270 

the areas of interest (see Figures 4 and 5), the accuracy of these methods is ± 2%. Both methods yield similar results, therefore 

the method of the moment, which is simpler and faster to run, was chosen. 
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 275 

Figure 63: Wind power Average mean absolute wind power error in percentage as a function of the number of samples, using the 
two maximum likelihood to fit the wind Weibull pdf (orange curve), or the method of the moments (blue curve)estimation methods. 
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2.5 Intra-diurnal variability 280 

The main limitation of SAR data satellites is their low temporal sampling (one passage every two days for Sentinel-1 in 

Europe). One One advantage of this limitationis, however, is that it guarantees the statistical independence of the 

measurements. . Nevertheless, However, tthe satellites are on a sun-synchronous orbit, which means that they pass always at 

the same times of the day, in the morning or in the evening. As a result, they cannot fully see the intra-diurnal variability of 

the wind.  285 

Figure 74 shows the mean wind speed at 10 m as a function of the hour of the day for each Lidar. It can be seen that the wind 

diurnal cycle is close to a 24 h period sinusoid. Therefore, sSince the satellites possiblepass at two possible passage times of 

the day are separated by 12 h, according to the Nyquist-Shannon sampling theorem, they should be able to capture this is 

enough to capture the majority of the majority of the intra-day 24 h period variability. In order to assess verify thisthis source 

of error, we simulated the satellites’ passages over the Lidars by computing t he mean wind speed and the wind power usingby 290 

computing the mean wind speed using only the Lidar measurements realized around 5 AM or 5 PM and compared it with the 

actual mean wind speedat the satellites’ passage times. These values were compared to those obtained using all Lidar 

measurements at any time of day. For each Lidar, The the error differences was were found to be below 1% and 2%, 

respectively, for the mean wind speed and the wind power. The same analysis was done with the wind power and the error 

was found to be below 2%. Figure 7 shows the mean wind speed as a function of the hour of the day for each Lidar. It can be 295 

seen that the diurnal cycle is close to a sinusoid. Since the satellite passage times are separated by 12 h, this is enough to 

capture the majority of the 24 h period variability. Therefore, this source of error is limited, and we conclude thatthe intra-

diurnal variability does not prevent the use of SAR data and that this source of error is limited. However, this conclusion needs 

to be validated in geographical areas where thermic winds are stronger than in the North Sea. 

 300 
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Figure 74: Intra-diurnal variability of the mean wind speed at 10 m for each Lidar. The time is given in UTC, which is close to the 
local time since the area of studyZone 1 and Zone 2 are located near Greenwich meridian. 305 
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3 Improvement of SAR surface wind  estimatespeeds and extrapolation at hub height 

3.1 Machine learning at surface level 

SAR surface winds are obtained by inverting the backscatter over a given pixel with a Geophysical Model Function (GMF 

(see Section 2.3)). Originally, GMFs were designed to retrieve the wind from spaceborne scatterometers. They were 310 

empirically designed using global numerical models as a reference. However, SAR is a specific sensor and differences between 

the SAR and scatterometers backscatter in C-band may occur. In addition, TheyGMFs were empirically designed using global 

numerical models as a reference, but. global numerical model outputs they are not as reliable as in-situreal data, especially in 

coastal areas. Moreover, GMFs may not fully capture the complex relation between the sea state and the wind, in particular  

because they assume a neutral atmosphere. As a result, SAR surface winds are typically biased when compared with in-situ 315 

buoys (see, e.g., de Montera et al., 2020). Therefore, it is necessary to improve the accuracy of the SAR wind speeds obtained 

with a GMF. This is particularly important because the wind power is related to the cube of the wind speed, and therefore very 

sensitive to wind speed estimation errors.  

Given the complex relation between the sea state and the wind speed, and the number of factors able to influence it, machine 

learning was found to be an appropriate technique to improve the accuracy of SAR surface wind speeds and remove their 320 

biases.  

We used a Two types of machine learning regressor were tested: the multi-layer perceptron and random forest. Random Forest 

algorithm (Breiman, 2001), which is known to perform well in regression tasks. It was implemented with the 

RandomForestRegressor function of Scikit-learn Python toolbox. I and its architecture was chosen by using cross-validation. 

The default hyperparameters were found to be the bestmost appropriate ones, except the number of trees (set to 10240) and 325 

the maximum depth (set to 20)They were trained with the wind measured by the Lidars extrapolated to 10 m a.s.l. (the first 

Lidar level was extrapolated to this altitude with a power law, see Section 2.2). The algorithm was trained with the wind 

measured by the Lidars extrapolated to 10 m a.s.l. (the first Lidar level was extrapolated to this altitude with a power law, see 

Section 2.2). Combining all measurement sites, more than 1000 collocated data points between the Lidars and Sentinel-1 SAR 

could be found. The algorithm was trained with 50% of the data points chosen randomly chosen, and the rest of them wereere 330 

used as a test dataset.  

In order to select tThe input parameters, we made a list of interesting parameters and looked atfor the ones having a relation 

withrelated to the level of absolute errordifferences between the SAR and the Lidars wind speeds. This was done visually by 

plottingting scatterplots of scatter plots these parameters against the errors of the SAR compared to Lidar measurementsand 

visual inspection were chosen by assessing their correlation with the error between the SAR and Lidar measurements. The 335 

following parameters were found to have such a correlationselected: the SAR surface wind, the SAR wind direction, the 

azimuth angle (i.e., the angle between the North and the satellite track), the incidence angle (i.e., the angle between the radar 

illumination and the zenith of the target), the elevation angle (i.e., the angle between the radar illumination and the nadir of the 

satellite), the backscatter, the thermal noise of the instrument, and the difference between the azimuth angle and the wind 
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direction (an important parameter in the inversion of the backscatter). Since the SAR surface winds are given assuming a 340 

neutral atmosphere,The relative importance of these parameters after the training stage is shown in Figure 8.In order to take 

the atmospheric stability also needs to be taken into account, . Therefore, the air-sea temperature difference and the surface 

heat flux were extracted from the high-resolution numerical model and were added as input parameters. The relative 

importance of these parameters was checkedmeasured after the training stage using the feature_importances_ attribute of 

Scikit-learn Python toolbox (is shown in Figure 85).The relative importance of these parameters after the training stage is 345 

shown in Figure 8.  
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Figure 85: Relative importance of the input parameters used to correct the SAR surface wind at 10m with the random Random 350 
forest Forest algorithm (1 - SAR wind speed, 2 - SAR wind direction, 3 - azimuth angle, 4 - incidence angle, 5 - elevation angle, 6 -
backscatter, 7 - thermal noise, 8 - difference between the azimuth angle and the wind direction, 9 - air-sea temperature difference, 
10 - heat flux). 

 
 355 
The More than 1000 collocated data points between the Lidars and Sentinel-1 SAR could be found. The algorithm was trained 

with half of the data points, and the rest were used as a test dataset. Random forest was found to outperform neural networks 

in terms of performance and training time. ItRandom Forest algorithm is was able to reduce the SAR wind speed bias from -

0.42 m s-1 to 0.02 m s-1 and its standard deviationRMSEstandard deviation from 1.41 m s-1 to 0.98 m s-1. Figures 9 6 and 10 

shows the scatterplots of errors between the SAR wind speeds against and the Lidars measurements before and after applying 360 

machine learning. The It can be seen that the bias is indeed reduced, and that the cloud of points is thinner after machine 

learning. However, the resulting wind speeds are still biased at very low and very high wind speeds. These two ranges are 

more difficult to estimate because low wind speeds have little effect on the sea state, and because the relation between the sea 

state and the backscatter saturates at high wind speeds. A multi-expert algorithm using three separatedifferent random Random 

forest Forest algorithms to process respectively low, middle and high wind speeds was tested. However, this approach did not 365 

improve the results significantly. 
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Figure 96: Scatterplots between the SAR and Lidar wind speeds at 10 m (a) before machine learning (a) and (b) after machine 370 
learning (b), with polynomial fits (red curves) using the test dataset. The colours represent the density of points. The black curve is 
the identity line and the red curve a fourth-degree polynomial fit illustrating the bias. 
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Figure 10: Errors between the SAR and the Lidars as a function of Lidar wind speed at 10 m (a) before machine learning (b) after 
machine learning. 375 

 

3.2 Extrapolation at hub height 

The extrapolation of surface wind speeds to higher altitudes is a challenging problem given the diversity of meteorological 

conditions and the variability of turbulence intensity in the boundary layer. Data analysis from offshore meteorological masts 

suggests that a simple power law could be sufficient to model the wind profile (Hsu et al., 1994). However, the analysis of our 380 

Lidar data shows that, above 40 m, this power law model is no longer accurate. This limitation has led some authors to use 

numerical models to improve the extrapolation to higher altitudes (Badger et al., 2016). The advantage of numerical models is 

that they provide information about atmospheric stability through parameters like surface temperature and surface heat flux. 

In Badger et al. (2016), these surface parameters were averaged and combined with the similarity theory of Monin-Obukhov 

to extrapolate wind Weibull parameters. However, to our knowledge, this method was validated with only one meteorological 385 

mast in the Baltic Sea and not higher than an altitude of 100 m. Moreover, Optis et al. (2021) found that using machine learning 

was more efficient than using a theoretical approach. 
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Therefore, wWe chose to extrapolate tThe instantaneous SAR wind speeds were also extrapolated with using a Random Forest 

algorithm. This algorithmmachine learning using uses parameters extracted from the high-resolution WRF numerical model 

as additional input parameters. The most relevant parameters were found to be the air-sea temperature difference and the 390 

surface heat flux. In order to increase the accuracy and adapt to the current meteorological conditions, the model extrapolation 

ratio between the surface wind and the wind at hub height was also added. Comparing this ratio with the one found with the 

Lidar data showed that it is unbiased (for all Lidars, the bias was lower than 1%) and therefore suitable for extrapolating SAR 

winds.However, using comparisonss to the the Lidar measurements, it was found showed that the numerical model outputs 

were less accurate in the lower boundary layer, and that the mean wind speed was strongly biased below 40 m. Therefore, we 395 

decided to use the ratio between the wind speed at 40 m and higher altitudes, which was more accurate (for each Lidar, the 

ratio bias was lower than 1%). Comparing this ratio with the one found with the Lidar data showed that it is unbiased (for all 

Lidars, the bias was lower than 1%) and therefore suitable for extrapolating SAR winds. These parameters were used together 

with the corrected SAR wind speeds at 10 m as input to a the random Random forest Forest algorithm, which was  and trained 

to learn the Lidar wind speed at 200mseveral altitude levels until 200 m, with 50% of the data pointsusing the same training 400 

training and test dataset as in the previous sectionpreviously. The Here too, we used a Random Forest algorithm was also 

implemented with the RandomForestRegressor function of Scikit-learn Python toolbox. The mostWe used the default 

appropriate hyperparameters were found to be the default ones were found, except the number of trees (set to 83400) and, the 

maximum depth (set to 250 and the maximum number of features set to ‘sqrt’0). The relative importance of the parameters 

after the training phase is shown in Figure 7.The relative importance of the parameters is shown in Figure 11.  405 

Figure 12 8 shows the bias of the extrapolated SAR wind speeds against each Lidar in percentage as a function of the altitude. 

that tThe algorithm was successful in extrapolating SAR wind speeds because the these biases compared to Lidars isare stable 

with altitude and remains low and (comprised within ± 3%). At 200 m, The the SAR mean wind speed error bias at 200 m 

against all Lidars was was -0.04 m s-1 and its standard deviationRMSEstandard deviation 1.69 m s-1. Thus, this method provides 

an almost unbiased estimate of the wind speed at hub height. We also attempted to follow the same approach as Badger et al. 410 

(2016), in which the extrapolation is performed on wind statistics. However, the extrapolation of the wind power with the 

corresponding ratio provided by the numerical model was not as accurate as when the instantaneous winds were extrapolated 

first. 
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415 

 
Figure 117: Relative importance of the input parameters used to extrapolate the SAR surface winds to 200 m. (1 - Corrected SAR 
wind speed, 2 - ratio of the numerical model wind speeds between 40 and 200 m, 3 - air-sea temperature difference, 4 - surface heat 
flux)  

 420 
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Figure 128: Bias of the extrapolated SAR wind speed against each Lidarat each Lidar location in percentage. 

 425 
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3.3 Machine learning at hub height with Lidar data 

When profiling Lidars are available in the study area, the method accuracy can be improved by combining the correction of 

SAR surface winds and their extrapolation to higher altitudes into a single random Random forest Forest algorithm. In that 

case, the algorithm is trained directly at hub height with all the input parameters together. The relative importance of the input 430 

parameters after the training is shown in Figure 13. The results with the test dataset are shown in Figure 14. At 200m, the wind 

speed biases compared to each Lidars are within ± 2%. The total bias is 0.04 m s-1 and the standard deviatioRMSEn 1.61 m s-

1. This result is better than the method presented in Section 3.2 using two separate steps. Therefore, this second method should 

be used if on-site profiling Lidars are available.  

 435 

 

Figure 13: Relative importance of the input parameters used to correct and extrapolate the SAR wind speed at 200m (1 - SAR wind 
speed, 2 - SAR wind direction, 3 - azimuth angle, 4 - incidence angle, 5 - elevation angle, 6 -backscatter, 7 - thermal noise, 8 - 
difference between the azimuth angle and the wind direction, 9 - ratio of the numerical model wind speeds between 40 and 200 m, 
10 - air-sea temperature difference, 11 - heat flux). 440 
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Figure 14: Bias of the extrapolated SAR wind speed at each Lidar location (algorithm trained directly at hub height). 

 

4 Results 

4.1 Correction of the standard deviation 445 

As explained in Section 2.4, in order to estimate the extractible wind power, the Weibull parameters of the wind are needed. 

These parameters are directly linked to the first two moments of the wind speed distributionpdf, which are the mean wind 

speed and the wind speed standard deviation (see Eqs. 3 and 4). Therefore, an accurate estimation of these two moments alone 

is enough to guarantee a low error of the extractible wind power. The extrapolation methods presented above provide an 

unbiased estimation of the mean wind speed. However, the wind speed standard deviation was found to be biased and 450 

underestimatedbiased in our case. This occurs because machine learning estimates the most probableexpected value of the 

wind speed, which tends to reduce the variability of the wind speed: it squeezes its distribution because the errors are not 

reproduced. As a consequence, does not necessarily reproduce the original distribution shape of the data is not conserved. Its 

tails are lighter, and the standard deviation is underestimated. For example, at very low wind speeds, SAR sensors are often 

unable to detect any effect on the sea state. Therefore, in this range, machine learning tends to produce the same most probable 455 

value, regardless of the SAR wind speed. The same happens at very high wind speeds, for which the instrument saturates. As 

a result, the distribution tails become lighter, which reduces the wind speed standard deviation. Figure 15 9 shows an example 

of the wind speed distribution obtained at 200 m after machine learning compared to the one obtained with Lidar HKZA. In 

that case, Thethe error of the wind speed standard deviation bias was on average - 6% and - 9% respectively for the two-step 

and single-step methods.  460 
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In order to compensate for this effect, we reintroduced artificially the original variability of the data. This was done by 

analysing the distribution of the SAR wind speed errors compared to Lidar measurements and adding a similar random variable 

to the SAR wind speed obtained after machine learning. The appropriate random variable was found to be a Gaussian with the 

standard deviation of the SAR wind speed errors. For each data point, at least five additional artificial datapoints needed to be 

created for the wind speed standard deviation to converge. After this bootstrap, the wind speed standard deviation error was 465 

1.5% when considering all Lidars together in the test dataset. Thus, the result of this correction is an almost unbiased estimation 

of the wind speed standard deviation. 

Figure 9 also shows the wind speed distribution provided by the high-resolution numerical model. In this case, the distribution 

wawass shifted to the left (Figure 15), which means that the numerical model underestimates the wind speed compared to 

Lidar measurements. Thise wind speed bias ofwas found to be - 4%. It was also corrected.Therefore, the opposite corrections 470 

were applied before computing the extractible power. I by adding the opposite quantity to the model outputsn order to ensure 

a fair comparison with the numerical model, the same approach was applied to its outputs. In this case, the distribution was 

shifted to the left (Figure 15), which means that the model underestimates wind speed. This bias of - 4% was also corrected. 

 

Figure 159: Wind speed distribution at 200m measured by Lidar HKZA compared to the ones obtained with SAR data combined 475 
with machine learning at hub height, and the numerical model at the same location. 
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4.2 Extractible wind power at hub height 

Once the wind speed mean and standard deviation had been corrected for their its biases, the estimation of the extractible 

power was done with the method presented in Section 2.4. The Weibull parameters were obtained with Eqs. 3 and 4, and then 480 

the wind power was obtained by multiplying the Weibull distribution (Eq. 2) by the typical 8 10 MW turbine power curve. 

Figures 16 and 1710, respectively, shows the bias of the wind power between the SAR and the Lidars in percentage. results 

for the two-step method and the single-step method using profiling Lidars. The method accuracy is ± 43% in the first case and 

± 3% in the second case. When on-site profiling Lidars are available, the accuracy is close to the error bar of the wind power 

retrieval method (i.e., ± 2%, see Section 2.4). When profiling Lidars are not available and the two steps method must be used, 485 

our result indicates that the loss of accuracy would be limited. However, this Due to the short distances between the Lidars 

used in this study, such a validation could not be realized here.this conclusion result needs to be confirmed in another 

geographical locations than the North Sea. In areas where the machine learning algorithm trained in the North Sea would not 

be appropriate due to very different wind patterns, and where Lidar measurements are not available, a simpler method could 

be used. where the correction of SAR surface winds could be performed with an algorithm trained with a different dataset such 490 

as metocean buoys, providing a higher number of collocated points, and where the extrapolation step would be validated with 

independent Lidar measurements. Due to the short distances between the Lidars used in this study, such a validation could not 

be realized here. However, wWe also tested another using extrapolation method without any machine learning by using 

directlydirectly the extrapolation ratio given by the high-resolution numerical model, without machine learning. In that case, 

the wind power error was comprised between ± 7% for each Lidar, which is accurate enough to provide useful high-resolution 495 

mapsinsights about the coastal wind gradient. . 
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Figure 1610: Bias SAR wind power error in % compared to the one computed with Lidars measurementsof the SAR extractible 500 
power at each Lidar location. (two-step algorithm). 
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Figure 17: Bias of the SAR extractible power at each Lidar location (algorithm trained directly at hub height). 

 

4.3 Wind power maps at hub height 505 

Figures 18 11 and 1912 , respectively, show the extractible wind power maps at 200 m over Zone 1 and Zone 2 for the typical 

10MW turbine. They present the wind power predicted by the numerical model, the wind power obtained with SAR data and 

machine learning, and the difference between these two in percentage. It can be seen that Figures 20 and 21 show the wind 

power obtained from SAR data for the same areas using the algorithm trained directly at hub height. Figures 22 and 23 show 

the difference in percentage between the maps obtained with the numerical model and the ones obtained with the SAR. Tthe 510 

use of SAR data significantly increases the level of detail compared to the numerical model outputs. That correctione difference 

can reach as much as 10% of the wind power between two sites separated by less than 20 km. 

Some artefacts are still visible on the maps and need to be corrected in the future. For example, the swath edges can still be 

seen. Moreover, in some areas, the estimation was less reliable, mainly due to bright targets that could not be filtered. Some 

of these areas are linked to existing wind farms having a high density of turbines, while other areas had large numbers of 515 

stationary shipping vessels. The presence of these artefacts was measured by a Koch filter and a quality flag was created. 

Figures 24 11 and 25 12 also show the percentage of SAR data flagged as ‘bad low quality’, and therefore the areas where the 

assessment with SAR satellites is unreliable. In addition, in Zone 1, a series of three unrealistic ‘waves’ can be seen close to 

the coast. We could check that these patterns correspond to similar ‘waves’ of sand in the seabed. The bathymetry in these 

shallow waters seems to affect currents and, therefore, the SAR backscatter. 520 
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Figure 1811: Extractible wind power over Zone 1 in kW for a typical 10 MW turbine predicted by the numerical model (a) and SAR 
satellites (b), difference in percentage (c), and percentage of low-quality SAR data (d). Model wind power at 200m for a typical 8 525 
MW wind turbine over Zone 1. 
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Figure 1912: Extractible wind power over Zone 2 in kW for a typical 10 MW turbine predicted by the numerical model (a) and SAR 
satellites (b), difference in percentage (c), and percentage of low-quality SAR data (d).  530 

Model wind power at 200m for a typical 8 MW wind turbine over Zone 2. 
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Figure 20: SAR wind power at 200m for a typical 8 MW wind turbine over Zone 1 (algorithm trained directly at hub height). 

 

Figure 21: SAR wind power at 200m for a typical 8MW wind turbine over Zone 2 (algorithm trained directly at hub height). 535 
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Figure 22: Percentage of difference between SAR wind power and the model wind power over Zone 1. 

 

Figure 23: Percentage of difference between SAR wind power and the model wind power over Zone 2. 

 540 
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Figure 24: Percentage of data flagged as ‘bad quality’ over Zone 1. 

 

Figure 25: Percentage of data flagged as ‘bad quality’ over Zone 2. 545 
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5 Conclusion 

A new method for estimating the offshore extractible wind power at turbine hub height based on SAR data and machine 

learning has been presented. If profiling Lidars are available, the machine learning algorithm can be trained directly at turbine 550 

hub height with geometrical parameters of the SAR sensor and parameters related to the atmospheric stability. If no Lidar is 

available, tThe method can be separated intohas two steps: first correcting SAR surfaces wind speeds with a machine learning 

algorithm fed with using geometrical parameters of the SAR sensor and meteorological parameters extracted from a high-

resolution numerical model, surface wind measurements as a reference and then extrapolating these winds to higher altitudes 

with a secondanother machine learning algorithm. The method was tested in two areas off the Dutch coast using data from 5 555 

Doppler wind Lidars installed on the sea surface. The extractible wind power maps were computed assuming a typical 8 10 

MW turbine power curve. At 200m above sea levela.s.l., the accuracy of the method in which the algorithm is trained directly 

at hub height was 23% for both the wind speed and 3% for the wind power. Regarding the two-step method, the accuracies 

were 3% and 4% respectively. One must add the error due to intra-diurnal variability, which is not seen by the satellites. This 

source of errorwhich was estimated to be less than 1% for mean wind speed and 2% for wind power in these areas. Note that 560 

this additional uncertainty could be easily removed in the future by simulating the passages of SAR satellites using the high-

resolution numerical model, and precisely estimating the effect of their time sampling. In the areas affected by the coastal 

gradient, the difference between the SAR wind power maps and the outputs of the numerical model can reach 10% over short 

distances of less than 20 km.  

Compared to the maps provided by the numerical model, this method has the advantage of providing a much higher level of 565 

details. In the areas affected by the coastal gradient, the difference between the SAR maps and the outputs of the numerical 

model can reach 10% of the wind power over short distances of less than 20 km. Therefore, using SAR data combined with a 

high-resolution numerical model and processing them with machine learning can improve the assessment of the offshore wind 

resource. It can provide useful insights to optimize wind farm siting and risk management. 

Further research should focus on removing some artefacts remaining on the SAR wind power maps, such as the swath edges, 570 

bright targets, and the effect of bathymetry. The method could also be improved by identifying other useful input parameters 

for machine learning, like the cross-polarization backscatter, which is more sensitive to strong winds. One objective is also to 

improve the machine learning algorithm in order to obtain a better description of the Weibull distributions tails and avoid 

having to adjust them with a reference distribution. Finally, the method needs to be generalized to other geographical areas 

with independentand trained with a larger training dataset that could combine  in-situ measurements from Lidars  and classical 575 

metocean buoys measurementsfor assessing the wind speed accuracy at the sea surface and higher altitudes. 
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