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Abstract. The main objective of the presented work is the validation of the simulation tool FAST.Farm for the calculation

of power and structural loads in single wake situations; the basis for the validation is the measurement data base of the op-

erating offshore wind farm alpha ventus. The approach is described in detail and covers calibration of the aeroelastic turbine

model, transfer of environmental conditions to simulations, and comparison between simulations and adequately filtered mea-

surements. It is shown that FAST.Farm accurately predicts power and structural load distributions over wind direction with5

discrepancies of less than 10 % for most of the cases compared to the measurements. Additionally, the frequency response

of the structure is investigated and it is calculated by FAST.Farm in good agreement with the measurements. In general, the

calculation of fatigue loads is improved with a wake-added turbulence model added to FAST.Farm in the course of this study.

1 Introduction

Wind conditions inside a wind farm are strongly influenced by the interaction of individual turbines with the atmospheric10

boundary layer. In particular, wake effects of upstream located turbines affect the inflow conditions of downstream turbines.

FAST.Farm is a new numerical tool developed by the National Renewable Energy Laboratory (NREL), which simulates wake

effects and predicts power output as well as structural loads of turbines within wind farms. It implements the dynamic wake

meandering (DWM) model originally described by Larsen et al. (2008), but with further model advancements.

The original DWM model and modified versions of it were verified and validated in previous studies. Larsen et al. (2013)15

published results of a validation with respect to loads and power production for single and multiple wake scenarios. In an

additional validation study, Larsen et al. (2017) took a closer look at tower loads and showed dependencies of wake loads

on turbine spacing. Improvements to the DWM model were suggested by Keck et al. (2014) with respect to atmospheric

stability and Keck et al. (2015) regarding atmospheric shear and turbulence build-up in a wind farm. In both studies, they

validated their improvements by comparing them to power production measurements as well as results of large eddy simulations20

(LES) in terms of velocity deficit and turbulence intensity (TI) profiles. Recently, validation efforts of the DWM model were

conducted by incorporating flow field measurements from a lidar device (Conti et al. (2021)). Reinwardt et al. (2020) derived

new calibration factors by using lidar measurements and validated their results in terms of power production and structural

loads (Reinwardt et al. (2021)).
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FAST.Farm was validated with LES in the prediction of wake characteristics, turbine power, and structural loads for a three25

turbine case by Shaler and Jonkman (2020). They showed that FAST.Farm calculates results in good agreement with the ref-

erence LES for most analyzed quantities. However, in low ambient turbulence conditions, higher differences were observed,

which were attributed to a missing wake-added turbulence feature in FAST.Farm in this study. Shaler et al. (2020) performed

a validation of FAST.Farm against full-scale data of the turbine’s supervisory control and data acquisition (SCADA) system

(generator power, rotor speed, blade pitch) of a five turbine configuration. Despite problems with the used generic controller,30

FAST.Farm captured the trends of the measurements with good accuracy. In the Scaled Wind Farm Technology (SWiFT) bench-

mark study by Doubrawa et al. (2020), FAST.Farm calculated flow characteristics of a single wake in good agreement with the

other considered simulation tools. Underperformance in capturing wakes compared to flow measurements were predominantly

traced to inaccuracies in the inflow modeling.

In the present study, we compare results from FAST.Farm against full-scale measurement data from the offshore wind farm35

alpha ventus. The overall objectives are summarized as: 1) validating FAST.Farm for power and structural load predictions in

single wake situations, 2) providing a detailed path on how to perform load validation with field data of an operational wind

farm, and 3) providing insights into load characteristics of an offshore wind turbine subjected to single wake conditions. A

one-to-one approach is followed for the validation concept. Here, environmental conditions measured at the meteorological

mast FINO1 are aggregated and directly fed as inputs into the simulations; this means that each measured 10-min event is40

represented in the simulations with its unique environmental parameter combination.

2 Methods and data

2.1 FAST.Farm overview

FAST.Farm is a multiphysics engineering software tool that accounts for wake interaction effects on turbine performance and

structural loading within wind farms. FAST.Farm is an extension of the NREL software OpenFAST, which solves the aero-45

hydro-servo-elasto dynamics of individual turbines. FAST.Farm extends this analysis to include wake effects in wind farms. As

in OpenFAST, rotor aerodynamics in FAST.Farm are modeled using the blade-element-momentum (BEM) theory with options

for advanced corrections, such as the inclusion of unsteady aerodynamics. Wake aerodynamics in FAST.Farm are based on the

DWM model, Larsen et al. (2008), but expands on it to address many limitations of past DWM implementations.

Using the DWM method, the wake deficit behind each turbine in the wind farm is computed quasi-steadily, with the wake50

evolution solved via the thin shear-layer approximation of the Navier-Stokes equations in axisymmetric coordinates. Turbu-

lence closure is captured through an eddy-viscosity model, including the influence of ambient turbulence and the wake shear

layer. The wake deficit at the rotor is based on the low-pass time-filtered and azimuth-averaged radially dependent thrust co-

efficient calculated by OpenFAST. Wake-expansion in the pressure-gradient zone is solved with a near-wake correction. Each

wake meanders due to large-scale turbulent structures using a three-dimensional passive tracer, with a meandering velocity55

based on spatial averaging of the disturbed wind field. The disturbed wind field is calculated by superimposing the ambient
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turbulence and the individual wake deficits from each rotor. When multiple wakes overlap, the superposition of axial wake

deficits is based on a root-sum-square method.

Some of the unique innovations of FAST.Farm relative to DWM implementations in other simulation tools include:

– Improvement of wake advection, deflection, and merging;60

– Calibration of wake-related model parameters against results from high-fidelity LES;

– Ability to solve all wind turbines and the farm-wide disturbed wind field in parallel;

– Optional inclusion of a wind-farm-wide super controller (not used in this paper); and

– Optional inclusion of LES-generated ambient wind data (not used in this paper).

More information on the implementation and theory behind FAST.Farm is provided by Jonkman et al. (2017), Shaler and65

Jonkman (2020), and Jonkman and Shaler (2021). Doubrawa et al. (2018) derived the calibration parameters of FAST.Farm by

optimization with regard to LES. These constants were directly used in this study.

2.1.1 Implementation of wake-added turbulence

Besides modeling wake deficit and wake meandering, the DWM model by Larsen et al. (2008) includes modeling of wake-

added turbulence. This term describes the generation of turbulence behind a wind turbine rotor due to shear forces in the wake,70

as well as the breakdown of mainly the tip and root vortices. The contribution of wake-added turbulence to the total turbulence

level inside a turbine’s wake is higher for low ambient turbulence conditions (Madsen et al. (2010)). Therefore, the inclusion of

wake-added turbulence is especially important for offshore conditions where ambient turbulence levels are often low (i.e. less

than 10 %). Preliminary results in the course of this work (see Fig. A1) supported this observation and led to the implementation

of a wake-added turbulence feature in FAST.Farm, which was not present in previous versions. In summary, it is seen that the75

tower loads are strongly influenced by wake-added turbulence and the corresponding improvement of FAST.Farm leads to an

increase in accuracy. In contrast, Fig. A1 indicates that the blade loads are not very sensitive to wake-added turbulence.

The herein presented implementation of wake-added turbulence in FAST.Farm follows mainly the approach by Larsen et al.

(2008) and Madsen et al. (2010), which is included in the IEC 61400-1 standard (IEC (2019)). In addition to the ambient

turbulence domain, it uses a new wake-added turbulence domain defined in the meandering frame of reference. This domain80

is generated with Mann’s spectral turbulence model (Mann (1994)), defining turbulence as homogeneous and isotropic with a

length scale that equals the rotor diameter. The domain should have a fine spatial discretization to resolve the smaller turbulent

scales of the wake-added turbulence.

The wake-added turbulence velocity components are scaled with the factor kmt defined by Eq. (1). It consists of two terms,

which are influenced by: 1) the quasi-steady wake deficit Udef (x, r̃) = U(x, r̃)/VDiskAvg , expressed with the wake velocity85

U(x, r̃) that is normalized by the rotor disk-averaged ambient wind speed normal to the disk VDiskAvg , and 2) the radial wake
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Figure 1. Exemplary results from the calculation of wake-added turbulence from left to right: velocity deficit distribution, radial gradient of

the velocity deficit, scaling factor kmt, resulting distribution of the turbulence intensity from the wake-added turbulence TIWAT. Calculations

are made for two ambient turbulence levels at 6D behind the rotor. Simulations are performed with FAST.Farm in neutral atmospheric

conditions with a mean wind speed of 6.5 m s−1 at hub height.

deficit gradient. The contributions of those terms are controlled with the empirical coefficients km1 and km2. The factor kmt is

dependent on the axial distance to the rotor x and the radial location r̃ normalized by the rotor radius.

kmt(x, r̃) = km1

∣∣∣∣1− U(x, r̃)

VDiskAvg

∣∣∣∣+ km2

VDiskAvg

∣∣∣∣δU(x, r̃)

δr̃

∣∣∣∣ (1)

Exemplary distributions of the TI from the wake-added turbulence TIWAT and the corresponding velocity deficit profiles are90

displayed in Fig. 1. The empirical constants involved in Eq. (1) were re-calibrated to km1 = 1.44 and km2 = 0.84 by using

the measurements. For the calibration, events with low ambient TI and close to full-wake conditions (±5◦) were utilized

from the measurements as reference and damage equivalent loads (DELs) as well as the frequency response at tower base

were compared. The recommended values by the IEC 61400-1 standard are km1 = 0.6 and km2 = 0.35. The reason for the

discrepancy between the IEC values and the re-calibrated values is not clear. However, the resulting turbulence levels from the95

wake-added turbulence model seen in Fig. 1 are similar to turbulence values found in the literature, e.g. from Keck et al. (2014)

and Madsen et al. (2010).

The implementation of wake-added turbulence includes three major additions to the FAST.Farm code:

1. A new instance of the FAST.Farm module InflowWind is initialized for the wake-added turbulence domain; it is reused

for each turbine in the simulation domain to ensure computational efficiency. The turbulent wind box that is created100

beforehand with the DTU Mann turbulence generator (DTU Wind Energy (2021)) is loaded into this instance of In-

4



flowWind. In the course of a FAST.Farm simulation, the wake-added turbulence wind field is propagated with the am-

bient wind speed at hub height. The usage of a Mann turbulence field is mainly motivated by practical reasons with

regard to the implementation in InflowWind; when using a Mann turbulence field, a reference wind speed can be directly

defined inside InflowWind, which is eventually used to propagate the wake-added turbulence box downstream.105

2. The scaling factor kmt is calculated in the meandering frame of reference inside FAST.Farm’s "Wake Dynamics (WD)"

module. The calculation is based on the quasi-steady velocity deficit and its radial gradient, that are already available

inside the WD module.

3. In the module "Ambient Wind and Array Effects (AWAE)" of FAST.Farm, the velocities of the wake-added turbulence

field are interpolated based on their spatial location and scaled with the spatially interpolated value of the factor kmt. The110

resulting velocities are added to the ambient wind vector via vector addition in the low- and high-resolution domains of

FAST.Farm and transformed from the meandering frame of reference to the fixed frame of reference.

2.2 Alpha ventus measurement data base

The wind farm alpha ventus is located 45 km north of the German island Borkum in the North Sea. It consists of twelve turbines

with a rated power of 5 MW, which is shown in Fig. 2. This study focuses on the turbines AV4 and AV5, which are Senvion115

5M turbines with a rotor diameter of 126 m and a hub height of 92 m. They are mounted on a jacket substructure and are

located approximately 6.7D apart. Within the initiative Research at alpha ventus (RAVE, 2021) measurement data from both

turbines have been acquired since 2011. For example, these data were used in load validation studies for freestream conditions

by Kaufer and Cheng (2013) and Popko et al. (2021). For this work, we used data from the period 01/2016−07/2018 because

of good availability and quality. In front of turbine AV4, the FINO1 met mast is located at a distance of approximately 3.2D120

providing environmental data.

2.2.1 Turbine measurements

The turbines are equipped with load sensors at various locations. Additionally, data from the turbine’s SCADA system are

available. The time resolution of all sensors is 50 Hz. The following list explains the sensors used in this study and their

calibration.125

– SCADA: Generator power, generator speed and blade-pitch angle measurements are directly taken from the SCADA

system.

– Nacelle yaw position: These data are also available through the SCADA system. Over longer time periods, a drift was

observed in the data. This was corrected by using nacelle rotation events and correlating the known tower-base strain

gauge positions with the nacelle-yaw signal. In this way, sensor offset values were derived to make the data consistent130

over time.
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Figure 2. Wind farm layout of alpha ventus including FINO1 met mast. AV1-6: Type Senvion 5M. AV7-12: Type Adwen AD 5-116. North

is pointing up. Shaded triangle indicates the wind direction sector 257◦− 287◦ seen from AV5.

– Tower-base bending moments were calculated from strain gauges located above the transition piece. The strain gauges

are placed at four locations separated by 90◦ around the tower cylinder. By combining the strain gauge measurements

with the nacelle’s yaw position, fore-aft (FA) and side-side (SS) bending moments were derived. Nacelle rotation events

during turbine shutdown and calm wind conditions were used to determine calibration factors in terms of slope and135

offset.

– Blade-root bending moments in edgewise and flapwise direction are measured via four strain gauges placed near the

blade root. They were calibrated with rotor idling events during calm winds as well as 10-min mean operational data.

The measurements were made consistent over time by adjusting slope and offset. Strain gauge signals were combined to

reduce cross-talk effects.140

2.2.2 Environmental data

Meteorological and sea conditions are measured at the FINO1 met mast and are available as 10-min statistics. Wind speed is

measured with cup anemometers at 7 locations starting at 41.5 m height above sea level (a.s.l.) and increasing in approx. 10-m

increments to 100 m height a.s.l. Wind speed data are corrected for met mast shadow effects as explained by Westerhellweg

et al. (2011). Vertical wind shear is described in terms of the power law exponent α, which is derived by fitting the power law145

on the wind speed measurements from all available heights of the met mast.
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Wind direction is taken from the wind vane located at 91.5-m height, with the correction given by Westerhellweg et al.

(2010). An additional offset of +3 ◦ is applied on wind direction, which was derived by correlating the wake deficit of turbine

AV4 with the measured wind direction at FINO1.

Atmospheric stability is estimated by using the power law shear exponent α and applying the limits given in Table 1.150

This simplified approach is motivated by Westerhellweg et al. (2014) and has the advantage of good sensor availability. It is

considered to be sufficient for this study because it only serves as refinement for environmental conditions and specific analyses

of atmospheric stability are excluded.

Sea state is measured in terms of significant wave height and peak wave period with a directional waverider buoy (DWR-

MkIII by Datawell).155

Table 1. Classification of atmospheric stability with power law exponent α. The given wind field parameters σk are dependent on stability

and based on findings by Peña et al. (2010), which is explained in Sect. 2.4.

Atmospheric stability α σv σw

unstable α≤ 0.07 0.87 σu 0.79 σu

neutral 0.07< α < 0.15 0.81 σu 0.68 σu

stable 0.15≤ α 0.78 σu 0.63 σu

Around alpha ventus, new wind farms have been commissioned over the years. This changes inflow conditions at alpha

ventus compared to situations where no other wind farms were in close vicinity, as shown by Pettas et al. (2021). In this work,

these effects are partly taken into account because measured environmental conditions are directly transferred to simulations

on a 10-min event basis.

2.3 Filtering approach160

The measurement data are clustered in 10-min events for which the statistics are calculated to allow appropriate filtering. In

particular, the following filter criteria were applied:

– Only events are considered which have a data availability of more than 99 %.

– Wind direction is constrained from 257◦ to 287◦ to ensure that only wake effects of turbine AV4 affect AV5. At the

boundaries of this wind direction sector, nearly freestream conditions exist for both turbines; effects from wind farm165

blockage are ignored.

– Both turbines are operated under normal conditions. For example, down-regulation, startup, or shutdown events are

omitted.

– No yaw-action takes place during an event. Additionally, both turbines operate at similar yaw angles, allowing only

events where the difference in the mean yaw position is less than 6◦.170
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2.4 Transfer of environmental conditions to simulations

An important part of a validation procedure is to ensure high quality simulation inputs. In this study, turbulent wind fields

were created with the software TurbSim (Jonkman (2009)) fed by measured meteorological conditions at FINO1. The wind

field generation with TurbSim applies Taylor’s frozen-turbulence assumption and propagates turbulent eddies with a constant

velocity while neglecting the evolution of the turbulent eddies in the downstream direction. According to Shaler et al. (2019a)175

who compare results from FAST.Farm with results from LES, this assumption is considered a reasonable simplification.

The von Karman turbulence spectrum is adapted with a modified wind profile: At heights where measurements at FINO1

exist, mean wind speed and TI were directly used. For heights exceeding the met mast, a power law is utilized to extrapolate

mean wind speed; for TI, the standard deviation value at the top met mast position is kept constant over higher heights. It is

assumed that the cup anemometer only measures turbulent fluctuations of the wind speed component u, defined as the standard180

deviation σu. The relationship of turbulent fluctuations of the three wind speed components u,v,w is then adjusted according

to atmospheric stability (see Table 1). It is based on findings by Peña et al. (2010), who investigated, among other things, the

anisotropy of turbulence with respect to atmospheric stability. Their values of the anisotropy parameter Γ are translated to

standard deviations by using the relationships provided by Mann (1998).

Turbulence length scale L is approximated with Eq. (2) as suggested by Kelly (2018). Here, the TI measurement at z = 90-m185

height and the power law shear coefficient α serve as inputs.

L≈ z
TI

α
(2)

Coherence γ of the wind speed components k=u,v,w between points i and j is defined according to the Davenport (1961)

model in Eq. (3):

γi,j = exp

(
−ck

f δ

ū

)
, (3)190

where f is the frequency, δ is the separation distance between points i and j, and ū is the mean wind speed of both points. The

decay coefficient ck is chosen according to Nybø et al. (2020) and is dependent on atmospheric stability. Note that for stable

conditions, the value for coefficient ck is used that is dedicated to neutral conditions. The coherence model applies on the wind

speed components individually and ignores correlation between different velocity components (e.g. u-v correlation).

2.5 Calibration of aeroelastic simulation model195

The aeroelastic simulation model was generated with structural and aerodynamic information provided by the manufacturer.

Simulations were performed with the original turbine controller. In addition, a thorough calibration of the simulation model of

both turbines AV4 and AV5 was performed to match the turbines measured load characteristic in the field as closely as possible.

This involves the determination of structural damping of the first tower eigenmodes in the FA and SS direction by analyzing

turbine shutdown events.200

Furthermore, imbalances in the rotating system were identified by looking at the frequency response during freestream

events with low TI conditions. The imbalances were introduced for each blade i as variation in blade mass BM,i, variation in
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blade flapwise BFK,i and edgewise BEK,i stiffness, and blade-pitch offset BPO,i. A summary of the introduced imbalances in the

simulation model is listed in Table 2. Using these values, we were able to reproduce the turbines’ frequency response from the

field at the desired sensor locations with satisfactory accuracy. It is noted that these imbalances do not necessarily reflect the205

real existing imbalances; however, this approach was regarded as the best solution overcoming missing exact blade calibration

measurements such as static blade deflection tests.

Table 2. Identified simulation model imbalances. Values without units are factors that are multiplied with the given parameter.

BM,1 BM,2 BM,3 BFK,1 BFK,2 BFK,3 BEK,1 BEK,2 BEK,3 BPO,1 BPO,2 BPO,3

AV4 1 0.996 1 1 1 0.95 1 1 0.95 0◦ −0.5◦ +0.5◦

AV5 1 1 1 0.95 1 1 0.95 1 1 −0.5◦ +0.5◦ +0.5◦

2.6 Simulation setup and presentation of results

The information presented in the previous sections was used to set up the FAST.Farm simulations. One-to-one simulations

were performed, where the measured environmental conditions of 10-min events are directly used as simulation inputs. Here,210

six random and uncorrelated turbulence realizations of the wind field were created. Similarly, the sea state is modeled with six

random realizations of the JONSWAP spectrum using the measured significant wave height and peak wave period. The wake

analysis focuses on two wind speed bins in below rated conditions: 1) wind speed 6.5−7.5 m s−1 labeled in the following with

"I", 2) wind speed 9.0−10.0 m s−1 labeled with "II". These bins were chosen because they imply high rotor thrust values and

hence strong wake effects. In total, 1014 FAST.Farm simulations were run for wind speed bin I and 1072 for wind speed bin215

II.

The numerical setup of FAST.Farm is guided by the recommendations given in Shaler et al. (2019b). The domain size in

the longitudinal direction is X = 1890 m. In the lateral direction, the largest shift of both turbines is 220 m and occurs at the

considered wind directions of 257◦ and 287◦. By considering the rotor radius and reserving additional space (2D) for the wake

meandering in both directions, the domain is set to Y = 850 m. The domain size in the vertical direction is set to Z = 300 m,220

which includes a safety margin of ≈ 1.2D above the rotor tip for vertical wake meandering. The wakes are modeled up to a

downstream distance of 8D by using wake planes with a spatial resolution of 5 m in the radial direction.

The TurbSim wind fields for the ambient turbulence and the low-resolution domain for resolving the wake meandering

in FAST.Farm have a spatial resolution of dy = dz = 6 m in the lateral and vertical directions. The spatial resolution for

the wake-added turbulence domain and the high-resolution domain around the turbines is dy = dz = 3 m. The time step for225

the low-resolution domain equals dtlow = 2 s and dthigh = 0.2 s for the high-resolution domain, which is also used for the

TurbSim wind fields for the ambient turbulence and the Mann wind fields for the wake-added turbulence. At the beginning

of each simulation, a transient period of 400 s is removed to allow the wakes to develop and to damp initial oscillations. The

TurbSim wind fields are 600 s long and set to be periodic in order to achieve a total simulation time of 1000 s. The Mann wind
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fields for the wake-added turbulence cover 3D in the longitudinal direction; turbulence is reused when points outside this box230

are requested.

The results in Sect. 3 and 4 are presented in terms of statistics of measured quantities, which are plotted against the wind

speed and wind direction. The data are clustered in wind speed bins of the size 0.5 m s−1 and wind direction bins of the size

2.5◦. For each bin, the mean value plus 15th − 85th percentile range is shown. DELs are calculated according to Eq. (4):

DEL =

(
n∑

i=1

Sm
i

Neq

) 1
m

, (4)235

where Si refers to the range of a load cycle and Neq is the number of equivalent cycles (in this work: Neq = 600 for

obtaining the 1-Hz DEL). The Wöhler exponents are defined as m= 4 in case of steel (tower) and m= 10 for composite

materials (blades). The DEL is not corrected for mean load effects.

To protect proprietary data, all results are normalized by either user defined values or by values of the freestream turbine,

which is indicated in the figure legend. Measurements are labeled with "AV4" and "AV5", whereas simulations are named240

"FFarm4" and "FFarm5" making reference to the turbine numbers 4 and 5.

3 Initial results

A check of the turbine characteristics during freestream conditions as well as an analysis of the environmental conditions is

presented, before taking wake effects into account in Sect. 4.

3.1 Investigation of turbine characteristics in freestream conditions245

Figure 3 illustrates results of the comparison between simulations and field measurements for close to freestream conditions.

This freestream sector of 240◦−257◦ was detected beforehand by correlating loads of turbine AV5 with the wind direction. In

total, 2980 simulations were conducted with the software OpenFAST, which employs the same aeroelastic model as described

for FAST.Farm but without wind farm-wide effects, enabling faster simulation times. Although an individual calibration of

both turbines AV4 and AV5 was conducted, the differences in the considered aggregated load quantities is negligible; hence,250

only the results of the AV4 calibration is shown in Fig. 3.

For the operational sensors of generator power (Fig. 3 (a)) and blade-pitch angle (Fig. 3 (b)), a discrepancy of less than

5 % is found between the data of turbines AV4, AV5 and simulations described as OpenFAST. The DEL computed for the FA

bending moment at tower-base (Fig. 3 (c)) shows a close match with a difference of less than 7 % in below rated conditions

(4−12 m s−1). In the above rated conditions, simulations agree well with measurements from turbine AV4; the loads of turbine255

AV5 are up to 20 % higher compared to turbine AV4. This difference is most likely related to an imbalance in the rotor system

during blade-pitch actuation. Loads at the blade root are compared by means of DEL of the bending moment in the flapwise

direction in Fig. 3 (d). It is observed that measurements of both turbines as well as simulations match each other well with

differences of less than 10 % for wind speeds up to 16 m s−1.
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Overall, the simulations can predict the measured load quantities in freestream conditions with high accuracy. This indicates260

that the aeroelastic simulation model is set up appropriately and that the meteorological conditions are transferred into realistic

wind fields. The exact representation of hydrodynamic excitation in terms of wave loads is considered of less importance

because the substructure is quite rigid and only sensors above the sea water level are taken into account in this study.
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Figure 3. Comparison of freestream (wind direction 240◦−257◦) characteristics between measurements (AV4, AV5) and simulations (Open-

FAST: results are shown with calibration based on AV4). Statistics are shown as mean values per wind bin. Shaded area indicates 15th and

85th percentiles. Patches in grey show the wake bins I and II analyzed in Sect. 4.
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3.2 Distribution of environmental conditions

For the analyzed wind speed bins, the TI distribution over wind direction is shown in Fig. 4. The mean TI for wind speed bin265

I calculates to ≈ 6.4 % and ≈ 5.9 % for wind speed bin II. Highest TI values are found in unstable atmospheric conditions

whereas lowest TI values occur in stable conditions. Especially in wind speed bin II, more events are found towards wind

directions from the southwest, which is the predominant wind direction. A more uniform event distribution with regard to the

wind direction is found for wind speed bin I. Figure 5 depicts the distribution of the power law shear exponent α over wind

direction. It can be seen that wind speed bin II contains higher α values on average compared to wind speed bin I.270
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(a) Wind speed bin I: 6.5− 7.5 m s−1
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(b) Wind speed bin II: 9− 10 m s−1

Figure 4. Turbulence intensity measured at 90-m height at FINO1. Statistics are shown as mean values per wind bin. Shaded area indicates

15th and 85th percentiles. Scatter shows TI of single 10-min events. AS = atmospheric stability

4 Results of wake validation

4.1 Turbine performance: statistics

Results of the mean generator power prediction are presented in Fig. 6. They show a maximum power loss of ≈ 48 % in full

wake conditions for wind speed bin I. At nearly 43 %, power loss is slightly less for wind speed bin II due to a decreased

rotor thrust coefficient compared to wind speed bin I. Wake effects are visible in the turbine power generation over a wind275

direction sector of 25◦. FAST.Farm is able to predict the width and depth of the power deficit with high accuracy compared

to the measurements for wind speed bin I (Figures 6 (a) and (b)). For wind speed bin II, deviations of 5− 10 % are observed

in Fig. 6 (c). Relative comparisons are shown in Figures 6 (b) and (d), where results of the waked turbine are divided by

the freestream results of simulations and measurements correspondingly. It is observed that relative plotting produces a better
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(b) Wind speed bin II: 9− 10 m s−1

Figure 5. Power law shear exponent α derived from FINO1 measurements. Statistics are shown as mean values per wind bin. Shaded area

indicates 15th and 85th percentiles. Scatter shows α of single 10-min events.

match of FAST.Farm with the measurements. This is due to the decreased uncertainties potentially arising from the turbine280

model. Similar levels in the scatter of events indicated by the error range are found for simulations and measurements.

4.2 Turbine performance: detailed results

A more detailed analysis of the turbine performance is shown in Fig. 7 by plotting the probability density function (PDF) of

the generator speed. The PDF was calculated for each 10-min event in the wind sector corresponding to full-wake conditions.

Afterwards, mean value with error range expressed as 15th and 85th percentiles across the PDFs of all events were derived. In285

both wind speed bins, a reduction of generator speed is found for the waked turbine, caused by the wind speed deficit from the

upstream turbine. In wind speed bin I, the downstream turbine operates near the cut-in wind speed, which is indicated by the

peak around the normalized generator speed of 0.6 in Fig. 7 (a). From Fig. 7 (b), it can be seen that a wider range of generator

speeds is covered by the waked turbine compared to the freestream turbine. This can be related to a varied operational point due

to the wake deficit. Additionally, it can be partly attributed to the increased turbulence in the wake originating from wake-added290

turbulence as well as wake meandering. In both wind speed bins, FAST.Farm predicts the distributions from the measurements

with high accuracy.

4.3 Structural loads: statistics

Figure 8 shows results of the fatigue loads expressed as DEL of the blade-root bending moment in the flapwise direction. By

comparing the two wind speed bins, different load distributions over wind direction for the waked turbine are observed. For295
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(c) Wind speed bin II (9.0− 10.0 m s−1)
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Figure 6. Comparison of generator power in wake conditions between measurements (AV4, AV5) and simulations (FFarm4, FFarm5).

Statistics are shown as mean values per wind direction bin. Shaded area indicates 15th and 85th percentiles.

wind speed bin I (Fig. 8 (a)), a dip in the DEL for the downstream turbine occurs around full wake conditions at 272◦); this

is not visible for wind speed bin II (Fig. 8 (b)). Influencing factors on the load distribution for the waked turbine are the wind

direction and connected mean wake position, magnitude of wake meandering, ambient wind conditions, and operational point

of the turbine. Varying combinations of these effects lead to different load distributions. With the chosen one-to-one simulation

approach, the aim was to reduce the uncertainty arising from the different combinations. Hence, it is seen for both wind speed300

bins that FAST.Farm agrees well with the measurements and predicts the increase in loads and trends over wind direction with
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Figure 7. Probability density function (PDF) of generator speed for measurements (AV4, AV5) and simulations (FFarm4, FFarm5) in the

wind direction sector 270.75◦ − 273.25◦. Thick lines show the mean of the PDFs of all considered events. Shaded area indicates 15th and

85th percentiles.

good accuracy. Overall, a load increase of approximately factor 1.7 (wind speed bin I) and factor 2.0 (wind speed bin II) are

identified for the waked turbine.

Figure 9 displays the DELs of the tower-base bending moment in the FA direction. In contrary to the fatigue loads at the

blade-root, a higher increase in loads for the waked turbine is observed for wind speed bin I compared to wind speed bin II. In305

particular, DELs are increased by factor ≈ 2.4 (wind speed bin I) and factor ≈ 2.0 (wind speed bin II) for the waked turbine

compared to the DELs of the freestream turbine. FAST.Farm produces results in good agreement with the measurements in

terms of magnitude and wind direction dependency. For most of the considered wind directions, the discrepancy in the mean

value per bin between FAST.Farm and the measurements is less than 10 %; in some wind directions, the difference is increased

to ≈ 25 %. The uncertainty range per bin indicated by the percentile range is predicted by FAST.Farm with good agreement to310

the measurements.

4.4 Structural loads: frequency response

Figure 10 depicts the frequency response of the structure at the tower base and blade root. Only events during nearly full wake

conditions (wind direction 270.75◦−273.25◦) in wind speed bin I were considered. For each 10-min event, the power spectral

density (PSD) was calculated. Then mean values for each frequency with corresponding uncertainty range expressed as 15th315

and 85th percentiles were determined. They are shown for the blade-root bending moment in the flapwise direction (Fig.10

(a)) and the tower-base bending moment in the FA direction (Fig. 10 (b)).
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(a) Wind speed bin I (6.5− 7.5 m s−1)
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(b) Wind speed bin II (9.0− 10.0 m s−1)

Figure 8. Comparison of the blade-root bending moment in the flapwise direction in waked conditions between measurements (AV4, AV5)

and simulations (FFarm4, FFarm5). Statistics are shown as mean values per wind direction bin. Shaded area indicates 15th and 85th per-

centiles.
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(a) Wind speed bin I (6.5− 7.5 m s−1)
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Figure 9. Comparison of the tower-base bending moment in the fore-aft direction in waked conditions between measurements (AV4, AV5)

and simulations (FFarm4, FFarm5). Statistics are shown as mean values per wind direction bin. Shaded area indicates 15th and 85th per-

centiles.
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In case of the blade (Fig. 10 (a)), an increase of energy at the blade passing frequency 1P is observed for the waked turbine

compared to the freestream turbine. It comes along with a reduction of the blade passing frequency (freestream: 1P ≈ 0.15 Hz,

wake: 1P ≈ 0.13 Hz) due to the reduced wind speed inside the wake and consequently a reduction of rotor speed. The magnitude320

of the first blade passing frequency of turbine AV5 is predicted by FAST.Farm to be a factor of 3 higher compared to the

measurements. In contrast, the excitation of the second blade passing frequency 2P indicated by the peaks between 0.2−0.3 Hz

is higher in the measurements. A possible explanation is the modeling of the wake, which has a Gaussian shape in FAST.Farm.

In reality, the wake is more likely to be distorted, leading to smoother transitions to undisturbed winds. Similar observations

are made by Shaler and Jonkman (2020), who compare FAST.Farm with LES. However, more detailed analyses are required,325

e.g. using LES, to derive a conclusive explanation for the observed characteristics in the frequency response.

The signal at the tower base (Fig. 10 (b)) reveals a strong excitation of the first global mode at around 0.3 Hz for the

waked turbine. This is observed in both the measurements and FAST.Farm, whose prediction of the peak is 15 % below the

measurements. It was found that especially the inclusion of wake-added turbulence in the FAST.Farm simulations has an

intensifying effect on the peak of the first global mode. Higher energy content is also seen in the frequency range 0.35−0.4 Hz330

for the waked turbine compared to the freestream turbine. Although FAST.Farm captures an increase in the energy content

compared to the freestream turbine, it underestimates the energy level detected in the measurements by 50 % in this frequency

range.
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(a) Blade-root flapwise bending moment
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Figure 10. Comparison of power spectral densities (PSD) between measurements (AV4, AV5) and simulations (FFarm4, FFarm5) for wind

speed bin I (wind direction 270.75◦−273.25◦). Thick lines show the mean of the PSDs for all considered events. Shaded area indicates 15th

and 85th percentiles.
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5 Discussion

The present investigation concentrates on two wind speed bins in below rated conditions. This choice is motivated by the335

connected high rotor thrust conditions and hence strong wake effects. Moreover, analyses of quantities over wind direction

are enabled. Another reason is that the behavior of both turbines AV4 and AV5 is comparable in the measurements, whereas

in above rated conditions, differences occur even under ambient inflow for both turbines (see Fig. 3 (c)). For the analysis of

structural loads, we focus on sensors and directions that are mainly affected by the change of turbulence characteristics in the

wake, i.e. tower-base FA bending moment and blade-root flapwise bending moment.340

A crucial part of this load validation is the generation of adequate wind fields representing the environmental conditions

at alpha ventus. Especially, coherence and turbulence scale have an influence on wake meandering magnitude, which in turn

affects the loads of the downstream turbine (see also Shaler et al. (2019b) and Wise and Bachynski (2020)). Unstable and neutral

atmospheric conditions imply greater turbulent length scales and larger coherent turbulent structures than stable conditions.

This leads to higher wake meandering magnitudes and higher load levels for the downstream turbine. For the loads at the345

blade-root, adequate capturing of wake meandering is most important, whereas for the loads at the tower-base, both wake

meandering and wake-added turbulence must be modeled. We observed that in the simulations, a direct relationship between

ambient TI conditions and wake loads exists. Consequently, higher ambient TI values lead to higher loads at the downstream

turbine. In the measurements, this relationship holds true but it was also found that low ambient TI conditions can lead to high

wake loads. This shows that there is some uncertainty in modeling the environmental conditions and wake features that should350

be investigated in future.

In offshore full-scale load validation, there are many potential sources of uncertainty. Starting with the modeling of en-

vironmental conditions, we aimed to minimize those uncertainties by making use of findings from previous research, which

is available for the site. However, there are limits in the methods used. For example, in the coherence model of the wind

field, there is no directional dependency of coherence considered and coherence is only dependent on the velocity components355

u,v,w. In the considered period of measurements and wind direction sector, alpha ventus operates in the wake of the wind farm

"Trianel Borkum I", which is located ≈ 6.5 km east. The flow structures evolving from this farm-wake are likely to be different

from ideal freestream conditions, for which the wind field generation method was originally derived. Overall, to reduce the

input uncertainties, we followed a one-to-one simulation approach where the measured environmental conditions are utilized

directly as simulation inputs.360

6 Conclusions

The simulation tool FAST.Farm was validated for the prediction of power output and structural loads in single wake conditions

with respect to measurement data from the offshore wind farm alpha ventus. In addition, a wake-added turbulence model

was implemented into FAST.Farm, which is needed to calculate the small-scale turbulence in the wake; this is considered of

importance especially for low ambient TI conditions and for tower-base loading. It was shown that FAST.Farm predicts the365

mean power deficit with high accuracy compared to the measurements. Additionally, the PDF of generator speed was calculated
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in strong agreement with the measurements for the freestream and downstream turbine. Fatigue loads were analyzed in terms

of DELs of the bending moments at the blade root in the flapwise direction and the tower base in the FA direction. Distributions

over wind direction show a good match between simulations and measurements with deviations of less than 10 % for most of

the investigated wind directions.370

More detailed insights in the aforementioned structural load quantities were provided by PSD analyses. They show that

FAST.Farm calculates trends in the structural response with good agreement to the measurements in the frequency domain.

In particular, excitation at the tower base of the waked turbine is reproduced with FAST.Farm, which can be attributed to the

wake-added turbulence feature in FAST.Farm added in the course of this study. However, by looking at the PSD at blade root,

it is indicated that not all phenomena are captured sufficiently by FAST.Farm, leaving room for further improvements.375

It was demonstrated that the proposed one-to-one simulation approach works well for the validation in offshore single wake

conditions. It is concluded that calibration of the aeroelastic model with respect to imbalances as well as appropriate transfer of

environmental conditions to simulations is important. Here, a differentiation of atmospheric stability helps to refine simulation

inputs such as coherence in the wind field, but also indicates that especially stable atmospheric conditions remain challenging

to model for capturing the loads of a waked turbine.380
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Appendix A

A1 Influence of the wake-added turbulence feature in FAST.Farm
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(a) Blade-root bending moment in flapwise direction
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Figure A1. Comparison of FAST.Farm simulations with activated (WAT=true) and deactivated (WAT=false) wake-added turbulence with

respect to the measurements (AV5) for wind speeds 7.5−8.5 m s−1. Statistics are shown as mean values per wind direction bin. Shaded area

indicates 15th and 85th percentiles.
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Figure A2. Comparison of power spectral densities (PSD) between measurements (AV5) and FAST.Farm simulations with activated

(WAT=true) and deactivated (WAT=false) wake-added turbulence for wind speeds 7.5− 8.5 m s−1 (wind direction 270.75◦ − 273.25◦).

Thick lines show the mean of the PSDs for all considered events. Shaded area indicates 15th and 85th percentiles.
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