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Abstract. The actuator-cylinder model was implemented in OpenFOAM by virtue of source terms in the Navier-Stokes equa-

tions. Since the stand-alone actuator cylinder is not able to properly model the wake of a vertical-axis wind turbine, the steady

incompressible flow solver SimpleFoam provided by OpenFOAM was used to resolve the entire flow and wakes of the turbines.

The source terms are only applied inside a certain region of the computational domain, namely a finite thickness cylinder which

represents the flight path of the blades. One of the major advantages of this approach is its implicitness, that is, the velocities in-5

side the hollow cylinder region feed the stand-alone actuator-cylinder model (AC), this in turn computes the volumetric forces

and passes them to the OpenFOAM solver in order to be applied inside the hollow cylinder region. The process is repeated in

each iteration of the solver until convergence is achieved. The model was compared against experimental works, wake deficits

and power coefficients are used in order to assess the validity of the model. Overall, there is a good agreement of the pattern

of the power coefficients according to the positions of the turbines in the array. The actual accuracy of the power coefficient10

depends strongly on the solidity of the turbine (actuator-cylinder related) and both the inlet boundary turbulence intensity and

turbulence length scale (RANS simulation related).

1 Introduction

The modeling of vertical-axis wind turbine (VAWTs) farms has lacked researched in the last years compared to horizontal-axis

wind turbines (HAWTs). The complexity of the models ranges from simple momentum models to full-rotor RANS (Reynolds-15

averaged Navier-Stokes equations) or LES (large-eddy simulations) simulations. While simple models are computationally in-

expensive, they lack accuracy and rely on various semi-empirical corrections which may not be valid for all cases; high-fidelity

simulations are simply out of the scope of many researchers and scientists due to the tremendous computational requirements.

This work proposes an actuator model integrated within an OpenFOAM solver that relies on replacing the turbine by vol-

umetric forces exerted on the fluid, this approach eliminates the need of highly resolved meshes around the blades, thereby20

reducing the mesh size considerably. The forces are modeled using the steady-state actuator cylinder model (Madsen, 1982),

although any other model can be employed. This approach is two-dimensional and the computational time needed for simulat-

ing a wind farm ranges from minutes to hours; moreover, the fidelity is superior to that of simple momentum models since the

viscous wake is resolved by the RANS simulation. This proposed model provides the capability of serving as an optimization
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tool for vertical-axis wind turbine farms. The models that have been used for wind farm modeling will be listed according to25

complexity, their benefits and caveats will be listed.

The first category belongs to models using the momentum theory or potential flow theory. One of the simplest wake model is

the Jensen model (Jensen, 1983), which is able to describe the wake shape provided the thrust coefficient and induction factors

are given. The rate of growth of the wake depends on empirical constants. The model can be extended to multiple turbines

using a superposition technique. Although it was originally developed for HAWTs, some researchers have developed similar30

models for VAWTs (Abkar, 2019) achieving good results for the wake shape. Potential flow models try to emulate the wake

of a turbine by superposing many different potential flows such as a uniform stream, a dipole and a vortex (Whittlesey et al.,

2010). The wake deficit can be modeled as a probabilistic density function and it is simply subtracted from the flow field. This

model has also been extended to multiple-turbine environments (Araya et al., 2014) but it is still very problem-dependent and

needs much more calibration since it is unable to model viscous effects.35

The next category belongs to actuator models. As it was said before, these models rely on replacing the turbine by volumetric

forces. (Svenning, 2010) has successfully implemented a RANS actuator disc model for a HAWT in OpenFOAM. The model

is explicit and it requires the values of thrust and torque; although it can be extended to multiple turbines, it relies on the

assumption of all turbines having the same thrust and torque, which may not be entirely true for turbines in the back rows.

(Bachant et al., 2018) has also developed actuator line models for both HAWTs and VAWTs with the option of using either40

RANS or LES. (Shamsoddin and Porté-Agel, 2016; Abkar, 2018; Mendoza and Goude, 2017) have also performed LES

simulations of actuator line models on a single VAWT. An interesting multi-turbine simulation using an actuator line model

was done by (Hezaveh et al., 2018), the study works on the effect of clustering the turbines in order to increase the power

density.

The last category of models employs full-rotor RANS simulations. Works on multiple VAWTs can be found in (Zanforlin45

and Nishino, 2016; Bremseth and Duraisamy, 2016; Giorgetti et al., 2015). Recently, a very interesting study by (Hansen et al.,

2021) was done on pairs and triplets of VAWTs, the study claims that a 15% increase in power can be achieved if turbines are

placed closer. Although these claims are done on the basis of 2D simulations, it is not sure whether this effect may scale to a

wind farm.

The current RANS-AC has the potential of modeling entire wind farms without relying on empirical corrections for the50

wake or without the need of HPC (high performance computing). Moreover, only simple input data must be entered, namely

the geometrical and operational parameters and inlet boundary conditions for the simulation.

2 Actuator-cylinder (AC) wake model for turbines

This section first presents the theory behind the AC model, then the justification of the linear solution is described in detail

and a validation for the stand-alone AC is included. The last part deals with the details of the RANS-AC implementation in55

OpenFOAM.
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2.1 Stand-alone actuator-cylinder model

The VAWT can be modeled as a hollow cylinder upon which radial volume forces fn(θ) act. This will create a pressure jump

across the entire surface (notice that the cylinder is merely an abstraction, it does not exist materially). The turbine’s blades are

responsible for these radial forces. Figure 1 shows a cross section of an infinite long cylinder (in the z-direction), the incoming60

wind velocity is V∞, 2ε is the cylinder’s thickness and R is the radius. Madsen (1982) showed that

Qn(θ) = lim
ε→0

R+ε∫
R−ε

fn(θ)dr . (1)

whereQn is the normal load per unit length exerted on the fluid at angular position θ averaged over one revolution 2πR. The AC

coordinate system is x and y. The governing equations are those of continuity and the steady-state Euler equations. Velocities

in the x and y directions are non-dimensionalized by the incoming wind velocity V∞; lengths are non-dimensionalized by the65

wind turbine radius R and pressure is non-dimensionalized by ρV 2
∞.

x

y

2ε2ε

R

Qn

V∞

Figure 1. Radial forces acting on fluid.

The Euler equations are applied to the entire field and the volume forces are represented by the forces exerted by the blades.

The final form of the solution is shown in Eqs. (2a) and (2b), which allow calculation of the perturbation velocities wx and wy ,

N is the number of evaluation points, θ is the angle of the current evaluation point and φ is a dummy angle used for integration

purposes. The turbine rotates counter-clockwise. This form only includes the linear part, although a correction is made to make70

up for the non-linear terms. When the evaluation takes place inside the hollow cylinder, the term I must be included; on the

other hand, if the evaluation point is located in the wake (the leeward part of the cylinder), both I and II must be included in

3



the equation. Li (2017) provides a useful discretization scheme assuming the forces are piecewise constant.

wx =− 1

2π

N−1∑
i=0

Qn,i

θi+
1
2 ∆θ∫

θi− 1
2 ∆θ

−(x+ sinφ)sinφ+ (y− cosφ)cosφ

(x+ sinφ)2 + (y− cosφ)2
dφ

−Qn(arccosy)︸ ︷︷ ︸
I

+Qn(−arccosy)︸ ︷︷ ︸
II

(2a)

75

wy =− 1

2π

N−1∑
i=0

Qn,i

θi+
1
2 ∆θ∫

θi− 1
2 ∆θ

−(x+ sinφ)cosφ− (y− cosφ)sinφ

(x+ sinφ)2 + (y− cosφ)2
dφ (2b)

These equations can be put in matrix form using influence coefficients that depend on geometrical variables that have to

be computed only once and a column vector Qn. Eqs. (2) can predict the perturbation velocities along the hollow cylinder

provided the forces are known, for which the blade element theory is needed. The free stream velocity V∞ is broken down into

its x and y Cartesian components so that they can be projected along the cylinder tangential and normal directions. Note that80

α is the angle of attack with respect to the chord of the blade, ωR is the tangential velocity of the blade due to rotation, Vt and

Vn are the airflow tangential and normal velocities, Vrel is the relative velocity. Sometimes the chord is pitched slightly by an

angle δ.

The normalization of the loads can be found in (Li, 2017) and it will be outlined briefly here for the case of a counter-

clockwise rotating turbine. From now on, all variables will be non-dimensional (written in lowercase). The local x and y85

velocities can be decomposed into the normal and tangential velocities.

vx = 1 +wx, (3)

vy = wy, (4)

vn = vx sinθ− vy cosθ, (5)

vt = vx cosθ+ vy sinθ+λ. (6)90

The rotational speed of the rotor normalized by V∞ is ωR/V∞, which is a common characteristic parameter of wind turbines

called the tip-speed ratio denoted by λ. The normalization of the relative speed and α are

vrel =
√
v2
t + v2

n, (7)

α= arctan(vn/vt)− δ. (8)

The aerodynamic forces are95

Cn = CL cosα+CD sinα, (9)

Ct = CL sinα−CD cosα. (10)
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The lift and drag coefficients can be obtained from a lookup table as a function of α and Reynolds number. Some common

NACA profiles have plenty of experimental data and can be found in (Sheldahl and Klimas, 1981) at high Reynolds numbers

and for an ample range of α. Finally the normal and tangential forces exerted on the cylinder become100

Qn(θ) =
σ

2π
v2

rel(Cn(θ)cosδ−Ct(θ)sinδ), (11)

Qt(θ) =− σ

2π
v2

rel(Cn(θ)sinδ+Ct(θ)cosδ). (12)

The turbine σ is given by σ =NBc/2R, which can be interpreted as the blades’ area per unit length divided by the turbine

swept area per unit length. It is important to keep σ low, otherwise the basic assumptions about the model break down since ef-

fects such as flow curvature and flow distortion are not taken into account. The model does not guarantee any results whatsoever105

if high-solidity rotors are used. (Cheng, p. 40) uses the AC model in his Ph.D. thesis and the solidity values encountered there

are fairly low –around 0.12 for a large two-bladed VAWT–; (Paraschivoiu, 2002, p. 169) also employs low-solidity turbines in

the development of his double multiple stream-tube model, the values of σ do not go beyond 0.22.
:::
The

::::::::
problem

::
of

:::::::
solidity

:::::::
becomes

:::::::::
important

::
in

:::::
small

:::::::
turbines

:::
as

::::
they

::::
have

::
a
:::::
large

::::
c/R

:::::
ratio.

:::::::::
According

::
to

::::::::::::::::::
Migliore et al. (1980)

:
,
:::::
these

::::::
blades

:::
are

::::::::
subjected

::
to

:
a
:::::::::
curvilinear

::::
flow

::::::
which

:::::
alters

:::
the

::::::::
boundary

::::
layer

:::
of

:::
the

::::::
airfoil.

::::::::
Kinematic

:::::::
analysis

:::::
from

:::::::::::::::::::
(Migliore et al., 1980)110

:::
also

::::::
shows

::::
that

:::
the

:::::
angle

::
of

:::::
attack

::::
and

:::
the

:::::::
relative

::::
wind

:::::::
velocity

::::
are

::::::::
dependent

:::
on

:::
the

:::::::::
azimuthal

:::::
angle,

:::
the

:::
tip

:::::
speed

:::::
ratio

:::
and

:::
the

:::::::::::::
chord-to-radius

:::::
ratio;

:::::::
therefore

::
α
::::
and

:::
vrel:::

can
::::
vary

:::::::::::
significantly

:::::::::
chordwise

::::
since

::::
any

::::
point

:::
on

:::
the

:::::
blade

:::
has

::
a
::::::
unique

:::::
radial

:::::::
distance.

:::
By

:::::::::
employing

:::::::::
conformal

:::::::
mapping

::::::::::
techniques,

:
it
::
is
:::::::
possible

::
to
:::::::::
transform

:::
the

:::::
airfoil

::
in

:::
the

:::::::::
curvilinear

::::
flow

::
to

::
a

:::::
virtual

::::::
airfoil

::
in

:
a
::::::::
rectilinear

:::::
flow.

:::
The

::::::::::::
transformation

:::::::::
introduces

:
a
:::::::
camber

:::
and

::
an

:::::::::
additional

:::::
angle

::
of

::::::::
incidence

:::::::
–namely

::::::
virtual

::::::
camber

:::
and

::::::
virtual

:::::::::
incidence–

::::::
which

:::
are

::::
also

:::::::::
dependent

::
on

:::
the

:::::::::
azimuthal

:::::
angle,

::::::::
although

::::
they

:::
can

::
be

::::::::
averaged

:::
by

:::
the

:::::
mean115

::::
value

::
of

::::
one

:::::::::
revolution.

::::
Thus

::
it

::
is

:::::
shown

::
in
:::::::::::::::::::
(Migliore et al., 1980)

:::
that

:::::
these

:::::
virtual

::::::
airfoils

:::::
have

::
lift

::
at
::::::
α= 0,

::::::::
therefore

:::
the

:::
CL

::
vs

::
α

:::::
curve

::
is

::::::
shifted

:::::::
upwards

:::::::::
depending

::
on

:::
the

:::::
value

:::
of

::::
c/R.

::::
Not

::::
only

:::
the

:::
lift

:::::::::
coefficient

::
is

::::::
affected

::::
but

:::
also

:::
the

::::
stall

::::::
angle,

:::::
which

::::::
occurs

:::::
much

:::::
earlier

::
as

::
in
:::
the

:::::::
original

::::::
airfoil

::::::
without

:::::::
camber;

::::
this

::::::::
premature

::::
stall

::::::::::
deteriorates

:::
the

::::::::
efficiency

::
of

:::
the

:::::
wind

::::::
turbine.

:::::::
Results

::::
from

:::::
wind

:::::::
turbines

::::
with

:::::
values

:::
of

:::::::::::
c/R= 0.114

:::
and

::::::::::
c/R= 0.26

::::
each

::
in

:::::::::::::::::::
(Migliore et al., 1980)

::::
show

::::
that

:::
the

:::::
power

:::::::::
coefficient

::
is

:::::::
strongly

::::::::
dwindled

::
as

::::
c/R

::::::::
increases.

::
In

::::::::
summary,

::::::
results

:::::
from

:::
the

:::
AC

:::::
model

:::::
using

::::::::
relatively

:::::::::::
high-solidity120

::::
wind

:::::::
turbines

::::
will

:::::::
certainly

:::::::::::
miscalculate

:::
the

:::::
angle

::
of

::::::
attack

::
to

:
a
::::::
certain

:::::::
degree,

:::
thus

:::::::::::::
overestimating

:::
the

:::::
power

:::::::::
coefficient

:::
of

::
the

:::::::
turbine.

:

The perturbation velocities can be determined if the forces are known, while the forces also depend on the perturbation

velocities. The solution is iterative: first, the perturbation velocities are set to zero, then the aerodynamic coefficients are

computed as well as Qn and Qt. Eqs. (2a) and 2b are used to find the perturbation velocities, and the process is repeated until125

convergence.

2.2 The linear correction

The aforementioned equations are only valid for low-loaded rotors (thrust coefficient), the model including only the linear part

stops being accurate at high loads; however, a relation between the induction factor a and the thrust coefficient CT was found

for the linear solution. Equating this thrust coefficient to an empirical thrust coefficient from the momentum theory yields a130
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correction factor for the induction factor at high loads. The perturbation velocities are all multiplied by the correction factor ka.

The procedure is straightforward and can be found in (Li, 2017; Madsen et al., 2013; Ning, 2016; Cheng et al., 2016; Cheng).

There are, however many empirical corrections. (Madsen et al., 2013) provides the following equations for ka.

a= k3CT
3 + k2CT

2 + k1CT + k0. (13)

ka =


1

1−a , a≤ 0.15

1
1−a (0.65 + 0.35exp(−4.5(a− 0.15))), a > 0.15.

(14)135

Where k3 = 0.0892, k2 = 0.0544, k1 = 0.251 and k0 =−0.0017. Ning (2016) cites the following equations.

a=


1
2 (1−

√
(1−CT )), CT ≤ 0.96

1
7 (1 + 3

√
( 7

2CT − 3)), CT > 0.96.
(15)

ka =


1

1−a , CT ≤ 0.96

18a
7a2−2a+4 , CT > 0.96.

(16)

The thrust coefficient can be obtained using the following equation which can be found in (Li, 2017). This equation is valid

for counter-clockwise and clockwise rotation.140

CT =

2π∫
0

(Qn(θ)sinθ+Qt(θ)cosθ)dθ. (17)

2.3 Validation against a 1.2 kW Windspire turbine

The Windspire was chosen for validation because it will be used throughout this work, therefore the results of the AC model

will be compared against experimental data. Ideally, it would be better to validate against a low-solidity turbine since it meets

the requirements of the AC model; nevertheless the Windspire turbine will be used despite it having a solidity of σ = 0.32.145

According to (Zanforlin and Nishino, 2016), the turbine is kept at an optimal tip-speed ratio λ= 2.3 up until 10.6 ms−1,

after this point the rotational speed is kept constant and λ begins to decrease. The turbine’s radius is R= 0.6 m, the height is

H = 6.1 m, the number of blades is N = 3, the chord is c= 0.128 m and the airfoil is a DU06W200 section derived from a

NACA0018 section, except the maximum thickness is 20% and little camber is added.

A particular challenge was to find polars for the DU06W200. Claessens (2006) provides both theoretical and experimental150

data for Reynolds numbers of 300,000 and 500,000 but does not give information whatsoever for Reynolds number below

300,000, the turbine’s global Reynolds number at 8 ms−1 is Re=Rωc/ν = 130,000, ω being the rotational speed. It was then

decided to use polars from the software QBlade (Marten et al., 2013) which is based on a vortex panel code derived from the

MIT’s code Xfoil (Drela, 1989). QBlade is able to predict both drag and lift coefficients at angles of attack below stall, for
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ranges above stall, an extrapolation can be done based on the Montgomerie model, which is more accurate (at least in this155

case) than the Viterna model. It was observed that the Montgomerie model predicted better the shear drop in lift after stall has

occurred. Figures 2 and 3 show the polar for both the lift and drag coefficient at the typical Reynolds numbers encountered

by this turbine; QBlade seems to have trouble at low Reynolds numbers, instabilities are manifested in the zone just before

stall plus the fact that the slope before stall is not always linear and presents jagged segments, despite the shortcomings, polars

at Re= 50,000 Re= 100,000, Re= 150,000 and Re= 200,000 were included. At higher Re it was found that QBlade160

overestimated lift and could not predict well the shear drop of lift after stall according to wind tunnel data from (Claessens,

2006).

No attempt was made to introduce dynamic stall or flow curvature effects. Dynamic stall models can conflict with the AC

model according to Li (2017). As for flow curvature due to the turbine’s c/R= 0.21, –which is above 0.075 and 0.11 in

(Paraschivoiu, 2002, p. 169) and (Cheng, p. 40), respectively–, it was decided not to employ any model due to the increase165

in computational cost. Li (2017) uses Migliore’s model which computes the shape of a virtual airfoil with added camber (the

original airfoil in a curved flow is mapped to a cambered airfoil in a straight flow); consequently, the lift and drag coefficients

have to be recomputed according to the shape of the virtual airfoil, this needs models such as the vortex panel model which

can be expensive considering that the panel model has to be called for every azimuthal position times the number of iterations.

Figure 2. Lift polar for the DU06W200 airfoil at different Re.
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Figure 3. Drag polar for the DU06W200 airfoil at different Re.

The results from the AC model were compared against data from an AC model results provided by Ning (2016), experimental170

data is also available. Eqs. 15 and 16 were used for the linear correction. Figure 4 shows how both AC models overpredict the

CP . This overestimation must be in part because both AC models employ limited polars, e.g. Ning (2016) using wind tunnel

data at Re= 300,000 and this work using data ranging from Re= 50,000 to Re= 200,000; thereby neglecting the fact that

at lower wind speeds Re is much lower. The other reason must be because of the fact that the model is only two-dimensional

and no effects from struts, tower, tip losses, as well as flow curvature and dynamic stall are included. There is an overall good175

tendency, the results from the current work and the experimental data both peak at 10 ms−1. Without accurate polars from

wind tunnel measurements, it is hard to get accurate results, the CP is therefore very sensitive to the polars and care must be

taken when interpreting the lift and drag coefficients.
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Figure 4. 1.2 kW Windspire turbine validation and comparison. λ is kept at 2.3 up until 10 ms−1.

2.4 RANS-AC implementation

The AC model can be incorporated into one of the OpenFOAM solvers by taking advantage of the source terms in the Reynolds-180

averaged Navier-Stokes equations. The solver used is called simpleFoam (Moukalled et al., 2016) which solves the steady-state

incompressible Navier-Stokes equations for turbulent flows. A new solver called actuatorCylinderSimpleFoam was made using

the simpleFoam solver as a template. Whereas the solver needs minimal modification, the AC routines took most of the work.

These routines are placed in separate files. The k-ε turbulence model is preferred since it has proven to yield relatively good

results in environmental flows such as wakes (Bardina et al., 1997; Wilcox, 1998). Algorithm 1 shows the process followed by185

the new solver.
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Algorithm 1 actuatorCylinderSimpleFoam solver implementation

Create volumetric field

Read coordinates

Read geometrical and operational parameters

for i← 1 to N do

Create an actuator cylinder {i is the current cylinder}

Identify cells that belong to the cylinder

Initialize arrays of velocity and volumetric forces of current cylinder

end for

repeat

Solve for velocity

Clear volumetric field

for i← 1 to N do

Add Force(mesh, U, volumeForce)

{Access the mesh and the velocity field U.}

{Read the velocities in the corresponding cells.}

{Execute AC and compute forces.}

{Apply forces in the cylinder’s cells of volumetric force field.}

end for

Pressure correction

until convergence is achieved or last time step is achieved

Notice that N is the number of cylinders (turbines), each cylinder has a set of corresponding cells where the velocity is

read and then passed to the AC routine which computes the volumetric forces and passes them back to OpenFOAM using

the function Add Force. The thickness of the cylinder is subjective and it will be explained in the next sections. The way the

volumetric forces are calculated by the RANS-AC is by assuming that they do not vary significantly across the thickness of the190

cylinder, therefore Eq. 1 becomes Eq. 18, where ∆r is the thickness of the cylinder and fn(θ) are the volumetric forces normal

to the cylinder as a function of the azimuthal angle. These normal forces have to be projected in the x and y direction of the

volumetric field of the simulation.

fn(θ) =Qn(θ)/∆r. (18)

2.5 RANS-AC verification against AC model195

In order to prove that the RANS-AC has been implemented correctly, the power coefficient of the RANS-AC will be compared

against that of the stand-alone AC model. A sensitivity analysis concerning the thickness of the cylinder and the turbulence
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intensity I at the inlet of the domain will be discussed. A uniform mesh was chosen for simplicity. Although OpenFOAM is

provided with mesh refinement utilities, the refined mesh is inevitably three-dimensional due to the meshing algorithm, which

is even more computational expensive, therefore the refined mesh was discarded. The boundary conditions are inlet, outlet, top200

and bottom, back and front. Table 1 shows the boundary conditions for every variable OpenFOAM has to compute.

Boundary conditions

U p volForce k ε νT

inlet freestream zeroGradient fixedValue freestream freestream calculated

outlet zeroGradient fixedValue fixedValue freestream freestream calculated

top/bottom freestream freestreamPressure fixedValue freestream freestream calculated

front/back empty empty empty empty empty empty

Table 1. Boundary conditions at time 0 for the computational domain.

It must be cleared that the simpleFoam solver interprets p as p/ρ since the RANS equations are divided by ρ due to the flow

being incompressible. Free stream conditions acts like a zero-gradient condition when the flow comes out of the domain and

acts like a fixed value when it is not; it is a kind of inlet/outlet condition in case of having flow reversal. The freestreamPressure

is an outlet-inlet condition that uses the velocity orientation to act either as a zero-gradient condition or a fixed-value condition.205

The empty boundary condition means that nothing is calculated at those faces, this is only valid for two-dimensional cases with

one cell in the third direction.

In summary, all variables have to be initialized at time 0 in the domain. In order to initialize the values of all variables, a set

of equations is needed. Eqs. 20, 21, 22 and 22 are the turbulence length scale, the turbulent kinetic energy, the turbulent kinetic

energy dissipation rate and the turbulent viscosity; respectively. The least intuitive is l, this value is taken from (Versteeg and210

Malalasekera, 1995, p. 66) based on the case of a wake flow, where L is the wake width which will be taken as the diameter of

the cylinder. Cm is just a constant set to 0.09 by default.

l = 0.08L, (19)

k = 1.5(‖U‖I)2, (20)

ε =
Cm

0.75k1.5

l
, (21)215

νT =
Cmk

2

ε
. (22)

The RANS-AC was verified against the Windspire turbine using a fine mesh and a coarse mesh. The mesh size was based

on enclosing the cylinder in a n×n cell square, the rest of the domain was meshed accordingly. Distances from the inlet to

the turbine could range from 3 D to 5 D (diameters) as well as distances from the turbine to the sides. Distances from the
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turbine to the outlet could be shorter than 10 D. No impact was observed in the CP . Table. 2 shows the comparison of the220

power coefficients as well as the mesh parameters. No significant difference was observed between both meshes, although both

meshes underpredicted CP at 14 ms−1. The number of time steps is dependent of the inlet velocity, e.g. the wake takes longer

to develop when the inlet velocity is low. Although the wake development depends strongly on the inlet velocity and the value

of ε, the power coefficient reaches a stable value much earlier. This is verified in a log file. The development of the wake can

be observed visually by inspecting each time step; at 8 ms−1, 800 time steps were sufficient to achieve the final shape of the225

wake and a steady power coefficient.

The distance from the turbine to the outlet does not seem to affect the result. In this case, the outlet was placed 10 D away

from the turbine. Care must be taken when choosing the value of I , data from (Araya et al., 2014) was used to compute the

value of I . Observations take every 10 minutes from several wind directions and velocities were extracted; e.g. for 8 ms−1,

data from velocities ranging from 7 ms−1 to 9 ms−1 were collected, then the mean of the quotient of the standard deviation and230

the average velocity was calculated. The same process was done for the rest of the velocity bins. A script added in Appendix

A shows the procedure.

Mesh sensitivity results

stand-alone AC fine mesh coarse mesh

1.0 chord thickness cylinder 1.5 chord thickness cylinder

50× 50 cell enclosing square 30× 30 cell enclosing square

U∞ CP CP CP I

4 0.22 0.196 0.197 0.130

6 0.23 0.216 0.217 0.125

8 0.26 0.275 0.270 0.134

10 0.32 0.339 0.340 0.116

12 0.25 0.230 0.230 0.110

14 0.16 0.100 0.084 0.106

Table 2. RANS-AC results from two different meshes verified against the stand-alone AC.

Since a volumetric field is created initially, at the end of the simulation it is possible to visualize these forces using Paraview.

Figure 5 shows the volumetric forces acting on the counter-clockwise rotating cylinder at 8 ms−1 (coarse mesh). It is reminded

that the volumetric field is a vector field but the magnitude is a scalar.235
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Figure 5. Volumetric forces acting on the cylinder. Flow goes from left to right. Free stream speed is 8 ms−1, coarse mesh.

3 Validation against Araya et al. (2014)

This section is meant to test the capabilities of the RANS-AC in a multi-turbine environment. Experimental data from a small

wind farm of VAWTs was found in (Araya et al., 2014). These kinds of experiments are hard to find in the literature since

most experimental studies on VAWTs are done on one turbine only. The experiment consists of a set of turbines that can be

rearranged in any fashion in order to test the performance of several layouts, the location is in the Antelope Valley, California.240

The turbines are the same 1.2 kW Windspire turbines mentioned in the past sections. Although data for multiple wind turbine

arrays are available, only data from two different arrays will be used here, namely an array of 4 turbines and another array of

18 turbines. Figures 6 and 7 show the layouts of the two arrays. The eighteen-turbine arrays has counter-clockwise rotating

turbines. It is said in (Araya et al., 2014) that the most prevalent wind direction is from the southwest, therefore the turbines in

Figs. 6 and 7 were aligned in that direction. The wind speed is about 8 ms−1 and λ is kept at 2.3. The value of I is set to 0.13245

according to Table 2.

2 10 18 24

y/D

x/D

0 11.31 22.62 33.93

0

Figure 6. Four turbines in a row. The distance from turbine to turbine is 11.31 D (diameters). Flow is from left to right.
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Figure 7. Fish schooling configuration. Turbines are placed in a counter-clockwise rotating fashion. The flow is also from left to right.

3.1 Model calibration

Since the numerical simulation must be provided with the turbulence length scale in order to compute the turbulent kinetic

energy dissipation rate at the inlet, a study on the width of the wake was conducted in order to find the appropriate turbulence

length scale. The results in Table 1 were obtained supposing that the width of the wake was similar to the diameter of the250

turbines. This did not impact the results of the CP ; however, it was observed that the streamwise development of the wake was

sensitive to this value, this is reflected in ε since it depends on l = 0.08L where L is the width of the wake.

In order to obtain a value for l, a simulation with L=D was run and the width of the wake was found. Care must be taken

in selecting the width of the wake as it varies downstream. It was decided to take the value at 7 D, roughly; the reason for this

is that the rate of growth begins to reach a steady value. The rate of growth of the wake at small distances downwind cannot255

be neglected. At larger distances the wake begins to fade away and a wake width is hard to define. This is exemplified in Fig.

8, the procedure consisted in placing several downwind stations, e.g. crosswind plots of the magnitude of the velocity. The

width was then measured from end to end, where each end has a velocity value of the free stream velocity, which is 8 ms−1 in

this case. These ends can be found visually by intersecting the wake plot with a horizontal line drawn at U = 8 ms−1, where

U is the magnitude of the velocity. Notice in the figure that the location at which the ends of the wake stop varying is at 7 D260

approximately. The width is then y+− y− where y+ is the upper end and y− is the lower end. It is also interesting to notice

the skewness of the wake, since the turbine is rotating counter-clockwise, most of the power is extracted in the positive portion

of y.
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Figure 8. Wake width at different downwind stations. The width begins to reach a stable value 7 D and its value is 2.8 m.

Once the new value of L was found, an iterative procedure following the same logic was conducted: a new simulation with

L= 2.8 was conducted and the width of the wake was obtained in the same fashion. The procedure was stopped when the265

width stop varying across iterations. Figure 9 shows the final value of the width of the wake, which is 3.7 m, the turbulence

length scale is found by substituting 3.7 in l = 0.08L.
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Figure 9. Wake widths obtained by following an iterative procedure. All the plots are located at 7 D downwind.

3.2 Array of 4 turbines

The power coefficients from this array were obtained from data published by (Araya et al., 2014). The script used to extract

information from the data set is presented in Appendix B. The distance from turbine to turbine is 11.31 D. Figure 10 shows the270

CP and the normalized CP . The latter was taken to be the current turbine CP divided by the leading turbine CP ; experimental

data was normalized with the leading turbine’s experimental CP and numerical data was normalized accordingly. There is a

clear overestimation of the CP , as discussed earlier, the AC model tended to overestimate the CP of this particular turbine.

The normalized CP shows that there is an overall good trend: the power coefficients decrease in the same manner.
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Figure 10. Power coefficients of the four-turbine array. a) is the actual CP and b) is the normalized CP .

Another plot concerning the velocity and turbulence intensity along the center line is included in Fig. 11. The magnitude of275

the velocity is normalized with respect to the free stream velocity U∞. The value of I was calculated in Paraview by creating

a new field according to the following equation derived from Eq. 21.

I =

√
(2/3)k

‖U‖
. (23)

The RANS-AC underestimates the wake recovery in between the turbines. The value of I starts at 0.13 according to Table

2, then it reaches a steady pattern past the second turbine, values up to 0.4 can be found near the wake of each turbine.280

Figure 11. Wake across the turbine array. The axis for I is located at the right side of the plot. Vertical dotted lines signify the locations of

each turbine.

3.3 Array of 18 turbines

A plot similar to Fig. 10 is presented for this case. Unfortunately, the CP s across the array do not follow a coherent pattern,

e.g. turbines that have been blocked present similar or even higher CP s than the turbines free of blockage. Figure 12 shows the

current CP in a) and the normalized CP in b). The normalized CP was obtained by dividing each CP by the maximum CP .
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Figure 12. Power coefficients of the eighteen-turbine array.

It was observed that a portion of the angles of attack of the turbines that were free of blockage were above stall according285

to Fig. 2. This is wrong since the manufacturer states that the turbine is kept at an optimal λ of 2.3, therefore meaning that

it is not stalled. As the flow traverses each turbine downwind, it loses momentum, therefore each blocked turbine sees lower

relative velocities and thus lower angles of attack. It would be intuitive to think that lower angles of attack lead to lower lift

coefficients, but since the turbine is stalled, the lift coefficients might be even higher than those in the stalled regime. Data

extracted from a row of turbines in the array is presented in Fig. 13. The plot shows the angles of attack and lift coefficients290

from turbines 2, 10 and 18. It can be seen that there is indeed a decrease in the amplitude of α as each turbine presents blockage

from another turbine; however, it is important to notice that in this case, turbine 18 for instance, has the lowest amplitude of

α but its coefficients are not in the stall region where they drop sharply, therefore achieving higher lift and tangential force

coefficients. The local Re ranges from 100,000 to 200,000 and the positive stall angle of attack is about 16 ◦ according to Fig.

2. Turbine 18 has a maximum positive α of 13 ◦, therefore it operates at an optimal regime, which should not happen actually.295

It must be clear that this fault is due to the wrong predictions of α in the AC model, which is possible in case high-solidity

turbines are being used. The incoherent pattern of CP s along a row of turbines did not occur in the case of the array of 4

turbines. It is thought that this array was not affected by the accelerated flow in between turbines as in the case of the array of

18 turbines; therefore the velocity across the center line decayed faster and the turbines in the back rows operated in a regime

well below stall, achieving even lower CP s.300
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Figure 13. α and CL from turbines T02, T10 and T18.

4 Verification with (Shamsoddin and Porté-Agel, 2016)

As seen in Section 3, the case of the eighteen-turbine wind farm did not yield good results mainly because of the inability of

the AC model to correctly predict angles of attack for high-solidity turbines. In seeing this, an additional verification study

was done to prove that the RANS-AC does work well indeed if low-solidity turbines are used. The work from (Shamsoddin

and Porté-Agel, 2016) is used as a reference. An LES simulation was carried out on a three-bladed VAWT with a radius of305

25 m, a chord of 1.5 m, and a height of 100 m. The wing’s cross section is an NACA0018. The rotational speed is 16.5 rpm

and the wind speed is 9.6 ms−1, thus yielding a tip-speed ratio of 4.5. The turbulence intensity value at the inlet is 0.083 and

an atmospheric boundary layer is used, although this is not possible in a 2D simulation. Figure 14 shows a CP plot against λ.

The current RANS simulation was done a cylinder thickness of 2 chords and an enclosing square of 30× 30 cells. Although

the RANS-AC model overpredicts the value of CP , there is a very good agreement on the trend of the curve. Results from the310

stand-alone AC model are presented too.
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Figure 14. Comparison of CP results from an LES simulation with the current RANS-AC. Turbine’s σ is 0.09.

Next, a comparison of the wake of the turbine is presented. The LES wake is taken at the equator. The width of the wake

L was taken as the diameter of the turbine and the iterative procedure done in Section 3 was not done since the results using

the diameter as the width of the wake were satisfactory. The accurate width of the wake seemed to impact mostly the initial

value of ε (which depends on l = 0.08L) at the inlet and not much difference was observed in the wake recovery when using315

the diameter as the width of the wake. Figure 15 shows very good agreement in the development of the wake.

Figure 15. Comparison of the LES wake at different downwind distances with the current RANS-AC results.
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Finally, the same eighteen-turbine wind farm simulation is done, except this time the turbine from (Shamsoddin and Porté-

Agel, 2016) is used. The relative distances from turbine to turbine are preserved. The Reynolds number could not be preserved

because that would imply to run the turbine at extremely low wind speeds and extremely low rpm. The purpose is to show that

the RANS-AC has no trouble predicting the right trend of the power coefficients when using low-solidity turbines. The solver320

converged at 1564 iterations, although the power coefficients reached an almost constant value at 1000 iterations. Roughly an

hour had passed by the time the solver reached 1000 iterations; this was done on an all-in-one computer using only one 2.5GHz

processor and 12GB RAM. The distance from the last turbine to the outlet was half the distance from the first turbine to the

last turbine, or 1
2 (maxx−minx). Larger distances yielded the same results. It must be mentioned that it is not necessary to

resolve the entire wake of the turbines until they recover the free stream value, this is possible thanks to the velocity outlet325

boundary condition which is zeroGradient. Figure 16 shows the power coefficients and the normalized power coefficients. The

normalized coefficients were calculated by dividing all CP s by the maximum CP . A coherent pattern is observed: the more the

blockage, the lower the CP value is. Also, the CP s of the turbines free of blockage were notably higher than those of the plot

in Fig. 14, a maximum of 0.59 was found in one of the leading turbines, whereas a single isolated turbine had a CP of 0.49.

It is believed that the accelerated flow in some regions impacts the CP s, and thus different values are obtained as if they were330

isolated.

Figure 16. Wind farm array of 18 turbines using the 25 m-radius turbine from (Shamsoddin and Porté-Agel, 2016). a) shows the current CP

and b) shows the normalized CP . Arrows pointing upwards denote turbines that are blocked by only one turbine, whereas arrows that point

downwards denote turbines that have been blocked by two turbines.

5 Conclusions

The RANC-AC was successfully implemented in OpenFOAM. This was confirmed by the fact that it could achieve a power

coefficient very similar to the stand-alone AC. Guidelines for selecting the mesh size and the thickness of the actuator were also
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given along with inlet boundary conditions for the RANS simulation. The model was validated against multi-turbine experi-335

ments and good agreement was found concerning the trend of the power coefficients in a row of four VAWTs. Unfortunately

these multi-turbine experiments were done using small turbines which had a high solidity, this caused the model to wrongly

predict the angles of attack, namely overestimating the angles of attack and thus getting the wrong coefficients of lift and

tangential force. Thus results from the array of 18 turbines could not match the experimental data. An additional verification

against a large VAWT LES simulation (Shamsoddin and Porté-Agel, 2016) with a low solidity was conducted to prove that340

the RANS-AC is indeed capable of model the wind farm power coefficients so long the leading turbines were not incorrectly

predicted in the stall regime by the AC. The comparison with the results of the wake of the large VAWT were in very good

agreement. Although a multiple-turbine simulation was not done in (Shamsoddin and Porté-Agel, 2016), a simulation of an

array of 18 turbines preserving the original relative distances between turbines in (Araya et al., 2014) was conducted. This time,

the RANS-AC predicted a coherent pattern of the power coefficients across the array, e.g. the turbines free of blockage had345

higher power coefficients and the turbines that experienced more blockage from other turbines had lower power coefficients.

The RANS-AC can therefore be used to model entire wind farms provided low-solidity turbines are used. Future work will

consider wind farm optimizations with this model along with artificial intelligence to predict the performance of a particular

wind farm in different locations. A neural network can be used to learn to predict the power coefficients of a farm depending

the wind velocity and wind direction. This farm could then predict its own performance when seeing different wind speeds and350

directions. Choosing the right array for a particular location can potentially impact the rate of return of a wind farm project.

Video supplement. Paraview color maps

Appendix A: Turbulence intensity data script

import pandas as pd

df = pd.read_csv(path, skiprows=5)355

df.head

data = df.iloc[:, [7, 8]]

data.columns = [’avg’, ’std’]

360

# I at 4 m/s

df4 = data[(data.avg > 3) & (data.avg < 5)]

print( (df4[’std’] / df4[’avg’]).mean() )

# I at 6 m/s365
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df6 = data[(data.avg > 5) & (data.avg < 7)]

print( (df6[’std’] / df6[’avg’]).mean() )

# I at 8 m/s

df8 = data[(data.avg > 7) & (data.avg < 9)]370

print( (df8[’std’] / df6[’avg’]).mean() )

# I at 10 m/s

df10 = data[(data.avg > 9) & (data.avg < 11)]

print( (df10[’std’] / df10[’avg’]).mean() )375

# I at 12 m/s

df12 = data[(data.avg > 11) & (data.avg < 13)]

print( (df12[’std’] / df12[’avg’]).mean() )

380

# I at 14 m/s

df14 = data[(data.avg > 13) & (data.avg < 15)]

print( (df14[’std’] / df14[’avg’]).mean() )

Appendix B: Power coefficients data script

import pandas as pd385

df = pd.read_csv(path, skiprows=5)

df.head

data = df.iloc[:, [2, 4, 7, 11]]

data.columns = [’n’, ’p’, ’u’, ’d’]390

cp_02 = data[ (data[’n’] == 2) &

((data[’u’] > 7.5) & (data[’u’] < 8.5)) &

((data[’d’] > 210) & (data[’d’] < 235)) ][’p’].mean()

395

cp_10 = data[ (data[’n’] == 10) &

((data[’u’] > 7.5) & (data[’u’] < 8.5)) &

((data[’d’] > 210) & (data[’d’] < 235)) ][’p’].mean()
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cp_18 = data[ (data[’n’] == 18) &400

((data[’u’] > 7.5) & (data[’u’] < 8.5)) &

((data[’d’] > 210) & (data[’d’] < 235)) ][’p’].mean()

cp_24 = data[ (data[’n’] == 24) &

((data[’u’] > 7.5) & (data[’u’] < 8.5)) &405

((data[’d’] > 210) & (data[’d’] < 235)) ][’p’].mean()

H = 6.1

D = 1.2

A = H * D410

U = 8

RHO = 1.15

pinf = (1 / 2) * RHO * (U ** 3) * A

cp_02 /= pinf # cp of turbine 02415

cp_10 /= pinf # cp of turbine 10

cp_18 /= pinf # cp of turbine 18

cp_24 /= pinf # cp of turbine 24
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