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Response to both reviewers
The authors appreciate the feedback from both reviewers and believe that the manuscript has been 
improved after implementing the reviewers’ comments. 
The authors decided to rename the Statistical Wake Steering Model (SWSM) to the Data-driven wAke 
steeRing surrogaTe model (DART) . Consequently, the title has been changed to “A physically 
interpretable data-driven surrogate model for wake steering”. Additionally, allSWSM has been renamed
DART-8, oSWSM has been renamed DART-3 and cSWSM has been omitted, following comment 7 
from Reviewer 2. Lastly, some sentences have been rephrased to minimize self-plagiarism, but these 
additional changes have not been included in the author’s response. 

The author’s response to each of the reviewers’ comments (in black) can be found below (in red), as 
well as the rephrased sentences or added text (in blue).

Reviewer 1
General comments
This study presents a data-driven model to model the physics of a wind turbine wake under yawed 
conditions. The model employs a regression model, with inputs from large eddy simulation (LES) data,
resulting in a linear model of the wake behavior. They then evaluate the performance of this model, as 
well as that of two other wake models, the Gaussian wake model and the Gaussian-Curl Hybrid model, 
against LES data. All of these models require tuning and/or training, so the same LES data was used for
to prepare the models. Then a single case LES case that was left out of the training data was used for 
evaluation. The main focus of the study is to present a data-driven model that includes more physics 
and provides a linear model. 
This paper provides an interesting new data-driven model, which results in a linear model for the wake 
behavior of yawed turbines. In particular, the scaling of the input parameters to enable the application 
of the model to a wide array of atmospheric boundary layer conditions is interesting, as changing 
conditions have been challenging for data-driven models. The paper presents an interesting approach 
and I would recommend for publication after minor revisions. Below is a detailed list of comments that 
should be addressed in a revision of this manuscript:

Specific comments
1. In line 66: the authors reference ’default numerical schemes’ when describing the LES code. A 

more detailed description of these should be provided.
The authors agree that the model settings should be elaborated upon. When adding this 
information, the authors realized that this information would better fit in Sect. 2 instead of Sect. 
2.1, since this information holds for both precursor and main simulations. The following text 
has therefore been moved to Sect. 2.
“In the boundary layer, the grid on a right-handed Cartesian coordinate system is regularly 
spaced with ∆= 5 m, while above the boundary layer height the vertical grid size increases with 
6 % per cell to save computational costs.  The Coriolis parameter corresponds to 55◦N. Default 



numerical schemes are used, the main ones being a third-order Runge-Kutta scheme for time 
integration, a fifth-order Wicker-Skamarock advection scheme for the momentum equations, 
Deardorff’s 1.5-order turbulence closure parameterization for subgrid-scale turbulence and an 
iterative multigrid scheme for the horizontal boundary conditions.”

2. The caption for Figure 1: the authors give results for ’over the 15 main simulations’. It was 
unclear which simulations these were, specifically pertaining to their number. In Table 1, eight 
simulations are listed, so this is a confusing statement.
The caption has been rephrased.
“Summary of the most relevant inflow parameters (60 min averages), given as mean (dots) and 
standard deviation (whiskers) over the 15 main simulations performed in each BL (5 yaw 
angles times 3 pitch angles).”

Additionally, one sentence in Sect. 2.2 has been altered for clarification
“This adds up to a total of 120 main simulations with one turbine, i.e. 15 turbine settings 
(5 yaw angles times 3 pitch angles) for each of the 8 inflow conditions.”

3. Section 3.4 seems very similar to the description in Section 3.1 and comes off a bit repetitive. 
Could the differences between them be clarified more?
These sections are indeed very similar, since Sect. 3.4 describes what is basically the reverse of 
Sect. 3.1. The authors agree an extended clarification might be unnecessary. Section 3.4 has 
therefore been rewritten.
“The coefficient matrix B can be used to estimate the key wake steering parameters in Table 2 
from inflow variables. This information is used to compose a vertical cross section of the wake 
deficit using the reverse of the Multiple 1D Gaussian method described in Sect. 3.1. The 
amplitude of the normalized wake deficit A at each height (k = 1..K) can be computed by simply
filling out the Gaussian function using Az, μz, σz. Similarly, local wake center positions μ and 
local wake widths σ can be found by filling out their second order polynomials. Additional 
assumptions outside of the rotor area include that the curl remains continuous (red dashed line 
in Fig. 4c) and the wake width can be described by an ellipse between tip (upper or lower) and 
wake edge (top or surface), see red dashed line in Fig. 4d. Finally, a simple 1D Gaussian can be 
filled out at every vertical level using the information from A, μ, σ, resulting in a two-
dimensional grid filled with und values (Fig 4e).” 

4. In line 298: the authors mention ’...which is due to the ’top head’ shape of the wake deficit as a 
result of temporal averaging.’ I’m familiar with the ’top-hat’ wake shape but not the ’top-head’. 
If not a typo, the author should provide a more detailed description of this shape.
This was indeed a typo and has been corrected.

5. In line 235: ’To test whether a higher accuracy is achieved when more variables are included, 
allSWSM uses all (non-transformed) available variables of Table 3 as input.’ The authors 
mention using all the variables rather than three. What (if any) is the time savings in training 
using only three variables versus all of the variable in Table 3?
The authors acknowledge that the impact of different DART configurations on the training time 
could be interesting to the reader. This comment has been combined with comment 7, and a 
speed test for training the different models and model configurations has been added. This 
speed test was added to Sect. 4.1 as part of the results



Table 4. Model training (DART) or tuning (GAUS and GCH) time when training with all 120 
simulations and 7 (4 D ≤ x ≤ 10 D) down-stream distances. Iteration times are expressed as the 
mean over the first 100 iterations. DART’s Total is a simple multiplication of Iteration and 
Combinations.

“The order of magnitude of computational costs needed to train the models on a single node is 
displayed in Table 4. Computational expenses needed to generate the LES database are not 
considered. The benchmark models tune their parameters in approximately 7.5 h (GAUS) and 
8.25 h (GCH). DART’s training procedure is split up in different stages. The column Iteration 
refers to the regression fitting to obtain the coefficient matrix B (Sect. 3.3) and the calculation 
of the absolute percentage error of available power at 4 D ≤ x ≤ 10 D (Sect. 3.5). This can be 
carried out in seconds, in which fewer variables result in faster fitting. The column
Combinations indicates the number of possible combinations that need to be tested (Sect. 3.5). 
The Total training time is then simply the number of combinations to be tested times the 
execution time of one iteration. Because of its large number of possible combinations, DART-
8’s total training time would be over a year on a single node, which is not operationally feasible.
To generate the results in Fig. 7, the training process was heavily parallelized. With 900 possible
combinations DART-3 can be trained in approximately 11.25 h, which is only slightly more than
the benchmark models. As mentioned in Sect. 3.5, the training procedure could be enhanced, 
but this was considered outside of the scope of the current work. ”

6. In line 238: the authors mention that ’since the near wake is more dynamic and therefore needs 
more parameters to explain its variability’. The authors should provide citations for this. The 
authors also mention that the near wake requires more parameters for this description. Are these
factors already included in the parameters used in the input parameters or are they additional 
parameters outside this study? Do the authors have thoughts on what these parameters are? 
The authors admit that this statement was actually incorrect. Rather than the near wake being 
physically more dynamic, the authors meant that the range of possible values for the key wake 
steering parameters, in particular the wake center deficit, is larger.
”The accuracy of DART-8 is higher than that of DART-3, especially closer to the turbine. This 
is attributed to the stronger wake deficit closer to the turbine, as the wake center deficit Az 
exhibits a larger range of possible values closer to the turbine. For instance in the training data 
at x = 4 D, the range is -0.6 ≤ Az ≤ -0.21, whereas at x = 10 D the range is -0.27 ≤ Az  ≤ -0.09 . 
Estimations with the same relative error therefore bear a larger absolute error closer the turbine. 
Having access to more information, DART-8 consistently has a smaller relative error estimating
Az than DART-3, which has a larger effect on the available power estimates closer to the 
turbine.”



In Figure 7, we only see the results from x/D=4 onwards. Does the allSWSM method improve 
the near-wake performance at all?
As discussed in Sect. 3.4.1, DART gives high errors for x < 4 D due to the double Gaussian 
profile of the near wake. For this reason, the near wake is not further considered and DART-8 is
only trained for 4 D ≤ x ≤ 10 D. To fully answer the reviewer’s question, DART-8 would need 
to be retrained including the near wake, but due to the enormous computation expense as 
discussed in the previous comment, the authors decided not to do this. It is, however, expected 
that DART-8 would provide more accurate results than DART-3 in the near wake, simply 
because more accurate estimates of the key wake steering parameter can be made, see 
discussion above. The double Gaussian, however, is also not resolved with DART-8.

7. In line 247: ’The models are trained or tuned with seven out of the eight BLs (Fig. 1) and tested 
on the remaining one representing a new inflow condition.’ The authors mention the training 
and tuning of the three models compared in this paper. What is the order of magnitude for how 
long the training takes for this model? Is there a significant difference between the training of 
this model and the tuning of the other two wake models it is compared with here?
This comment has been addressed in comment 5.

8. In line 302: ’In this study, large eddy simulation data were used to train the model, the 
generation of which is computationally expensive.’ The authors mention that the model needs to
be trained using LES data, which is a limitation. Have they considered whether the model could
be trained using some combination of data obtained from an operating wind farm? This would 
save computational resources and customize the model to that specific wind site. The wake 
cross-sectional area data could possibly be obtained from strain measurements from the wind 
turbine blades, such as in Bottasso, Cacciola, and Schreiber, Renewable Energy, Vol 116, Part 
A, 2018.
The authors were delighted to read this comment, as this is the topic of the authors’ ongoing 
work. The authors agree that the outlook deserves more attention and thank the reviewer for the 
suggested citation.
“Potentially, field measurements could be used, either in isolation or in combination with 
numerical data. Wake data could possibly be obtained from long-range lidars (Brugger et al., 
2020) or strain measurements from the turbine’s blades (Bottasso et al.,2018). Exploration of 
these possibilities is deemed an important task for future research.”

9. In line 315-16: ’If desired, further development of the model is needed to include the near wake,
which can for instance be done by including the super-Gaussian description introduced by 
Blondel and Cathelain (2020).’ To my knowledge, the super-Gaussian description was also used
in Shapiro et al. Energies, 2019; 12, no. 15: 2956.
The authors thank the reviewer for this suggestion. The reference has been added.

Technical comments
1. In the description of Table 1: “...except for the domain size which is extended in streamwise 

direction”. Typo, missing ’the’
This has been fixed

2. In lines 60-61: ”A precursor without and a subsequent main simulation with one turbine make 
up the simulation chain.” Sentence is a little confusing. Hard to figure out what the simulation 
looks like.
This has been rephrased



“The simulation chain consists of a precursor simulation to generate realistic inflow conditions 
and a subsequent main simulation that contains one turbine.”

3. In line 80: ”(Sec. 2.2 and averaged over a line of size 2 d in crosswise direction and a period...” 
Typo, missing a parentheses ) at the end of Sec. 2.2? Also a missing ’the’.
This has been fixed

4. In line 125: ”An expression for the wake width as function”, typo
This has been fixed

5. In line 153: The variable Y is mentioned twice, but X is not mentioned at all
This has been fixed

6. In line 168: ” IN this section...” typo
This sentence has been deleted following other comments.

7. Figure 6: the second plot in the upper right corner of Figure 6 has no labels and is not 
mentioned in the caption.
The caption has been updated
“The subplot in the top right zooms in to 4 D ≤ x ≤ 10 D. Axes labels correspond to those of the 
main plot.”



Reviewer 2
Purely data-driven flow/wake models are indeed 'under-published' over literature – but perhaps for 
good reasons. Although the approach itself is quite interesting, I would call for caution when calling it 
'a wake model' as it reads more like a clever surrogate to map inputs to outputs for the given problem. 
Accordingly, I would suggest a more methodology-focused tone in the article rather than reading too 
much into the results as they are most likely not generalizable.
The authors agree that the paper should focus more on the methodology. Therefore the presented 
methodology on LES references cases will be referred to as “an exploratory study” to show ”proof of 
concept” in the revised manuscript. Additionally, the reviewer’s suggestion to call it a surrogate model 
has been adopted. The following changes have been made:

- Title
“A physically interpretable data-driven surrogate model for wake steering”

- Abstract
“This study explores whether a data-driven surrogate model with a high degree of physical 
interpretation can accurately describe the redirected wake.”
“Even though the results are not directly generalizable to all atmospheric conditions, locations or 
turbine types, the outcome of this study is encouraging.”

- Section 1
“The objective of this study is to explore the potential of a Data-driven wAke steeRing surrogaTe 
model (DART) that retains a high degree of physical interpretation.”
“Lastly, the surrogate model's generalizability to all atmospheric conditions, locations and turbine types
is discussed.”

- Section 2.1
“Due to the large computational expense it was not possible to increase the number of simulations. 
Although these eight BLs do not capture the great variability of the free field, it is considered sufficient
to provide a proof of concept for data-driven models.”
- Section 2.2
“It should be noted that smaller step sizes for yaw and pitch angles would be preferred, as these step 
sizes might be too coarse when utilizing a regression based model (Sect. 3.3). This can lead to 
deviating estimates when interpolating to values far away from these set points (e.g. for φ= 7.5◦). 
Increasing the step size would, however, lead to more simulations, which was computationally not 
feasible and not deemed necessary to show proof of concept.” (Also comment 2) 

- Section 3
”It should be noted that many different kinds of data-driven models exist. For the purpose of this pilot 
study, the focus was to develop a simple regression model that performs well on small data sets without
the risk of overfitting.”

- Section 4.2
“This indicates a limited generalizability of all models and caution is needed when applying them in 
conditions that differ greatly from those used for training. This will be further discussed in Sect. 5.1.”

- Section 5.1
“Although the results presented in Sect. 4 are encouraging and are believed to show proof of concept, 
they are not directly generalizable. A data-driven surrogate model is sensitive to the data used for 



training, and encountering situations that vary greatly from those used for training can result in large 
errors. This includes very dissimilar atmospheric conditions, as illustrated by the strongly stable BL5 in
Fig. 8, but extends to other locations (e.g. topography, wind farm layout) and turbine type. Generating a
numerical database with more atmospheric conditions, tailored to each location and turbine type, is not 
possible due to the high computational expense of these high fidelity models. This limits a large-scale 
implementation of data-driven surrogate models trained with numerical data.”

- Section 6
“These results are not directly generalizable to all atmospheric conditions, other locations or new 
turbine types, which presents a challenge for a large-scale implementation of data-driven surrogate 
models. The results shown in this study are, however, believed to show proof of concept for physically 
interpretable data-driven surrogate models for wake steering purposes.”

1. Introduction: The novelty is clear but the motivation for purely data – driven wake modelling is 
lacking. Since physics – based, data – informed (through parameter fitting) wake modelling is a 
well – developed area, with several open access toolboxes/implementations as indicated in the 
article; why would we go for statistical models with even more parameters to fit? Especially if 
we have limited data?
The authors agree that the motivation for purely data-driven wake modeling deserves more 
attention. 
“Although analytical models are presumably more robust, especially when the data set is small, 
the maximum achievable accuracy is also limited as it is not feasible to develop one model for 
all scenarios. Analytical models will not be able to capture features for which equations were   
not in place, hence constant updates to the model code are necessary (e.g. Abkar et al., 2018; 
Bastankhah et al., 2022). With the community demanding that wake models include 
increasingly more complex features (e.g. the wake curl), data-driven models become interesting 
as they can directly capture these features when enough data is available.”

2. Section 2.3 and 3: Every step in Figure 3 should be explained anyway (again, more 
methodology oriented focus is recommended than too much weight on the results). It reads as if
there exist another surface response modelling between the ‘LES input variables’ and ‘input 
parameters’. Why is it needed? 
The authors understand that a more detailed explanation of Figure 3 could be desired. This has 
therefore been added, including an explanation that each action refers to an upcoming section.
“Figure 3 displays a flowchart of the training and execution (including testing) procedure. The 
respective sections in which each step is explained, is indicated between parenthesis. The model
is trained with the LES data representing reference inflow conditions (BLs) described in Sect. 2.
From the wake data, key wake steering variables are deducted by executing the Multiple 1D 
Gaussian method explained in Sect. 3.1. Additionally, input variables are extracted at 2.5 D 
upstream, and several operations are performed (Sect. 3.2) to determine the final input 
parameters. A multi-task Lasso regression (Sect. 3.3) is subsequently performed to generate a 
coefficient matrix.
This matrix can be used in the execution (testing) of the model to estimate the key wake 
steering parameters for new inflow conditions. The same operations as in the training procedure
are done on the input variables to obtain the input parameters, after which the linear model 
(Sect. 3.3) is solved to estimate the key wake steering parameters. A reversed version of the 
Multiple 1DGaussian model can then be executed (Sect. 3.4) to obtain gridded wake data. 
During model development, this wake estimation can be compared to the original LES data. 
One can experiment with different input variables and operations to determine what set of input 



parameters gives the most accurate solution (Sect. 3.5). This last step has not been included in 
Fig. 3 to reduce clutter.”

15deg steps in yaw control settings are potentially too broad to have a smooth surface for any  
type of interpolations – its sensitivity and potential effects should be discussed.
The choice for yaw control in steps of 15 degrees was purely to save computational costs, but 
this or its implications were indeed not mentioned. The following has now been added to 
Section 2.2. 
“It should be noted that smaller step sizes for yaw and pitch angles would be preferred, as these 
step sizes might be too coarse when utilizing a regression based model (Sect. 3.3). This can lead
to deviating estimates when interpolating to values far away from these set points (e.g. for φ= 
7.5◦). Increasing the step size would, however, lead to more simulations, which was 
computationally not feasible and not deemed necessary to show proof of concept.”

3. Section 3.2: “Although these input parameters might all have their own isolated effect on the 
wake propagation, they are heavily correlated in LES as shown in Fig. 5… Because of the 
highly correlated clusters, it is hypothesized that one is able to achieve reasonable accuracy in 
estimating key wake steering parameters with the regression model as long as each cluster is 
represented.” → High correlation between input and output features are indeed desirable for any
regression problem but why a high-correlation among the input variables would help with better
accuracy? 
The high correlation between input variables does not increase the accuracy of the model. 
Rather, their high correlation makes them interchangable, as they contain much of the same 
information.
“A high correlation between variables indicates that they contain much of the same information.
Providing the same information multiple times is futile as it will not improve the accuracy. For 
this reason, it is hypothesized that reasonable accuracy can be achieved with the regression 
model as long as one variable from each input cluster is included. This would reduce the 
number of model parameters and would give the user freedom to choose parameters based on 
preference and availability. However, since the input variables are not perfectly correlated, the 
information they contain is slightly different and including both variables can increase the 
model’s accuracy. For this reason, two versions of the surrogate model having a different 
number of variables are experimented with, see Sect. 3.5. Although a high correlation between 
input variables is usually undesirable in regression problems due to multicollinearity, Sect. 3.3 
explains that this is not an issue due to the regression model used in this study.”

How these heavily correlated effects are to be isolated so that the results are interpretable? 
Lasso provides a low-rank model by shrinking irrelevant relationships to zero. In other words, 
irrelevant parameters will not be considered by setting its coefficient to zero. Out of the set of 
possible relationships, Lasso aims to select those parameters which are necessary to explain the 
output variable. This can be regarded as isolating relevant relationships from irrelevant ones. 
This is also the reason why multicollinearity is not an issue for Lasso, as it simply selects one of
the highly correlated input variables and regards the others as irrelevant. The following is added
to Sect. 3.3:
“This guarantees a shrinkage of the number of variables through a regularization parameter 
found by cross-validation. Relevant input parameters are isolated from irrelevant parameters by 
multiplying the latter with a coefficient of zero, effectively eliminating them from Eq. 1. 
Multicollinearity is therefore not an issue in Lasso, contrary to Ordinary Least Squares, as 
typically only one parameter is chosen from a set of highly correlated input parameters. This 



reduces the number of input parameters, increasing the interpretability of the model.” 

How do you see the distribution of the parameters and their sensitivity in line with this high 
correlation? 
The authors are not sure they understand this comment correctly.  The authors assume that with 
“the distribution of the parameters” the reviewer means the distribution of parameters within the
whole range of parameters than can affect wake characteristics, or in other words whether the 
studied variables could explain the observed variability. The authors are of the opinion that a 
simplified model like this would never be able to fully explain the variability that is observed in
reality or high fidelity simulations. The parameters chosen here are, however, studied frequently
in literature and are therefore deemed most important. Their high correlation is not expected to 
be a problem, as different parameters could potential affect the output variables in a similar 
way. However, the authors acknowledge that if the correlation would be lower in reality than in 
the numerical environment used here, information would be lost by eliminating parameters and 
the quality of the output would be sensitive to what parameters are chosen.
Since the authors are unsure whether this is what the reviewer meant, no additional explanation 
has been added to the revised manuscript. The authors would like to ask the reviewer for 
clarification if still deemed important after all revisions.

How these input features are correlated to the outputs in Table 2 should be the actual motivation
to define the input parameters (together with their availability) but is not discussed at all…
The authors agree that correlating input and output variables would be a viable feature selection
procedure. However, since a sophisticated feature selection procedure was deemed outside of 
the scope of the current work, the authors chose to simply test all possible combinations. The 
combination of input parameters that shows the smallest absolute percentage error of available 
power is then chosen. This is described in more detail in the answers to comment 5, as well as 
comment 5 from reviewer 1.
“It should be noted that other feature selection procedures could be considered to reduce the 
computational expense needed for training, but enhancing the training procedure was 
considered outside of the scope of the current work.”

4. Section 3.4: Figure is frequently discussed here so it might help the reader to move it further 
down in the article, closer to Section 3.4.
The figure number in this comment is missing, but the authors assume the reviewer points at 
Figure 4. This figure is also frequently discussed in Section 3.1, hence its position. As pointed 
out by reviewer 1, Sections 3.1 and 3.4 were very repetitive, and changes have been made 
accordingly.

5. Section 3.5: Firstly, the subsection heading should be re-worded to something like “optimum 
model architecture” as optimization has many applications in the model fit and flow control 
discussed in the article. Secondly, the subsection generates more questions than answers – does 
it mean different set of input parameters might be used for different clusters? So there might be 
several, case-specific (or BL-specific) oSWSM and/or cSWSM?
The authors agree that the current heading is unclear and has been replaced with “Feature 
selection”. The section has been rewritten to explain how the optimum combination of input 
parameters is determined, as well as to clarify the differences between DART-8 and DART-3.
“Numerous combinations of input parameters are possible. This includes choosing from the 
variables presented in Table 3, as well as which of the five transformations proposed in Sect. 3.2
to use. In order to find the most accurate solution, all combinations are tested. The combination 



that provides the minimum absolute percentage error of available power over all training data, 
i.e. all considered simulations and downstream distances (4 D ≤ x ≤ 10 D), is sought. When 
using all eight variables presented in Table 3, denoted DART-8, only the variable 
transformations need to be decided. The number of possible combinations is proportional to the 
number of transformation to the power of the number of variables. All five transformations are 
tested on all variables except for φ, for which the logarithmic and square root transformations 
have been omitted because negative values occur. This results in a total of 31 5∗ 7= 234375 
possible combinations. Not only is using all variables computationally expensive, as will be 
discussed in Sect. 4.1, operationally it is also unlikely that all variables are routinely obtained 
due to high costs. As hypothesized in Sect. 3.2, using one variable from each input cluster is 
already expected to produce accurate results. To test this, a version of DART with only three 
variables, denoted DART-3, is considered. Allowing each variable to be chosen and 
transformed, the total number of possible combinations is a multiplication of the possible 
combinations of each input cluster. In total, (1 3) (4 5) (3 5) = 900 possible ∗ ∗ ∗ ∗ ∗
combinations are tested to find the optimal set of input parameters.” 

6. Section 4.1: “...The high correlation between variables is not an issue due to the use of the 
regression method described in Sect. 3.3” → not true as stated earlier. It is an issue at least to 
isolate the effects of the change in input parameters, hence an issue for the interpretability.
This statement in the manuscript simply refers to the fact that the Lasso algorithm is able to deal
with highly correlated input variables, contrary to for instance ordinary least square. Additional 
explanation has been given in comment 3.
This particular sentence has been removed from Sect. 4.1 after restructuring. All information on
high correlation between input variables is now given in Sect. 3.3.

7. Section 4.1: Given the results in Figure 7, I suggest to omit oSWSM and cSWSM approaches to
sharpen the focus of the article and avoid potential use of case-specific models (within already 
limited parameter space defined in LES). If agreed, all results should be updated with 
allSWSM.
The authors agree that allSWSM did not get enough attention and the reason to omit it in the 
rest of results was missing. The main reason why allSWSM is not used in all results is on the 
one hand its large computational expense (now added to Sect. 4.1 following comment 5 from 
reviewer 1), as well as the impracticality to measure all these variables in the field. 
”Even though Fig. 7 shows a small accuracy gain of DART-8 over DART-3, the computational 
costs to train DART-8 are much larger and measuring all these variables in the free field is 
impractical. For these reasons, it is decided to only consider DART-3 in the remainder of this 
study.”
SWSM trained with only three variables was included to demonstrate that one does not need all 
these variables to generate decent results. Both oSWSM and cSWSM were included to show 
that different combination of variables can give very comparable results. However, for the 
authors this is perhaps the least impressive outcome of this study. To sharpen the paper’s scope, 
as the reviewer suggested, it has been decided to omit the results from cSWSM. For brevity, all 
related changes have not been copied into the author’s response. For clarity, allSWSM has been 
renamed DART-8 and oSWSM has been renamed DART-3. 

8. Section 4.2: “… Arguably, this is currently not a major disadvantage of the benchmark models 
as turbines tend to operate without derating (β = 0º).” → should be omitted as turbines do 
operate under intentional derating with β > 0º) more often than intentional misalignment for 
wake steering. Therefore, it is an important achievement to be able capture this.



This sentence has been deleted. The remainder has been slightly rephrased to ensure readability.
“The inclusion of this effect is a notable improvement of DART that is important for control 
strategies such as axial induction control (e.g. Corten and Schaak, 2003; van der Hoek et al., 
2019).”

9. Section 4.2 and 4.3: The main advantage of using data-driven approaches is the reduction of 
uncertainties. The reduction in the variability of the results should be mentioned/discussed at 
least once throughout Figures 7, 8 and 9.
The reduction in the variability of the results has been discussed a few times in the original 
manuscript (line number indicating those in the original manuscript):
- line 243-244: “Most striking is the variability of the benchmark models that is an order of  
magnitude larger than that of oSWSM. The reason for this will be systematically evaluated in 
Sect. 4.2 and 4.3.”
- line 257-259: “The systematic biases (indicated by the medians) are similar for all models in 
the order of a few percent, but the variability is greatly reduced in SWSM. The main reason for
this is that the benchmark models do not include a pitch angle parameter β.”
- line 277-280: “In (weakly) stable boundary layers (BLs 3 to 6) GAUS and GCH still show a 
large variability and occasionally a large systematic bias, which is not true for SWSM. These 
results suggest that SWSM outperforms the benchmark models especially under stable 
stratifications, those conditions where wake steering is deemed most effective.”
- line 295-298: “Figure 12d illustrates that these models show an ever further deflecting wake, 
whereas the SWSM settles at a smaller lateral displacement corresponding to LES. This does 
not only explain the negative bias of the benchmark models in Fig. 11, but also their larger 
spread observed in Fig. 10. This result strengthens the previous indication that SWSM is 
superior under stable stratifications.”

All these sentences, albeit slightly rephrased, are still present in the revised manuscript.
In case the authors misunderstood the reviewer’s comment, the authors would like to ask the 
reviewer for clarification. 

10. Discussion & Conclusion: A stronger discussion on interpretrability is required here. Great that 
the computational cost is presented but the number of parameters that is in SWSM as well as 
the other two benchmark models should also be mentioned. 
The authors agree that a discussion on number of parameters is missing. Information has 
therefore been added.
”As mentioned in Sect. 1, analytical models such as GAUS and GCH are presumed to be more 
robust, but the maximum achievable accuracy is also expected to be limited. This can easily be 
understood by looking at the number of fitted or tuned parameters. Since DART includes 
second-order polynomial and interaction terms, adding more input variables exponentially 
increases the size of coefficient matrix B (Eq. 1). This means that for DART-3, having only 3 
input variables, B contains 10 coefficients, but with 8 input variables DART-8’s B already 
contains 45 coefficients. When comparing this to the 4 tuning parameters of the benchmark 
models, one can understand why the latter are more robust, but also are expected to have 
a lower maximum achievable accuracy.”

It would also be nice to discuss how explainable the whole procedure is, given all the collective 
data manipulations, normalizations etc. compared to a black box model. 
The authors understand that it is difficult for the reader to see how transparent the model still is. 
The model’s interpretability is therefore discussed using the following example.



Figure 12: Regression coefficients of DART-3 estimating μy at x = 6 D using scaled input 
parameters. Since all input parameters are dimensionless, the corresponding coefficients are 
also dimensionless. Variable y0 indicates the intercept or systematic offset.

.

“To demonstrate DART’s interpretability, Figure 12 illustrates DART-3’s fitted regression 
coefficients for all 10 input parameters for μy at x= 6 D. Since the order of magnitude of the 
input parameters can vary greatly, for this example the input parameters were scaled between -1 
and 1 before regression fitting. Consequently, the fitted coefficients indicate how important 
each input parameter is in estimating the output variable. For the lateral wake center 
displacement it can easily be seen that φ is the dominant parameter, which intuitively makes 
sense. Other import parameters are the interaction term φ ln(∗ CT) (turbine variable cluster), y0 
(intercept) and δα−1 and δα−2 (atmospheric inflow cluster), while other parameters only slightly 
affect the wake center displacement.”

Additionally, do you see a potential trade-off between interpretablity and accuracy, i.e. do you 
think you might have got a better performance out of a black-box model?
Simpler models are always preferred according to Occam’s razor. With (infinitely) large data 
sets, more complex models (e.g. tree-based models or neural networks) are expected to have 
higher accuracy than simpler models when applied on the same data set. However, in this study 
the data set is limited and only present a subset of all plausible states. In this case, a simpler 
model is preferred as it less prone to overfitting and therefore generalizes better to unseen (new)
conditions.
”Alternative to the interpretable Lasso model, more complex black-box models (e.g. neural 
networks) could be considered as they are expected to have a higher accuracy when abundant 
data is available. Simpler models are, however, always preferred because they are less prone to 
overfitting, which is especially true for small sample sizes as used in this study. In addition, a 
model's inpretability typically diminishes with increasing complexity.”


