
A symbolic framework for flexible multibody systems applied to
horizontal-axis wind turbines
Emmanuel Branlard1 and Jens Geisler 2

1National Renewable Energy Laboratory, Golden, CO 80401, USA
2Hochschule Flensburg, University of Applied Sciences, 24943 Flensburg, Germany

Correspondence: E. Branlard (emmanuel.branlard@nrel.gov)

Abstract. The article presents a symbolic framework that is used to obtain the linear and nonlinear equations of motion1

of a multibody system including rigid and flexible bodies. Our approach is based on Kane’s method and a nonlinear shape2

function representation for flexible bodies. The method yields compact symbolic equations of motion with implicit account3

of the constraints. The general and automatic framework facilitates the creation and manipulation of models with various4

levels of fidelity. The symbolic treatment allows for analytical gradients and linearized equations of motion. The linear and5

nonlinear equations can be exported to Python code or dedicated software. There are multiple applications, such as time domain6

simulation, stability analyses, frequency domain analyses, advanced controller design, state observers, and digital twins. In this7

article, we describe the method we used to systematically generate the equations of motion of multibody systems. We apply8

the framework to generate illustrative land-based and offshore wind turbine models. We compare our results with OpenFAST9

simulations and discuss the advantages and limitations of the method. The Python implementation is provided as an open-10

source project.11

1 Introduction12

The next generation of wind turbine digital technologies requires versatile aero-servo-hydro-elastic models, with various levels13

of fidelity, suitable for a wide range of applications. Such applications include time domain simulations, linearization (for con-14

troller design and tuning, or frequency domain analyses), analytical gradients (for optimization procedures), and generation of15

dedicated, high-performance or embedded code (for stand-alone simulations, state observers or digital twins). Current models16

are implemented for a specific purpose and are usually based on an heuristic structure. Aeroelastic tools, such as Flex (Øye,17

1983; Branlard, 2019) or ElastoDyn (Jonkman et al., 2021), rely on an assumed chain of connections between bodies, a given18

set of degrees of freedom, and predefined orientations of shape functions.19

Tools with linearization capabilities, such as HAWCStab2 (Sønderby and Hansen, 2014) or OpenFAST (Jonkman et al.,20

2021) are dedicated to horizontal-axis wind turbines, and the evaluation of the gradients are limited to hard-coded analytical21

expressions or numerical finite differences. Small implementation changes often require extensive redevelopment, and the22

range of applications of the tools remains limited (Simani, 2015).23

1

To address this issue, we propose a framework for the automatic derivation, processing, and parameterization of models24

with granularity in the level of fidelity. Our approach is based on Kane’s method (Kane and Wang, 1965) and a nonlinear25

shape function representation of flexible bodies (Shabana, 2013) described using a standard input data (SID) format (Wallrapp,26

1994; Schwertassek and Wallrapp, 1999). The method yields compact symbolic equations of motion with implicit account27

of the constraints. Similar approaches have been presented in the literature: Kurz and Eberhard (2009), Merz (2018), Lem-28

mer (2018), and Branlard (2019). Our framework differs in the fact that all equations are processed at a symbolic level and29

therefore the model can be used in its nonlinear or linearized form. We implemented an open-source version in Python us-30

ing SymPy (SymPy, 2021), leveraging its mechanical toolbox. Alternative symbolic frameworks found in the literature are31

usually limited to rigid bodies (Verlinden et al., 2005; Kurz and Eberhard, 2009; Gede et al., 2013; Docquier et al., 2013) or32

are closed-source (Reckdahl and Mitiguy, 1996; Kurtz et al., 2010; MotionGenesis, 2016) and cannot be directly processed in33

Python.34

Kane’s method and the nonlinear shape function approach presented in this article do not represent the state of the art35

of multibody dynamics with flexible bodies. The geometrically exact beam theory (Simo, 1985; Jelenić and Crisfield, 1999;36

Géradin and Cardona, 2001; Bauchau, 2011) is more precise than the shape function approach. Similarly, multipurpose multi-37

body software exists (Lange et al., 2007), such as ANSYS (ANSYS, 2022), SIMPACK (SIMPACK, 2022), or MBDyn (MB-38

Dyn, 2022). These more advanced approaches target different applications than those envisioned in this study: they are suitable39

for numerical simulations, but they cannot provide simple and computationally efficient nonlinear and linear models.40

In section 2, we present the formalism used to derive the equations of motion. In section 3, we given an overview of how the41

equations were implemented into a symbolic calculation framework, to easily manipulate the equations and generate dedicated42

code. Example of applications relevant to wind energy are given in section 4. Discussions and conclusions follow.43

2 Method to obtain the equations of motion44

In this section, we present the formalism used to setup the equations of motion.45

2.1 System definition and kinematics46

We consider a system of nb bodies, rigid or flexible, connected by a set of joints. For simplicity, we assume that no kinematic47

loops are present in the system, and the masses of the bodies are constant. An inertial frame is defined to express the positions,48

velocities, and accelerations of the bodies. We adopt a minimal set of generalized coordinates, q, of dimension nq , to describe49

the kinematics of the bodies: joint coordinates describing the joints displacements, and Rayleigh-Ritz coordinates for the50

amplitudes of the shape functions of the flexible bodies (see, e.g., Branlard (2019)). The choice of coordinates is left to the51

user, but it is assumed to form a minimal set. We will provide illustrative examples in section 4.52

At a given time, the positions, orientations, velocities, and accelerations of all the points of the structure are entirely deter-53

mined by the knowledge of q, q̇, and q̈, where (˙) represents the time derivative. For a given body i, and a point P belonging54

2

to the body, the position, velocity, and acceleration of the point are given by (see, e.g., Shabana (2013)):55

rP = ri + sP = ri + sP0 +uP (1)56

vP = vi +ωi × sP +(u̇P)i (2)57

aP = ai +ωi × (ωi × sP)+ ω̇i × sP +2ωi × (u̇P)i +(üP)i (3)58

where ri, vi, and ai are the position, velocity, and acceleration of the origin of the body, respectively; sP0
is the initial59

(undeformed) position vector of point P with respect to the body origin; the subscript P is used for the deformed position60

of the point and P0 for the underformed position; uP is the elastic displacement of the point (equal to 0 for rigid bodies);61

ωi is the rotational velocity of the body with respect to the inertial frame; (˙) and (˙)i refer to time derivatives in the inertial62

and body frame respectively. Throughout the article, we use bold symbols for vectors and matrices, and uppercase symbols63

for most matrices. The elastic displacement is obtained as a superposition of elastic deformations (see subsection 2.4). We64

define the transformation matrix Ri that transforms coordinates from the body frame to the inertial frame, and by definition65

[ω̃i] = ṘiR
T
i , where [˜] represents the skew symmetric matrix, and the exponent T denotes the matrix transpose. We assume66

that vectors are represented as column vectors to conveniently introduce matrix-vector multiplications. We use the notation “·”67

to indicate the dot product between two vectors (irrespective of their column or row representation).68

2.2 Introduction to Kane’s method69

Kane’s method (Kane and Wang, 1965) is a powerful and systematic way to obtain the equations of motion of a system. The70

procedure leads to nq coupled equations of motion:71

fr + f∗r = 0, r = 1 . . .nq (4)72

where f∗r is associated with inertial loads and fr is associated with external loads, and these components are obtained for all73

generalized coordinates. The components are obtained as a superposition of contributions from each body:74

fr =

nb∑
i=1

fri, f∗r =

nb∑
i=1

f∗ri (5)75

The terms fri and f∗ri can be obtained for each body individually and assembled at the end to form the final system of equa-76

tions. We will present in subsection 2.3 and subsection 2.4 how these terms are defined for rigid bodies and flexible bodies,77

respectively.78

2.3 Rigid bodies79

We assume that body i is a rigid body and proceed to define the terms fri and f∗ri. The inertial force, f∗
i , and inertial torque,80

τ ∗
i , acting on the body are:81

f∗
i =−miaG,i, τ ∗

i =−IG,i · ω̇i −ωi × (IG,i ·ωi) (6)82

3

wheremi is the mass of the body, aG,i is the acceleration of its center of mass with respect to the inertial frame, and IG,i is the83

inertial tensor of the body expressed at its center of mass. Equation 6 is a vectorial relationship; it may therefore be evaluated84

in any coordinate system. The component f∗ri is defined as:85

f∗ri = Jv,ri ·f∗
i +Jω,ri · τ ∗

i (7)86

with87

Jv,ri =
∂vG,i

∂q̇r
, Jω,ri =

∂ωi

∂q̇r
(8)88

where vG,i is the velocity of the body mass center with respect to the inertial frame. The partial velocities, or Jacobians, Jv89

and Jω , are key variables of the Kane’s method. They project the physical coordinates into the generalized coordinates (q),90

inherently accounting for the kinematic constraints between bodies. In numerical implementations, the Jacobians are typically91

stored in matricial forms, referred to as “velocity transformation matrices.” The terms f∗ri can equivalently be obtained using the92

partial velocity of any body point (e.g., the origin) by carefully transferring the inertial loads to the chosen point. The external93

forces and torques acting on the body are combined into an equivalent force and torque acting at the center of mass, written as94

f i and τ i. The component fri is then given by:95

fri = Jv,ri ·f i +Jω,ri · τ i (9)96

Equivalently, the contributions from each individual force, f i,j , acting on a point Pj of the body i, and each torque, τ i,k, can97

be summed using the appropriate partial velocity to obtain fri:98

fri =
∑
j

∂vPj

∂q̇r
·f i,j +

∑
k

Jω,ri · τ i,k (10)99

where vPj
is the velocity of the point j with respect to the inertial frame. Equation 7 and Equation 9 are inserted into Equation 5100

to obtain the final equations of motion.101

2.4 Flexible bodies102

We assume that body i is a flexible body and proceed to define the terms fri and f∗ri. The dynamics of a flexible body are103

described in standards textbooks such as Shabana (2013) or Schwertassek and Wallrapp (1999). Unlike rigid bodies, the equa-104

tions for flexible bodies are typically expressed with respect to a reference point different from the center of mass. We will call105

this point the origin and write itOi. The elastic displacement field of the body is written as u. It defines the displacement of any106

point of the body with respect to its undeformed position. Using the zeroth-order1 Rayleigh-Ritz approximation, the displace-107

ment field at a given point, P , is given by the sum of shape function contributions: u(P) =
∑ne,i

j=1Φij(P)qe,ij(t), where Φij108

are the shape functions (displacement fields) of body i, and qe,ij is the subset of q consisting of the elastic coordinates of body109

i, of size ne,i. The principles of the shape function approach applied to beams are given in Appendix B. The shape functions110

1We address the first-order approximation in Appendix D4.

4

are more easily represented in the body coordinate system. Vectors and matrices that are explicitly written in the body frame111

will be written with primes. The equations of motion of the flexible bodies are (Wallrapp, 1994):112
M ′

xx M ′
xθ M ′

xe

M ′
θθ M ′

θe

sym. M ′
ee

i

a′
i

ω̇′
i

q̈e,i

+

k′
ω,x

k′
ω,θ

k′
ω,e

i

+

0

0

ke

i

=

f ′
x

f ′
θ

fe

i

(11)113

where the x, θ, and e, subscripts respectively indicate the translation, rotation, and elastic components; M is the mass matrix114

of dimension 6+ne,i made of the block matrices Mxx, · · · ,M ee; ai and ω̇i are the linear and angular acceleration of the body115

(origin) with respect to the inertial frame; kω are the centrifugal, gyration, and Coriolis loads, also called quadratic velocity116

loads; ke are the elastic strain loads, which may contain geometric stiffening effects; f are the external forces, torques, and117

elastic generalized forces. The different components of M , kω , ke, and f are given in Appendix A. These terms depend on q,118

q̇, and Φi. The inertial force, torque, and elastic loads are:119

f∗
i =−Ri

[
M ′

xxa
′
i +M ′

xθω̇
′
i +Mxeq̈e,i +k′

ω,x

]
(12)120

τ ∗
i =−Ri

[
M ′

θxa
′
i +M ′

θθω̇
′
i +Mθeq̈e,i +k′

ω,θ

]
(13)121

h∗
i =−

[
M ′

exa
′
i +M ′

eθω̇
′
i +M eeq̈e,i +k′

ω,e

]
(14)122

The external and elastic loads are:123

f i =Rif
′
x (15)124

τ i =Rif
′
θ (16)125

hi = fe −ke (17)126

The components of f∗ri and fri, for r = 1 · · ·nq , are then defined as:127

f∗ri = Jv,ri ·f∗
i +Jω,ri · τ ∗

i +Je,ri ·h∗
i (18)128

fri = Jv,ri ·f i +Jω,ri · τ i +Je,ri ·hi (19)129

with130

Jv,ri =
∂vO,i

∂q̇r
, Jω,ri =

∂ωi

∂q̇r
, Je,ri =

∂qe,i

∂qr
(20)131

where vO,i is the velocity of the body with respect to the inertial frame. The term Je,ri consists of 0 and 1 because qe,i is a132

subset of q. Equation 18 and Equation 19, once evaluated for body i, are inserted into Equation 5 to obtain the final equations133

of motion.134

2.5 Nonlinear and linear equations of motion135

The nq equations of motion given in Equation 4 are gathered into a vertical vector e. They are recast into the form:136

e(q, q̇, q̈,u, t) = f + f∗ = F (q, q̇,u, t)−M(q)q̈ = 0 (21)137

5

or138

M(q)q̈ = F (q, q̇,u, t) (22)139

where M =− ∂e
∂q̈ is the system mass matrix and F is the forcing term vector—that is, the remainder terms of the equation140

(F = e+Mq̈). The vector u is introduced to represent the time-dependent inputs that are involved in the determination of the141

external loads. Both sides of the equations are also dependent on some parameters, but this dependency is omitted to shorten142

notations. The stiffness and damping matrices may be obtained by computing the Jacobian of the equations of motion with143

respect to q and q̇, respectively. The nonlinear equation given in Equation 22 is easily integrated numerically, for instance by144

recasting the system into a first-order system, or by using a dedicated second-order system time integrator.145

In various applications, a linear time invariant approximation of the system is desired. Such approximation is obtained at an146

operating point, noted with the subscript 0, which is a solution of the nonlinear equations of motion, namely:147

e(q0, q̇0, q̈0,u0, t) = 0 (23)148

The linearized equations about this operating point are obtained using a Taylor series expansion:149

M0(q0)δq̈+C0(q0, q̇0,u0)δq̇+K0(q0, q̇0, q̈0,u0)δq =Q0(q0, q̇0,u0)δu (24)150

with151

M0 =− ∂e

∂q̈

∣∣∣∣
0

, C0 =− ∂e

∂q̇

∣∣∣∣
0

, K0 =− ∂e

∂q

∣∣∣∣
0

, Q0 =
∂e

∂u

∣∣∣∣
0

(25)152

where M0, C0, and K0 are the linear mass, damping, and stiffness matrices, respectively; Q0δu is the linear forcing vector153

(Q0 is the input matrix); δ indicates a small perturbation of the quantities; and |0 indicates that the expressions are evaluated at154

the operating point. In practical applications, linearization is done at an operating point where the acceleration is zero (q̈0 = 0)155

and most velocities are also zero. Examples of applications of the linear equations of motion are controller design, frequency156

domain analyses, and stability analyses. The symbolic system matrices also allow for the easy formulation of linear parameter-157

varying models used in many advanced control applications.158

3 Implementation into a symbolic framework159

In this section, we discuss a Python open-source symbolic calculation framework that implements the equations given in160

section 2. A Maxima implementation from the same authors is also available Geisler (2021).161

The Python library YAMS (Yet Another Multibody Solver) started as a numerical tool published in previous work (Bran-162

lard, 2019). The library is now supplemented with a symbolic module so that both numerical and symbolic calculations can163

be achieved. The new implementation uses the Python symbolic calculation package SymPy (SymPy, 2021). We leveraged the164

features present in the subpackage “mechanics,” which contains all the tools necessary to compute kinematics: the definition165

of frames and points and the determination of positions, velocities, and accelerations. The subpackage also contains an imple-166

mentation of Kane’s equations for rigid bodies (i.e., subsection 2.3). We were also inspired by the package PyDy (Gede et al.,167

6

2013), which is a convenient tool to export the equations of motion to executable code and directly visualize the bodies in 3D.168

The core of our work consisted of implementing a class to define flexible bodies (FlexibleBody) and the corresponding169

Kane’s method for this class (subsection 2.4).170

For the FlexibleBody class, we followed the formalism of Wallrapp (1994) and implemented Taylor expansions for all171

the terms defined in Appendix A, allowing the symbolic computation with Taylor expansions to any order. In practice, a zeroth-172

or first-order expansion is used. The use of Taylor expansions is presented in Appendix D3. The different Taylor coefficients173

may be kept as symbolic terms, or replaced early on by numerical values provided by a SID, for instance.174

We structured the code into three layers: 1) The low-level layer integrates seamlessly with SymPy and PyDy by using the175

FlexibleBody class we provide. It is the layer that offers the highest level of granularity and control for the user, since176

arbitrary systems with various kinematic constraints can be implemented, at the cost of requiring more expertise. 2) The177

second-level automates the calculation of the kinematics by introducing simple connections between rigid and flexible bodies.178

The connections may be rigid, with constant offsets and rotations, or dynamic. A connection from a flexible body to another179

body is assumed to occur at one extremity of the flexible body. Some knowledge of SymPy mechanics is still required to use180

this layer. 3) The third level consists of template models such as generic land-based or offshore wind turbine models. Degrees181

of freedom are easily turned on and off for these conceptual models depending on the level of fidelity asked by the user, and182

generic external forces can be implemented or declared as external inputs.183

The overall workflow for typical usage of the symbolic framework is illustrated in Figure 1. The symbolic framework takes

Assemble the conceptual model

Nonlinear equations of motion

Linear equations of motion

Python package

Linear code: mass, stiffness,
damping matrices, linear
forcing

Numerical preprocessors

Latex equations

Dedicated code

Miscellaneous applications

System parameters p:
- Geometrical parameters
- Rigid body inertias
- Flexible body parameters (SID)
 (obtained using FEM or
 shape function integrals)

Initial conditions q0

Compute numerical values needed:

Time inputs/functions u

Determine equations of motion

Numerical inputs
User inputs or wind turbine input

files (OpenFAST or similar)

Conceptual model
Assembly of bodies with

connections, external loads (u)
and selected degrees of freedom (q)

Export equations for dedicated applications

Symbolic framework

Nonlinear code: mass matrix
and forcing
(functions of q, q, u, p)

- Time integration
- Stability analyses
- Frequency domain analyses
- Control design and tuning
- State observers
- Digital twins
- ...

Figure 1. Typical workflow for the usage of the symbolic framework, going from numerical inputs and a conceptual model to numerical

packages that can be used for various applications.
184

as input a conceptual model of the structure, which is assembled using one of the three layers previously described. The185

nonlinear and linear equations of motion can be exported to LaTeX and Python-ready scripts for various applications (see186

subsection 5.1). Using the third layer, as little as three lines of code are required by the user to perform the full step from187

7

derivation of the equations, optional linearization, and exportation. To obtain numerical results from the exported Python code,188

the user needs to provide the arrays with the degrees of freedom values q and q̇, their initial conditions, a dictionary with189

inputs (u) that are functions of time, and a dictionary of parameters (p) containing all the numerical constants such as mass,190

acceleration of gravity, and geometric parameters. We implemented various preprocessing tools in YAMS to facilitate the191

calculation of numerical parameters, typically from a set of OpenFAST input files or by using structural parameters defined192

by the users. YAMS contains tools to compute the flexible bodies parameters (mass matrix, stiffness matrix, shape integrals)193

using integrals over the shape functions or using a finite-element beam formulation. YAMS also contains tools to compute the194

rigid body inertia of different components of a wind turbine or the full system. Postprocessing tools are also included to readily195

time-integrate the generated model using numerical values (including initial values).196

The source code of YAMS is available on GitHub as a subpackage of the Wind Energy LIBrary, WELIB (Branlard, 2021).197

The repository contains tests and working examples, including the ones presented in section 4.198

4 Wind energy applications199

4.1 Approach200

In this section, we present different wind energy applications of the symbolic framework. We focus on models with at least201

one flexible body because the rigid body formulation of SymPy has been well verified (Gede et al., 2013). For each example,202

the equations of motion are given and their results are compared with OpenFAST (Jonkman et al., 2021) simulations. This203

is readily achieved because our framework can export the equations of motion to Python functions, load input files from an204

OpenFAST model, and integrate the generated equations using the same conditions as defined in the OpenFAST input files.205

In this article, we do not focus on the modeling of the external loads, but we include them in the equations of motion. It is206

the responsibility of the user to define these functions, for instance through aero- or hydro-force models. For the verification207

results presented in this section, we only include the gravitational and inertial loading. In all examples, the National Renewable208

Energy Laboratory (NREL) 5-MW reference wind turbine (Jonkman et al., 2009) is used. The examples below are provided209

on the GitHub repository where the YAMS package is provided (Branlard, 2021).210

4.2 Notations211

We adopt a system of notations where the first letter of a body is used to identify the parameters of that body. As an example,212

the tower is represented with the letter T, and the following body parameters are defined: T , origin; MT , mass; LT , length;213

(Jx,T ,Jy,T ,Jz,T), diagonal coefficients of the inertia tensor about the center of gravity and in body coordinates; rTG, vector214

from body origin to body center of mass, of coordinates (xTG,yTG,zTG) in body coordinates. We also define θt, the nacelle215

tilt angle about the y axis; g, the acceleration of gravity along −z; and O, the origin of the global coordinate system.216

8

4.3 Rotating blade with centrifugal stiffening217

We begin with the study of a flexible blade of length LB =R, rotating at the constant rotational speed Ω. We use this test218

case to familiarize the reader with the key concepts of the shape function approach given in Appendix B. A sketch of the219

system is given in Figure 2. We start by modeling the blade using a single shape function, assumed to be directed along the220

x-axis (“flapwise”): Φ1 =Φex, where ex is the unit vector in the x direction. The undeflected blade is directed along the radial

Ω

x

R

r Φ(r)q(t)rΩ2m(r)dr

dr

px(r, t)
fe

B

q(t)

1Φ(r)

x

r

Figure 2. Sketch of a rotating blade with the restoring centrifugal force. Points are indicated in green, degrees of freedom in blue, and loads

in orange.

221

coordinate r and rotates around the x-axis. We assume that the shape function is known, noted Φ(r). It can be computed as the222

first flapwise mode of the blade using tools provided in YAMS. The expression Φ(r) = r3 is a simple approximation that can223

be used for hand calculations. The aerodynamic force per length in the flapwise direction is noted px(r). The generalized mass224

and stiffness are computed based on the mass per length (m) and flapwise bending stiffness (EIy) of the blade, according to225

Equation B1:226

Me =

R∫
0

m(r)Φ2(r)dr (26)227

Ke =

R∫
0

EIy(r)

[
d2Φ

dr2
(r)

]2
dr (27)228

The generalized force is obtained from Equation B3:229

fe =

R∫
0

px(r, t)Φ(r)dr (28)230

9

The important consideration for this model is the axial load, N . The main axial load at a radial station r comes from the231

centrifugal force acting on all the points outboard of the current station:232

N(r) =

R∫
r

m(r′)Ω2r′ dr′ (29)233

The geometric stiffness contribution of the axial load is obtained from Equation B5 as:234

Kg(Ω) =

R∫
0

N(r)

[
dΦ

dr

]2
dr =Ω2

R∫
0

R∫
r

m(r′)r′ dr′
[
dΦ

dr

]2
dr (30)235

The geometric stiffness, Kg , is positive and increases with the square of the rotational speed. This restoring effect is referred236

to as “centrifugal stiffening.” The natural frequency of the blade will increase with the rotational speed as follows:237

ω0(Ω) =

√
(Ke +Kg(Ω))

Me
=

√
ω2
0(0)+

Kg(Ω)

Me
=

√
ω2
0(0)+ kΩΩ2 (31)238

where kΩ is referred to as the “rise factor” or “Southwell coefficient,” and in our approximation, it is found to be constant:239

kΩ =Kg(Ω)/Me/Ω
2. The coefficient provides the variation of the blade frequency with rotational speed, which is something240

that is observed on a Campbell diagram when performing stability analyses. In general, the mode shapes of the blade will also241

change as a function of the rotational speed, and different shape functions should preferably be used for simulations at different242

rotational speeds. The effect is fairly limited, and most OpenFAST practitioners only use one shape function corresponding to243

the value at rated rotational speed. Similarly, the Southwell coefficient is a function of the rotational speed, but the variation is244

negligible as long as the rotational speed is small compared to the natural frequency (e.g., (Ω/ω)2 ≲ 5; see Bielawa (2006)),245

which is the case for wind energy applications.246

The treatment for a shape function in the edgewise direction is similar, using Φ2 =Φ2eθ, where eθ is the unit vector247

in the edgewise direction. In this case, the centrifugal force also has a component in the tangential direction, pθ,centri(r) =248

−Ω2uθ(r)dm(r), with uθ =Φ2q. This leads to a generalized force equal to
∫ L

0
pθ,centriΦ2dr =−Ω2Meq, or, equivalently, to a249

stiffness term:Kω =−Ω2Me. It can be verified that this generalized force corresponds to the contributionOe,11ω
2
x, from kω,e,250

given in Equation A10. For an edgewise mode, the frequency therefore evolves as:251

ω0(Ω) =

√
(Ke +Kg(Ω)+Kω(Ω))

Me
=
√
ω2
0(0)+ (kΩ − 1)Ω2 (32)252

with kΩ =Kg(Ω)/Me/Ω
2 and with Kg computed using Equation 30.253

We apply the method to the NREL 5-MW wind turbine using the blade properties and shape functions provided in the Elas-254

toDyn input file. We order the degrees of freedom as 1st flap, 1st edge, and 2nd flap, assuming no coupling between the shape255

functions, so that each can be treated individually using the results from this section. The diagonal coefficients of the mass ma-256

trix are diag(M e) = [9.5e3, 1.5e4, 5.7e3], and for the stiffness matrix they are diag(Ke) = [1.7e4, 6.7e4, 8.7e4], computed257

according to Equations 26 and 27. The coefficients kΩ of each degree of freedom are obtained as kΩ = [1.7, 1.4, 5.5]. We258

10

0 5 10 15 20 25 30
 [rpm]

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Fr
eq

ue
nc

y
[H

z]

= 0.2%

= 1.2%

= 0.4%

1st Flap (YAMS)
1st Edge
2nd Flap
OpenFAST

Figure 3. Variation of the natural frequencies of the NREL 5-MW turbine blade with rotational speed. Results from YAMS and OpenFAST,

with mean relative error, ϵ, are reported on the figure.

compare the frequencies obtained with the present method against OpenFAST linearization results in Figure 3. The simulations259

were run in vacuum (no gravity, no aerodynamics) and with a cone angle of 0 deg. Strong agreement is found for the evolution260

of the different frequencies with the rotational speed. The stiffening is less pronounced for edgewise modes as a result of the261

softening introduced by Kω .262

This section focused on the analysis of individual shape functions. In the general case, multiple shape functions are present263

and couplings might exist between them (due to the structural twist or nonorthogonality of the shape functions, or if the shape264

functions have components in multiple directions such as Φ1 =Φ1xex +Φ1yey). In such a case, the general developments of265

Appendix A and Appendix B should be used.266

4.4 Two degrees of freedom model of a land-based or fixed-bottom turbine267

We consider a system of three bodies: tower (or support structure), nacelle, and rotor. The system represents a land-based268

wind turbine or a fixed-bottom offshore wind turbine. A sketch of the system is given in Figure 4. The nacelle and rotor269

blades are rigid bodies, whereas the tower is flexible and represented by one shape function2 in the fore-aft direction, noted270

Φ1 =Φ1ex. For hand calculations and as a first approximation, the first mode shape of a massless beam with a top mass271

may be used: Φ1(z) = 1− cos(zπ/L/2). Increased accuracy is obtained when the shape function matches the actual first272

tower fore-aft bending mode, accounting for the effect of the rotor-nacelle mass and inertia. The degrees of freedom are273

q = (q,ψ), where q is the generalized (elastic) coordinates in the fore-aft direction and ψ is the azimuthal position. The274

slope of the tower shape function at the tower top is a key coupling parameter of the model, noted νy . When the tower275

deflects 1 m in the x direction, the nacelle rotates by an angle νy . The method assumes that the tower-top point remains276

along the x-axis, neglecting the so-called nonlinear geometric effect. However, nonlinear geometric effects can be included277

2The relevant equations of the shape function approach for a beam are given in Appendix B.

11

O,T

νyq1 + θt

q1

θt
R zNG

xNG

τa
1

x

z

Φ1(z)

x

z

LT

1

Φ2(z)

y

z

νy νx

fa

N

ψ

g

px

fe1

Figure 4. Model of a land-based or fixed-bottom wind turbine using one to three degrees of freedom (fore-aft and side-side flexibility of the

support structure, and shaft rotation). Points are indicated in green, degrees of freedom in blue, and loads in orange.

using geometric stiffening corrections (see Appendix C or Branlard (2019)). The aerodynamic thrust and torque are noted278

fa and τa, respectively, and act at the rotor center (point R). The low-speed shaft generator torque is written as τg . The279

distributed loads on the tower, px (from aerodynamics and hydrodynamics), are projected against the shape function to obtain280

the generalized forces fe =
∫ LT

0
px(z, t)Φ1(z)dz. The moments of inertia of the rotor in its coordinates are (Jx,R,J⊕,R,J⊕,R).281

We note that Me,Ke, and De are the generalized mass, stiffness, and damping, respectively, associated with a given shape282

function Me =
∫ LT

0
m(z)Φ2

1(z)dz , Ke =
∫ LT

0
EI(z)

[
d2Φ1

dz2 (z)
]2
dz , De = 2ζMeωe. where m(z) and EI(z) are the mass283

per length and bending stiffness of the tower, respectively, and ωe and ζ are the frequency and damping ratio, respectively,284

associated with the shape function (assuming the shape function approximates a mode shape). The geometric softening of the285

tower due to the tower-top mass (Kgt) and its own weight (Kgw) is obtained using Equation B5, as Kg =Kgt +Kgw, with :286

Kgt =−g
LT∫
0

(MR +MN)

[
dΦ1

dz
(z)

]2
dz (33)287

Kgw =−g
LT∫
0

[
dΦ1

dz
(z)

]2 LT∫
z

m(z′)dz′

 dz (34)288

The shape function frequency is obtained as:289

ωe =
√

(Ke +Kg)/Me (35)290

The application of the symbolic framework leads to the following equations of motion (rearranged for interpretability):291 Mq 0

0 Jx,R

 q̈
ψ̈

=

 fq

τa − τg

 (36)292

12

where:293

Mq =Me +MN +MR (37)294

+(JyN + J⊕,R +MN (x2NG + z2NG)+MR(x
2
NR + z2NR))ν

2
y (38)295

+2[(MNzNG +MRzNR)cos(νyq)− (MNxNG +MRxNR)sin(νyq)]νy (39)296

and297

fq = fe − (Ke +Kg)q−Deq̇ (40)298

+ gνy [(MNxNG +MRxNR)cos(νyq)+ (MNzNG +MRzNR)sin(νyq)] (41)299

+ ν2y q̇
2 [(MNxNG +MRxNR)cos(νyq)+ (MNzNG +MRzNR)sin(νyq)] (42)300

+ faνy(xNR sinθt + zNR cosθt) (43)301

+ fa cos(θt + νyq) (44)302

Details on the derivations are given in Appendix E1. The mass matrix consists of three main contributions: Equation 37303

represents the elastic mass and the rotor nacelle assembly (RNA) mass, Equation 38 is the generalized rotational inertia of the304

RNA, and Equation 39 is the inertial coupling between the tower bending and the rotation of the nacelle. The forcing terms305

are identified as follows: Equation 40 consists of the elastic load resulting from the external forces on the tower, the elastic and306

geometric stiffness loads, and the damping load on the tower; Equation 41 is the gravitational load from the RNA, which will307

contribute to the stiffness of the system; Equation 42 is the centrifugal force of the RNA (“Mω2r” with ω = νy q̇); Equation 43308

is the generalized torque from the aerodynamic thrust; and Equation 44 is the thrust contribution acting directly along the309

direction of the shape function degree of freedom (along x). The RNA center of mass plays an important part in the equations310

(see the terms (MNxNG +MRxNR) and (MNzNG +MRzNR)).311

The equations of motion given in Equation 36 can be used to perform time domain simulations of a wind turbine. It is noted312

that the two degrees of freedom are only coupled by the aerodynamic loads. The nonlinear model was used in previous work313

for time domain simulations and its linear version was used for state estimations (Branlard et al., 2020a, b). In this section,314

we apply the linearized form to compute the natural frequency of the turbine tower fore-aft mode. The linearized stiffness is315

obtained by taking the gradient of the forcing with respect to q, and using a small angle approximation for νy to the second316

order:317

Kq,lin = (Ke +Kg)− ν2yg (MNzNG +MRzNR − faq cosθt)+ νyfa sinθt (45)318

For the NREL 5-MW reference turbine (Jonkman et al., 2009), the different numerical values are: g = 9.807 m · s−2, θt = 5319

deg, xNR =−5.0 m, zNR = 2.4 m, LT = 87.6 m, zNG = 1.75 m, xNG = 1.9 m, MR = 1.1e5 kg, Jx,R = 3.86e7 kgm2,320

J⊕,R = 1.92e7 kgm2, MN = 2.4e5 kg, Jy,N = 1.01e6 kgm2, MRNA = 3.5e5 kg. The first fore-aft shape function of the321

13

NREL 5-MW turbine tower and its derivatives are:322

Φ1(z) = (a2z
2 + a3z

3 + a4z
4 + a5z

5 + a6z
6)/(a2 + a3 + a4 + a5 + a6)323

dΦ1

dz
(z) =

1

LT
(2a2z+3a3z

2 +4a4z
3 +5a5z

4 +6a6z
5)/(a2 + a3 + a4 + a5 + a6) (46)324

d2Φ1

dz2
(z) =

1

L2
T

(2a2 +6a3z+12a4z
2 +20a5z

3 +30a6z
4)/(a2 + a3 + a4 + a5 + a6)325

with z = z/L, a2 = 0.7004, a3 = 2.1963, a4 =−5.6202, a5 = 6.2275, and a6 =−2.504. The material properties and the shape326

function are illustrated in Figure 5. The scaling of the shape functions given in Equation 46 is important to obtain the correct

2.5 5.0
m [ton/m]

0

10

20

30

40

50

60

70

80
z [

m
]

0 5e11
EI [Nm2]

0 1
 [-]

0 2e-2
d /dz [-]

 -5e-4 5e-4
d2 /dz2 [-]

Figure 5. Properties of the NREL 5-MW turbine tower: mass per length (m), bending stiffness (EI), and shape function displacement (Φ),

slope (dΦ/dz) and curvature (d2Φ/dz2).

327

numerical values for the flexible tower, namely: νy = 0.0185, Me = 5.4e4, Ke = 1.91e6, Kg =−5.2e4− 1.0e4 =−6.20e4,328

ωe =
√
(Ke +Kg)/Me = 5.85 rad/s. These numerical values, with q = 0, lead to: Mq = 4.375e5 and Kq = 1.849e9. The329

first fore-aft mode of the wind turbine has a natural frequency of f =
√
Kq/Mq = 0.3272 Hz. This value was compared with330

results obtained using OpenFAST linearization. Both methods are in strong agreement, with differences only arising at the fifth331

decimal place.332

4.5 Three-degrees-of-freedom model of a land-based or fixed-bottom turbine333

We consider the same system as the one presented in subsection 4.4, but the tower is now represented by one shape function in334

both the fore-aft and side-side directions, Φ1 =Φ1ex and Φ2 =Φ2ey . The degrees of freedom are q = (q1, q2,ψ), where q1335

and q2 are the generalized (elastic) coordinates in the fore-aft and side-side directions, respectively, and ψ is the rotor azimuth.336

A sketch of the system is given in Figure 4.337

14

The slopes of the shape functions at the tower top are key coupling parameters of the model, noted νx and νy . The aerody-338

namic thrust and torque are noted fa and τa, acting at point R. The distributed loads on the tower, px and py (from aerodynam-339

ics and hydrodynamics), are projected against the shape functions to obtain the generalized forces fe1 =
∫
Φ1pxdz and fe2 =340 ∫

Φ2pydz. The moments of inertia of the rotor in its coordinates are (Jx,R,J⊕,R,J⊕,R). We note that M e, Ke, and De are341

the generalized mass, stiffness, and damping, respectively, associated with a given shape function (e.g., Me11 =
∫
Φ2

1m(z)dz,342

where m is the mass per length of the tower). The application of the symbolic framework leads to the equations of motion343

given in Appendix E2. To simplify the equations and limit their length when printing them in this article, we have applied a344

first-order small-angle approximation for θt, and a second-order approximation for νx and νy . It is observed from Equation E14345

that a first-order approximation for νy would have removed the influence of the rotor and nacelle y-inertia on the generalized346

mass associated with the tower fore-aft bending.347

We performed a time simulation of the model using both our symbolic framework YAMS and OpenFAST. The time integra-348

tion in YAMS currently relies on tools provided in the SciPy package, which implements several time integrators. A sufficient349

level of accuracy was obtained using a fourth-order Runge-Kutta method, which is the default method. Kane’s method, which350

uses a minimal set of coordinates, tends to lead to stiff systems, and it is possible that implicit integrators may be needed for351

other systems. We compare the time series obtained using our generated functions with results from the equivalent OpenFAST352

simulation in Figure 6. In this simulation, the tower top is initially displaced by 1 m in the x and y directions, and the rotational353

speed is 5 rpm. We report the mean relative error, ϵ, and the coefficient of determination, R2, on the figure. We observe that

1

0

1

q 1
 (F

A)
 [m

] = 3.6% - R2 = 0.998

1

0

1

q 2
 (S

S)
 [m

] = 7.5% - R2 = 0.993

0 10 20 30 40 50
Time [s]

4.5
5.0
5.5

 [r
pm

]

= 0.7% - R2 = 0.993

YAMS non-linear
OpenFAST

Figure 6. Free decay results for the land-based/fixed-bottom model using both the symbolic framework (YAMS) and OpenFAST. From top

to bottom: tower fore-aft bending, tower side-side bending, and shaft rotational speed.

354

our model is in strong agreement with the OpenFAST simulation. The differences in the second tower degree of freedom are355

attributed to 1) the handling of the small-angle approximation, which is different in OpenFAST (using the closest orthonormal356

matrix; Jonkman (2009)) and in our formulation (two successive rotations, linearized); 2) the nonlinear geometric corrections357

15

that are implemented in OpenFAST, which we have omitted here by only selecting shape function expansion to the zeroth order358

(see subsection 5.2). The variation in azimuthal speed, resulting from the coupling between the gyroscopic loads and the tower359

bending, is captured well.360

4.6 Three-degrees-of-freedom model of a floating wind turbine361

In this example, we demonstrate the applicability of the method for a floating wind turbine. We model the turbine using three362

bodies: rigid floater, flexible tower, and rigid RNA (labeled “N”). The degrees of freedom selected are: q = (x,ϕ,qT), where x363

is the floater surge, ϕ is the floater pitch, and qT is the coordinate associated with a selected fore-aft shape function. A sketch364

of the model is given in Figure 7. The notations are similar to the ones presented in subsection 4.5. Lumped hydrodynamic

O

fh

fa

N

τh

x

ϕ

θt ϕ+ θt

νyqT

F, T

zTG

zFG

R zNG

xNG

x

z

qT

g

px

fe1

Figure 7. Model of a floating wind turbine using three degrees of freedom. Points are indicated in green, degrees of freedom in blue, and

loads in orange.

365

loads at the floater center of mass are now added. The model can also be used for a combined tower and floater that is flexible,366

simply by setting the mass of the floater to zero and including the hydrodynamic loading into the loading px. The equations of367

motion are given in Appendix E3. The equations were simplified using a first-order small-angle approximation of θt and ϕy ,368

and a second-order approximation for νy .369

We performed a numerical simulation of the model generated by YAMS and compared it with OpenFAST for a case with370

gravitational loads only, starting with x= 0 m, ϕ= 2 deg, and qT = 1 m. The results are presented in Figure 8. We observe371

again that the results from the two models correlate to a high degree.372

We also compared the linearized version of both models. The symbolic framework can generate the linearized mass, stiffness,373

and damping matrices, as described in subsection 2.5. The matrices are then combined into a state matrix and compared with374

16

5.0

2.5

0.0

x
(s

ur
ge

) [
m

] = 2.9% - R2 = 0.996

2

0

2

 (p
itc

h)
 [d

eg
] = 5.4% - R2 = 0.996

0 10 20 30 40 50
Time [s]

1
0
1

q T
 (F

A)
 [m

] = 7.3% - R2 = 0.995

non-linear
OpenFAST

Figure 8. Free-decay results for the floating wind turbine model using YAMS and OpenFAST. From top to bottom: surge, pitch, and tower

fore-aft bending.

the state matrices written by the OpenFAST linearization feature. The eigenvalue analysis of the YAMS state matrix returned375

a pitch and fore-aft frequencies of 0.099 Hz and 0.799 Hz, respectively, whereas OpenFAST returned 0.095 Hz and 0.795 Hz.376

The 4% error in the pitch frequency appears reasonable in view of the approximations used.377

5 Discussions378

5.1 Applications and advantages of the method379

The implementation of the symbolic YAMS library was originally motivated by the need to obtain a simple linearized model380

of a floating wind turbine for frequency domain simulations. There are multiple potential applications of the framework:381

– The generated equations can be used in time domain simulation tools. The equations can be readily exported to different382

programming languages (C, FORTRAN, or Python) providing computationally efficient tools, particularly because the383

method generates compact and minimal equations. This is in contrast to most other multibody codes, in which many384

terms are calculated as matrix equations and through successive function calls. Further, the symbolic framework allows385

us to generate optimized code, in which common terms and factors are computed once and stored in temporary variables386

for reuse in the different expressions. In our examples, time domain simulations were observed to be 2 orders of mag-387

nitude faster when using the automatically generated code in Python compared to OpenFAST simulations that rely on a388

compiled language. Using such a framework can be considered in the future to replace the existing ElastoDyn module389

of OpenFAST. It can also be applied to unusual configurations such as multirotor or vertical-axis turbine concepts. Ded-390

icated code can be generated for specific applications for increased performance. For instance, implicit integrators with391

17

iterative Newton-Raphson-like solvers benefit from the possibility of generating exact and efficient Jacobians along with392

the equations of motion.393

– The generation of linearized models has a wide range of applications, such as linear time domain simulations, controller394

design and tuning, frequency domain analyses, stability analyses, state observers, or digital twins. The symbolic approach395

is severalfold faster than alternative approaches because it can be evaluated for all operating points at once, whereas other396

methods (e.g., OpenFAST, HAWCStab2) require multiple linearization calls.397

– Analytical linearization with respect to parameters is directly obtained using our tool, which can be used for sensitivity398

analyses, parameter studies, optimizations, integrated design approaches, and controls co-design (e.g., using methods399

such as linear-matrix-inequality-based designs) (Pöschke et al., 2020). Nonanalytical approaches require numerous lin-400

earizations and evaluations at various operating points (Jonkman et al., 2022).401

– In addition to the nonlinear or linear equations of motion in minimal coordinates, the equations for the constraint forces402

or any auxiliary kinematic variable can also be generated efficiently by inserting unknown virtual displacements in the403

equations (see Appendix D5 for an alternative approach). The position of all bodies in local or global coordinates can404

be recovered from the minimal coordinates and, in combination with the flexible code generation, be used to output data405

(e.g., for 3D animations of the turbine).406

– Analytical gradients of the equations can be computed and used in optimizations, nonlinear model predictive control,407

or moving horizon estimation. External loads that cannot be expressed analytically can be defined as generic functions408

of the structural degrees of freedom, inputs, and parameters. After the code generation, the user can link a numerical409

implementation of the function and its numerical gradients to be able to use a mix of analytical and numerical gradients.410

– Another advantage of the presented method is the possibility to quickly generate models with different levels of de-411

tail, ensuring consistency between the different levels of fidelity. This is in contrast to other more heuristic modeling412

approaches in which parameters often have to be retuned for each added degree of freedom.413

– The method provides useful insights and can be used as an educational tool: simple models of a system with few degrees414

of freedom can readily be obtained, studied, and compared to hand-based calculation.415

5.2 Advanced consideration416

Section 2 addressed the systematic derivation of the equations of motion for an assembly of rigid or flexible bodies. Some417

advanced aspects of the method are discussed here:418

– The different terms involved in the equations of motion of flexible bodies can be decomposed using shape integrals (see419

Appendix D3). Our framework readily supports this optional decomposition: it is the responsibility of the user to provide420

the terms and values of the expansion when numerical evaluation is to occur.421

18

– The definition of geometric stiffening requires attention in the general case. It is accounted for by the term kσ , presented422

in Appendix A. We discuss geometric stiffening in more detail in Appendix C.423

– The treatment of external loads was not addressed in detail in this article because the loads are application-specific (aero-424

dynamics, hydrodynamics, etc.). The framework can accept external loads as arbitrary functions of multiple variables or425

as analytical expressions. In the former case, the user will have to provide an implementation of the function during the426

execution.427

– Even though the equations of motion are void of constraint forces, the values of these forces can be recovered. They428

can be expressed as functions of the external forces and the states of the system. It is not necessary to compute them by429

iteratively solving constraint equations.430

– The framework can easily include rheonomous constraints—for instance, for the pitch angle—without having to supply431

a dedicated torque. Pitch speed and accelerations can be directly introduced into the mechanical system if they are432

provided by a generic second-order pitch actuator model.433

5.3 Limitations434

In spite of the advantages listed in subsection 5.1, the symbolic procedure presented in this work has some potential limitations.435

We are identifying two in this section. First, constraints and closed loops have currently not been added to the framework.436

The SymPy mechanics package supports additional constraint equations within Kane’s method. We therefore hope that this437

limitation can be lifted in the future. Second, large problems may challenge a symbolic calculation package: memory impact,438

calculation time, simplification times, and size of expressions may become significant. Some of these issues may be alleviated439

by introducing intermediate variables that are only substituted for in the numerical implementation or by using a recursive440

formulation of the solution procedure (Branlard, 2019).441

6 Conclusions442

We presented a symbolic framework to obtain the linear and nonlinear equations of motion of a multibody system made of443

rigid bodies, flexible bodies, and kinematic joints. Our approach is based on Kane’s method and a nonlinear shape function444

representation of flexible bodies. We provided different wind energy examples and verified the results against OpenFAST445

simulations. The framework can readily provide models suitable to a wide range of applications with competitive computational446

times. The framework is open source, and the examples presented are available in the repository. Future work will focus on447

applying the framework to dedicated research projects, with more complex systems, and potentially extend the framework to448

account for closed-loop systems and arbitrary constraints.449

19

Author contributions. Both authors exchanged over the last two years about the implementation of such a framework and its application to450

wind energy. EB wrote a Python implementation and JG wrote a Maxima implementation. EB wrote the main corpus of the article, with451

feedback and contributions from JG.452

Competing interests. No competing interests are present.453

Code availability. A Zenodo link will be created for https://github.com/ebranlard/yams. The examples given in this articles are found in the454

folder welib/yams/papers of the repository.455

Acknowledgements. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable456

Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department457

of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do458

not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the459

article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or460

reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.461

Financial support. This work was funded under the Technology Commercialization Fund Project, supported by the DOE’s Wind Energy462

Technologies Office.463

Appendix A: Equations for a flexible body and shape integrals464

In this section, we detail the equations of motion of a flexible body. The reader is referred to the following references for a complete treatment465

of the equations of motion: Shabana (2013), Schwertassek and Wallrapp (1999), and Wallrapp (1994). The subscript i, indicating the body466

index, is dropped. All quantities (vectors and matrices) are expressed in the body frame of reference; therefore, the prime notation is also467

dropped in this section. The number of flexible shape functions associated with the body is ne, the flexible degrees of freedom are qe, and468

the shape functions are gathered into a matrix Φ of size (3×ne). The equations of motion, given in Equation 11, are repeated below:469
Mxx Mxθ Mxe

Mθθ Mθe

sym. Mee

ai

ω̇i

q̈e

+

kω,x

kω,θ

kω,e

+

0

0

ke

=

fx

fθ

fe

 (A1)470

20

https://github.com/ebranlard/yams

The different terms of the mass matrix are obtained as follows:471

Mxx =

∫
I3dm=MI3 (3× 3) (A2)472

Mxθ =−
∫

s̃P dm=−M s̃CM (3× 3) (A3)473

Mθθ =−
∫

s̃P s̃P dm= J (3× 3) (A4)474

Mθe =

∫
s̃PΦdm=CT

r (3×ne) (A5)475

Mxe =

∫
Φdm=CT

t (3×ne) (A6)476

Mee =

∫
ΦTΦdm (ne ×ne) (A7)477

The integrals are volume integrals over the volume of the body (for beams, they reduce to line integrals). The notation [˜] represents the skew478

symmetric matrix. M is the mass of the body. The vector sCM is the vector from the origin of the body to undeflected center or mass (CM)479

of the body. The notations Ct (ne × 3) and Cr (ne × 3) are introduced to match Wallrapp’s notations. The vector sP is the vector from480

the origin of the body to a deflected point of the body of elementary mass dm. The undeflected position of this point is written as sP0 and481

the displacement field u, such that: sP = sP0 +u. Typically, the displacement field is given by u=Φqe, but a higher-order expansion can482

also be introduced (see Wallrapp (1994) and Appendix D4). Wallrapp also includes the elementary mass moment of inertia, which results in483

additional terms in the integrals (see Wallrapp (1994)). Such contributions are relevant, for instance, when considering the torsion of a beam484

(see Branlard (2019)). The block matrices Mxx, Mxe, and Mee do not depend on the deformation of the body and are therefore constant.485

The other terms are functions of qe. They may be expressed as linear combinations of constant integrals (see Appendix D3).486

The quadratic velocity terms, kω , are given as:487

kω,x = 2ω̃CT
t q̇e +Mω̃ω̃sCM (3× 1) (A8)488

kω,θ = ω̃Mθθω+

[∑
j=1..ne

Gr,j q̇e,j

]
ω (3× 1) (A9)489

kω,e =
[
ωTOe,jω

]
j=1..ne

+

[∑
j=1..ne

Ge,j q̇e,j

]
ω (ne × 1) (A10)490

where491

Gr,j =−2

∫
s̃P Φ̃j dm (3× 3) (A11)492

Oe,j =

∫
Φ̃j s̃P dm=−1

2
GT

r,j (3× 3) (A12)493

Ge,j =−2

∫
ΦT Φ̃j dm (ne × 3) (A13)494

The first term of Equation A10 is obtained by vertically stacking the contribution of each shape function. In the standard input data format,495

this term is reshaped as the product OeΩ, where:496

Oe = [Oe,j,11, Oe,j,22, Oe,j,33, Oe,j,12 +Oe,j,21, Oe,j,23 +Oe,j,32, Oe,j,13 +Oe,j,31]j=1..ne
(ne × 6) (A14)497

Ω=
[
ω2
x, ω

2
y, ω

2
z , ωxωy, ωyωz, ωxωz

]
(6× 1) (A15)498

21

The body elastic forces are given by:499

ke = kσ +Keqe +Deq̇e (A16)500

where Ke and De are the elastic stiffness and damping matrices, and kσ represents geometric stiffening terms (see Appendix C). The elastic501

damping forces are often given as stiffness proportional damping. For more details, see Wallrapp (1994), and for more examples with elastic502

beams, see Branlard (2019). The external loads can be assumed to consist of distributed volume forces, p (in practice they are primarily503

surface forces or line forces), and a gravitational acceleration field, g. The components of the external loads in Equation A1 are then obtained504

by integration over the whole body:505

fx =

∫
pdV +Mxxg (3× 1) (A17)506

fθ =

∫
sP ×pdV +Mθxg (3× 1) (A18)507

fe =

∫
ΦT pdV +Mexg (ne × 1) (A19)508

Appendix B: Application of the shape function approach to an isolated beam509

In this section, we illustrate how the elastic equations of Appendix A can be applied to an isolated beam. Examples of applications are further510

given in subsection 4.3 and subsection 4.4. We consider a beam directed along the z-axis and bending in the x and y directions. Expressions511

are written in the coordinate system of the beam and primes are dropped in this section. The beam properties are the following: length, L,512

mass per length,m, and bending stiffness,EIx andEIy . We assume that the displacement field is such that the shape functions are functions513

of z only: u(z, t) =
∑ne

i=1Φi(z)qe,i(t). We also assume that the shape functions satisfy at least the geometric boundary conditions. The514

kinetic energy of the beam is T = 1
2

∫ L

0
mu̇2dz = 1

2

∑
i

∑
jMe,ij q̇e,j q̇e,i. where Me,ij is (see Equation A7):515

Me,ij =

L∫
0

m(z)Φi(z) ·Φj(z)dz, i, j = 1, . . .ne (B1)516

Equation B1 involves a scalar product of the shape functions at each spanwise position. Integrals over the moment of inertia can be used517

to account for torsion (see Branlard (2019)). The potential energy (strain energy) of the beam, is obtained as V = 1
2

∑
i

∑
jKe,ijqe,iqe,j ,518

where Ke,ij are the elements of the stiffness matrix, which, under the assumption of small deformations, are given by:519

Ke,ij =

L∫
0

[
EIy

d2Φi,x

dz2
d2Φj,x

dz2
+EIx

d2Φi,y

dz2
d2Φj,y

dz2

]
dz, i, j = 1, . . .ne (B2)520

Elongation and torsional strains (EA and GKt) can similarly be added to the strain energy and the stiffness matrix if longitudinal and521

torsional displacement fields are included in the shape functions. The external loads on the beam are assumed to consist of a distributed force522

vector, p(z). The virtual work done by the force p for each virtual displacement δqe,i provides the generalized force as (see Equation A17):523

fe,i =

L∫
0

Φi ·pdz (B3)524

The equations of motion of the isolated beam and then written in matrix form as:525

Meq̈e +Deq̇e +Keqe = fe (B4)526

22

where qe = [qe,1, · · · , qe,n]. Damping is typically added a posteriori to the equations, where the Rayleigh damping assumption is often used:527

De = αMe +βKe (stiffness proportional damping implies α= 0). If the shape functions are mode shapes, then the shape functions are528

orthogonal, the mass and stiffness matrices are diagonal, and the stiffness values would be Ke,ii = ω2
e,iMe,ii, with ωe,i =

√
Ke,ii/Me,ii529

the eigenfrequency of the beam mode i. The modal damping is then given by De,ii = 2ζiMe,iiωe,i, where ζi is the damping ratio associated530

with mode i.531

If the beam is loaded axially by a force N(z), then this force produces a distributed load in the transverse direction equal to n=532
∂
∂z

[
N(z) ∂u

∂z

]
, with components in the y and z directions (see Branlard (2019)). The generalized force associated with this loading is then533

QN,i =
∫ L

0
Φi ·ndz. Inserting the expression of n and u, the generalized force has the form of a stiffness term:QN,i =−

∑
jKN,ijqj with534

KN,ij =−
L∫

0

Φi ·
d

dz

[
N(z)

dΦj

dz

]
dz =

L∫
0

N(z)
dΦi

dz
· dΦj

dz
−
[
N(x)Φi ·

dΦj

dz

]L

0

(B5)535

and where integration by parts was used to obtain the second equality. Examples of applications are given in subsection 4.3 and subsection 4.4.536

The fact that an axial load leads to a stiffness term is referred to as “geometric stiffness,” which is the topic of Appendix C.537

Appendix C: Geometric stiffness538

C1 General treatment539

Geometric stiffness refers to the apparent change of stiffness of a structure depending on the loading it is subject to. In this section, we present540

a linear formulation of geometric stiffness for a flexible body undergoing motion and subject to arbitrary loading, inspired by Schwertassek541

and Wallrapp (1999). Additional details may be found in Wallrapp and Schwertassek (1991). The main component of the geometric stiffening542

term kσ can be written:543

kσ =Kgqe (C1)544

where Kg is the geometric stiffness matrix of shape ne ×ne. In general, this matrix is time-dependent, as it is a function of the inertial and545

external loads acting on the body. The inertial loads consist of contributions from the linear acceleration, a, rotational acceleration, ω̇, and546

cross products of the rotational velocity of the body (centrifugal and gyroscopic terms). The external loads consist of the gravitational force,547

distributed forces per unit length, p, point loads, F k, and point moments, τ k, where k is the node index where the point loads are applied.548

Each of these contributions can be computed at each time step using a linear superposition of unit geometric stiffness matrices, noted Kg∗,549

as follows:550

Kg =

3∑
α=1

[(aα − gα)Kgt,α + ω̇αKgr,α] +
3∑

α=1

3∑
β=1

ωαωβKgω,αβ551

+

3∑
α=1

[
pαKgp,α +

∑
k

(
F k
αK

k
gF,α + τkαK

k
gτ,α

)]
(C2)552

where the indices α and β run on the x,y, and z coordinates of the body reference frame. The matrices Kg∗,α or Kg∗,αβ have the shape553

ne ×ne and are obtained as the geometric stiffness matrices for unit accelerations, loads, or products of rotational velocities in the given554

direction defined by α and β (x, y, or z). For instance, Kgt,z is the geometric stiffness matrix corresponding to a unit acceleration in the z555

direction, Kk
gω,xy is the geometric stiffness matrix corresponding to a unit gyration about the x and y directions, and Kk

gF,x is the geometric556

23

stiffness matrix corresponding to a unit force in the x direction applied at the node k along the body. We note that the terms Kg∗ have557

different units; for instance, the terms Kgt,∗ are expressed in N · s2 ·m−2 .558

C2 Expressions for a beam directed along z559

The expression for each of these matrices are given in Schwertassek and Wallrapp (1999) in the context of the finite-element method. The560

general expressions for a shape function approach would be beyond the scope of this article, but we provide the expressions for a beam561

below.562

We adopt the same notations as Appendix B to describe the flexible beam. The different unit geometric matrices introduced in Appendix C563

can be determined using a form of Equation B5, where the axial load N is replaced by the unit inertial or external load. Since the beam is564

directed along the z direction, we focus on the terms where the loads act in the z direction, all other terms being zero or negligible. The565

ij-component of the matrix Kgt,z is obtained by considering a unit vertical acceleration:566

Kgt,z,ij =

L∫
0

N(z)
dΦi

dz
· dΦj

dz
dz, N(z) =

L∫
z

m(z)dz (C3)567

We write zk the coordinate of node k along the beam. The ij-component of the matrix Kk
gF,z is obtained as:568

Kk
gF,z,ij =

L∫
0

N(z)
dΦi

dz
· dΦj

dz
dz, N(z) = 1 if z < zk,0 otherwise (C4)569

The ij-component of the matrix Kgω,αβ is obtained by considering unit centrifugal loads generated using independent rotations around the570

unit vectors ex, ey , and ez:571

Kgω,αβ,ij =

L∫
0

−ez · (ẽαẽβN(z))
dΦi

dz
· dΦj

dz
dz, N(z) =

L∫
z

m(z)sP0dz (C5)572

Similarly, the ij-component of the matrix Kgr,α is:573

Kgr,α,ij =

L∫
0

−ez · (ẽαN(z))
dΦi

dz
· dΦj

dz
dz, N(z) =

L∫
z

m(z)sP0dz (C6)574

C3 Integration into the equations of motion575

The term kσ =Kgqe appears on the third block-row of the equations of motion of the flexible body (Equation A1). Because of the linearity576

with respect to the acceleration, rotational velocities, and forces, the different contributions can optionally be incorporated into the third577

block-row of the mass matrix (Me∗), the term kω,e, and the term fe, respectively. For instance, the term
∑
aαKgt,αqe can be reorganized578

as [Kgt]qe ·a (using loose notations); therefore, the mass matrix can be updated such that Mxe becomes Mxe + [Kgt]qe. When a Taylor579

expansion is used, such integration is easily implemented as a first-order term (see Appendix D3).580

Appendix D: Alternative formulations581

Different formulations of flexible multibody dynamics using shape functions are found in the literature. Some of the alternatives are briefly582

discussed in this section.583

24

D1 Jacobian and velocity transformation matrix584

In Equation 7, the Jacobian terms J and the virtual work are expressed in vector form. In such form, there is no need to state in which coordi-585

nate system the different vectors are expressed. This is convenient to reduce the size of the expressions when using symbolic calculations. In586

a numerical framework, the vector will have to be expressed in a common frame. When such an approach is used (see, e.g., Lemmer (2018);587

Branlard (2019)), the Jacobians are sometimes stacked into a matrix form:588

J =

Jv

Jω

Je

 (D1)589

Some implementation choices are needed depending if these matrices are expressed in the global frame or a body frame. The Jacobian590

matrices are referred to as “velocity transformation matrix,” and the link between formulations in global and local coordinates is given in591

Branlard (2019). In the same reference, recursive relationships are given for tree-like assembly of bodies to help express the Jacobian matrices592

of each body recursively, based on the matrices of the parent body. It is also noted that the quadratic velocity terms, kω , can be obtained593

using the time derivative of the Jacobian matrix.594

D2 Rotations and torsion595

In this article, we have not elaborated on the change of orientation introduced by shape functions. In most applications, bodies are connected596

at their extremities and the deflection slope at a body extremity will induce a rotation of the subsequent body (e.g., tilting and rolling of597

the nacelle at the tower top). The deflection slope can be obtained form the knowledge of the shape functions. This is readily accounted598

for by introducing a time-varying rotation matrix between bodies, and this is the approach used in our symbolic framework. A formalism599

of rotations of bodies connected at their extremities is given in Branlard (2019). A more general formulation, introducing shape function600

rotations Ψ, is given in (Wallrapp, 1994; Schwertassek and Wallrapp, 1999; Lemmer, 2018). In such a formulation, the linear rotation field601

is obtained as I + Ψ̃q, where I is the identity matrix.602

D3 Shape integrals and Taylor expansion603

The results presented in Appendix A consist of integrals over the displaced points of the structure, sP = sP0 +u, where the displacement604

field is u=Φqe. The undeflected position of the structure (sP0) is constant, and the shape functions are known at the initialization; the only605

time-varying terms are the degrees of freedom qe. Therefore, the integrals can be precomputed by decomposing them into a constant part606

and a part that is linear with respect to the degrees of freedom qe. The precomputed integrals are referred to as “shape integrals.” For a given607

term T (standing, for instance, for Mθ,θ , Ct, Cr , Gr , Ge, or Oe), the shape integral expansion is:608

T (qe) = T 0 +
∑

j=1..ne

T 1
jqe,j (D2)609

If T is an array, T 0 and T 1
j have the same shape as T . As an example, the application of the shape integral expansion to the term Mxθ (see610

Equation A3) gives:611

Mxθ =−
∫

s̃Pdm=M0
xθ +

∑
j=1..ne

M1
xθ,jqe,j (D3)612

25

with613

M0
xθ =−

∫
s̃P0dm, M1

xθ,j =−
∫

Φ̃jdm (D4)614

The zeroth- and first-order shape integrals always consist of integrals over the components of sP0 and Φ, which can be precomputed for a615

given flexible body. We note that the precomputed shape integrals can in turn be obtained from intermediate integrals (e.g., the S∗ and N∗616

terms introduced by Wallrapp (Wallrapp, 1994), or the σ, Σ, Υ, Ψ terms introduced by Shabana (Shabana, 2013)). The zeroth- and first-order617

shape integrals are stored using a “Taylor” object-oriented class in the standard input data format defined by Wallrapp. The YAMS library618

can compute the shape integrals using a direct integration or using a finite-element formulation (see Schwertassek and Wallrapp (1999)).619

The geometric stiffness introduced in Appendix C is linear in the elastic degrees of freedom qe. Therefore, the unit geometric stiffness620

matrices (which are also shape integrals) can be conveniently added into the first-order terms of Equation D2. For instance, if we write Mex621

(given in Equation A6) using a first-order expansion, Mex =M0
ex +M1

exqe, then the geometric stiffening effect can directly be inserted622

into the first-order term, such that M1
ex becomes M1

ex+Kgt. Similarly, the term Kgr can be inserted into M1
θe, Kgω into O1

e, KgF into623

Φ1, and Kgτ into Ψ1 in the calculation of the generalized forces. The different contributions are summarized in Table 6.9 of the book of624

Schwertassek and Wallrapp (1999). A shortcoming of inserting the geometric stiffness effects into the first-order coefficient is that it could625

make the mass matrix symmetric (if the user code assumes Mxe =M t
ex), instead of acting only on the third block-row of the mass matrix.626

D4 Taylor expansion of the displacement field627

In the work of Wallrap (Wallrapp, 1993, 1994), the displacement field is assumed to be a function of the degrees of freedom, u=Φu(qe)qe,628

where Φu consists of a Taylor series expansion of the shape functions that contain Φ0 and Φ1 terms. The resulting equations of motion are629

still expressed using shape integrals of the form given in Equation D2, but the 1 terms will contain some additional integrals over Φ1. The630

advantage of this method is that the Φ1 terms effectively account for the geometric stiffness. In practice, it is equivalent, and as convenient,631

to neglect the Φ1 terms and introduce the geometric stiffness using the method presented in Appendix C (and optionally integrate them into632

the 1 terms as presented in Appendix D3).633

D5 ElastoDyn and the partial loads approach634

The ElastoDyn module of OpenFAST (Jonkman et al., 2021) uses the so-called “partial loads” approach to implement the equations of635

motion. The underlying theory used to derive the equations of motion is the same as Kane’s formalism presented in section 2, but the partial636

load approach takes advantage of the fact that the calculation of reaction loads or point loads at body extremities requires similar terms to the637

ones needed for the equations of motion. In the discussion below, we assume that the different bodies of the structure form a tree structure638

with the root at the bottom and the leaves above. For a tree-like structure, there is a natural relationship between loads in the structure and the639

degrees of freedom. A virtual displacement of a given degree of freedom will only displace the structure above it. The equation of motion640

of this degree of freedom can therefore be obtained from the virtual work of the loads at a point located just above the degree of freedom,641

as if the entire structure above was replaced by lumped loads. The point loads contain contributions from the external loads above the point642

in consideration, but also inertial and gyroscopic loads associated with all the degrees of freedom of the system. If the point is at a joint, the643

loads corresponds to the reaction loads at this point. We write P the point located after a given degree of freedom r. The equation of motion644

for this degree of freedom is obtained as if the system was isolated:645

fr + f∗r = 0 = JvP ,r ·fP +JωP ,r · τP +hr (D5)646

26

where: JvP ,r and JωP ,r are the partial velocities of point P with respect to the degree of freedom r; fP and τP are 3-vectors containing the647

force and torque from the structure above the degree of freedom r (including external and inertial contributions); and hr is the generalized648

load associated with the isolated degree of freedom r (e.g., the elastic loads for a flexible body, or the spring and damping loads for a degree649

of freedom representing a joint). The point loads fP and τP can be decomposed into terms that are proportional to the accelerations of all650

the degrees of freedom (indexed with r) and additional terms (labeled “t”):651

fP =

nq∑
j=1

fP,j q̈j +fP,t, τP =

nq∑
j=1

τP,j q̈j + τP,t (D6)652

The terms fP,r and τP,r act as generalized masses and they are referred to as “partial loads”. Combining Equation D5 and Equation D6, the653

term rj of the mass matrix and the term r of the right hand side of the equation of motion (Equation 22) are obtained as:654

Mrj =−JvP ,r ·fP,j −JωP ,r · τP,j , Fr = JvP ,r ·fP,t +JωP ,r · τP,t +hr (D7)655

Therefore, the knowledge of the partial loads and the partial velocities at key points of the structure (typically, points where user outputs656

are desired) can be used to obtain the reaction loads (Equation D6) and the equations of motion (Equation D7). This is the approach used657

in ElastoDyn: the loads at key points of the structure were derived using hand calculations, and then the partial loads were used for the658

implementation of the outputs and the equations of motion. The reader is referred to the notes provided in the online documentation of659

ElastoDyn for more details (Jonkman et al., 2021). A general procedure to obtain partial loads can be devised (using kinematics to find660

velocities and acceleration in the structure, and computing the loads from the tree top to the root), but would be beyond the scope of this661

article.662

Appendix E: Equations of motion of simple wind turbine models663

In this section, we present the equations of motion for the examples presented in section 4.664

E1 Two-degrees-of-freedom model of a land-based or fixed-bottom wind turbine665

In this section, we provide some intermediate values to obtain the equations of motion given in subsection 4.4. We use the hat notation to666

indicate unit vectors of a frame, where the frame is identified as t, n, r for the tower, nacelle, and rotor, respectively. For instance, vt̂x is the667

unit vector in the x direction of the tower frame. The degrees of freedom are q = (q,ψ). The kinematics of the tower (at its origin) are zero:668

vO,T = 0, ωT = 0, aO,T = 0 (E1)669

All Jacobians are zero except Je,1T = 1 The inertial force, torque, and elastic force are:670

f∗
T = CtTxq̈t̂x +MT gt̂z, τ ∗

T = CrTy q̈t̂y, E∗
T = fe +Deq̇+(Ke +Kq)q+Meq̈ (E2)671

The nacelle kinematics (at its center of mass) are:672

vG,N = q̇t̂x + νyzNGq̇n̂x − νyxNGq̇n̂z, ωN = νy q̇t̂y (E3)673

aG,N = q̈t̂x +(−ν2yxNGq̇
2 + νyzNGq̈)n̂x +(−ν2yzNGq̇

2 − νyxNGq̈)n̂z (E4)674

The Jacobians with respect to q are:675

Jv,1N = t̂x + νyzNGn̂x − νyxNGn̂z, Jω,1N = νy t̂y (E5)676

27

The inertial force and torque on the nacelle are:677

f∗
N =MN q̈t̂x +MN

(
−ν2yxNGq̇

2 + νyzNGq̈
)
n̂x +MN

(
−ν2yzNGq̇

2 − νyxNGq̈
)
n̂z, τ ∗

N = Jy,Nνy q̈n̂y (E6)678

The kinematics of the rotor are:679

vG,R = q̇t̂x + νyzNRq̇n̂x − νyxNRq̇n̂z, ωR = ψ̇êrx + νy q̇t̂y (E7)680

aG,R = q̈t̂x +(−ν2yxNRq̇
2 + νyzNRq̈)n̂x +(−ν2yzNRq̇

2 − νyxNRq̈)n̂z (E8)681

The corresponding Jacobians with respect to q (“1”) and ψ (“2”) are:682

Jv,1R = t̂x + νyzNRn̂x − νyxNRn̂z, Jω,1R = νy t̂y, Jω,2R = r̂x683

The inertial force and torque on the rotor are:684

f∗
R =MRq̈t̂x +MR

(
−ν2yxNRq̇

2 + νyzNRq̈
)
n̂x +MR

(
−ν2yzNRq̇

2 − νyxNRq̈
)
n̂z (E9)685

τ ∗
R = Jx,Rψ̈r̂x (E10)686

+(J⊕,Rνy sin(ψ) ψ̇q̇+ J⊕,R

(
−νy sin(ψ) ψ̇q̇+ νy cos(ψ) q̈

)
− Jx,Rνy sin(ψ) ψ̇q̇)r̂y (E11)687

+(J⊕,Rνy cos(ψ) ψ̇q̇+ J⊕,R

(
−νy sin(ψ) q̈− νy cos(ψ) ψ̇q̇

)
− Jx,Rνy cos(ψ) ψ̇q̇)r̂z (E12)688

E2 Three-degrees-of-freedom model of a land-based or fixed-bottom wind turbine689

The equations of motion for the model presented in subsection 4.5, with q = (q1, q2,ψ), are given in this section. The elements of the mass690

matrix are:691

M11 = [Me11 +MN +MR] (E13)692

+
[
Jy,N + J⊕,R +MN

(
x2NG − 2xNGq1 + z2NG

)
+MR

(
x2NR − 2xNRq1 + z2NR

)]
ν2y (E14)693

+2[MNzNG +MRzNR]νy (E15)694

M13 = Jx,Rθtνxνyq2 (E16)695

M22 = [Me22 +MN +MR] (E17)696

+
[
Jx,N + Jx,R +MNz

2
NG +MRz

2
NR

]
ν2x (E18)697

− 2[MNzNG +MRzNR]νx (E19)698

M23 = Jx,Rνx (E20)699

M33 = Jx,R (E21)700

The elements of the forcing vector are:701

f1 = fe1 −Ke11q1 −De11q̇1 − Jx,Rθtνxνyψ̇q̇2 + [MNxNG +MRxNR]ν
2
y q̇

2
1 (E22)702

+ g
[
MN

(
ν2yzNGq1 + νyxNG

)
+MR

(
ν2yzNRq1 + νyxNR

)]
+ fa [θtνyxNR − θtνyq1 + νyzNR +1] (E23)703

f2 = fe2 −Ke22q2 −De22q̇2 + Jx,Rθtνxνyψ̇q̇1 (E24)704

+ g [MNzNG +MRzNR]ν
2
xq2 + faθtνxq2 (E25)705

f3 =−Jx,Rθtνxνy q̇1q̇2 + τa (E26)706

28

E3 Three-degrees-of-freedom model of a floating wind turbine707

The equations of motion for the model presented in subsection 4.6, with q = (x,ϕ,qT), are given in this section. The elements of the mass708

matrix are:709

M11 =MF +MT +MN (E27)710

M12 =MF zFG −MdTz +MN [LT + zNG − νyxNGqT −ϕy(xNG + qT + νyzNGqT)] (E28)711

M13 = CtT1x +MN

[
1+ νyzNG − ν2yxNGqT −ϕy(ν

2
yzNGqT + νyxNG)

]
(E29)712

M22 = Jy,F +MF z
2
FG + JT,y + Jy,N +MN

[
(L2

T + zNG)
2 +(qT +xNG)

2 +2νyqT (zNGqT −LTxNG)
]

(E30)713

M23 = CrT1y +
[
Jy,N +MN (x2NG + z2NG +LT zNG + νyqT (zNGqT −LTxNG)

]
νy +MN [LT + zNG] (E31)714

M33 =Me +MN +
[
Jy,N +MN

(
x2NG − 2xNGqT + z2NG

)]
ν2y +2MNνyzNG (E32)715

The elements of the forcing vector are:716

f1 = fH + [MF zFG −Mdz +MN (LT + zNG − νyxNGqT)]ϕyϕ̇
2
y +MN [qT +xNG + νyzNGqT] ϕ̇

2
y (E33)717

+
[
2Ctx +MN (1+ νyzNG − ν2yxNGqT)

]
ϕyϕ̇y q̇T +MNνy [xNG + νyzNGqT] ϕ̇y q̇T (E34)718

+MNν
2
y [xNG + zNGϕy] q̇

2
T (E35)719

+ fa [1− θtνyqT − νyϕyqT] (E36)720

f2 = τH +MN

[
ν2y(LTxNG − zNGqT)

]
q̇2T (E37)721

− 2MN

[
qT +xNG + νy(2zNGqT −LTxNG)− ν2yqT (LT zNG +xNGqT)

]
ϕ̇y q̇T (E38)722

+ g [MF zFGϕy −Mdzϕy +MN {(LT + zNG − νyxNGqT)ϕy + qT +xNG + νyzNGqT }] (E39)723

+ fa
[
LT + zNR + θtxNR + θtqT + νyq

2
T −LT θtνyqT

]
(E40)724

f3 = fe −Deq̇T −KeqT (E41)725

+MN

[
qT +xNG + νy(2zNGqT −LTxNG)− ν2yqT (LT zNG +xNGqT)

]
ϕ̇2
y (E42)726

+MNν
2
yxNGq̇

2
T (E43)727

+ g
[
CtT1xϕy +MN

(
νyxNG + ν2yzNGqT − ν2yxNGϕyqT + νyzNGϕy +ϕy

)]
(E44)728

+ fa [1+ θtνyxNR − θtνyqT + νyzNR] (E45)729

29

References730

ANSYS: https://www.ansys.com/, accessed: 2022-03-19, 2022.731

Bauchau, O. A.: Flexible Multibody Dynamics, Solid Mechanics and Its Applications, Springer, Dordrecht, https://doi.org/10.1007/978-94-732

007-0335-3, 2011.733

Bielawa, R.: Rotary wing structural dynamics and aeroelasticity, AIAA education series, American Institute of Aeronautics and Astronautics,734

2006.735

Branlard, E.: Flexible multibody dynamics using joint coordinates and the Rayleigh-Ritz approximation: The general framework behind and736

beyond Flex, Wind Energy, 22, 877–893, https://doi.org/10.1002/we.2327, 2019.737

Branlard, E.: WELIB, Wind Energy Library, GitHub repository http://github.com/ebranlard/welib/, 2021.738

Branlard, E., Giardina, D., and Brown, C. S. D.: Augmented Kalman filter with a reduced mechanical model to estimate tower loads on739

a land-based wind turbine: a step towards digital-twin simulations, Wind Energy Science, 5, 1155–1167, https://doi.org/10.5194/wes-5-740

1155-2020, 2020a.741

Branlard, E., Jonkman, J., Dana, S., and Doubrawa, P.: A digital twin based on OpenFAST linearizations for real-time load and fatigue esti-742

mation of land-based turbines, Journal of Physics: Conference Series, 1618, 022 030, https://doi.org/10.1088/1742-6596/1618/2/022030,743

2020b.744

Docquier, N., Poncelet, A., and Fisette, P.: ROBOTRAN: a powerful symbolic gnerator of multibody models, Mech. Sci., 4, 199–219,745

https://doi.org/10.5194/ms-4-199-2013, 2013.746

Gede, G., Peterson, D., Nanjangud, A., Moore, J., and Hubbard, M.: Constrained Multibody Dynamics With Python: From Symbolic Equa-747

tion Generation to Publication., in: Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Com-748

puters and Information in Engineering Conference. Portland, Oregon, USA. August 4-7, https://doi.org/10.1115/DETC2013-13470, 2013.749

Geisler, J.: CADynTub: Wind Turbine Model from OpenFAST Data using CADyn Equations of Motion, https://github.com/jgeisler0303/750

CADynTurb, 2021.751

Géradin, M. and Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach, Wiley, 2001.752

Jelenić, G. and Crisfield, M.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynam-753

ics, Computer Methods in Applied Mechanics and Engineering, 171, 141–171, https://doi.org/10.1016/S0045-7825(98)00249-7, 1999.754

Jonkman, B., Mudafort, R. M., Platt, A., Branlard, E., Sprague, M., Jonkman, J., Vijayakumar, G., Buhl, M., Ross, H., Bortolotti, P., Masciola,755

M., Ananthan, S., Schmidt, M. J., Rood, J., Damiani, R., Mendoza, N., Hall, M., and Corniglion, R.: OpenFAST v3.1.0. Open-source wind756

turbine simulation tool, available at http://github.com/OpenFAST/OpenFAST/, https://doi.org/10.5281/zenodo.6324288, 2021.757

Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5MW Reference Wind Turbine for Offshore System Development,758

Tech. Rep. NREL/TP-500-38060, National Renewable Energy Laboratory, https://doi.org/10.2172/947422, 2009.759

Jonkman, J. M.: Dynamics of offshore floating wind turbines—model development and verification, Wind Energy, 12, 459–492,760

https://doi.org/10.1002/we.347, 2009.761

Jonkman, J. M., Branlard, E., and Jasa, J. P.: Influence of wind turbine design parameters on linearized physics-based models in OpenFAST,762

Wind Energy Science, 7, 559–571, https://doi.org/10.5194/wes-7-559-2022, 2022.763

Kane, T. R. and Wang, C. F.: On the Derivation of Equations of Motion, Journal of the Society for Industrial and Applied Mathematics, 13,764

487–492, https://doi.org/10.1137/0113030, 1965.765

30

https://www.ansys.com/
https://doi.org/10.1007/978-94-007-0335-3
https://doi.org/10.1007/978-94-007-0335-3
https://doi.org/10.1007/978-94-007-0335-3
https://doi.org/10.1002/we.2327
http://github.com/ebranlard/welib/
https://doi.org/10.5194/wes-5-1155-2020
https://doi.org/10.5194/wes-5-1155-2020
https://doi.org/10.5194/wes-5-1155-2020
https://doi.org/10.1088/1742-6596/1618/2/022030
https://doi.org/10.5194/ms-4-199-2013
https://doi.org/10.1115/DETC2013-13470
https://github.com/jgeisler0303/CADynTurb
https://github.com/jgeisler0303/CADynTurb
https://github.com/jgeisler0303/CADynTurb
https://doi.org/10.1016/S0045-7825(98)00249-7
http://github.com/OpenFAST/OpenFAST/
https://doi.org/10.5281/zenodo.6324288
https://doi.org/10.2172/947422
https://doi.org/10.1002/we.347
https://doi.org/10.5194/wes-7-559-2022
https://doi.org/10.1137/0113030

Kurtz, T., Eberhard, P., Henninger, C., and Schiehlen, W.: From Neweul to Neweul-M2: symbolical equations of motion for multibody system766

analysis and synthesis, Multibody System Dynamics, 24, 25–41, https://doi.org/10.1007/s11044-010-9187-x, 2010.767

Kurz, T. and Eberhard, P.: Symbolic Modeling and Analysis of Elastic Multibody Systems, in: International Symposium on Coupled Methods768

in Numerical Dynamics Split, Croatia, September 16-19, 2009.769

Lange, C., Kövecses, J., and Gonthier, Y.: Benchmarking of Multibody System Simulations: Points to Consider, in: CcToMM Symposium770

on Mechanisms, Machines, and Mechatronics, Saint-Hubert, Quebéc, 2007.771

Lemmer, F.: Low-order modeling, controller design and optimization of floating offshore wind turbines., Ph.D. thesis, Universit at Stuttgart,772

http://elib.uni-stuttgart.de/handle/11682/10543, 2018.773

MBDyn: https://www.mbdyn.org/, accessed: 2022-03-19, 2022.774

Merz, K. O.: STAS Aeroelastic 1.0 - Theory Manual., Tech. rep., Trondheim, SINTEF Energi AS., 2018.775

MotionGenesis: MotionGenesisTM Kane Tutorial, Tech. rep., Motion Genesis LLC, www.motiongenesis.com, 2016.776

Øye, S.: Fix Dynamisk, aeroelastisk beregning af vindmøllevinger, Report AFM83-08, Fluid Mechanics, DTU, 1983.777

Pöschke, F., Gauterin, E., Kühn, M., Fortmann, J., and Schulte, H.: Load mitigation and power tracking capability for wind turbines using778

linear matrix inequality-based control design, Wind Energy, 23, 1792–1809, https://doi.org/10.1002/we.2516, 2020.779

Reckdahl, K. and Mitiguy, P.: Autolev Tutorial, Tech. rep., OnLine Dynamics Inc., Sunnyvale CA, 1996.780

Schwertassek, R. and Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. [in German], Friedr. Vieweg & Sohn, Braunschweig, 1999.781

Shabana, A.: Dynamics of Multibody Systems, Dynamics of Multibody Systems, Cambridge University Press, 2013.782

Simani, S.: Advanced Issues of Wind Turbine Modelling and Control, Journal of Physics - Conference series, 659, 2015.783

Simo, J.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I, Computer Methods in Applied Mechanics and784

Engineering, 49, 55–70, https://doi.org/10.1016/0045-7825(85)90050-7, 1985.785

SIMPACK: https://www.3ds.com/products-services/simulia/products/simpack/, accessed: 2022-03-19, 2022.786

Sønderby, I. and Hansen, M. H.: Open-loop frequency response analysis of a wind turbine using a high-order linear aeroelastic model, Wind787

Energy, 17, 1147–1167, https://doi.org/10.1002/we.1624, 2014.788

SymPy: https://www.sympy.org, 2021.789

Verlinden, O., Kouroussis, G., and Conti, C.: EasyDyn: a framework based on free symbolic and numerical tools for teaching multibody790

systems, in: Multibody Dynamics 2005, ECCOMAS Thematic Conference, 2005.791

Wallrapp, O.: Standard Input Data of Flexible Members in Multibody Systems, in: Advanced Multibody System Dynamics. Solid Mechanics792

and Its Applications, edited by Schiehlen, W., vol. 20, pp. 445–450, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-0625-4_33,793

1993.794

Wallrapp, O.: Standardization of flexible body modeling in multibody system codes, part i: Definition of standard input data., Journal of795

Structural Mechanics, 22, 283–304, 1994.796

Wallrapp, O. and Schwertassek, R.: Representation of geometric stiffening in multibody system simulation, International Journal for Numer-797

ical Methods in Engineering, 32, 1833–1850, https://doi.org/10.1002/nme.1620320818, 10.1002/(ISSN)1097-0207, 1991.798

31

https://doi.org/10.1007/s11044-010-9187-x
http://elib.uni-stuttgart.de/handle/11682/10543
https://www.mbdyn.org/
www.motiongenesis.com
https://doi.org/10.1002/we.2516
https://doi.org/10.1016/0045-7825(85)90050-7
https://www.3ds.com/products-services/simulia/products/simpack/
https://doi.org/10.1002/we.1624
https://www.sympy.org
https://doi.org/10.1007/978-94-017-0625-4_33
https://doi.org/10.1002/nme.1620320818, 10.1002/(ISSN)1097-0207

