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Abstract. The article presents a symbolic framework that is used to obtain the linear and non-linear equations of motion1

of a multibody system including rigid and flexible bodies. Our approach is based on Kane’s method and a nonlinear shape2

function representation for flexible bodies. The method yields compact symbolic equations of motion with implicit account of3

the constraints. The general and automatic framework facilitate the creation and manipulation of models with various levels4

of fidelity. The symbolic treatment allows for the obtention of analytical gradients and linearized equations of motion. The5

linear and non-linear equations can be exported to Python code or dedicated software. The application are multiple such as:6

time-domain simulation, stability analyses, frequency domain analyses, advanced controller design, state observers, digital7

twins, etc. In this paper, we describe the method we used to systematically generate the equations of motion of multibody8

systems. We apply the framework to generate illustrative onshore and offshore wind turbine models. We compare our results9

with OpenFAST simulations and discuss the advantages and limitations of the method. A Python implementation is provided10

as an opensource project.11

1 Introduction12

The next generation of wind turbine digital technologies requires versatile aero-servo-hydro-elastic models, with various levels13

of fidelity, suitable for a wide range of applications. Such applications include: time domain simulations, linearization (for14

controller design and tuning, or frequency domain analyses), analytical gradients (for optimization procedures), generation of15

dedicated, high-performance or embedded code (for standalone simulations, state observers or digital twins). Current mod-16

els are implemented for a specific purpose and usually based on an heuristic structure. Aeroelastic tools, such as Flex (Øye,17

1983; Branlard, 2019) or ElastoDyn (OpenFAST, 2021), rely on: an assumed chain of connections between bodies, a given18

set of degrees of freedom, and predefined orientations of shape functions. Tools with linearization capabilities, such as hawc-19

stab2 (Sønderby and Hansen, 2014) or OpenFAST (OpenFAST, 2021) are dedicated to horizontal axis wind turbines and the20

evaluation of the gradients are limited to hard-coded analytical expressions or numerical finite-differences. Small implemen-21

tation changes often require an extensive redevelopment, and the range of applications of the tools remain limited (Simani,22

2015).23

1

https://doi.org/10.5194/wes-2021-46
Preprint. Discussion started: 11 August 2021
c© Author(s) 2021. CC BY 4.0 License.



To address this issue, we propose a framework for the automatic derivation, processing and parametrization of models with24

granularity in the level of fidelity. Our approach is based on Kane’s method (Kane and Wang, 1965) and a nonlinear shape25

function representation of flexible bodies (Shabana, 2013) described using a standard input data (SID) format (Wallrapp, 1994;26

Schwertassek and Wallrapp, 1999). The method yields compact symbolic equations of motion with implicit account of the27

constraints. Similar approaches have been presented in the literature: Kurz and Eberhard (2009), Merz (2018), Lemmer (2018),28

Branlard (2019). Our framework differs in the fact that all equations are processed at a symbolic level and therefore the model29

can be used in its nonlinear or linearized form. We implemented an open-source version in Python using SymPy (Sympy),30

leveraging its mechanical toolbox. Alternative symbolic frameworks found in the literature are usually limited to rigid bodies31

(Verlinden et al., 2005; Kurz and Eberhard, 2009; Gede et al., 2013; Docquier et al., 2013), or closed-source (Reckdahl and32

Mitiguy, 1996; Kurtz et al., 2010; MotionGenesis, 2016), and cannot be directly processed in Python.33

In section 2, we present the formalism used to derive the equations of motion. In section 3, we given an overview of how the34

equations were implemented into a symbolic calculation framework, to easily manipulate the equations and generate dedicated35

code. Example of applications relevant to wind energy are given in section 4. Discussions and conclusions follow.36

2 Method to obtain the equations of motion37

In this section, we present the formalism used to setup the equations of motion.38

2.1 System definition and kinematics39

We consider a system of nb bodies, rigid or flexible, connected by a set of joints. For simplicity, we assume that no kinematic40

loops are present in the system, and the mass of the bodies are constant. An inertial frame is defined to express the positions,41

velocities and accelerations of the bodies. We adopt a minimal set of generalized coordinates, q, of dimension nq , to describe42

the kinematics of the bodies: joint coordinates describing the joints displacements, and Rayleigh-Ritz coordinates for the43

amplitudes of the shape functions of the flexible bodies (see, e.g. Branlard (2019)). The choice of coordinates is left to the user,44

but it is assumed to form a minimal set. We will provide illustrative examples in section 4.45

At a given time, the positions, orientations, velocities, and accelerations of all the points of the structure are entirely deter-46

mined by the knowledge of q, q̇ and q̈. For a given body i, and a point P belonging to the body, the position, velocity and47

acceleration of the point are given by (see e.g. Shabana (2013)):48

rP = ri + sP = ri + sP0 +uP (1)49

vP = vi +ωi× sP + (u̇P )i (2)50

aP = ai +ωi× (ωi× sP ) + ω̇i× sP + 2ωi× (u̇P )i + (üP )i (3)51

where: ri, vi and ai are the position, velocity and acceleration of the origin of the body; sP0 is the initial (undeformed)52

position vector of point P with respect to the body origin; uP is the elastic displacement of the point (0 for rigid bodies);53

ωi is the rotational velocity of the body with respect to the inertial frame; (˙) and (˙)i refer to time derivatives in the inertial54
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and body frame respectively. Throughout the paper, we use bold symbols for vectors and matrices, and uppercase symbols55

for most matrices. The elastic displacement is obtained as a superposition of elastic deformations (see subsection 2.4). We56

define the transformation matrixRi which transforms coordinates from the body frame to the inertial frame, and by definition57

[ω̃i] = ṘiR
T
i , where [˜] represents the skew symmetric matrix.58

2.2 Introduction to Kane’s method59

Kane’s method (Kane and Wang, 1965) is a powerful and systematic way to obtain the equations of motion of a system. The60

procedure leads to nq coupled equations of motion:61

fr + f∗r = 0, r = 1 . . .nq (4)62

where f∗r is associated with inertial loads and fr is associated with external loads, and these components are obtained for each63

generalized coordinates. The components are obtained as a superposition of contributions from each body:64

fr =
nb∑

i=1

fri, f∗r =
nb∑

i=1

f∗ri (5)65

The terms fri and f∗ri can be obtained for each body individually and assembled at the end to form the final system of equa-66

tions. We will present in subsection 2.3 and subsection 2.4 how these terms are defined for rigid bodies and flexible bodies67

respectively.68

2.3 Rigid bodies69

We assume that body i is a rigid body and proceed to define the terms fri and f∗ri. The inertial force, f∗i , and inertial torque,70

τ ∗i , acting on the body are:71

f∗i =−miaG,i, τ ∗i =−IG,i · ω̇i−ωi× (IG,i ·ωi) (6)72

where mi is the mass of the body, aG,i is the acceleration of its center of mass with respect to the inertial frame, IG,i is the73

inertial tensor of the body expressed at its center of mass. Equation 6 is a vectorial relationship, it may therefore be evaluated74

in any coordinate system. The component f∗ri is defined as:75

f∗ri = Jv,ri ·f∗i +Jω,ri · τ ∗i (7)76

with77

Jv,ri =
∂vG,i
∂q̇r

, Jω,ri =
∂ωi
∂q̇r

(8)78

where vG,i is the velocity of the body masscenter with respect to the inertial frame. The partial velocities, or Jacobians, Jv79

and Jω , are key variables of the Kane’s method. They project the physical coordinates into the generalized coordinates (q),80

inherently accounting for the kinematic constraints between bodies. In numerical implementations, the Jacobians are typically81
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stored in matricial forms, referred to as velocity transformation matrices. The terms f∗ri can equivalently be obtained using the82

partial velocity of any body point (e.g. the origin) by carefully transferring the inertial loads to the chosen point. The external83

forces and torques acting on the body are combined into an equivalent force and torque acting at the center of mass, written f i84

and τ i. The component fri is then given by:85

fri = Jv,ri ·f i +Jω,ri · τ i (9)86

Equivalently, the contributions from each individual force, f i,j , acting on a point Pj of the body i, and each individual torques,87

τ i,k, can be summed using the appropriate partial velocity to obtain fri:88

fri =
∑

j

∂vPj

∂q̇r
·f i,j +

∑

k

Jω,ri · τ i,k (10)89

where vPj
is the velocity of the point j with respect to the inertial frame. Equation 7 and Equation 9 are inserted in Equation 590

to obtain the final equations of motion.91

2.4 Flexible bodies92

We assume that body i is a flexible body and proceed to define the terms fri and f∗ri. The dynamics of a flexible body is described93

in standards textbooks such as Shabana (2013) or Schwertassek and Wallrapp (1999). Unlike rigid bodies, the equations for94

flexible bodies are typically expressed with respect to a reference point different from the center of mass. We will call this point95

the origin and write it Oi.The elastic displacement field of the body is written u. It defines the displacement of any point of96

the body with respect to its undeformed position. Using the first order1 Rayleigh-Ritz approximation, the displacement field at97

a given point, P , is given by the sum of shape function contributions: u(P ) =
∑ne,i

j=1 Φij(P )qe,ij(t), where Φij are the shape98

functions (displacement fields) of body i and qe,ij is the subset of q consisting of the elastic coordinates of body i, of size ne,i.99

The principles of the shape function approach applied to beams are given in Appendix B. The shape functions are more easily100

represented in the body coordinate system. Vectors and matrices that are explicitly written in the body frame will be written101

with primes. The equations of motion of the flexible bodies are (Wallrapp, 1994):102




M ′
xx M ′

xθ M ′
xe

M ′
θθ M ′

θe

sym. M ′
ee



i




a′i

ω̇i

q̈e,i


+




k′ω,x

k′ω,θ

k′ω,e



i

+




0

0

ke



i

=




f ′x

f ′θ

fe



i

(11)103

with: x, θ, e, subscripts that indicate the translation, rotation and elastic components;M , the mass matrix of dimension 6+ne,i104

made of the block matricesMxx, · · · ,M ee; ai and ω̇i, the linear and angular acceleration of the body (origin) with respect to105

the inertial frame ; kω , the centrifugal, gyration and Coriolis loads, also called quadratic velocities loads; ke, the elastic strain106

loads ; f , the external forces, torques and elastic generalized forces. The different components of M , kω , ke and f are given107

1We address the second order approximation in subsection 5.3 and Appendix C.
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in Appendix A. These terms depend on q, q̇, and Φi. The inertial force, torque and elastic loads are:108

f∗i =−Ri

[
M ′

xxa
′
i +M ′

xθω̇
′
i +Mxeq̈e,i +k′ω,x

]
(12)109

τ ∗i =−Ri

[
M ′

θxa
′
i +M ′

θθω̇
′
i +M θeq̈e,i +k′ω,θ

]
(13)110

h∗i =−
[
M ′

exa
′
i +M ′

eθω̇
′
i +M eeq̈e,i +k′ω,e

]
(14)111

The external and elastic loads are:112

f i =Rif
′
x (15)113

τ i =Rif
′
θ (16)114

hi = fe−ke (17)115

The component of f∗ri and fri, for r = 1 · · ·nq , are then defined as:116

f∗ri = Jv,ri ·f∗i +Jω,ri · τ ∗i +Je,ri ·h∗i (18)117

fri = Jv,ri ·f i +Jω,ri · τ i +Je,ri ·hi (19)118

with119

Jv,ri =
∂vO,i
∂q̇r

, Jω,ri =
∂ωi
∂q̇r

, Je,ri =
∂qe,i
∂qr

(20)120

where vO,i is the velocity of the body with respect to the inertial frame. The term Je,ri consists of 0 and 1 because qe,i is a121

subset of q. Equation 18 and Equation 19, once evaluated for body i, are inserted in Equation 5 to obtain the final equations of122

motion.123

2.5 Non-linear and linear equations of motion124

The nq equations of motion given in Equation 4 are gathered into a vertical vector e. They are recast into the form:125

e(q, q̇, q̈,u, t) = f + f∗ = F (q, q̇,u, t)−M(q)q̈ = 0 (21)126

or127

M(q)q̈ = F (q, q̇,u, t) (22)128

where M =− ∂e
∂q̈ is the system mass matrix, and F is the forcing term vector, that is, the reminder terms of the equation129

(F = e+Mq̈). The vector u is introduced to represent the time dependent inputs that are involved in the determination of the130

external loads. Both sides of the equations are also dependent on some parameters but this dependency is omitted to shorten131

notations. The stiffness and damping matrices may be obtained by computing the Jacobian of the equations of motion with132

respect to q and q̇ respectively. The non-linear equation given in Equation 22 is easily integrated numerically, for instance by133

recasting the system into a first order system, or by using dedicated second order system time integrator.134
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In various applications, a linear time invariant approximation of the system is desired. Such approximation is obtained at an135

operating point, noted with the subscript 0, which is a solution of the non-linear equations of motion, viz:136

e(q0, q̇0, q̈0,u0, t) = 0 (23)137

The linearized equations about this operating point are obtained using a Taylor-Series expansion:138

M0(q0)δq̈+C0(q0, q̇0,u0)δq̇+K0(q0, q̇0,u0)δq =Q0(q0, q̇0,u0)δu (24)139

with140

M0 =− ∂e
∂q̈

∣∣∣∣
0

, C0 =− ∂e
∂q̇

∣∣∣∣
0

, K0 =− ∂e
∂q

∣∣∣∣
0

, Q0 =
∂e
∂u

∣∣∣∣
0

(25)141

where M0, C0, K0 are the linear mass, damping, and stiffness matrices, Q0 is the linear forcing vector, δ indicate a small142

perturbation of the quantities, and |0 indicates that the expressions are evaluated at the operating point. Examples of application143

of the linear equations of motion are: controller design, frequency domain analyses, stability analyses.144

3 Implementation into a symbolic framework145

In this section we discuss a Python open-source symbolic calculation framework that implements the equations given in sec-146

tion 2. A Maxima implementation from the same authors is also available Geisler (2021).147

The python library YAMS (Yet Another Multibody Solver) started as a numerical tool published in previous work (Branlard,148

2019). The library is now supplemented with a symbolic module so that both numerical and symbolic calculations can be149

achieved. The new implementation uses the python symbolic calculation package SymPy (Sympy). We leveraged the features150

present in the subpackage “mechanics”, which contains all the tools necessary to compute kinematics: definition of frames151

and points, and determination of positions, velocities, and accelerations. The subpackage also contains an implementation of152

Kane’s equations for rigid body (i.e. subsection 2.3). We were also inspired by the package PyDy (Gede et al., 2013), which is153

a convenient tool to export the equations of motion to executable code, and directly visualize the bodies in 3D. The core of our154

work consisted in implementing a class to define flexible bodies (FlexibleBody) and the corresponding Kane’s method for155

this class (subsection 2.4).156

For the FlexibleBody class, we followed the formalism of Wallrapp (1994), and implemented Taylor expansions for all157

the terms defined in Appendix A, allowing the symbolic computation with shape functions of any order. The different Taylor158

coefficients may be kept as symbolic terms, or replaced early on by numerical values provided for instance by an SID.159

We structured the code into three layers. 1) The low-level layer integrates seamlessly with SymPy and PyDy, by using160

the FlexibleBody class we provide. It is the layer which offers the highest level of granularity and control for the user,161

since arbitrary systems with various kinematic constraints can be implemented, at the cost of requiring more expertise. 2) The162

second-level automates the calculation of the kinematics, by introducing simple connections between rigid and flexible bodies.163

The connections may be rigid, with constant offsets and rotations, or dynamic. A connection from a flexible body to another164
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body is assumed to occur at one extremity of the flexible body. Some knowledge of SymPy mechanics are still required to use165

this layer. 3) The third level consists of template models such as generic onshore or offshore wind turbine models. Degrees of166

freedom are easily turned on and off for these models depending on the level of fidelity asked by the user and generic external167

forces can be implemented or declared as external inputs. The non-linear and linear equations of motion can be exported to168

latex and python-ready scripts for various applications (see subsection 5.1). As little as three lines of code are required by169

the user to perform the full step from derivation of the equations, optional linearization, and exportation. To obtain numerical170

results from the exported python code, the user needs to provide the arrays with the degrees of freedom values q and q̇, their171

initial conditions,a dictionary with inputs (u) that are function of time, and a dictionary of parameters (p) containing all the172

numerical constants such as mass, acceleration of gravity, etc. We provide tools to readily time-integrate the generated model173

using numerical values (including initial values) from a set of OpenFAST input files.174

The source code of YAMS is available on github as a subpackage of the Wind Energy LIBrary, WELIB (Branlard, 2021).175

The repository contains tests and working examples, including the ones presented in section 4. The finite element package of176

the repository can be used to generate the SID from beam models such as the ones used for blades and tower.177

4 Wind energy applications178

4.1 Approach179

In this section we present different wind energy applications of the symbolic framework. We focus on models with at least180

one flexible body since the rigid-body formulation of SymPy has been well verified (Gede et al., 2013). For each example,181

the equations of motion are given and their results are compared with OpenFAST (OpenFAST, 2021) simulations. This is182

readily achieved because our framework can export the equations of motion to python functions, load input files from an183

OpenFAST model, and integrate the generated equations using the same conditions as defined in the OpenFAST input files. In184

this article, we do not focus on the modelling of the external loads but we include them in the equations of motion. It is the185

responsibility of the user to define these functions, for instance through aero- or hydro-force models. For the verification results186

presented in this section we only include the gravitational and inertial loading. In all examples, the NREL 5-MW reference187

wind turbine (Jonkman et al., 2009) is used. The examples below are provided on the github repository where the YAMS188

package is provided (Branlard, 2021).189

4.2 Notations190

We adopt a system of notations where the first letter of a body is used to identify the parameters of this body. As an example,191

the tower is represented with the letter T, and the following body parameters are defined: T , origin; MT , mass; LT , length;192

(Jx,T ,Jy,T ,Jz,T ), diagonal coefficients of the inertia tensor about the center of gravity and in body-coordinates; rTG, vector193

from body origin to body center of mass, of coordinates (xTG,yTG,zTG) in body-coordinates. We also define: θt, the nacelle194

tilt angle about the y axis; g the acceleration of gravity along −z; O the origin of the global coordinate system.195
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4.3 Rotating blade with centrifugal stiffening196

We begin with the study of a flexible blade of length LB =R, rotating at the constant rotational speed Ω. We use this test case197

to familiarize the reader with the key concepts of the shape function approach given in Appendix B. A sketch of the system198

is given in Figure 1. We start by modelling the blade using a single shape function, assumed to be directed along the x axis199

(“flapwise”): Φ1 = Φx̂, where the hat notation indicates the unit vector in the x direction. The undeflected blade is directed

Ω

x

R

r Φ(r)q(t)rΩ2m(r)dr

dr

px(r, t)
fe

B

q(t)

1Φ(r)

x

r

Figure 1. Sketch of a rotating blade, with the restoring centrifugal force. Points are indicated in green, degrees of freedom in blue, and loads

in orange.

200

along the radial coordinate r, and rotates around the x axis. We assume that the shape function is known, noted Φ(r). It can201

be computed as the first flapwise mode of the blade, using tools provided in YAMS. The expression Φ(r) = r3 is a simple202

approximation that can be used for hand calculations. The aerodynamic force per length in the flapwise direction is noted203

px(r). The generalized mass and stiffness are computed based on the mass per length (m) and flapwise bending stiffness (EIy)204

of the blade, according to Equation B1:205

Me =

R∫

0

m(r)Φ2(r)dr (26)206

Ke =

R∫

0

EIy(r)
[
d2Φ
dr2

(r)
]2

dr (27)207

The generalized force is obtained from Equation B3:208

fe =

R∫

0

px(r, t)Φ(r)dr (28)209
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The important consideration for this model is the axial load, N . The main axial load at a radial station r comes from the210

centrifugal force acting on all the points outboard of the current station:211

N(r) =

R∫

r

m(r′)Ω2r′ dr′ (29)212

The geometrical stiffness contribution of the axial load is obtained from Equation B5 as:213

Kg(Ω) =

R∫

0

N(r)
[
dΦ
dr

]2

dr = Ω2

R∫

0

R∫

r

m(r′)r′ dr′
[
dΦ
dr

]2

dr (30)214

The axial stiffness, Kg , is positive and increases with the square of the rotational speed. This restoring effect is referred to as215

“centrifugal stiffening”. The natural frequency of the blade will increase with the rotational speed as follows:216

ω0(Ω) =

√
(Ke +Kg(Ω))

Me
=

√
ω2

0(0) +
Kg(Ω)
Me

=
√
ω2

0(0) + kΩΩ2 (31)217

where kΩ is referred to as the rise factor, or Southwell coefficient, and in our approximation, it is found to be constant:218

kΩ =Kg(Ω)/Me/Ω2. The coefficient provides the variation of the blade frequency with rotational speed, which is something219

that is observed on a Campbell diagram when performing stability analyses. In general, the mode shapes of the blade will also220

change as function of the rotational speed, and different shape functions should preferably be used for simulations at different221

rotational speed. The effect is fairly limited, and most OpenFAST practitioners only use one shape function corresponding to222

the value at rated rotational speed. Similarly, the Southwell coefficient is a function of the rotational speed, but the variations223

is negligible as long as the rotational speed is small compared to the natural frequency (e.g., (Ω/ω)2 . 5, see Bielawa (2006)),224

which is the case for wind energy applications.225

The treatment for a shape function in the edgewise direction is similar, using Φ2 = Φ2θ̂. In this case, the centrifugal force226

also has a component in the tangential direction equal to pθ,centri(r) =−Ω2uθ(r)dm(r), with uθ = Φ2q. This leads to a gen-227

eralized force equal to
∫ L

0
pθ,centridrΦ2 =−Ω2Meq, or equivalently, to a stiffness term: Kω =−Ω2Me. It can be verified that228

this generalized force corresponds to the contribution Oe,11ω
2
x, from kω,e, given in Equation A10. For an edgewise mode, the229

frequency therefore evolves as:230

ω0(Ω) =

√
(Ke +Kg(Ω) +Kω(Ω))

Me
=
√
ω2

0(0) + (kΩ− 1)Ω2 (32)231

with kΩ =Kg(Ω)/Me/Ω2 and with Kg computed using Equation 30.232

We apply the method to the NREL-5MW turbine using the blade properties and shape functions provided in the ElastoDyn233

input file. We order the degrees of freedom as: 1st flap, 1st edge and 2nd flap, assuming no coupling between the shape functions,234

so that they each of them can be treated individually using the results from this section. The diagonal coefficients of the mass235

matrix are diag(M e) = [9.5e3, 1.5e4, 5.7e3], and for the stiffness matrix diag(Ke) = [1.7e4, 6.7e4, 8.7e4], computed ac-236

cording to Equation 26 and Equation 27. The coefficients kΩ of each degrees of freedom are obtained as: kΩ = [1.7, 1.4, 5.5].237
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Figure 2. Variation of the natural frequencies of the NREL5-MW blade with rotational speed. Results from YAMS and OpenFAST, with

mean relative error, ε, reported on the figure.

We compare the frequencies obtained with the present method against OpenFAST linearization results in Figure 2. The simu-238

lations were run in vacuum (no gravity, no aerodynamics) and with a cone angle of 0 deg. Strong agreement is found for the239

evolution of the different frequencies with the rotational speed. The stiffening is less pronounced for edgewise modes due to240

the softening introduced by Kω .241

This paragraph focused on the analysis of individual shape functions. In the general case, multiple shape functions are242

present and couplings might exists between them (due to the structural twist, non-orthogonality of the shape functions, or if the243

shape functions have components in multiple directions such as Φ1 = Φ1xx̂+ Φ1yŷ). In such case, the general developments244

of Appendix A and Appendix B should be used.245

4.4 Two degrees of freedom model of an onshore or fixed-bottom turbine246

We consider a system of three bodies: tower (or support structure), nacelle and rotor. The system represents an onshore wind247

turbine or a fixed-bottom offshore wind turbine. A sketch of the system is given in Figure 3. The nacelle and rotor blades are248

rigid bodies, whereas the tower is flexible and represented by one shape function2 in the fore-aft direction, noted Φ1 = Φ1x̂.249

For hand calculations and as a first approximation, the first mode shape of a massless beam with a top-mass may be used:250

Φ1(z) = 1− cos(zπ/L/2). Increased accuracy is obtained when the shape function matches the actual first tower fore-aft251

bending mode accounting for the effect of the rotor-nacelle mass and inertia. The degrees of freedom are q = (q,ψ), where252

q is the generalized (elastic) coordinates in the fore-aft direction and ψ is the azimuthal position. The slope of the tower253

shape function at the tower top is a key coupling parameter of the model, noted νy . When the tower deflects 1 m in the x254

direction, the nacelle rotates by an angle νy . The methods assumes that the tower-top point remains along the x axis, neglecting255

the so-called non-linear geometrical effect. Yet, non-linear geometrical effects can be included using geometrical stiffening256

2 The relevant equations of the shape function approach for a beam are given in Appendix B.
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x

z

LT

1

Φ2(z)

y

z

νy νx

fa

N

ψ

g

px

fe1

Figure 3. Model of an onshore or fixed-bottom wind turbine using 1 to 3 degrees of freedom (fore-aft and side-side flexibility of the support

structure, and shaft rotation). Points are indicated in green, degrees of freedom in blue, and loads in orange.

corrections (Branlard, 2019). The aerodynamic thrust and torque are noted fa, τa, acting at the rotor center (point R). The257

low-speed shaft generator torque is written τg . The distributed loads on the tower, px (from aero- and hydrodynamics), are258

projected against the shape function to obtain the generalized forces: fe =
∫ LT

0
px(z, t)Φ1(z)dz. The moments of inertia of the259

rotor in its coordinates are (Jx,R,J⊕,R,J⊕,R). We note Me,Ke,De the generalized mass, stiffness and damping associated260

with a given shape function: Me =
∫ LT

0
m(z)Φ2

1(z)dz , Ke =
∫ LT

0
EI(z)

[
d2Φ1
dz2 (z)

]2
dz , De = 2ζMeωe where m(z) and261

EI(z) are the mass per length and bending stiffness of the tower, and ωe and ζ are the frequency and damping ratio associated262

with the shape function (assuming the shape function is close to a mode shape). The geometrical softening of the tower due to263

the tower top mass (Kgt) and its self-weight (Kgs) is obtained using Equation B5, as Kg =Kgt +Kgs, with :264

Kgt =−g
LT∫

0

(MR +MN )
[
dΦ1

dz
(z)
]2

dz (33)265

Kgs =−g
LT∫

0

[
dΦ1

dz
(z)
]2


LT∫

z

m(z′)dz′


 dz (34)266

The shape function frequency is obtained as:267

ωe =
√

(Ke +Kg)/Me (35)268

The application of the symbolic framework leads to the following equations of motion (rearranged for interpretability):269


Mq 0

0 Jx,R




 q̈
ψ̈


=


 fq

τa− τg


 (36)270
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where:271

Mq =Me +MN +MR (37)272

+ (JyN + J⊕,R +MN (x2
NG + z2

NG) +MR(x2
NR + z2

NR))ν2
y (38)273

+ 2[(MNzNG +MRzNR)cos(νyq)− (MNxNG +MRxNR)sin(νyq)]νy (39)274

and275

fq = fe− (Ke +Kg)q−Deq̇ (40)276

+ gνy [(MNxNG +MRxNR)cos(νyq) + (MNzNG +MRzNR)sin(νyq)] (41)277

+ ν2
y q̇

2 [(MNxNG +MRxNR)cos(νyq) + (MNzNG +MRzNR)sin(νyq)] (42)278

+ faνy(xNR sinθt + zNR cosθt) (43)279

+ fa cos(θt + νyq) (44)280

Details on the derivations are given in Section D1. The mass matrix consists of three main contributions: Equation 37 represents281

the elastic mass and the rotor nacelle assembly (RNA) mass, Equation 38 is the generalized rotational inertia of the RNA,282

Equation 39 is the inertial coupling between the tower bending and the rotation of the nacelle. The forcing terms are identified as283

follows: Equation 40 consists of the elastic load due to the external forces on the tower, the elastic and geometric stiffness loads284

and the damping load on the tower; Equation 41 is the gravitational load from the RNA which will contribute to the stiffness of285

the system; Equation 42 is the centrifugal force of the RNA (“Mω2r” with ω = νy q̇); Equation 43 is the generalized torque from286

the aerodynamic thrust and Equation 44 is the thrust contribution acting directly along the direction of the shape function degree287

of freedom (along x). The RNA center of mass plays an important part in the equations (see the terms (MNxNG +MRxNR)288

and (MNzNG +MRzNR)).289

The equations of motion given in Equation 36 can be used to perform time domain simulations of a wind turbine. It is noted290

that the two degrees of freedom are only coupled by the aerodynamic loads. The non-linear model was used in previous work291

for time domain simulations and its linear version was used for state estimations (Branlard et al., 2020a, b). In this section, we292

apply the linearized form to compute the natural frequency of the turbine tower fore-aft mode. The linearized stiffness is here293

obtained by taking the gradient of the forcing with respect to q, and using a small angle approximation for νy to the second294

order:295

Kq,lin = (Ke +Kg)− ν2
y (MNgzNG +MRgzNR− faq cosθt) + νyfa sinθt (45)296

For the NREL-5MW reference turbine (Jonkman et al., 2009), the different numerical values are: g = 9.807 m.s−2, θt = 5297

deg, xNR =−5.0 m, zNR = 2.4 m, LT = 87.6 m, zNG = 1.75 m, xNG = 1.9 m, MR = 1.1e5 kg, Jx,R = 3.86e7 kg m2,298

J⊕,R = 1.92e7 kg m2, MN = 2.4e5 kg, Jy,N = 1.01e6 kg m2, MRNA = 3.5e5 kg. The first fore-aft shape function of the299
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NREL-5MW turbine tower, and its derivatives are:300

Φ1(z) = (a2z
2 + a3z

3 + a4z
4 + a5z

5 + a6z
6)/(a2 + a3 + a4 + a5 + a6)301

dΦ1

dz
(z) =

1
LT

(2a2z+ 3a3z
2 + 4a4z

3 + 5a5z
4 + 6a6z

5)/(a2 + a3 + a4 + a5 + a6) (46)302

d2Φ1

dz2
(z) =

1
L2
T

(2a2 + 6a3z+ 12a4z
2 + 20a5z

3 + 30a6z
4)/(a2 + a3 + a4 + a5 + a6)303

with z = z/L and a2 = 0.7004, a3 = 2.1963, a4 =−5.6202, a5 = 6.2275, a6 =−2.504. The material properties and the shape304

function are illustrated in Figure 4. The scaling of the shape functions given in Equation 46 is important to obtain the correct

2.5 5.0
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]
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0 1
 [-]

0 2e-2
d /dz [-]

  -5e-4 5e-4
d2 /dz2 [-]

Figure 4. Properties of the NREL-5MW tower: mass per length (m), bending stiffness (EI), and shape function displacement (Φ), slope

(dΦ/dz) and curvature (d2Φ/dz2).

305

numerical values for the flexible tower, namely: νy = 0.0185, Me = 5.4e4, Ke = 1.91e6, Kg =−5.2e4− 1.0e4 =−6.20e4,306

ωe =
√

(Ke +Kg)/Me = 5.85 rad/s. These numerical values, with q = 0, leads to: Mq = 4.375e5 and Kq = 1.849e9. The307

first fore-aft mode of the wind turbine has a natural frequency of f =
√
Kq/Mq = 0.3272 Hz. This value was compared with308

results obtained using OpenFAST linearization. Both methods are in strong agreements with differences only arising at the309

fifth decimal place.310

4.5 Three degrees of freedom model of an onshore or fixed-bottom turbine311

We consider the same system as the one presented in subsection 4.4 but the tower is now represented by one shape function in312

both the fore-aft and side-side directions, Φ1 = Φ1x̂ and Φ2 = Φ2ŷ. The degrees of freedom are q = (q1, q2,ψ), where q1 and313

q2 are the generalized (elastic) coordinates in the fore-aft and side-side directions respectively, and ψ is the rotor azimuth. A314

sketch of the system is given in Figure 3.315
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The slopes of the shape functions at the tower top are key coupling parameters of the model, noted νx and νy . The aerody-316

namic thrust and torque are noted fa, τa, acting at pointR. The distributed loads on the tower, px and py (from aero- and hydro-317

dynamics), are projected against the shape functions to obtain the generalized forces fe1 =
∫

Φ1pxdz and fe2 =
∫

Φ2pydz. The318

moments of inertia of the rotor in its coordinates are (Jx,R,J⊕,R,J⊕,R). We noteM e,Ke,De the generalized mass, stiffness319

and damping associated with a given shape function (e.g. Me11 =
∫

Φ2
1m(z)dz, with m the mass per length of the tower). The320

application of the symbolic framework leads to the equations of motion given in Section D2. To simplify the equations and321

limit their length when printing them in this article, we have applied a first-order small angle approximation for θt, and second322

order for νx and νy . It is seen from Equation D14, that a first order approximation for νy would have removed the influence of323

the rotor and nacelle y-inertia on the generalized mass associated with the tower fore-aft bending.324

We performed a time simulation of the model using both our symbolic framework YAMS and OpenFAST. We compare the325

time series obtained using our generated functions with results from the equivalent OpenFAST simulation in Figure 5. In this326

simulation, the tower top is initially displaced by 1 m in the x and y directions, and the rotational speed is 5 rpm. We report the

1

0

1

q 1
 (F

A)
 [m

] = 3.6% - R2 = 0.998

1

0

1

q 2
 (S

S)
 [m

] = 7.5% - R2 = 0.993

0 10 20 30 40 50
Time [s]

4.5
5.0
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 [r
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]

= 0.7% - R2 = 0.993

YAMS non-linear
OpenFAST

Figure 5. Free decay results for the onshore/fixed bottom model using both the symbolic framework (YAMS) and OpenFAST. From top to

bottom: tower fore-aft bending, tower side side bending, and shaft rotational speed.

327

mean relative error, ε, and the coefficient of determination R2 on the figure. We observe that our model is in strong agreement328

with the OpenFAST simulation. The differences in the second tower degree of freedom are attributed to: 1) the handling of the329

small angle approximation which is different in OpenFAST (using the closest orthonormal matrix, Jonkman (2009)) and in our330

formulation (two successive rotations, linearized); 2) the non-linear geometric corrections that are implemented in OpenFAST331

and which we have here omitted by only selecting shape function expansion to the first order (see subsection 5.3). The variation332

in azimuthal speed, resulting from the coupling between the gyroscopic loads and the tower bending, is well captured.333
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4.6 Three degrees of freedom model of a floating turbine334

In this example, we demonstrate the applicability of the method for a floating wind turbine. We model the turbine using 3335

bodies: rigid floater, flexible tower, rigid rotor-nacelle-assembly (labelled “N”). The degrees of freedom selected are: q =336

(x,φ,qT ), where x is the floater surge, φ, the floater pitch, and qT , the coordinate associated with a selected fore-aft shape337

function. A sketch of the model is given in Figure 6. The notations are similar to the ones presented in subsection 4.5. Lumped

O

fh

fa

N

τh

x

φ

θt φ+ θt

νyqT

F, T

zTG

zFG

R zNG

xNG

x

z

qT

g

px

fe1

Figure 6. Model of an floating wind turbine using 3 degrees of freedom. Points are indicated in green, degrees of freedom in blue, and loads

in orange.

338

hydrodynamic loads at the floater center of mass are now added. The model can also be used for a combined tower and floater339

that is flexible, simply by setting the mass of the floater to zero and including the hydrodynamic loading into the loading px. The340

equations of motion are given in subsection D3. The equations were simplified using a first order small angle approximation341

of θt and φy , and a second order approximation for νy .342

We performed a numerical simulation of the model generated by YAMS and compared it with OpenFAST, for a case with343

gravitational loads only, starting with x= 0 m, φ= 2 deg and qT = 1 m. The results are presented in Figure 7. We observe344

again that the results from the two models correlate to a high degree.345

We also compared the linearized version of both models. The symbolic framework can generate the linearized mass, stiffness346

and damping matrices as described in subsection 2.5. The matrices are then combined into a state matrix and compared with347

the state matrices written by the OpenFAST linearization feature. The eigenvalue analysis of the YAMS state matrix returned348

a pitch and fore-aft frequencies of 0.099 Hz and 0.799 Hz respectively, whereas OpenFAST returned 0.095 Hz and 0.795 Hz.349

The 4% error in the pitch frequency appears reasonable in view of the approximations used.350
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Figure 7. Free decay results for the floating wind turbine model using YAMS and OpenFAST. From top to bottom: surge, pitch and tower

fore-aft bending.

5 Discussions351

5.1 Applications352

The implementation of the symbolic YAMS library was originally motivated by the need to obtain a simple linearized model353

of a floating wind turbine for frequency domain simulations. The potential applications of the framework are yet multiple:354

– The generated equations can be used in time-domain simulation tools. The equations can be readily exported to differ-355

ent programming languages (C, Fortran or Python) providing computationally efficient tools, particularly because the356

method generates compact, and minimal equations. This is in contrast to most other multibody codes where many terms357

are calculated as matrix equations and through successive function calls. Further, the symbolic framework allows to358

generate optimized code, where common terms and factors are computed once and stored in temporary variables for359

reuse in the different expressions. In our examples, time-domain simulations were observed to be two orders of magni-360

tude faster when using the automatically generated code in Python compared to OpenFAST simulations that rely on a361

compiled-language. Using such a framework can be considered in the future to replace the existing ElastoDyn module362

of OpenFAST. It can also be applied to unusual configurations such as multi-rotor or some vertical axis turbine concepts.363

Dedicated code can be generated for specific applications for increased performances. For instance, implicit integrator364

with iterative Newton-Raphson-like solvers benefit from the possibility to generate exact and efficient Jacobians along365

with the equations of motion.366

– The generation of linearized models have a wide range of applications, such as: linear time-domain simulations, con-367

troller design and tuning, frequency domain analyses, stability analyses, state observers or digital twins. The symbolic368
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approach is severalfold faster than alternative approaches because it can be evaluated for all operating points at once,369

whereas other methods (e.g. OpenFAST, HawcStab2) require multiple linearization calls. Linearization with respect to370

parameters can also be performed, making the method even more appealing, e.g. for controller designs based on linear371

parameter varying approaches such as linear matrix-inequality based designs (Pöschke et al., 2020).372

– Analytical gradients of the equations can be computed and used in optimizations, nonlinear model predictive control373

or moving horizon estimation. External loads that cannot be expressed analytically can be defined as generic functions374

of the structural degrees of freedom, inputs, and parameters. After the code generation, the user can link a numerical375

implementation of the function and its numerical gradients to be able to use a mix of analytical and numerical gradients.376

5.2 Advantage of using a symbolic framework377

Most advantages have already been discussed in subsection 5.1, namely: the wide range of applications and the potential gain378

in computational time. Additionally, the method can provide useful insights and be used as an educational tool: simple models379

of a system with few degrees of freedom can readily be obtained, studied, and compared to hand-based calculation.380

5.3 Advanced consideration381

Section 2 addressed the systematic derivation of the equations of motion for an assembly of rigid or flexible bodies. Some382

advanced aspects of the method are discussed here:383

– The expression of the displacement field u in terms of a superposition of shape function is typically done using a first384

or second order expansion. We discuss these formulations in Appendix C. Our framework supports both approaches: it385

is the responsibility of the user to provide the terms and values of the expansion when numerical evaluation is to occur.386

The advantage of the second-order expansion is that some geometrical non-linearities are directly accounted for by the387

method, whereas these non-linearities need to be introduced “manually” in the first-order expansion approach, as done388

in Branlard (2019).389

– The definition of geometric stiffening requires attention in the general case. It is accounted for by the term kσ presented390

in Appendix A. A general account of the effect for an arbitrary geometry can be found in Wallrapp and Schwertassek391

(1991) and simplified expressions are given for beams in Appendix B.392

– The treatment of external loads was not addressed in details in this paper because the loads are application specific (aero-393

dynamics, hydrodynamics, etc.). The framework can accept external loads as arbitrary functions of multiple variables,394

or as analytical expressions. In the former case, the user will have to provide an implementation of the function during395

the execution.396

– Even though the equations of motion are void of constraint forces, the values of these forces can be recovered. They397

can be expressed as function of the external forces and the states of the system. It is not necessary to compute them by398

iteratively solving constraint equations.399
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– The framework can easy include rheonomous constraints, e.g. for the pitch angle, without having to supply a dedicated400

torque. Pitch speed and accelerations can be directly introduced into the mechanical system if they are provided e.g. by401

a generic second order pitch actuator model402

5.4 Limitations403

In spite of the advantages listed in subsection 5.2, the symbolic procedure presented in this work has some potential limitations.404

We are identifying two in this section. First, constraints and closed loops have currently not been added to the framework. The405

SymPy mechanics package supports additional constraint equations within the Kane method. It is therefore hoped that this406

current limitation can be lifted in the future. Second, large problems may challenge a symbolic calculation package: memory407

impact, calculation time, simplification times, and size of expressions may become significant. Some of these issues may be408

alleviated by introducing intermediate variables that are only substituted for in the numerical implementation or by using a409

recursive formulation of the solution procedure (Branlard, 2019).410

6 Conclusions411

We presented a symbolic framework to obtain the linear and non-linear equations of motion of a multibody system made of412

rigid bodies, flexible bodies and kinematic joints. Our approach is based on Kane’s method and a nonlinear shape function413

representation of flexible bodies. We provided different wind energy examples and verified the results against OpenFAST sim-414

ulations. The framework can readily provide models suitable to a wide range of applications, with competitive computational415

times. The framework is opensource and the examples presented are available in the repository. Future work will focus on416

applying the framework to dedicated research projects, with more complex systems, and potentially extend the framework to417

account for closed-loop systems and arbitrary constraints.418

Author contributions. Both authors exchanged over the last two years on the implementation of such framework and its application to wind419

energy. E. Branlard wrote a Python implementation and J. Geisler wrote a Maxima implementation. E. Branlard wrote the main corpus of420
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Competing interests. No competing interests are present.422

Appendix A: Equations for a flexible body and shape integrals423

In this section, we detail the equations of motion of a flexible body. The reader is referred to the following references for a424

complete treatment of the equations of motion: Shabana (2013), Schwertassek and Wallrapp (1999) and Wallrapp (1994). The425

subscript i indicating the body index is dropped. The number of flexible shape functions associated with the body is ne, the426
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flexible degrees of freedom are qe, and the shape functions are gathered into a matrix Φ of size (3×ne). Primes are used427

to indicate that quantities are expressed in the body frame of reference. The equations of motion, given in Equation 11, are428

repeated below:429




M ′
xx M ′

xθ M ′
xe

M ′
θθ M ′

θe

sym. M ′
ee




i




a′i

ω̇i

q̈e,i


+




k′ω,x

k′ω,θ

kω,e




i

+




0

0

ke




i

=




f ′x

f ′θ

fe




i

(A1)430

The different terms of the mass matrix are obtained as follows:431

M ′
xx =

∫
I3 dm=MI3 (3× 3) (A2)432

M ′
xθ =−

∫
s̃′P dm=−M s̃′CM (3× 3) (A3)433

M ′
θθ =−

∫
s̃′P s̃

′
P dm= J (3× 3) (A4)434

M ′
θe =

∫
s̃′PΦ′dm=CT

r (3×ne) (A5)435

M ′
xe =

∫
Φ′dm=CT

t (3×ne) (A6)436

M ′
ee =

∫
Φ′TΦ′dm (ne×ne) (A7)437

The integrals are understood as volume integrals over the volume of the body (for beams they reduce to line integrals). The438

notation [˜] represents the skew symmetric matrix. M is the mass of the body. The vector s′CM is the vector from the origin of439

the body to undeflected center or mass (CM) of the body. The notations Ct (ne× 3) and Cr (ne× 3) are introduced to match440

Wallrapp’s notations. The vector s′P is the vector from the origin of the body to a deflected point of the body of elementary441

mass dm. The undeflected position of this point is written s′P0
and the displacement field u′, such that: s′P = s′P0

+u′. For442

a first order expansion of the displacement field, u′ = Φ′qe. Second order expansions need the introduction of an additional443

notation: u′ = Φ′u(qe)qe (see subsection 5.3 and Wallrapp (1994)). Wallrapp also includes the elementary mass moment of444

inertia which results in additional terms in the integrals (see Wallrapp (1994)). Such contributions are relevant for instance445

when considering the torsion of a beam (see Branlard (2019)). The block matrices M ′
xx, M ′

xe and M ′
ee do not depend on446

the deformation of the body and are hence constant. The other terms are functions of qe. They may be expressed as linear447

combination of constant integrals. These integrals are usually referred to as shape integrals (Shabana (2013)) or Taylor series448

coefficients (Wallrapp (1994)).449
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The quadratic velocity terms kω are given as:450

k′ω,x = 2ω̃′CT
t q̇e +M ω̃′ω̃′s′CM (3× 1) (A8)451

k′ω,θ = ω̃′M ′
θθω

′+


 ∑

j=1..ne

Gr,j q̇e,j


ω′ (3× 1) (A9)452

kω,e =
[
ω′TOe,jω

′]
j=1..ne

+


 ∑

j=1..ne

Ge,j q̇e,j


ω′ (ne× 1) (A10)453

where454

Gr,j =−2
∫
s̃′P Φ̃

′
j dm (3× 3) (A11)455

Oe,j =
∫

Φ̃
′
j s̃
′
P dm=−1

2
GT
r,j (3× 3) (A12)456

Ge,j =−2
∫

Φ′T Φ̃
′
j dm (ne× 3) (A13)457

The first term of Equation A10 is obtained by vertically stacking the contribution of each shape function. In the SID format,458

this term is reshaped as the productOeΩ, where:459

Oe = [Oe,j,11, Oe,j,22, Oe,j,33, Oe,j,12 +Oe,j,21, Oe,j,23 +Oe,j,32, Oe,j,13 +Oe,j,31]j=1..ne
(ne× 6) (A14)460

Ω =
[
ω2
x, ω

2
y, ω

2
z , ωxωy, ωyωz, ωxωz

]′
(6× 1) (A15)461

The body elastic forces are given by:462

ke = kσ +Keqe +Deq̇e (A16)463

where Ke and De are the elastic stiffness and damping matrix, and kσ represent stress stiffening terms. The elastic damping464

forces are often given as stiffness proportional damping. For more details, see Wallrapp (1994), and for more example of with465

elastic beams see Branlard (2019). The external loads can be assumed to consists of distributed volume forces p′ (in practice466

they are mostly surface forces of line forces) and a gravitational acceleration field g′. The components of the external loads in467

Equation A1 are then obtained by integration over the whole body:468

f ′x =
∫
p′ dV +M ′

xxg
′ (3× 1) (A17)469

f ′θ =
∫
s′P ×p′ dV +M ′

θxg
′ (3× 1) (A18)470

f ′e =
∫

Φ′T p′ dV +M ′
exg

′ (ne× 1) (A19)471

Appendix B: Application of the shape function approach to an isolated beam472

In this section, we illustrate how the elastic equations of Appendix A can be applied to an isolated beam. Examples of ap-473

plications are further given in subsection 4.3 and subsection 4.4. We consider a beam directed along the z-axis and bend-474
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ing in the x and y direction. Expression are written in the coordinate system of the beam and primes are dropped in this475

section. The beam properties are the following: length L, mass per length m, and bending stiffness EIx and EIy . We as-476

sume that the displacement field is such that the shape functions are function of z only: u(z, t) =
∑ne

i=1 Φi(z)qe,i(t). We477

also assume that the shape functions satisfy at least the geometric boundary conditions. The kinetic energy of the beam is478

T = 1
2

∫ L
0
mu̇2dz = 1

2

∑
i

∑
jMe,ij q̇e,j q̇e,i. where Me,ij is (see Equation A7):479

Me,ij =

L∫

0

m(z)Φi(z) ·Φj(z)dz, i, j = 1, . . .ne (B1)480

Equation B1 involves a scalar product of the shape functions at each spanwise positions. Integrals over the moment of inertia481

can be used to account for torsion (see Branlard (2019)). The potential energy (strain energy) of the beam, is obtained as V =482
1
2

∑
i

∑
jKe,ijqe,iqe,j , whereKe,ij are the element of the stiffness matrix, which, under the assumption of small deformations,483

are given by:484

Ke,ij =

L∫

0

[
EIy

d2Φi,x
dz2

d2Φj,x
dz2

+EIx
d2Φi,y
dz2

d2Φj,y
dz2

]
dz, i, j = 1, . . .ne (B2)485

Elongation and torsional strains (EA and GKt) can similarly be added to the strain energy and the stiffness matrix if longi-486

tudinal and torsional displacement fields are included in the shape functions. The external loads on the beam are assumed to487

consist of a distributed force vector p(z). The virtual work done by the force p for each virtual displacement δqe,i, provides488

the generalized force as(see Equation A17 ):489

fe,i =

L∫

0

Φi ·pdz (B3)490

The equations of motion of the isolated beam and then written in matricial form as:491

M eq̈e +Deq̇e +Keqe = fe (B4)492

where qe = [qe,1, · · · , qe,n]. Damping is typically added a posteriori to the equations, where the Rayleigh damping assumption493

is often usedDe = αM e+βKe (stiffness proportional damping implies α= 0). If the shape functions are mode shapes, then494

the shape functions are orthogonal, the mass and stiffness matrices are diagonal, and the stiffness values would be Ke,ii =495

ω2
e,iMe,ii, with ωe,i =

√
Ke,ii/Me,ii the eigenfrequency of the beam mode i. The modal damping is then given by De,ii =496

2ζiMe,iiωe,i, where ζi is the damping ratio associated with mode i.497

If the beam is loaded axially by a force N(z), then this force produces a distributed load in the transverse direction equal498

to n= ∂
∂z

[
N(z)∂u

∂z

]
, with components in the y and z directions (see Branlard (2019)). The generalized force associated with499

this loading is then: QN,i =
∫ L

0
Φi ·ndz. Inserting the expression of n and u, the generalized force has the form of a stiffness500

term: QN,i =−∑jKN,ijqj with501

KN,ij =−
L∫

0

Φi ·
d

dz

[
N(z)

dΦj

dz

]
dz =

L∫

0

N(z)
dΦi

dz
· dΦj

dz
−
[
N(x)Φi ·

dΦj

dz

]L

0

(B5)502
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and where integration by parts was used to obtain the second equality. Examples of applications are given in subsection 4.3503

and subsection 4.4.504

Appendix C: Alternative formulations505

Different formulations of flexible multibody dynamics are found in the literature. Some of the alternatives are briefly discussed506

in this section.507

In Equation 7, the Jacobian terms J and the virtual work are expressed in vector form. In such form, there is no need to508

precise in which coordinate system the different vectors are expressed. This is convenient to reduce the size of the expressions509

when using symbolic calculations. In a numerical framework, the vector will have to be expressed in a common frame. When510

such approach is used (see e.g. Lemmer (2018); Branlard (2019)), the Jacobians are sometimes stacked into a matricial form:511

J =




Jv

Jω

Je


 (C1)512

Some implementation choices are needed depending if these matrices are expressed in the global frame or a body frame. The513

Jacobian matrices are referred to as velocity transformation matrix, and the link between formulations in global and local514

coordinates is given in Branlard (2019). In the same reference, recursive relationships are given for tree-like assembly of515

bodies, to help express the Jacobian matrices of each body recursively, based on the matrices of the parent body. It is also noted516

that the quadratic velocity terms, kω , can be obtained using the time derivative of the Jacobian matrix.517

In this article, we have not explicitly written the rotational impact of the shape functions. In most applications, bodies are518

connected at their extremities and the deflection slope at a body extremity will induce a rotation of the subsequent body. The519

deflection slope can be obtained form the knowledge of the shape functions. This is readily accounted for by introducing time-520

varying rotation matrix between bodies, and this is the approach used in our symbolic framework. A formalism of rotations521

of bodies connected at their extremities is given in Branlard (2019). A more general formulation, introducing shape function522

rotations Ψ, is given in (Wallrapp, 1994; Schwertassek and Wallrapp, 1999; Lemmer, 2018). In such formulation, the linear523

rotation field is obtained as I + Ψ̃q, where I is the identity matrix.524

The order of expansion of the displacement field leads to alternative formulations. In Shabana (2013) and Branlard (2019) a525

first order expansion is used:u=
∑
j [Φ

0
j ]qe,j In the work of Wallrapp a second order expansion is used:u=

∑
j

[
Φ0
j + 1

2

∑
kΦ1

jkqe,k
]
qe,j .526

In both formulations, the equations of motion given in Appendix A lead to shape-integral expansions of the following form:527

T = T 0 +
∑

j=1..ne

T 1
jqe,j (C2)528

where T is a dummy variable standing for Mθ,θ, Ct, Cr, Gr, Ge, or Oe. The “0” and “1” terms are stored using a “Taylor”529

object-oriented class in the SID format defined by Wallrapp. The subtlety lays in the fact that the “1” terms will be different530

if the displacement is developed using a first order expansion or a second order expansion. Some terms involving Φ1
jk will be531
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present in the latter case. The reader is referred to Wallrapp (1993) for a full description of the Taylor-expanded terms. Setting532

Φ1
jk = 0 in these expressions will lead to the 1st-order shape integral approach of Shabana.533

Appendix D: Equations of motion of simple wind turbine models534

D1 Three degrees of freedom model of an onshore or fixed-bottom wind turbine535

In this section we provide some intermediate values to obtain the equations of motion given in subsection 4.4. The degrees of536

freedom are q = (q,ψ). The kinematics of the tower (at its origin) are zero:537

vO,T = 0, ωT = 0, aO,T = 0 (D1)538

All Jacobians are zero except Je,1T = 1 The inertial force, torque and elastic force are:539

f∗T = CtTxq̈t̂x +MT gt̂z, τ ∗T = CrTy q̈t̂y, E∗T = fe +Deq̇+ (Ke +Kq)q+Meq̈ (D2)540

The nacelle kinematics (at its center of mass) are:541

vG,N = q̇t̂x + νyzNGq̇n̂x− νyxNGq̇n̂z, ωN = νy q̇t̂y (D3)542

aG,N = q̈t̂x + (−ν2
yxNGq̇

2 + νyzNGq̈)n̂x + (−ν2
yzNGq̇

2− νyxNGq̈)n̂z (D4)543

The Jacobians with respect to q are:544

Jv,1N = t̂x + νyzNGn̂x− νyxNGn̂z, Jω,1N = νy t̂y (D5)545

The inertial force and torque on the nacelle are:546

f∗N =MN q̈t̂x +MN

(
−ν2

yxNGq̇
2 + νyzNGq̈

)
n̂x +MN

(
−ν2

yzNGq̇
2− νyxNGq̈

)
n̂z, τ ∗N = Jy,Nνy q̈n̂y (D6)547

The kinematics of the rotor are:548

vG,R = q̇t̂x + νyzNRq̇n̂x− νyxNRq̇n̂z, ωR = ψ̇êrx + νy q̇t̂y (D7)549

aG,R = q̈t̂x + (−ν2
yxNRq̇

2 + νyzNRq̈)n̂x + (−ν2
yzNRq̇

2− νyxNRq̈)n̂z (D8)550

The corresponding Jacobians with respect to q (“1”) and ψ (“2”) are:551

Jv,1R = t̂x + νyzNRn̂x− νyxNRn̂z, Jω,1R = νy t̂y, Jω,2R = r̂x552

The inertial force and torque on the rotor are:553

f∗R =MRq̈t̂x +MR

(
−ν2

yxNRq̇
2 + νyzNRq̈

)
n̂x +MR

(
−ν2

yzNRq̇
2− νyxNRq̈

)
n̂z (D9)554

τ ∗R = Jx,Rψ̈r̂x (D10)555

+ (J⊕,Rνy sin(ψ) ψ̇q̇+ J⊕,R
(
−νy sin(ψ) ψ̇q̇+ νy cos(ψ) q̈

)
− Jx,Rνy sin(ψ) ψ̇q̇)r̂y (D11)556

+ (J⊕,Rνy cos(ψ) ψ̇q̇+ J⊕,R
(
−νy sin(ψ) q̈− νy cos(ψ) ψ̇q̇

)
− Jx,Rνy cos(ψ) ψ̇q̇)r̂z (D12)557
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D2 Three degrees of freedom model of an onshore or fixed-bottom wind turbine558

The equations of motion for the model presented in subsection 4.5, with q = (q1, q2,ψ), are given in this section. The elements559

of the mass matrix are:560

M11 = [Me11 +MN +MR] (D13)561

+
[
Jy,N + J⊕,R +MN

(
x2
NG− 2xNGq1 + z2

NG

)
+MR

(
x2
NR− 2xNRq1 + z2

NR

)]
ν2
y (D14)562

+ 2[MNzNG +MRzNR]νy (D15)563

M13 = Jx,Rθtνxνyq2 (D16)564

M22 = [Me22 +MN +MR] (D17)565

+
[
Jx,N + Jx,R +MNz

2
NG +MRz

2
NR

]
ν2
x (D18)566

− 2[MNzNG +MRzNR]νx (D19)567

M23 = Jx,Rνx (D20)568

M33 = Jx,R (D21)569

The elements of the forcing vector are:570

f1 = fe1−Ke11q1−De11q̇1− Jx,Rθtνxνyψ̇q̇2 + [MNxNG +MRxNR]ν2
y q̇

2
1 (D22)571

+ g
[
MN

(
ν2
yzNGq1 + νyxNG

)
+MR

(
ν2
yzNRq1 + νyxNR

)]
+ fa [θtνyxNR− θtνyq1 + νyzNR + 1] (D23)572

f2 = fe2−Ke22q2−De22q̇2 + Jx,Rθtνxνyψ̇q̇1 (D24)573

+ g [MNzNG +MRzNR]ν2
xq2 + faθtνxq2 (D25)574

f3 =−Jx,Rθtνxνy q̇1q̇2 + τa (D26)575

D3 Three degrees of freedom model of a floating wind turbine576

The equations of motion for the model presented in subsection 4.6, with q = (x,φ,qT ), are given in this section. The elements577

of the mass matrix are:578

M11 =MF +MT +MN (D27)579

M12 =MF zFG−MdTz +MN [LT + zNG− νyxNGqT −φy(xNG + qT + νyzNGqT )] (D28)580

M13 = CtT1x +MN

[
1 + νyzNG− ν2

yxNGqT −φy(ν2
yzNGqT + νyxNG)

]
(D29)581

M22 = Jy,F +MF z
2
FG + JT,y + Jy,N +MN

[
(L2

T + zNG)2 + (qT +xNG)2 + 2νyqT (zNGqT −LTxNG)
]

(D30)582

M23 = CrT1y +
[
Jy,N +MN (x2

NG + z2
NG +LT zNG + νyqT (zNGqT −LTxNG)

]
νy +MN [LT + zNG] (D31)583

M33 =Me +MN +
[
Jy,N +MN

(
x2
NG− 2xNGqT + z2

NG

)]
ν2
y + 2MNνyzNG (D32)584
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The elements of the forcing vector are:585

f1 = fH + [MF zFG−Mdz +MN (LT + zNG− νyxNGqT )]φyφ̇2
y +MN [qT +xNG + νyzNGqT ] φ̇2

y (D33)586

+
[
2Ctx +MN (1 + νyzNG− ν2

yxNGqT )
]
φyφ̇y q̇T +MNνy [xNG + νyzNGqT ] φ̇y q̇T (D34)587

+MNν
2
y [xNG + zNGφy] q̇2

T (D35)588

+ fa [1− θtνyqT − νyφyqT ] (D36)589

f2 = τH +MN

[
ν2
y(LTxNG− zNGqT )

]
q̇2
T (D37)590

− 2MN

[
qT +xNG + νy(2zNGqT −LTxNG)− ν2

yqT (LT zNG +xNGqT )
]
φ̇y q̇T (D38)591

+ g [MF zFGφy −Mdzφy +MN {(LT + zNG− νyxNGqT )φy + qT +xNG + νyzNGqT }] (D39)592

+ fa
[
LT + zNR + θtxNR + θtqT + νyq

2
T −LT θtνyqT

]
(D40)593

f3 = fe−Deq̇T −KeqT (D41)594

+MN

[
qT +xNG + νy(2zNGqT −LTxNG)− ν2

yqT (LT zNG +xNGqT )
]
φ̇2
y (D42)595

+MNν
2
yxNGq̇

2
T (D43)596

+ g
[
CtT1xφy +MN

(
νyxNG + ν2

yzNGqT − ν2
yxNGφyqT + νyzNGφy +φy

)]
(D44)597

+ fa [1 + θtνyxNR− θtνyqT + νyzNR] (D45)598
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