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Abstract. Accurate characterization of the offshore wind resource has been hindered by a sparsity of wind speed observations

that span offshore wind turbine rotor-swept heights. Although public availability of floating lidar data is increasing, most

offshore wind speed observations continue to come from buoy-based and satellite-based near-surface measurements. The aim

of this study is to develop and validate novel vertical extrapolation methods that can accurately estimate wind speed time series

across rotor-swept heights using these near-surface measurements. We contrast the conventional logarithmic profile against5

three novel approaches: a logarithmic profile with a long-term stability correction, a single-column model, and a machine-

learning model. These models are developed and validated using 1 year of observations from two floating lidars deployed in

U.S. Atlantic offshore wind energy areas. We find that the machine-learning model significantly outperforms all other models

across all stability regimes, seasons, and times of day. Machine-learning model performance is considerably improved by

including the air-sea temperature difference, which provides some accounting for offshore atmospheric stability. Finally, we10

find no degradation in machine-learning model performance when tested 83 km from its training location, suggesting promising

future applications in extrapolating 10-m wind speeds from spatially resolved satellite-based wind atlases.
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1 Introduction

The accurate characterization of the offshore wind resource is crucial for a range of analyses needed to support the growing20

offshore wind industry. Specifically, accurate time series estimates of wind speed across the rotor-swept heights of an offshore

wind turbine are used for estimates of turbine and wind plant power production, which feed into various technical and eco-

nomic analyses, ranging from grid integration (Mahoney et al., 2012), life-cycle cost analyses (Jong et al., 2017), and capacity

expansion studies (Hasager et al., 2015).
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Accurate characterization of rotor-swept offshore wind speeds has been hindered by the sparsity of observations at rotor-25

swept heights, especially in the U.S. offshore wind areas. Offshore meteorological towers are generally too expensive to install,

especially up to 250 m–300 m, i.e., the expected upper rotor-swept heights of U.S. offshore wind turbines. Buoy-mounted

floating lidar, however, are emerging as a game-changing technology, especially in the United States, providing accurate wind

speed and direction measurements up to approximately 250 m (Carbon Trust, 2018); however, these units are also expensive,

mostly owned by wind plant developers, and their data are kept highly proprietary. In the United States, for example, as of30

December 2020, there are only six publicly available data sources for floating lidar in U.S. offshore waters (Table 1).

Table 1. Active Floating Lidar Deployments in U.S. Offshore Wind Energy Areas with Publicly Available Data (As of December 2020)

Location Time Resolu-

tion

Start Date for

Public Data

Maximum

Measurement

Height

Data Access

Hudson South Call Area, New Jersey 10 minute 2019-09-04 200 m DNV-GL (2020)

Hudson North Call Area, New Jersey 10 minute 2019-08-12 200 m DNV-GL (2020)

Atlantic Shores, New Jersey 10 minute 2020-02-26 250 m Atlantic Shores Off-

shore Wind (2020)

Mayflower, Massachusetts Daily 2020-04-13 250 m Mayflower Offshore

Wind (2020)

Humboldt, California 1 second 2020-10-01 250 m Pacific Northwest

National Laboratory

(2020)

Morro Bay, California 1 second 2020-10-01 250 m Pacific Northwest

National Laboratory

(2020)

In place of rotor-swept height measurements, near-surface observations can be used as substitutes for characterizing the

offshore wind resource (Mohandes and Rehman, 2018). The main data source is the network of buoy-based wind speed mea-

surements from the National Data Buoy Center, maintained by the National Oceanic and Atmospheric Administration (National

Data Buoy Center, 1971). These data have been used to characterize the wind resource in offshore California (Wang et al., 2019;35

Optis et al., 2020c), the U.S. offshore Atlantic (Optis et al., 2020b), and the Great Lakes (Doubrawa et al., 2015). These buoys

generally provide years worth of wind speed measurements less than 5 m and are of high quality. In addition to these buoys,
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satellite-based scatterometer and synthetic-aperture radar measurements of the near-surface wind vector are increasingly being

used to characterize the offshore wind resource (Doubrawa et al., 2015; Ahsbahs et al., 2017; Hasager et al., 2020; Ahsbahs

et al., 2020). These data are more spatially resolved than buoy-based wind speed data, but they are limited in their temporal40

coverage. Further, there is some error and uncertainty in how geophysical transfer functions are used to extrapolate the satellite

measurements to the diagnosed 10-m wind speed that is disseminated (Kelly and Gryning, 2010; Badger et al., 2015).

This abundance of near-surface wind speed measurements is valuable for offshore wind resource characterization provided

the measurements can be accurately extrapolated to rotor-swept heights. The conventional wind industry approach—the power

law profile—is not useful in this context because the method requires measurements at two heights to calculate the shear coeffi-45

cient. The logarithmic wind profile (Monin and Obukhov, 1954), by contrast, is applicable and has a long history of accurately

predicting wind speeds in the atmospheric surface layer (Holtslag, 1984; Troen and Petersen, 1989; Emeis, 2013); however,

the logarithmic assumption has been shown to break down at rotor-swept heights under conditions of stable stratification as

turbulent fluxes decrease in magnitude and near-surface winds begin to decouple from the winds aloft (Optis et al., 2014,

2016). Under such conditions, phenomena such as low-level jets can occur, which idealized models, such as the logarithmic50

wind profile—which assumes monotonically increasing wind speeds with height—are unable to account for.

Despite these shortcomings, the logarithmic profile still forms the backbone of the only extrapolation method that has

been developed and validated for offshore applications. This method, developed by researchers at the Technical University

of Denmark (DTU) in 2010, derives a stability-dependent long-term correction to the logarithmic wind profile (Kelly and

Gryning, 2010), where stability data (e.g., Obukhov length) are provided by numerical weather prediction simulations. This55

model (described in more detail in Section 3 and herein referred to as the DTU method) has been used in subsequent studies to

extrapolate 10-m diagnosed winds from satellite products with good agreement with offshore observations in Europe (Badger

et al., 2015; Hasager et al., 2020). The DTU method, however, can provide only a long-term mean wind profile extrapolation

and is not useful when time series-based wind speeds across rotor-swept heights are needed (i.e., for most energy and economic

offshore wind analyses).60

For such applications, two novel approaches with proven success on land but not thoroughly validated offshore could be suit-

able. The first is a single-column model (SCM) approach, in which a typical three-dimensional numerical weather prediction

model is reduced to a single vertical dimension by assuming horizontal homogeneity (Baas et al., 2010). Further assumptions

(described in Section 3) reduce the model to a simple set of differential equations that can be run efficiently on a personal

computer. The key advantage of the SCM is its ability to be forced at the lower boundary by wind and temperature observa-65

tions. The SCM was used in Optis and Monahan (2016) and Optis and Monahan (2017) to extrapolate 10-m wind speeds up to

200 m at the Cabauw meteorological tower in the Netherlands. Results showed that the SCM performed about the same as the

Weather Research and Forecasting (WRF) model (Skamarock et al., 2019) during a 10-year period, highlighting the benefit of

local observations driving a highly simplified model.

Recently, machine learning has also emerged as a promising approach for the vertical extrapolation of wind speeds. Bodini70

and Optis (2020a) and Bodini and Optis (2020b) explored this concept using four lidars and surface flux stations dispersed

around the Southern Great Plains site, operated by Argonne National Laboratory. They found that a relatively simple random
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forest algorithm, trained on near-surface atmospheric variables, considerably outperformed the conventional power law and

logarithmic wind profiles. This performance held even when a model was trained at one measurement site and tested at others

up to 100 km away, i.e., through a round-robin approach. In the offshore environment, Vassallo et al. (2020) used a deep neural75

network to extrapolate near-surface winds in offshore California during a 1-month period, and they also found improvement

relative to conventional techniques; however, the time period was short, and a round-robin approach was not applied.

The goal of this study is to assess the viability of these conventional and more novel extrapolation models for use in U.S.

offshore areas. We provide comparisons among the different extrapolation models, and we benchmark against estimated wind

profiles from the WRF model. We focus this study on the U.S. North Atlantic and Mid-Atlantic offshore areas, where the80

U.S. offshore wind industry is most developed (Musial et al., 2020). In Section 2, we describe the domain, the observations,

and the WRF model setup used. Next, in Section 3, we describe the various extrapolation models. Intercomparisons of model

performance are provided in Section 4, with concluding remarks provided in Section 5.

2 Data

2.1 Observations85

To develop and validate the various extrapolation models, we leverage measurement data from two recently deployed floating

lidars in offshore New Jersey and located within two current wind energy call areas (Figure 1). These lidars were deployed by

the New York State Energy Research and Development Authority (NYSERDA), which has made data publicly available in real

time through a web-based access portal (DNV-GL, 2020). The portal also includes detailed technical information regarding

the lidars. An overview of these floating lidars and the data available are provided in Table 2. Lidar-measured wind speeds90

from 20 m to 200 m are used for the validation of the proposed extrapolation models (see Section 4), whereas the near-surface

measurements at 2 m are used to develop and apply the extrapolation models (Section 3).

Table 2. Summary of Observational Data Set Being Analyzed

Buoy E06 Buoy E05

Location 39.55◦N, 73.43◦W 39.97◦N, 72.72◦W

Period analyzed Sep. 4, 2019–Aug. 16, 2020 Aug. 12, 2019–Aug. 16, 2020

Distance from coast 69 km 114 km

Lidar measurement heights 20–200 m in 20-m increments

Lidar variables Wind speed, wind direction

Surface variables 2-m air temperature, sea surface temperature, 2-m wind speed, 2-m wind direction
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Figure 1. WRF simulation domain map considered in this study. The NYSERDA lidars are shown in blue and orange diamonds. White areas

denote Bureau of Ocean Energy Management wind energy lease areas; gray areas denote Bureau of Ocean Energy Management call areas.

2.2 WRF Model

The WRF model is used in this study for two reasons. First, the DTU method (one of the extrapolation approaches considered

in our analysis) requires surface atmospheric variables not available from the NYSERDA buoys. Second, validating the extrap-95

olation models alongside WRF will provide key insights into the usefulness of novel extrapolation models for offshore wind

energy and whether further development of these models is justified.

A summary of the WRF model setup is provided in Table 3, and the domain is shown in Figure 1. The WRF model is run

from September 1, 2019, through August 31, 2020, in separate monthly runs. For each month, the simulation is initialized 2

days earlier (e.g., March 30 for April simulations) and run 1 day after the end of the month (e.g., May 1). The first day of the100

simulation is used to spin up the model from initial conditions, whereas the second and final days are used to stitch together

the monthly runs into a single time series.

3 Extrapolation Models

In this section we describe the different wind speed extrapolation models considered in this study.

5

https://doi.org/10.5194/wes-2021-5
Preprint. Discussion started: 27 January 2021
c© Author(s) 2021. CC BY 4.0 License.



Table 3. Key Attributes of the WRF Model Used in This Study

Feature Specification

WRF version 4.2.1

Grid spacing for nested domains 6 km, 2 km

Output time resolution 5 minutes

Vertical levels 61

Near-surface-level heights (m) 12, 34, 52, 69, 86, 107, 134, 165, 200

Atmospheric forcing ERA-5 reanalysis

Atmospheric nudging Spectral nudging on 6-km domain, applied every 6

hours

Planetary boundary layer scheme Mellor-Yamada-Nakanishi-Niino Level 2.5

Microphysics Ferrier

Longwave radiation Rapid radiative transfer model

Shortwave radiation Rapid radiative transfer model

Topographic database Global multiresolution terrain elevation data from

the U.S. Geological Survey and National Geospatial-

Intelligence Agency

Land-use data Moderate Resolution Imaging Spectroradiometer 30s

Cumulus parameterization Kain-Fritsch

3.1 Logarithmic profile105

The logarithmic wind profile is given as:

U(z) =
u∗
κ

[
ln
(
z

z0

)
−ψm

( z
L
,
z0
L

)]
(1)

where U is the wind speed, κ is the von Kármán constant (typically taken to be 0.4), z is the height above the surface, u∗

is the friction velocity, z0 is the roughness length, ψm is the stability function for momentum that adjusts the wind profile

depending on atmospheric stability, and L is the Monin-Obukhov length that characterizes surface layer atmospheric stability.110

The friction velocity, u∗, requires high-frequency sonic anemometer measurements that are not available at the NYSERDA

buoys. To avoid specifying u∗, we reformulate Eq. 1 to use the 2-m buoy wind speeds as a reference measurement, allowing

the wind profile to be calculated according to:

U(z) = U2m

[
ln(z/z0)−ψm (z/L,z0/L)

ln(zref/z0)−ψm (z2m/L,z0/L)

]
. (2)
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Here, we set z0=0.0001 (which is the WRF output z0 for offshore) and implement the ψm formulations from Jiménez et al.115

(2012), which have become standard correction functions and are currently used in the WRF mesoscale model surface layer

parameterization.

The calculation of L typically requires measurements of the momentum and turbulent temperature fluxes, which are not

available from buoy measurements but require high-frequency three-dimensional wind speed components and temperature

measurements. Instead, we can calculate a “bulk” L based on the bulk Richardson number, RiB :120

RiB =
g

θavg

z(θz − θsurf )
U2

z

(3)

where z is the height 2 m above the surface, g is the acceleration as a result of gravity, θz2m
is the potential temperature at

2 m, θsurf is the potential temperature at the surface, and U2m is the 2-m wind speed. Combining Eq. 2 and Eq. 3 yields the

following relationship between L and RiB :

RiB =
z

L

ln
(

z
z0

)
−ψh

(
z
L ,

z0
L

)

[
ln
(

z
z0

)
−ψm

(
z
L ,

z0
L

)]2 (4)125

where ψh is the stability function for temperature, also taken from Jiménez et al. (2012).

Using Eq. 4, we iteratively solve for L given RiB , which combined with Eq. 2 allows for the calculation of the vertical wind

profile.

3.2 DTU Model

Noting the breakdown of the logarithmic wind profile in very stable conditions, the DTU method aims to preserve its appli-130

cability by applying it only in the context of a mean long-term wind profile, which is generally well estimated as logarithmic.

The overall approach is to account for the distribution of L values output from WRF throughout the year. As such, the DTU

method is suitable only for long-term wind resource assessment because it requires at least 1 year of data and ideally many

years (Kelly and Gryning, 2010).

The stability correction applied to the log extrapolation is height-dependent and computed based on empirical constants and135

atmospheric conditions at the site: the percentage of stable vs. unstable conditions; the quadratic mean of the kinematic heat

flux; the mean, near-surface air temperature; and the time-averaged friction velocity. These input parameters are taken from

the WRF simulations and are combined with stability functions, ψm, based on similarity theory to compute a vertical profile

of the correction function (Figure 2). This correction is then added to the log extrapolation to yield a wind speed profile, as in

Eq. 1, where u∗ is taken from the WRF simulation, and z0 is computed using the Charnock relationship, z0 = αu2
∗/g, with g140

being the acceleration caused by gravity, and α= 0.0144 (Charnock, 1955).

First, we verify that the probability distribution functions for atmospheric stability are a good fit to the empirical distribu-

tions. This comparison is given in Figure 3. The functions shown in this figure take into account the percentage of stable vs.
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Figure 2. Schematic of quantities and calculations involved in the DTU model considered herein

unstable conditions at the NYSERDA buoy sites (nstable and nunstable), scales of variation for L−1 (σstable and σunstable),

and empirical constants (Cstable = 5 and Cunstable = 12). Note that previous work focusing on other data sets used different145

values for the C± constants (e.g., both were set to 3.0 in Badger et al. (2015) to extrapolate satellite-derived wind speed

measurements).

Figure 3. Empirical vs. theoretical distribution of atmospheric stability for the two buoy sites

The vertical profile of the stability correction function, ψm, obtained using the WRF and buoy measurements, is shown in

Figure 4 for both buoys. The correction is unstable (i.e., positive) less than 80 m and stable (i.e., negative) greater than 80 m.
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The two theoretical correction functions shown were calculated based on L=-500 m and L=500 m for the unstable and stable150

cases, respectively.

Figure 4. Empirical vs. theoretical stability correction profiles for the two buoy sites

3.3 Random Forest Machine-Learning Model

The third model considered is based on machine learning. Here, we consider a relatively simple ensemble-based regression

tree method, known as a random forest model, which has shown strong predictive power in previous land-based wind speed

extrapolation work (Bodini and Optis, 2020a, b) and in relating wind plant energy production to on-site atmospheric variables155

(Optis and Perr-Sauer, 2019). We use the RandomForestRegressor module in Python’s Scikit-learn (Pedregosa et al.,

2011). We consider a range of 10-minute averaged input variables available from the NYSERDA buoys: 2-m wind speed,

wind direction, pressure, and air temperature; the sea-surface temperature and air-sea temperature difference; as well as the

time of day and month of year. Wind direction, time of day, and month of year are all decomposed into their sine and cosine

components to preserve circularity (i.e., 0◦ and 360◦ directions are equivalent, as are 00:00 and 24:00).1 A summary of these160

variables is listed in Table 4.

To ensure that the observation sets over which the random forest is trained and tested cover as much of the seasonal variability

as possible, we build the testing set using a consecutive 20% of the observations from each month in the period of record. We

evaluate different combinations of the hyperparameters with a fivefold cross-validation, and we randomly sample 20 sets. The

hyperparameters considered in the cross-validation and their sampled ranges are shown in Table 5. We evaluate the performance165

of the learning algorithm based on the root mean square error (RMSE) between the measured and predicted wind speed

1Both are needed because each value of sine only (or cosine only) is linked to two different values of the cyclical feature.
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Table 4. Input Features Used for the Random Forest Model

Input Feature Acronym Measurement Height (m AGL)

2-m wind speed WS 2 m 2

Sine of 2-m wind direction
WD 2

Cosine of 2-m wind direction

2-m air temperature T 2

Sea-surface temperature SST 0

Air-sea temperature difference T - SST -

2-m air pressure p 2

Sine of time of the day
Time -

Cosine of time of the day

Sine of month
Month -

Cosine of month

at extrapolation height: the set of hyperparameters that leads to the lowest RMSE is selected and used to assess the final

performance of the learning algorithm.

As described in detail in Bodini and Optis (2020b), it is both impractical and unfair to evaluate a machine-learning model

at the same site where it is trained. Critically, the model requires observations of the lidar-measured wind speeds up to 200 m170

to be trained. Evaluating model performance at the training site is impractical because the wind profiles are already known

and unfair because the other extrapolation methods do not have such knowledge of lidar-measured wind profiles. Instead,

model performance must be assessed through a round-robin approach, in which the model is evaluated at a site not used

to train the model. Specifically, in this study, the random forest model is trained on data at NYSERDA buoy E05 and then

evaluated against other extrapolation models at NYSERDA buoy E06, located 83 km away, and then vice versa. This round-175

robin approach ensures a fair comparison of the different extrapolation methods and that no model has prior knowledge of

lidar-measured wind profiles at the site where it is evaluated.

Table 5. Algorithm Hyperparameters Sampled in the Random Forest Cross-Validation

Hyperparameter Possible Values

Number of estimators 10–800

Maximum depth 4–40

Maximum number of features 1–11

Minimum number of samples to split 2–11

Minimum number of samples for a leaf 1–15
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3.4 Single-Column Model

The fourth model considered is an SCM. Essentially, it is a stripped-down version of a three-dimensional model, such as WRF,

in which only vertical exchanges are considered and horizontal homogeneity is assumed. This greatly simplifies the governing180

equations of a three-dimensional model and reduces the SCM to a one-dimensional model in the vertical direction. By assuming

no moisture or cloud radiation, the equations of motion simplify further and depend only on the horizontal pressure gradients,

the Coriolis force, and the vertical turbulent flux of momentum and temperature:

∂u

∂t
= f(v− vG)− ∂(u′w′)

∂z

∂v

∂t
= f(u−uG)− ∂(v′w′)

∂z

∂θ

∂t
=
∂(θ′w′)
∂z

(5)185

where u, v, andw are the three vector wind components; t is time; z is the height above the surface; θ is potential temperature,

and uG and vG are the u- and v- components of the geostrophic wind. The u′w′, v′w′ terms represent the u- and v- components

of the vertical turbulent momentum flux, and θ′w′ represents the vertical turbulent temperature flux.

The momentum and temperature fluxes are not solved directly but rather parameterized based on well-established eddy-

diffusivity relationships:190

u′w′ =−Km
∂u

∂z

v′w′ =−Km
∂v

∂z

θ′w′ =−Kh
∂θ

∂z
(6)

where Km and Kh are the eddy diffusivities for momentum and temperature, respectively. These terms are themselves

parameterized with a range of possible options in the literature (Optis and Monahan, 2016, 2017). We adopt a relatively simple

first-order closure model that includes eddy diffusivities that are related to the wind speed gradient and a stability function that195

depends on the Richardson number:
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Km = l2m
∂U

∂z
fm(Ri)

Kh = lmlh
∂U

∂z
fh(Ri) (7)

where lm and lh are the mixing lengths for momentum and temperature, respectively, and fm and fh are the stability

functions for momentum and temperature, respectively. There are a range of proposed formulations for the mixing lengths200

and stability functions. Here, we use the one developed by Smith (1990), which showed strong results when used in an SCM

in previous studies (Optis and Monahan, 2016, 2017). A detailed explanation and the equations of the stability functions and

mixing lengths can be found in Smith (1990); Cuxart et al. (2006); Optis and Monahan (2017).

The SCM equations are solved on a logarithmically stretched grid from a height of 2–2,000 m with 200 grid levels that

provide higher resolution near the surface. The lower boundary conditions at 2 m are the measured wind speed components and205

temperature from the NYSERDA buoys. The upper boundary conditions are the 800 hectopascal pressure-level data provided

by the ERA-5 reanalysis. A zero-temperature gradient boundary condition is also applied at the top of the domain.

Recognizing that the geostrophic wind can change with height in conditions of horizontal temperature gradients, we calculate

a geostrophic wind profile at each time step to force the simulations. This is done by first assuming that the 800-hPa winds from

ERA5 are geostrophic, which is a reasonable assumption at 2000 m, where surface friction effects should be negligible. Next,210

we calculate the geostrophic wind at the surface using surface pressure and air temperature data from the ERA5 reanalysis

product:

uG =− 1
fρ

∂P

∂y

vG =
1
fρ

∂P

∂x
(8)

where ρ is air density, and P is pressure. The horizontal pressure gradient terms are calculated by taking a planar best fit215

of the closest nine ERA5 grid points that surround the buoy locations. Equation 8 is used to calculate the geostrophic wind

components at 2 m, and finally the geostrophic wind profile is found by linearly interpolating the 2-m and 800-hPa values to

the different SCM heights.

To initialize the simulation, we start by solving for the neutral vertical wind profile by imposing an equilibrium condition

(i.e., ∂u/∂t = 0; ∂v/∂t = 0; ∂(θ′w′)/∂z = 0). The simulation then moves forward from the neutral profile as a time-marching220

algorithm using the complete set of equations provided in this section. A continuous simulation is launched for the whole year

of measurements without interruption.
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4 Results

The four vertical extrapolation models presented in the previous section are all validated against lidar data from NYSERDA

buoys E05 and E06 during the full period of record. For each lidar, we consider only the time periods where wind speeds225

are reported at every height from 20–200 m. Based on recent best-practice recommendations for validating offshore wind

models (Optis et al., 2020a), we validate the rotor-equivalent wind speed (REWS) rather than an assumed hub-height wind

speed. Details for calculating REWS are provided in (Wagner et al., 2014). To calculate REWS, we assume a 10-MW offshore

reference turbine as described in Beiter et al. (2020) and summarized in Table 6.

Table 6. 10-MW Offshore Reference Wind Turbine Specifications from Beiter et al. (2020) used to Calculate REWS

Characteristic Value

Rated power 10 MW

Rotor diameter 196 m

Hub height 128 m

Rotor-swept heights 30 m–226 m

We also assess model performance using the four recommended performance metrics from Optis et al. (2020a), summarized230

in Table 7. We note that the DTU method is capable of modeling only the mean wind profile; therefore, time series-based

performance analysis throughout this section excludes the DTU method.

Table 7. Performance Metrics Used to Assess Extrapolation Model Performance

Name Abbreviation Description

Bias Bias Difference between the mean modeled and observed re-

sult

Unbiased RMSE cRMSE The random error component after bias is removed, de-

scribing the differences in model variations around the

mean

Square of correlation coeffi-

cient

R2 The correspondence or pattern between the modeled

and observed variable

Earth-mover’s distance EMD Difference between the probability distributions be-

tween the modeled and observed variable
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We begin with a comparison of the mean wind profile in Figure 5, showing results at both NYSERDA buoys E05 and E06.

The observed wind profile shows moderate shear, increasing from approximately 8.5 m s−1 to 10.5 m s−1 at E05, and 8.0 m

s−1 to 10.3 m s−1 at E06. As shown, the random forest machine-learning model provides excellent agreement with the mean235

profile, whereas the other models are deficient in some respects. The SCM underestimates wind speeds at E05 but is very close

to the observed profile at E06. The logarithmic profile captures the upper winds relatively well with a slight positive bias, but it

has increasingly higher bias at lower heights. The DTU method significantly overestimates wind speeds, especially at the upper

heights, with nearly a 1.5-m s−1 bias at 200 m. Finally, we see that the WRF model tends to underestimate the wind profile.

Figure 5. Mean modeled and observed wind profiles at NYSERDA buoys E05 and E06. The dotted line denotes the observed profile and

solid colors denote the different extrapolation models.

REWS-based performance metrics for the different models are shown in Figure 6. Again, the strong performance of the240

machine-learning model is apparent, with considerably lower error metrics and higher correlation to observations relative to

the other models. The bias is notably negligible at buoy E05 and slightly negative at E06. In contrast, the SCM has the weakest

performance across all metrics at E05 and all but the bias at E06. The logarithmic profile performance falls in between the

machine-learning model and the SCM and is the only model with a positive bias at both buoys. Finally, the WRF model tends

to perform similarly to the logarithmic model, with slightly lower unbiased RMSE and higher correlation but higher magnitude245

of bias and earth-mover’s distance (EMD).

Next, we consider the role of atmospheric stability in relative model performance. Here, we distinguish between unstable

and stable conditions using the WRF-modeled bulk Richardson number, RiB , between 200 m and the surface (RiB<0 for

unstable conditions; RiB>0 for stable conditions). Mean wind profiles by stability regime are shown in Figure 7. Here, we
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Figure 6. REWS performance metrics for the different vertical extrapolation models

focus only on buoy E05 and note that relative performance is similar at both buoys. The machine-learning model shows similar250

performance in unstable and stable conditions, accurately capturing the unstable profile and slightly underestimating the stable

profile. The SCM performs reasonably well in unstable conditions but is unable to capture the high shear in the stable regime

and significantly underestimates wind speeds. The log profile similarly underestimates wind speeds in stable conditions but

overestimates in unstable conditions. Finally, the WRF model underestimates the wind profile in unstable conditions while

accurately capturing winds greater than 100 m in stable conditions but overestimating them when less than 100 m. Overall, we255

see that all models apart from the random forest struggle with consistent accuracy across stability regimes.

This relative consistency is further illustrated in Figure 8, which shows the REWS performance metrics by stability regime.

Again, we focus on buoy E05 and note the similar relative performance between models at buoy E06. We also see the random

forest with the strongest performance metrics, apart from slightly higher magnitude bias and higher EMD in stable conditions

relative to the WRF model. The SCM shows lower magnitude bias and EMD in unstable relative to stable conditions but260

high unbiased RMSE and correlation across both regimes. The log profile performs better in unstable conditions than stable
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Figure 7. Mean modeled and observed wind profiles at NYSERDA buoy E05 in unstable (left) and stable (right) atmospheric conditions

conditions for all performance metrics, whereas the WRF model cRMSE and R2 are lower in unstable conditions, but bias and

EMD are higher relative to stable conditions.

Next, we present 12-by-24 heat maps to show the combined diurnal and monthly trends of model performance. We show only

the bias heat maps in Figure 9, whereas the remaining performance metric heat maps are provided as supplementary material.265

We see that the machine-learning model has consistently low magnitude bias throughout the diurnal and monthly cycles,

with no clear diurnal trends but a tendency to overestimate wind speeds in the fall. The SCM shows considerable negative

bias throughout the year, with a tendency to overestimate wind speeds in November. Interestingly, the bias in December is

positive from 01:00 to 12:00 and negative form 13:00 to 00:00. The WRF model shows some trends, with positive bias in

spring in the early hours and negative bias in the middle hours. Finally, the logarithmic profile shows substantial trends, with270

strong overestimation of winds through most of the year and underestimation in spring, with the largest magnitude of the

underestimates in the early hours.

4.1 Explaining DTU Model Performance

Figure 5 showed that the DTU method significantly overestimated wind speeds. This is a surprising result given its strong

performance in Badger et al. 2015, in which 10-m satellite-measured winds were extrapolated. To explore this, we compare275

DTU model performance using both 2-m and 20-m measurements as the basis for extrapolation. The results are shown in Figure
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Figure 8. REWS performance metrics for the different vertical extrapolation models at NYSERDA buoy E05 for unstable and stable condi-

tions

10. The extrapolation from the 2-m measurements does not match the measured wind speed profile. This is likely because the

measurement height is too low and located within the viscous sublayer, where log-law approximations are not valid. When

the same method is used to extrapolate from the 20-m lidar measurements, we see a good match between the extrapolated

and measured values. This analysis reveals that the DTU method is not suitable for extrapolation based on buoy wind speed280

measurements, which are often made with propeller or cup anemometers between 2 m and 5 m above the sea surface. Instead,

this method should be applied to short offshore meteorological masts and satellite-derived wind speed estimates.

4.2 Feature Importance in the Random Forest

Finally, we examine the random forest model in more detail given its strong performance in this study. Figure 11 shows the

relative feature importance for each variable used to train the random forest model. Feature importance for the random forest285

model is calculated based on how many times the algorithm uses the variable to split the data, weighted by the improvement in
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Figure 9. Heat maps (12 by 24) of REWS bias at NYSERDA buoy E05 for the different extrapolation models

model performance because of the split. Not surprisingly, the 2-m wind speed is the most important feature (nearly 80%). The

second most important feature is the air-sea temperature difference at nearly 20%. This is an important result and highlights

the influence of atmospheric stability on offshore wind profiles.

In fact, Debnath et al. (2020) found that a positive air-sea temperature difference was the key driver in the observed frequent290

occurrences of extreme wind shear and low-level jet events at the E05 and E06 buoys. Table 8 shows that including the air-

sea temperature difference results in considerable improvements in random forest model performance, especially during the

extreme high-shear cases identified in Debnath et al. (2020). Notably, the bias and EMD are both halved for the high-shear

cases when using the air-sea temperature difference as an input feature.
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Figure 10. Mean observed and modeled wind profiles at NYSERDA buoy E05 when using the DTU method based on 2-m and 20-m

measurements

Figure 11. Relative feature importance for the random forest model in predicting 120-m wind speeds at NYSERDA buoy E05.

Finally, we examine how random forest model performance using the default round-robin approach (i.e., model trained and295

tested at different buoys) compares to that when trained and tested at the same site. In general, the model should perform best
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Table 8. Performance Metrics at Buoy E05 for the Random Forest Model With and Without the Air-Sea Temperature Difference (∆Tair−sea)

as an Input Feature

Metric All Data High Shear Cases

Without ∆Tair−sea With ∆Tair−sea Without ∆Tair−sea With ∆Tair−sea

Bias (ms−1) 0.03 0.04 -1.05 -0.58

cRMSE (ms−1) 1.07 0.84 1.46 1.29

EMD (ms−1) 0.19 0.12 1.05 0.58

R2 0.95 0.97 0.89 0.91

when tested at the training site, as was found in Bodini and Optis (2020b). The degree of model deterioration with distance can

provide insight into how well the model can generalize across space to perform extrapolation. The results of this comparison

are shown in Table 9. Interestingly, at each site and for each metric, the round-robin performance is slightly better than the

same-site performance. Accounting for the fact that the limited 1-year analysis contributes to some uncertainty in these metrics,300

it is clear that there is at best negligible model degradation throughout an offshore distance of 83 km. In contrast, Bodini and

Optis (2020b) found that, on land, model performance decreased with distance from the training site, ranging from 11%–14%

reductions throughout distances ranging between 40 km–100 km. The negligible performance reduction offshore—which can

be attributed to the horizontal homogeneity of the offshore environment—has important implications for the applicability of

machine-learning extrapolation techniques for all U.S. offshore waters using only a handful of lidar training sites.305

Table 9. Comparison of Random Forest Model Performance when Trained and Tested Under a Round-Robin vs. a Same-Site Approach

Metric Buoy E05 Buoy E06

Round Robin Same Site Round Robin Same Site

Bias (ms−1) 0.07 -0.09 -0.05 -0.02

cRMSE (ms−1) 0.86 0.94 0.89 0.94

EMD (ms−1) 0.13 0.16 0.09 0.13

R2 0.97 0.96 0.96 0.96

5 Conclusions

In this study, we developed novel methods for the vertical extrapolation of near-surface offshore wind speeds. We evaluated

these methods against conventional extrapolation methods and WRF-modeled wind speeds using two floating lidars deployed

in U.S. Atlantic wind energy call areas during a 1-year period. Of the four wind speed vertical extrapolation models considered,

the random forest machine-learning model significantly outperformed the other models and accurately represented winds310

across the vertical profile in different seasons and times of day and in different stability regimes. Further, the random forest
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model substantially outperformed the WRF model, highlighting the benefit of local observations in generating wind profiles.

Moreover, the random forest model showed negligible to no performance decrease throughout the 83-km distance between the

two floating lidars.

The SCM performance offshore could be improved considerably through better accounting of near-surface stability. The315

model was forced at its lower boundary only by the 2-m wind speed and temperature and critically did not consider the role

of sea-surface temperature and related heat flux; therefore, the SCM really had no way to account for or to characterize the

role of atmospheric stability, which was demonstrated in this study to be an important driver of the wind profile. In contrast,

the WRF model can capture these effects, and the machine-learning model used the air-sea temperature difference, a proxy for

atmospheric stability, as an input variable, which considerably improved model results. Improving the SCM design to account320

for atmospheric stability (e.g., by substituting the temperature lower boundary condition with a flux-based measurement)

should be an area of future work.

Results from this study clearly show the promise of a machine-learning-based approach to offshore wind extrapolation. It

seems likely that models trained on only a handful of lidars dispersed in offshore waters could be sufficient to accurately

extrapolate wind speeds at all offshore locations in the surrounding area where surface measurements exist. This hypothesis325

should be tested more thoroughly using the additional floating lidars recently deployed in U.S. waters (Table 1). The ability for

a machine-learning model to generalize across different oceans in particular (e.g., training a model in the Atlantic and testing

it in the Pacific) would be an important area of future work as the U.S. offshore wind industry looks to Hawaii, the Pacific

Northwest, and the Great Lakes for future expansion (Musial et al., 2020).

Applying the machine-learning approach to satellite-based wind speed observations would be the next future area of study.330

A collaboration between the National Renewable Energy Laboratory and DTU resulted in a U.S. Atlantic wind atlas at 10 m

above sea level (Ahsbahs et al., 2020). Training and evaluating a machine-learning model at floating lidar sites using only

data available across all the U.S. Atlantic area (i.e., satellite-measured winds and sea-surface temperature) would provide

key insights into whether the Ahsbahs et al. (2020) wind atlas could be accurately extrapolated across offshore wind turbine

rotor-swept heights.335

This proposed scope of future research will be aided by continued efforts to make floating lidar data public. Most deployed

lidars are currently owned by wind energy developers and not publicly available. Public access to these data would greatly

improve our understanding of the U.S. offshore wind resource and help produce more accurate hub-height observation-based

offshore wind atlases.

Code and data availability. Observational data from the floating lidars is publicly available at DNV-GL (2020). The open-source WRF340

model was used for the numerical weather prediction simulations.
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