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Abstract. To provide comprehensive information that will assist in making decisions regarding the adoption of LiDAR assisted

control (LAC) in wind turbine design, this paper investigates the impact of different turbulence models on the coherence

between the rotor effective wind speed and LiDAR measurement. First, the differences between the Kaimal and Mann models

are discussed, including the power spectrum and spatial coherence. Next, two types of LiDAR systems are examined to analyze

the LiDAR measurement coherence based on commercially available LiDAR scan patterns. Finally, numerical simulations have5

been performed to compare the LiDAR measurement coherence for different rotor sizes. This work confirms the association

between the measurement coherence and the turbulence model. The results indicate that the LiDAR measurement coherence

with the Mann turbulence model is lower than that with the Kaimal turbulence model. In other words, the value creation

of LAC, evaluated using the Kaimal turbulence model, will be diminished if the Mann turbulence model is used instead. In

particular, the difference in coherence is more significant for larger rotors. As a result, this paper suggests that the impacts of10

different turbulence models should be considered as uncertainties while evaluating the benefits of LAC.

1 Introduction

Turbine-mounted LiDAR sensors provide preview information about the inflow wind to be used for improving wind turbine

control, which is referred to as wind turbine integrated LiDAR assisted control (LAC). LAC is a promising technology for

reducing wind turbine loads and the levelized cost of energy (LCOE) (Scholbrock et al., 2016; Simley et al., 2020). The15

potential benefits have been demonstrated in several works by simulation (Schlipf et al., 2010; Bossanyi, 2013; Schlipf et al.,

2013b; Bossanyi et al., 2014) as well as field experiments (Kumar et al., 2015; Fleming et al., 2014; Schlipf et al., 2014).

The topic of the optimal LiDAR scan pattern for wind energy applications is critical for the widespread deployment of LAC.

Both practical considerations for overcoming the obstacles of LAC application and for optimizing LiDAR scan patterns were

discussed in an International Energy Agency (IEA) Wind Task 32 workshop (Simley et al., 2018). The correlation between the20

rotor effective wind speeds measured by the LiDAR and experienced by the rotor has been discussed in Haizmann et al. (2015),

Simley et al. (2012), and Schlipf et al. (2013a), in which the magnitude-squared coherence is suggested as a useful metric to

quantify LiDAR measurement quality. A fundamental component of LiDAR measurement coherence is the theoretical spatial

coherence of the turbulence: (a) the transverse and vertical spatial coherence is defined in the International Electrotechnical
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Commission (IEC) design standard (IEC, 2019); (b) wind evolution models (Bossanyi, 2013; Simley and Pao, 2015) are defined25

in terms of longitudinal spatial coherence. Note that the actual coherence in the field could be different from the theoretical

coherence, thus experimental validation by field testing is important as well.

Although extensive research has been carried out on evaluating LiDAR measurement coherence, there is a clear knowledge

gap regarding the impact of turbulence models on the LiDAR measurement coherence. The wind field model used in most of

the above-mentioned studies consists of the Kaimal turbulence spectrum and the spatial coherence model defined in the IEC30

standard (IEC, 2019). However, there are two different turbulence models defined in the IEC standard: the Mann turbulence

model and the Kaimal turbulence model. The impact of different wind fields on the dynamic response of an offshore wind tur-

bine has been evaluated by Nybø et al. (2020). Held and Mann (2019) extended the previous works by Haizmann et al. (2015),

Simley et al. (2012), and Schlipf et al. (2013a) to analyze LiDAR measurement coherence with both the Mann turbulence

model and Kaimal turbulence model. The theoretical coherence results were compared to field data from a nacelle LiDAR35

mounted on a Vestas V52 wind turbine. The results showed that the experimental data fit better to the coherence predicted by

the Mann turbulence model, and the prediction based on the Kaimal turbulence model underestimates the coherence. However,

the coherence analysis focused solely on a turbine with a small rotor diameter of 52 m; the impact of different rotor sizes and

LiDAR scan patterns on coherence have not been investigated in the work (Held and Mann, 2019).

With the advent of larger rotor sizes and more flexible wind turbines, evaluating the value creation of LAC is becoming40

increasingly important. The analysis in this work is based on the framework proposed by Simley et al. (2018) and Held and

Mann (2019). The specific objective of this study is to investigate the impact of different turbulence models on the LiDAR

measurement coherence, especially for large rotor sizes (i.e., the Technical University of Denmark (DTU) 10-MW reference

turbine with a rotor diameter of 178 m (Bak et al., 2013)), whereby the analysis can shed light on how to reasonably evaluate

LAC benefits. First, the differences between the Kaimal and Mann models are discussed. Then two types of commercial45

continuous wave (CW) LiDAR systems are examined to analyze the LiDAR measurement coherence, including a 4-beam

LiDAR and 50-beam circular scan LiDAR. The LiDAR measurement model has been created based on work by Simley et al.

(2011) and numerical simulations have been performed to compare the LiDAR measurement coherence.

The remainder of this paper is organized as follows: Section 2 briefly describes the different turbulence models and compares

the power spectra. The LiDAR measurement model is established in Section 3. In Section 4, numerical simulations for different50

LiDAR scan patterns and rotor sizes are performed. The conclusions and suggestions for future work are summarized in Section

5.

2 Preliminaries and evaluation of different turbulence models

Two different turbulence models are commonly used to evaluate the design loads in the IEC standard (IEC, 2019): the Kaimal

spectrum with exponential coherence model (Kaimal model) and the Mann turbulence model (Mann model). The turbulence55

models use similar power spectra, and the major difference is the spatial distribution of the wind velocities.
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2.1 Kaimal model

The advantage of the Kaimal model is that the one-dimensional spectra are expressed as simple analytic expressions. The wind

disturbance is described as turbulent velocity fluctuations, and is assumed to be a stationary and random vector field with zero-

mean Gaussian statistics. The power spectral densities (PSD) of each wind components are given in non-dimensional form:60

fSk(f)
σ2

k

=
4fLk/Vhub

(1 + 6fLk/Vhub)5/3
, (1)

where f is the frequency in Hertz, while the subscript k denotes the index of the velocity component in the longitudinal u,

lateral v, and upward w direction, respectively. The single-sided velocity component spectrum is denoted as Sk, while σk and

Lk represent the standard deviation and integral length scale parameters of the velocity component, respectively. The wind65

speed at hub height is denoted as Vhub.

For the longitudinal velocity component u, σu is the representative value of the turbulence standard deviation, and Lu is

defined as Lu = 8.1Λu. For a modern wind turbine, the hub height is typically above z ≥ 60 m and the longitudinal length

scale parameter is Λu = 42 m.

The cross power spectral density (CPSD) Sui,uj
(f) between the wind at two spatially separated points ui,uj can be deter-70

mined from the definition of spatial co-coherence γi,j :

γi,j(f) = <
(

Sui,uj√
Sui,ui

Suj ,uj

)
, (2)

where Sui,ui
and Suj ,uj

are the PSDs of the wind speed at two different locations, i and j. The symbol < denotes the real part

of a complex number. Please note that the coherence can be split into a real part and an imaginary part, which are referred to

as co-coherence and quad-coherence (Nybø et al., 2020). The coherence expressed in Eq. (2) is in the real part form.75

According to the IEC standard (IEC, 2019), the following exponential coherence model can be used in conjunction with the

Kaimal PSD:

γi,j(f) = exp


−12

((
fr

Vhub

)2

+
(

0.12r
Lc

)2
)0.5


 , (3)

where r is the magnitude of the distance between the two points projected onto a plane normal to the averaged wind direction

and Lc = Lu is the coherence scale parameter. The definition in Eq. (3) ignores the quad-coherence, thus the wind velocity80

fluctuations are assumed to be in the same phase. This assumption may be reasonable for small rotor sizes, but can be questioned

for larger rotor sizes (Eliassen and Obhrai, 2016).

2.2 Mann model

The Mann turbulence model (Mann, 1994) is a spectral tensor model based on von Karman’s model, which combines rapid

distortion theory (RDT) with considerations about eddy lifetimes. The RDT in the Mann model gives an equation for the85
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evolution or the "stretching" of the spectral tensor, and the tensor will be more and more "anisotropic" with time. RDT will

finally influence the transverse-vertical coherence in the rotor plane.

The three-dimensional wind field can be represented by the vector field

u(x) = (u1,u2,u3) = (u,v,w). (4)

Because of homogeneity, the covariance tensor is a function of the separation vector r between two points, and is defined as90

follows:

Rij((r)) = 〈ui(x)uj(x + r)〉 , (5)

where 〈 〉 denotes ensemble averaging.

All second order statistics of turbulence, such as variances and cross spectra, can be derived from the covariance tensor. The

spectral tensor is given by:95

Φij(k) =
1

(2π)3

∫
Rij(r)e−ik·rdr, (6)

where
∫

dr =
∫∞
−∞
∫∞
−∞
∫∞
−∞dr1dr2dr3, k = (k1,k2,k3) is the non-dimensional spatial wave number for the three component

directions, k = 2πf/Ū , and Ū is the mean wind speed. The resulting spectral tensor components can be found in Annex C of

the IEC standard (IEC, 2019).

For three-dimensional turbulent velocity vector u(x), the velocity components are determined from a decomposition of100

the spectral tensor and an approximation by discrete Fourier transform, following the procedure detailed in Mann (1998).

Compared to the Kaimal spectrum and exponential coherence model, the advantage of using the Mann model to analyze

LiDAR measurements is that it provides a three-dimensional spectral tensor. The Mann model includes correlation between

the (u,v,w) components, whereas the Kaimal model has no correlation between different wind components.

The Mann model is based on three adjustable parameters: αε2/3, the Kolmogorov constant multiplied with the rate of the105

viscous dissipation of specific turbulent kinetic energy raised to the power of two-thirds, the length scale l, and the non-

dimensional parameter Γ related to the lifetime of the eddies.

The co-coherence γij for the spatial separations (grid point i and j) normal to the longitudinal direction is defined as

γij(k1,∆y,∆z) = <
(∫∞
−∞
∫∞
−∞Φij(k)eik2∆yeik3∆z dk2dk3√

Ψii(k1)Ψjj(k1)

)
, (7)

where ∆y is the lateral separation distance and ∆z is the vertical separation distance. When the two indices i= j, then ∆y =110

∆z = 0 and the wave number auto-spectrum Ψii(k1) is expressed as

Ψii(k1) =

∞∫

−∞

∞∫

−∞

Φii(k)dk2dk3. (8)

4

https://doi.org/10.5194/wes-2021-51
Preprint. Discussion started: 1 June 2021
c© Author(s) 2021. CC BY 4.0 License.



2.3 Evaluation using different turbulence generators

The theoretical turbulence models are quite complicated, especially for the Mann model, although the application of the Mann

model only requires three parameters (αε2/3, l, Γ). Therefore, numerical simulations have been performed to compare the115

different turbulence models in this work.

2.3.1 Coordinate system

The coordinate system of the wind box as well as the LiDAR scan patterns is shown in Fig. 1. The size of the wind box should

cover the entire rotor disc. The directions of the wind components (u,v,w) are aligned with the directions of the coordinate

system axes (x,y,z). The LiDAR scan pattern will be elaborated in Section 3.2.120

2.3.2 Turbulence generator

To generate the wind box for further analysis, two different turbulence simulators are used. The Kaimal model can be generated

using the turbulence simulator TurbSim (Jonkman and Buhl Jr., 2006), while the Mann model is generated by HAWC2 (Hansen

et al., 2018).

All numerical simulations are performed for a wind field with mean wind speed Ū = 12 m/s and turbulence intensity given125

by the IEC Class A normal turbulence model (NTM). The parameters of the three-dimensional wind box are listed in Table 1.

The grid size in the vertical and lateral directions is defined by the size of the wind box Lgrid and number of grid points Ngrids.

Assuming Taylor’s hypothesis of frozen turbulence, the grid size along the mean wind direction is defined as ŪT/Nx, where

Ū is the mean wind speed, T is the total time, and Nx is the number of longitudinal grid points.

Since the Mann turbulence fields are normally re-scaled to the specified turbulence intensity inside HAWC2, the parameter130

αε2/3 is chosen to be 1 and the shear parameter Γ should be approximately 3.9 for neutral conditions. The length scale l is

recommended to be l = 0.7Λu for normal conditions.

The method used in TurbSim is the Veer’s approach (Veers, 1988) wherein the PSDs in Eq. (1) and coherence function

in Eq. (3) are used to correlate the Fourier components of different points in the y− z plane. Then the inverse fast Fourier

transform (IFFT) is applied to obtain the correlated time series at each grid point. Although in the IEC standard the coherence135

function is only applied to the u component, the Veer’s approach is extended to apply the coherence to the (v,w) components in

this work as well. It is assumed that the spatial coherence formula presented in Eq. (3) applies to all wind components (u,v,w),

and the length scales for the different components are the same as defined for the PSDs. Otherwise, the LiDAR measurement

error could be unrealistically low. In contrast, the Mann model creates a turbulence field that is fully correlated in the (x,y,z)

directions.140

2.3.3 Turbulence spectrum comparison

The differences between the Mann and Kaimal models are discussed in this section.
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Figure 1. Coordinate system of wind box and LiDAR scan patterns. The wind box is shown using the color map. Two corners are marked as

black squares (Corner 1 and Corner 2). Two commercial CW LiDAR scan patterns are shown: (a) 4-beam CW LiDAR; (b) 50-beam circular

scan CW LiDAR. The dashed line represents the line-of-sight direction.
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Table 1. Settings for generating the turbulence box.

Symbol Description Value Unit

T length of time series 600 s

ts sampling time 0.05 s

zh center height of the grid 119 m

Lgrid width and height of the wind box 200 m

α power law wind shear exponent 0.2 -

αv vertical inflow angle 0 deg

Iref reference turbulence intensity 0.16 (Class A, NTM)

Ū mean wind speed 12 m/s

Ngrids number of grid points 32 -

Nx number of longitudinal grid points 8192 -

Fig. 2 shows the theoretical co-coherence γi,j at different separation distances, in which the lateral separation distance ∆y

and vertical separation distance ∆z are selected to be 10 m, 30 m, and 50 m. Some interesting findings are:

1. A clear trend can be seen in Fig. 2a wherein the lateral co-coherence reduces as the lateral separation distance increases.145

With the small separation distance 10 m, the coherence with the Mann model is higher than with the Kaimal model.

Conversely, with increasing separation distance, the co-coherence with the Mann model falls sharply compared with the

co-coherence with the Kaimal model; the co-coherence with the Mann model is far below the co-coherence with the

Kaimal model for ∆y = 50 m.

2. For vertical separations in Fig. 2b, the co-coherence with the Mann model is always higher than that with the Kaimal150

model for low wave numbers. Unlike the lateral co-coherence, the vertical co-coherence does not drastically decrease

with increasing separation distance.

3. The co-coherence with the Mann model is negative in some frequency ranges, which is not the case for the exponential

coherence model with the Kaimal model expressed in Eq. (3). This implies an opposite phase of the wind components for

some frequencies. Chougule et al. (2012) investigated the vertical cross-spectral phases in neutral atmospheric flow; the155

work demonstrated that the phase angle of the wind component u increases with stream-wise wave number and vertical

separation distance.

With the advent of larger rotor sizes, LiDAR measurements must scan a larger area upstream of the rotor. So the findings

above indicate that the choice of turbulence model strongly influences the coherence of LiDAR measurements. This impact

should be considered while evaluating the benefits of LAC.160
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Figure 2. Co-coherence at different separation distances. ∆y and ∆z represent the lateral and vertical separation distances, respectively.

(a) Lateral co-coherence, ∆z = 0 m; (b) Vertical co-coherence, ∆y = 0 m. Dashed lines denote the Mann model and solid lines denote the

Kaimal model.
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3 Modeling of LiDAR wind speed measurements

3.1 LiDAR coordinate system

Two different scan patterns based on commercial nacelle-mounted LiDARs are investigated here to illustrate the impact of

different turbulence models on LiDAR measurement quality: a 4-beam scan pattern (Fig. 1a) and a 50-beam circular scan

pattern (Fig. 1b). The LiDAR is mounted on the nacelle and the scan pattern may contain many different measurement points165

as shown in Fig. 1. Each scan pattern is further defined by the upstream preview distance d in the x direction and radial distance

r between the scan point and the hub center in y−z plane. The LiDAR is assumed to be installed at the hub center for simplicity.

As suggested by Simley et al. (2018), the optimal LiDAR scan radius and preview distance used to achieve the best represen-

tation of the actual wind variables of interest that interact with the turbine can be expressed in non-dimensional units relative to

the rotor radius. Coherence bandwidth is commonly used as a performance metric for LAC, and will be described in detail in170

Section 4.2. The optimal scan parameters for maximizing the coherence bandwidth are summarized in Table 2 and the LiDAR

scan parameters are defined accordingly in this work.

3.2 LiDAR simulator

The line-of-sight (LOS) velocity from a LiDAR system can be expressed as:

vLOS =−lxu− lyv− lzw, (9)175

where l = [lx, ly, lz] denotes the unit vector in the direction that the beam is oriented. Note that the sign of the upwind direction

is negative.

The true velocity measured by a LiDAR is a spatial average of the LOS velocities along the LiDAR beam, which is described

by the range weighting function. The range weighting function for continuous-wave LiDARs is expressed as follows (Simley

et al., 2014):180

WL(F,∆) =
KN

∆2 + (1− ∆
F )2R2

R

, (10)

where F denotes the LiDAR focal distance, ∆ denotes the distance from the focus position along the beam direction, KN is a

normalizing factor so that the integral of WL from −∞ to∞ gives unity. RR is the Rayleigh range and is given by:

RR =
πa2

2

λ
, (11)

where λ is the laser wavelength and a2 is the beam radius at the output lens, which is calculated for the point at which the185

intensity has dropped to e−2 of its value at the beam centre. The LiDAR beam radius a2 takes the value 28 mm, which is broadly

equivalent to the beam radius for current commercial LiDAR products (Pena et al., 2015). The wavelength λ is assumed to be

the telecommunications wavelength of 1.55× 10−6 m. More details regarding LiDAR modeling can be found in Simley et al.

(2014).
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Table 2. The optimal LiDAR scan parameters for maximizing coherence bandwidth. Optimal scan radii r and preview distances d are

expressed in non-dimensional units normalized by the rotor radius R. The parameters are chosen according to work by Simley et al. (2018).

Symbol Description 4-Beam CW Circular Scan Unit

r scan radius 0.5R 0.6R -

d preview distance 1.2R 1.2R -

θ cone angle of LOS beam 22.6 26.6 deg

3.3 Rotor effective wind speed reconstruction190

The rotor effective wind speed (REWS) is commonly used to indicate the rotor averaged wind condition. The REWS is modeled

as a sum of the u component wind speeds across the entire rotor disk area, assuming Np points on the rotor disk:

ueff =
1
Np

Np∑

i=1

ui. (12)

The method of reconstructing the rotor effective wind speed from LiDAR measurements has been discussed by Schlipf et al.

(2011). The LiDAR can only measure the wind speed component along the LOS; therefore, at least three beams are needed195

to estimate the three-dimensional wind vector at a single point. This limitation is referred to as the cyclops dilemma (Schlipf

et al., 2011). Due to the cyclops dilemma and for the purpose of collective blade pitch control, the most common assumptions

for reconstructing wind speeds from LiDAR measurements are:

1. no vertical w and lateral v wind component,

2. no shears or inflow angles.200

The solution for estimating the rotor effective wind speed from LOS measurements is given by

ulid =− 1
N

N∑

i=1

vlos,i
lx,i

, (13)

where N denotes the number of unique beams and lx,i denotes the x component of the orientation of beam i. The wind speed

estimate ulid represents the average wind speed for a LiDAR measuring N points upstream of the turbine.

4 Influence of different turbulence models on LiDAR measurement coherence205

4.1 Numerical simulation settings

In order to investigate the impact of different turbulence models on LiDAR measurement coherence, numerical simulations

have been performed. Apart from the Vestas V52 with a 52-m rotor diameter, two other reference wind turbines are used,

including the National Renewable Energy Laboratory (NREL) 5-MW reference turbine with a 126-m rotor diameter (Jonkman
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et al., 2009) and the DTU 10-MW reference turbine with a 178-m rotor diameter. These two rotor sizes represent typical values210

for onshore and offshore turbines, respectively.

The numerical simulations include 18 random turbulence boxes with different seeds for each turbulence model. The simula-

tion time is 600 s. Therefore, the combination of two types of LiDARs, three different rotor sizes, and two turbulence models

results in 12 separate scenarios, and 18 random realizations for each scenario.

4.2 Criteria for evaluating measurement quality and benefits215

For indicating the measurement quality, the wave number k at which the magnitude-squared coherence γ2 between ulid in

Eq. (13) and ueff in Eq. (12) drops below 0.5 is commonly used as a performance metric (Schlipf et al., 2013b). This metric

is referred to as the coherence bandwidth k0.5 in this work. The wave number k = 2π/L is the inverse of the eddy diameter,

where the integral length scale L is representative of the eddy size at a particular location. So the smallest detectable eddy size

measured by a LiDAR is defined by the wave number k0.5. In other words, the smallest detectable eddy can be interpreted as220

the eddy size that can be captured with a correlation of 50%.

The eddy can be assumed to be a three-dimensional spherical structure, which will move along the mean wind flow direction

and eventually interact with the turbine rotor. The thrust load induced by a 1D-diameter eddy across the rotor in the lateral and

vertical directions can be mitigated by pitching the blades to feather. In addition, the eddy size in the longitudinal direction is

inversely proportional to the frequency at which the eddy interacts with the turbine, which in turn drives the required control225

system bandwidth needed to respond to the wind disturbance. For LiDAR assisted collective pitch control, if the LiDAR can

accurately capture the trend of 1D-diameter eddies, then the pitch action can effectively reduce the thrust variation. Thus, the

magnitude-squared coherence γ2 at k = 2π/D is the most critical metric.

By optimizing the LiDAR scan pattern, the highest measurement coherence bandwidth can be achieved, but the cost of

LiDAR will increase as well. Meanwhile, the benefits of fatigue load reduction may reach a plateau. Generally speaking,230

the lower the value of k0.5, the lower the LAC benefits. Integrating LAC into the turbine design phase involves a trade-off

optimization problem to consider the turbine cost and LiDAR cost simultaneously.

4.3 Coherence analysis

Based on the simulation results, the magnitude-squared coherence γ2 between the LiDAR measurements and rotor effective

wind speeds are presented in Fig. 3 for the different scenarios investigated. For brevity, the dash-dot line labeled as 1D rep-235

resents the wave number corresponding to the rotor diameter D, whereas 2D indicates the wave number corresponding to

two rotor diameters. It can be clearly seen that the 50-beam circular scan LiDAR can achieve higher measurement coherence

compared to the 4-beam LiDAR. For the NREL 5-MW turbine and the Kaimal model (see Fig. 3 (c) - (d)), the maximum

coherence bandwidth k0.5 is approximately 0.03 rad/m for the 4-beam scan and 0.05 rad/s for the 50-beam scan. These results

corroborate the findings of previous work by Simley et al. (2018).240

The key findings of this study are included in the following discussion. For brevity, the magnitude-squared coherence with

the Mann model is represented by γ2
Mann and the magnitude-squared coherence with the Kaimal model is represented by
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γ2
Kaimal. Corresponding theoretical coherence curves are also included in this figure following methods described in work by

Held and Mann (2019) and Schlipf et al. (2013a).

1. For the Vestas V52 turbine in Fig. 3 (a) - (b), γ2
Mann is higher than γ2

Kaimal in the low wave number region k ≤ 0.06245

rad/m, which aligns with the findings of the work by Held and Mann (2019), in which the authors suggested that the

Kaimal model gave a slight underestimation of the measurement coherence for a 52-m rotor diameter, and the coherence

predicted from the Kaimal model is lower than the coherence predicted from the Mann model.

2. For the NREL 5-MW turbine in Fig. 3 (c) - (d), γ2
Mann is slightly higher than γ2

Kaimal for low wave numbers. Then, the

coherence starts to separate around 2D. Specifically, γ2
Mann decreases more sharply than γ2

Kaimal when k exceeds 2D.250

3. For the DTU 10-MW turbine in Fig. 3 (e) - (f), the trend follows the trend with the NREL 5-MW turbine, but γ2
Mann is

considerably lower than γ2
Kaimal. The coherence γ2

Mann drastically decreases before 2D. For increasing wave numbers,

larger discrepancies are noticeable between γ2
Mann and γ2

Kaimal.

4. The additional measurement points with the circular scan provide an obvious improvement in measurement coherence

in the frequency band k ∈ [ 2π
2D ,

2π
1D ]. The maximum coherence bandwidth k0.5 can reach 1D with the 50-beam circular255

scan. The Kaimal model indicates that the 50-beam circular scan is a better scan pattern and can lead to realizing the full

potential benefits of LiDAR assisted collective pitch control. Surprisingly, the maximum coherence bandwidth k0.5 with

the Mann model is far below 1D, which will lead to lower benefits.

A novel finding in this work is that the coherence with the Mann model is lower that that with the Kaimal model, which

has not previously been found in the literature. These results are in accord with the theoretical coherence shown in Fig. 2,260

indicating lower coherence with the Mann model for larger separation distances. In summary, these results provide important

insights into the impact of different turbulence models on LiDAR measurement coherence. The differences between γ2
Mann

and γ2
Kaimal are significant. If the wind conditions at a site agree with the Mann model, the lower coherence with the Mann

model will diminish the advantages of LAC because inappropriate blade pitch actions in response to the LiDAR measurements

will deteriorate the turbine structural loading. It can therefore be suggested that the turbulence model needs to be carefully265

considered while integrating the LAC solution with larger-rotor turbine designs.

5 Conclusions

This work confirms the association between LiDAR measurement coherence and the turbulence model. Our results suggest

that this impact should be considered as an uncertainty when evaluating the benefits of LAC. Note that the impacts on the

load reduction need to be further investigated. More broadly, research is also needed to determine which kind of LiDAR is270

most suitable for site-specific atmospheric conditions. Further research should be undertaken to provide guidelines on how to

determine the optimal scan pattern for different turbulence conditions and rotor sizes.
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Figure 3. Magnitude-squared coherence γ2 between LiDAR measurements and the rotor effective wind speed. The left column contains

results for the 4-beam scan pattern. The right column represents the 50-beam circular scan pattern. From top to bottom, the plots show results

for the Vestas V52 turbine, NREL 5-MW turbine and DTU 10-MW turbine. The dash-dot lines labeled 1D and 2D represent the wave

numbers k = 2π
D

and k = 2π
2D

, respectively. In the legend, "theory" denotes the theoretical coherence.
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