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Abstract. The flow upwind of an energy-extracting horizontal-axis wind turbine expands as it approaches the rotor, and the

expansion continues in the vorticity-bearing wake behind the rotor. The upwind expansion has long been known to influence

the axial momentum equation through the axial component of the pressure, although the extent of the influence has not been

quantified. Starting with the impulse analysis of Limacher & Wood (2020), but making no further use of impulse techniques,

we derive its exact expression when the rotor is a circumferentially uniform disc. This expression, which depends on the radial5

velocity and the axial induction factor, is added to the thrust equation containing the pressure on the back of the disk. Removing

the pressure to obtain a practically useful equation shows the axial induction in the far-wake is twice the value at the rotor only

at high tip speed ratio and only if the relationship between vortex pitch and axial induction in non-expanding flow carries over

to the expanding case. At high tip speed ratio, we assume that the expanding wake approaches the “Joukowsky” model of a

hub vortex on the axis of rotation and tip vortices originating from each blade. The additional assumption that the helical tip10

vortices have constant pitch, allows a semi-analytic treatment of their effect on the rotor flow. Expansion modifies the relation

between the pitch and induced axial velocity so that the far-wake area and induction are significantly less than twice the values

at the rotor. There is a moderate decrease – about 6% – in the power production and a similar size error occurs in the familiar

axial momentum equation involving the axial velocity.

1 Introduction15

Conservation of axial and angular momentum are fundamental principles for wind turbine analysis. They are applied using

control volumes (CVs) such as those in figure 1, or more commonly, to a CV coinciding with a mean streamtube and extending

into the far-wake, the hypothetical region of no further wake development. For blade-element momentum theory, the CVs

become expanding annular streamtubes intersecting the elements. The change in axial or angular momentum of the flow

determines the net thrust or torque, respectively, acting on the rotor or blade elements, e.g. Burton et al. (2011), Hansen (2015),20

and Sørensen (2016). Angular momentum is easier to analyze because in most cases it is generated only at the blades.

When a turbine extracts kinetic energy from the wind, the flow must expand both upwind and downwind of the rotor. As

noted on p. 185 of Glauert (1935), and by Goorjian (1972), the axial momentum equation may receive contributions from

the pressure in the expanding flow upwind of the rotor. The expansion causes the pressure force to have an axial component
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Figure 1. Control volumes (CVs) to be used in the present analysis. In both variants, the upstream face extends in z to −∞, where the

velocity is the wind speed, and RCV �R. The downstream control surface is just downstream and just upstream of the rotor plane in CV1

and CV2, respectively, and the corresponding donwstream control surfaces (CS) are labelled SD and SU . Taken from LW.

which alters the rotor thrust by an amount equal to the momentum flux external to the rotor. This is because the pressure forces25

acting on the cylindrical control surfaces at radius RCV in figure 1 are entirely radial. Although the role of pressure has been

recognized for a long time, and is discussed by Sørensen (2016) and van Kuik (2018) among others, a satisfactory analysis of

it is lacking. The first main result of the present analysis a closed-form expression for the pressure force for a circumferentially

uniform rotor.

Limacher & Wood (2020) (hereinafter “LW”) investigated steady wind turbine thrust, T , using an impulse analysis, whereby30

the pressure in the axial momentum equation for any CV is replaced by terms that include vorticity fluxes across the CV

boundaries. This removal of pressure is achieved by the substitution of various integral identities into a standard momentum-

based control volume analysis, as demonstrated by Noca (1997). We will use what we call the “impulse perspective” as

explained below, but not impulse techniques in this paper; the interested reader is referred to LW for a short history and more

details. LW showed that by approximating a rotor as an actuator disc, T is given exactly by integration over the face SD of35

CV1, situated just downwind of the rotor on the left of figure 1:

T

ρ
=

∫
SD

(
1

2
w2 +λwx

)
dS. (1)

where ρ is the air density, and w is the circumferential velocity (in the direction of θ in Figure 1) on SD; in LW, w denoted

the circumferential velocity at the rotor plane, which was assumed to be one half that on SD. This assumption is also used in

the present analysis. λ is the tip speed ratio (λ > 0 for clockwise rotation, as viewed from positive z-axis), and x is the radius40

normalized by the tip radius so that x≤ 1 for the rotor. The downwind face of the second CV in the figure, SU , is just upwind

of the rotor. The term “exact” will be used throughout this paper to indicate that no assumptions beyond those listed below

have been invoked. Taking the “wake” to be the flow that has passed through the rotor, which rotates with a constant angular

velocity, these assumptions are:
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1. the flow upwind of the rotor and outside the wake, is inviscid, steady, and spatially uniform,45

2. the total energy of the wake is reduced instantaneously at the rotor, after which it is conserved,

3. viscous and/or Reynolds stresses can be neglected on the CV surfaces,

4. the axial, u, and radial velocity, v, are continuous through the rotor disk,

5. viscous drag is negligible,

6. w is zero in the upwind flow and outside the wake,50

7. the vorticity in the wake is concentrated in line vortices or vortex sheets aligned with the local streamlines in the rotating

frame of reference. In other words, the wake vortices rotate rigidly with the blades and vortex lines and streamlines

coincide, and

8. to derive the local or differential form of Equation (1), the vorticity piercing the lateral boundaries of the annular CVs

intersecting the blade elements must have no effect on the element’s thrust.55

Assumption #7 simplifies the terms involving the trailing vorticity crossing SD in the impulse derivation. Assumptions #3, #5,

and #8 are likewise embedded in the equations derived by LW, and are not explicitly required in the analysis to follow. As

LW note, a thorough investigation of assumption #8 remains an important area of future research, but as yet the assumption

remains necessary to recover the Kutta-Joukousky expression for local thrust that is conventionally employed in blade-element

momentum (BEM) analyses. As such, we perpetuate the use of assumption #8 for the time being. We also note, emphatically,60

that none of the eight assumptions places any restrictions on flow expansion. Since the impulse derivation of (1) is likewise

unrestricted, the equation is exact in the presence of flow expansion and for any distribution of w(x).

Although Equation (1) has been known since Glauert (1935), and appears in modern texts, such as Equation (4.6) in van

Kuik (2018), LW’s analysis provides the first proof of its exactness when the trailing vortex sheets have finite thickness. LW’s

second main finding for circumferentially-uniform, expanding flow, is65

0 =

∫
SU

(
v2− a2

)
dS =

∫
SD

(
v2− a2

)
dS (2)

where a= 1−u (when u is normalized by the wind speed, U0) is the usual axial induction factor. To maintain consistency we

use only normalized velocities from here on. The easiest was to do this is to mentally replace the density ρ by ρU2
0 .

van Kuik (2020) found Equation (2) was satisfied by his model of the expanding flow through a wind turbine rotor. When

a and v are further assumed to be C0-continuous on SU and SD, Equation (2) tells us that |a|= |v| at some radial location,70

and LW cite three simulations that show |a| ≈ |v| near the rotor tip. The vanishing of the first integral on SU in (2) is the

more general result; the vanishing of the second integral on SD follows from assumption #4 above. Until the end of Section 3,

we treat the rotor as circumferentially uniform. Since Equation (1) contains no terms representing pressure redistribution, LW
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assert that its local version giving the contribution to the thrust at radius x, is also exact:

1

ρ

dT

dx
=

2π∫
0

(
1

2
w2 +λwx

)
xdθ = 2πwx

(w
2

+λx
)
, (3)75

where θ is the circumferential co-ordinate, defined in Figure 1. This result is also not new: it is, for example, Equation (4.24)

of van Kuik (2018). It is often referred to as the “Kutta-Joukowsky” theorem for blade element thrust because it gives the axial

force, dT/dx, as the product of the circumferential velocity at the rotor, w/2+λx, and the sum of the circulation on all blades,

2πwx. Impulse analysis, however, can also be applied if the CV outlet is moved to the far-wake to give dT/dx in terms of the

w in the far-wake. Glauert’s (1935) original derivation of Equation (1) – based on the Bernoulli equation – also suggests the80

exactness of (3).

Equation (2) can be derived using standard CV momentum analysis, but the authors are unaware of it appearing in the

literature prior to LW. It is a natural outcome of the impulse perspective which we use to investigate the effects of flow

expansion on the conventional axial momentum equation. It will be shown that (2) is closely related to the effects of pressure

in the upwind flow on the conventional axial momentum equation, and the general relationship between a and the far-wake85

induction, a∞. T is derived in Chapter 4 of Sørensen (2016) and Section 5.2.4 of van Kuik (2018) using a CV ending in

the far-wake. We take the different approach of using the CVs shown in Figure 1 because that choice clarifies the effects of

expansion. We also make further use of the impulse form of the T equation. The derivations of the remaining equations in this

paper are straightforward, and could have been easily done in the past if the impulse perspective had been available.

For context, we now examine the connection between the impulse- and momentum-based approaches to turbine thrust which90

requires a relationship between a and w. As explained by, for example, Wood et al. (2021), the Kawada-Hardin (KH) equations

for the velocity field of a constant pitch, p, constant radius helical vortex, Kawada (1936), Hardin (1982), yield

p

x
=
w/2

a
, (4)

as only half of the near-wake azimuthal velocity is induced by the wake (the other half is due to the blades). Pitch can also

be related geometrically to a and λ by treating the wake as a non-expanding rigid helicoidal surface, as done by Okulov and95

Sørensen (2008). In the limit where λx� w, we have

p

x
≈ 1− a

λx
, (5)

and the preceding two equations can be combined to give λwx≈ 2a(1− a). The high-λ limit of equation (3) thus becomes

1

ρ

dT

dx

∣∣∣∣∣
λ→∞

≈ 2πλwx2 ≈ 4a(1− a)πx, (6)

recovering the familiar 4a(1− a) integrand from classical momentum theory. At smaller λ, the relationship between the100

momentum- and impulse-based thrust expressions has not been fully investigated.

In the next section, we express the contribution of pressure on the expanding upstream streamtube to actuator disk thrust.

The section thereafter analyzes the local form of the thrust equation. It contains our second main result about the behaviour
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of a, that it is negligible at λ= 0 and a∞ ≈ 2a is possible at high λ only if Equation (4) remains valid for expanding flow. In

Section 4, we apply the Biot-Savart law to an expanding Joukowsky wake which contains only hub and tip vortices. On the105

further assumption of constant p, we show, again for the first time, that a≤ a∞ ≤ 2a depending on the extent of the vortex

expansion; the larger the expansion, the closer a approaches a∞. Not surprisingly, the far-wake radius is reduced as is the

power extracted by the turbine. The final two sections contain the general discussion and conclusions, respectively.

2 Actuator disk thrust for expanding flow

Some results of the impulse analysis can be converted easily to conventional equations containing the axial velocity and the110

pressure on the CV surface even when the flow expands through the rotor. For example, Bernoulli’s equation for PU , the

pressure on SU , is

2PU
ρ

= 1− v2−u2 (7)

PU and all pressures considered herein are gauge pressures relative to the free-stream pressure in the wind. Equation (7) allows

the removal of v2 from (2) to give115

∞∫
0

PU
ρ
xdx=

∞∫
0

u(1−u)xdx (8)

which is also the outcome of a conventional momentum balance on CV2. The momentum balance on CV1 yields

T

2πρ
=

∞∫
0

u(1−u)xdx−
∞∫
0

PD
ρ
xdx. (9)

where PD is the pressure on SD. It is important to note that the effective upper limit on the integrals in (9) is outside the rotor.

Nevertheless,120

T

2πρ
=

1∫
0

PU −PD
ρ

xdx=

1∫
0

∆P

ρ
xdx (10)

since PD = PU for x > 1. In other words, there is no pressure jump at z = 0 outside the rotor. The thrust equation with

integration only over the rotor, can be found by rewriting (9) as

T

2πρ
=

1∫
0

a(1− a)xdx−
1∫

0

PD
ρ
xdx+

∞∫
1

a(1− a)xdx−
∞∫
1

PD
ρ
xdx. (11)

To remove the last two integrals for x≥ 1, we use Equation (7) for PD = PU and then (2), to arrive at125

T

πρ
= 2

1∫
0

a(1− a)xdx− 2

1∫
0

PD
ρ
xdx+

1∫
0

(
a2− v2

)
xdx. (12)
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The first integral in (12) contributes half the conventional thrust. It and the second integral are components of conventional CV

analysis, whereas the third integral is new. It makes (12) exact for an actuator disk when the flow expands and will be shown

below to be generally positive. We now change the CV from that shown in figure 1 to the more commonly-used one formed

by the bounding streamsurface (BS) dividing the flow passing through the rotor from the external flow. BS begins at z =−∞130

where z is the axial co-ordinate with origin at the rotor, figure 1. The vertical faces of the new CV are, therefore, subsets of

those shown in figure 1. A straightforward momentum balance gives

T

πρ
= 2

1∫
0

a(1− a)xdx− 2

1∫
0

PD
ρ
xdx+ 2

0∫
−∞

(
P
dx

dz

)
BS

xdz (13)

where the last integrand is evaluated on BS. dx/dz gives the local slope of BS, so Pdx/dz gives the axial component of the

pressure acting on BS. It follows immediately from (12) and (13) that135

0∫
−∞

(
P
dx

dz

)
BS

xdz =
1

2

1∫
0

(
a2− v2

)
xdx (14)

which gives the first quantification known to the authors of the axial force due to the expanding flow through a wind turbine

rotor. It is easy to generalize this equation because there is no thrust extracted in the upwind flow. For any x and z ≤ 0:

z∫
−∞

(
P
dx

dz

)
S(x,z)

xdz =
1

2

x∫
0

(
a2− v2

)
xdx (15)

where S(x,z) is the streamsurface passing through (x,z) so thatBS = S(1,0). The second integral is evaluated at z ∈ [−∞,0].140

PD in (12) can be evaluated in the standard manner by assuming that the unsteady Bernoulli equation is valid from immedi-

ately behind the rotor to the far-wake:

−2PD
ρ

= u2 + v2 +w2−u2∞−w2
∞−

2P∞
ρ
− 2λx∞w∞+ 2λxw (16)

where the far-wake terms have the subscript “∞”. The last two terms arise from the unsteady potential terms, evaluated

by assuming rigid wake rotation (see appendix B of LW). Conveniently, these terms cancel due to conservation of angular145

momentum, yielding

−2PD
ρ

= u2 + v2 +w2−u2∞−w2
∞−

2P∞
ρ

. (17)

Combining (12) and (17) we get

T

πρ
=

1∫
0

(
1−u2∞

)
xdx−

1∫
0

(
2P∞
ρ
−w2 +w2

∞

)
xdx, (18)

where w∞ and P∞ are evaluated at x∞ in the wake, connected to x at the rotor by a mean streamsurface.150
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In the far-wake, the pressure and circumferential velocity are related by

dP∞/ρ

dx
=
w2
∞
x
. (19)

The relationship between the area integrals of P and w can be found using the technique introduced by McCutchen (1985) and

rediscovered by Wood (2007): multiply both sides by x2 and integrate, by parts for the left side. If P∞x2→ 0 as x ↓ 0, and is

zero at the edge of the far-wake, then155

R∞∫
0

P∞
ρ
xdx=−1

2

R∞∫
0

w2
∞xdx. (20)

As pointed out by van Kuik (2018) in conjunction with his Equation (6.8), any swirl at the edge of the wake makes P∞(x∞) 6=
0. The present analysis can accommodate this behaviour but for the present we take the simpler path of assuming P∞(x∞) = 0.

The main justification for this assumption is that we expect the magnitude of the swirl to become negligible everywhere at the

edge of the wake at high λ. When P∞(x∞) = 0, Equation (18) reduces to160

T

πρ
≈

1∫
0

(
1−u2∞

)
xdx+

1∫
0

w2xdx, (21)

Defining the axial induction in the far wake as a∞ = 1−u∞, we obtain

T

πρ
≈

1∫
0

a∞ (2− a∞)xdx+

1∫
0

w2xdx, (22)

and the standard thrust equation is recovered if a∞ ≈ 2a and w2 ≈ 0 which is typically the case at high λ but may not be

generally correct. Note that (22) is accurate at λ= 0 where the first integral is negligible but a∞ 6= 2a.165

To recover the classical thrust equation, and to provide a comparison to the analyses of Sørensen (2016) and van Kuik (2018),

we now move the downwind face of the CV to the far-wake and use Equation (20). This results in

T

2πρ
=

R∞∫
0

a∞ (1− a∞)xdx−
R∞∫
0

P∞
ρ
xdx=

R∞∫
0

a∞ (1− a∞)xdx+
1

2

R∞∫
0

w2
∞xdx. (23)

If we ignore the second integral in (18) and the integrals in (23) containing P and w, and assume a and a∞ are constant with

x, we again recover the conventional relation a∞ ≈ 2a once the conservation of mass is invoked.170

In considering the local equation for dT/dx in the next Section, it is useful to have the alternative form of (23) from the

impulse analysis of LW. The direct application of LW’s Equation (22):

T

2πρ
=

∞∫
0

(1

2
w2 +λwx

)
xdx+

1

2

∞∫
0

(
v2− a2

)
xdx. (24)

together with v = 0 everywhere in the far-wake and a∞ = 0 for r > R∞gives

T

2πρ
=

R∞∫
0

(1

2
w2
∞+λw∞x

)
xdx− 1

2

R∞∫
0

a2∞xdx. (25)175
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Note that (24) holds anywhere behind the rotor, i.e. for z > 0 with the second integral approaching zero as z ↓+0.

The results for the far-wake can be used to estimate the conventional thrust when λ= 0 and the expansion is negligible by

application to SD. Equation (20) will then be approximately valid for a and PD replacing a∞ and P∞, and comparison with

(1) shows that the momentum flux term 2a(1− a) will be negligible. In other words, the thrust on a stationary disc occurs

predominately through the pressure on its back face associated with w.180

3 Local thrust in expanding flow

Having considered the thrust for the complete rotor, we now consider the “local” contribution at radius x. We continue to do

this for a circumferentially-uniform disc. It is easy to show that the local form of (12),

1

πρ

dT

dx
=

[
2a(1− a)− 2PD

ρ
+ a2− v2

]
x, (26)

is exact for a circumferentially-uniform disc in expanding flow. This can be done in at least two ways. First, using Equation (7)185

and simple manipulation, the bracketed terms become

1−u2− v2− 2PD
ρ

=
2∆P

ρ
(27)

and the pressure difference across the annulus containing the blade elements must give the exact thrust by assumption #4.

Secondly, starting from Equation (15) it is easy to prove that a2− v2 in (26) accounts for the difference in pressure acting on

the top and bottom of the expanding annular streamtube that intersects the blade elements.190

We now consider the consequences of the exact Equation (26) for the far-wake. If the w and P∞ terms in (17) are negligible

at high λ, the bracketed term in (26) becomes

2a(1− a)− 2PD
ρ

+ a2− v2 ≈ 1−u2∞. (28)

The exactness of the local form of (23) is not easy to establish in general because all three velocity components can be important

in the wake and the total pressure is not constant. This is the first reason we based our analysis on the CVs shown in figure 1195

rather than one extending to the far-wake. We note, however, that there is no interchange between pressure on BS and axial

momentum in the flow outside the far-wake where v2 = a2 = 0 . In other words, the interchange is completed before the far-

wake is reached. This is the second reason we used the CVs in figure 1. The local form of (23) will have a term corresponding

to the bracketed term in (26) of 2u(1−u∞). Combining with (28), we retrieve the standard result that u= (1 +u∞)/2 or

a∞ = 2a which can be accurate only at high λ; note that the discussion immediately below (22) shows the result does not hold200

at λ= 0. Further, from (7)

2PU
ρ

= 1−u2− v2 = 2a(1− a) + a2− v2. (29)

If Equation (6) is valid, then (26) becomes

−2PD
ρ
≈ 2a(1− a)− a2 + v2. (30)
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for x≤ 1.205

The preceding analysis shows that PU 6=−PD in general, in contrast to the familiar results of one-dimensional momentum

theory. PU =−PD would require a= v, which cannot hold everywhere for several reasons. First, v→ 0 as x ↓ 0 whereas there

is no similar constraint on a. Secondly, we argued above that the flow outside the wake has an axial momentum deficit so a≥ 0

but not necessarily equal to v for x > 1. Equation (2) would then be violated if a= v for x≤ 1. Thirdly, van Kuik (2018)

Section 5.4.4 points out that there is no theoretical requirement that PU =−PD. They are unlikely, however, to differ greatly210

in general. This suggests v→ a as x→ 1, as argued by LW, and shown by the model calculations of van Kuik (2020), who

found also that v was significantly larger than a outside the wake until at least x≈ 1.2. If a > v over most of the rotor, then the

positive a2− v2 in (26) corresponds to a positive pressure exerted by the external flow on the wake.

A more definite statement about PU and PD can be made for stationary rotors (λ= 0) following the last paragraph of the

previous Section. It is shown there that a is negligible at λ= 0 so that PU ≈ 0 and PD is associated with w behind the rotor.215

The inequality reduces as λ increases but is always present because of nonzero a2− v2.

We now consider the far-wake in more detail to determine the vortex pitch and its relation to a∞ which are required in

the next section. Equation (19) requires P∞/ρ=−w2
∞/2 when w∞ ∼ 1/x∞. We assume that at sufficiently high λ, the flow

downwind of the rotor approximates a Joukowsky wake with the hub vortex lying along the axis of rotation and the tip vortices

at radius R∞ in the far-wake, with no vorticity in between. The main justification for this assumption comes from Equation220

(1). When λ= 0, the first term implies that the bound vorticity, Γ, cannot be constant; Wood (2015) showed that Γ∼ x2. At

high λ however, the first term becomes negligible in comparison to the second for most x. The simplest wake for which the

thrust remains bounded on a turbine with N blades occurs when NΓλ∼ λwx is constant in x and λ; this is the Joukowsky

wake in which Assumption #7 of Section 1 becomes irrelevant to the flow between the tip and hub vortices. Further, the tip

vortices now separate the wake and the external flow which may have very different velocities. The vortex velocity should then225

be the average of these two and the vortex lines need not align with the wake streamlines.

Outside the hub vortex core of a Joukowsky wake, w∞ ∼ 1/x∞ and, as pointed out by Sørensen (2016), the total pressure

is constant for all streamsurfaces. In addition, independence will hold in the sense that the integrands in (23) and (25) must be

equal. Thus

1

2
w2
∞+λw∞x−

1

2
a2∞ = a∞ (1− a∞) +

1

2
w2
∞ (31)230

without making any assumption about the relationship between a and a∞. p∞, the constant pitch of the constant radius tip

vortices, is related to the velocities by the equivalent of Equation (4): p∞/x∞ = w∞/a∞. Equation (31) can be rewritten as

p∞ =
1− a∞/2

λ
. (32)

In the next section, λ will be calculated using Equation (32) for a given p∞ and the corresponding calculated value of a∞.

Equation (32) is the high−λ equivalent of Equation (22) of Okulov & Sørensen (2008) for vortex pitch provided the convection235

velocity of the vortex—w in their notation but wv here—is equal to a∞/2. Table 1 of Wood & Okulov (2017) shows that

wv→ a for ideal Betz-Goldstein rotors as λ→∞ and so (32) is recovered since a∞→ 2a in the same limit. Another way to
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view this result is that the axial velocity in the Joukowsky far-wake is constant and equal to 1− a∞ outside the vortex cores,

so the tip vortices must travel downwind at a velocity of 1− a∞/2 to be force-free.

The KH equations for a doubly-infinite helical vortex of constant radius and pitch, lead to240

a∞ =NΓ/(2πp∞). (33)

If we ignore wake expansion, then a≈NΓ/(4πp) for the singly-infinite near-wake, and if p∞ ≈ p, then a∞ ≈ 2a. This result

suggests the strategy for the next Section, where we analyze the flow associated with expanding tip vortices by assuming they

have constant pitch everywhere. This allows a semi-analytic determination of their influence on the flow through the rotor.

In other words, we relax one of the limitations of the KH equations, that of constant radius, which is necessary, but keep the245

limitation on p, which, hopefully, leads to results of sufficient generality.

4 The expanding Joukowsky wake with constant pitch

We assume p remains constant and use the results of the previous section and the Biot-Savart law to investigate the flow

immediately behind the rotor and determine the thrust and power coefficients. The circumferentially-averaged velocities are

due entirely to the trailing vorticity: w is due to the hub vortex only, whereas u and v result from the expanding tip vortices250

only.

4.1 Biot-Savart analysis of expanding tip vortices

Without loss of generality, let the lifting line representing one blade lie instantaneously along the x−axis in Figure 1 and

consider the tip vortex beginning at (1,0,0). We now determine the velocities induced at a point (x,θ,0) in polar co-ordinates or

(xcosθ,xsinθ,0) in Cartesian co-ordinates for constant p. A point on the vortex is (t(β),β,pβ) or (t(β)cosβ,t(β)sinβ,pβ)255

where radius t is a monotonically increasing function of the vortex angle β that asymptotes to the far-wake radius. Thus

1≤ t≤R∞, and from here on, the dependence of t on β will be understood. An increment dl along the vortex is given by

dl = (−tsinβ+
dt

dβ
cosβ,tcosβ+

dt

dβ
sinβ,p)dβ (34)

and the distance d from the point to the vortex is

d= (xcosθ− tcosβ,xsinθ− tsinβ,−pβ) (35)260

so that

d2 = x2 + t2− 2xtcos(β− θ) + p2β2 (36)

which is an even function of β and θ. A straightforward application of the Biot-Savart law yields the three velocities associated

with the trailing tip vortex as

(
v(x,θ),w(x,θ),a(x,θ)

)
=

Γ

4π
(Iv, Iw, Ia) =

Γ

4π

∞∫
0

(
iv(x,θ), iw(x,θ), ia(x,θ)

)
d3

dβ (37)265
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where Γ is the vortex strength,

iv(x,θ) =− p
[
tβ cos(β− θ) +

(
t−β dt

dβ

)
sin(β− θ)

]
, (38)

iw(x,θ) =p

[
x+

(
β
dt

dβ
− t
)

cos(β− θ)−βtsin(β− θ)
]
, and (39)

ia(x,θ) =t2−xtcos(β− θ)−x dt
dβ

sin(β− θ). (40)

In forming the circumferential averages by integrating over 0≤ θ ≤ 2π, all the sin(β− θ) terms will vanish as they are odd270

in θ. The linearity of inviscid flow leads to equal contributions to the averaged (u,w,a) from the N identical and equi-spaced

trailing vortices.

The simplest calculation of ia is for x= 0 for which the circumferential average a(0) = a(0,θ), and

a(0) =
NΓ

4π

∞∫
0

t2(
t2 + p2β2

)3/2 dβ =
NΓ

4πp

∞∫
0

t2(
t2 + z2

)3/2 dz =
NΓ

4πp

∞∫
0

ia(0)dz =
NΓ

4π
Ia(0). (41)

Ia is, clearly, dependent only on the geometry of the tip vortices. For an expanding wake with constant p, Equation (4) will275

underestimate a as Ia(x)≥ Ia(0)≥ 1/p when t is not constant. If p varied with β, then pβ in Equation (36) would be replaced

by
∫
pdβ and the direct relation between ∂/∂z and (1/p)d/dβ would be lost. It is likely that an analytic expression for the

integrands in (37) would not be possible.

Performing the θ−integration of (40) using Mathematica gives

iv(x) =
pβ

πx
√
p2β2 + (x+ t)2

[(
1 +

m

2

)
E(mp)−K(mp)

]
, and (42)280

ia(x) =
−1

π
√
p2β2 + (x+ t)2

[(
1 +

m

2
− mt

2r

)
E(mp)−K(mp)

]
, (43)

where m= 4xt/(p2β2 + (x− t)2). E(.) and K(.) are the complete elliptic integrals of the second and first kind, respectively,

whose argument,mp =m/(1+m). Thus v and a can be obtained by integrating (41) along the trajectory of the tip vortex, t(β)

for 0≤ β ≤∞. This must, in general, be done numerically, but several checks are possible. In describing these, we continue

to use the notation I =
∫
idβ and identify the limits to the integral if they differ from (0,∞).285

If t remains constant at 1, say, and the integration is over −∞≤ β ≤∞, that is for a doubly-infinite vortex or vortices of

constant radius and pitch, then Iv(−∞,∞) = 0 for any x, and

Ia(−∞,∞) = 2/p, for x < 1,

= 1/p, for x= 1, and (44)

= 0, otherwise.290

The interior and exterior solutions in (44) are consequences of the KH equations, derived from the velocity potential. All results

in (44) follow from Equation (37). Using NIntegrate in Mathematica and Matlab’s integral, these results were reproduced to
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six significant figures for a similar range of x to that used in the main text and limits of ±1000π on the integration. For a

singly-infinite helix, the values of Ia for z = 0 when β = 0, are half those in (44). These were reproduced numerically to the

same accuracy. Iv is not available from the KH equations for this case.295

As with any Biot-Savart analysis, the behaviour of Equations (42) and (43) as x→ t(0) = 1 must be considered. Asmp→ 1,

E(mp)∼ 1, Formula (19.6.1) of DLMF (2021), and K(mp)∼ log(16/m′p)/2 where m′p +mp = 1, Formula (17.3.26) of

Abramowitz & Stegun (1964). The leading terms in (42) and (43) become

iv(x)∼pβ(p2β2 +x2 + t2)/
√
p2β2 + (x+ t)2/x/

(
p2β2 + (x− t)2

)
, and (45)

ia(x)∼− (p2β2 +x2− t2)/
√
p2β2 + (x+ t)2/

(
p2β2 + (x− t)2

)
. (46)300

showing that a logarithmic singularity occurs in ia despite it being the integrand for the circumferentially-averaged axial

velocity. This is a stronger singularity than that in Chattot’s (2020) perturbation analysis of the flow near the edge of the rotor,

which assumes a vortex cylinder wake. There is no logarithmic singularity in iv , but the slope div/dβ increases without bound

as β→ 0. These behaviours could be mitigated by using the well-known “cut-off” modification to the limits of the Biot-Savart

integrals as was done for helical vortices by Ricca (1994), see also Section 11.2 of Saffman (1992). There is, however, a305

simpler, heuristic alternative. The upper limit on a(x) as x→ 1 is taken to be a∞. A partial justification for this tactic comes

from the wind tunnel measurements of a model wind turbine by Krogstad & Adaramola (2012). Their Figure 9(c) shows that

at λ= 9.51, a≈ 0 at small x but rises to the extraordinary value of around 0.8 at x= 1. Thus Ia ≤ 2/p was enforced in the

calculations described in the main text. Whenever this was done, Iv was assumed equal to the maximum value below the limit

on Ia.310

The numerical evaluation of Ia and Iv can be improved by considering the asymptotic behaviour of ia and iv for large

β which corresponds to small m and mp. The leading terms are simple functions of β, allowing the infinite integrals to be

approximated. For Iv , we have

Iv(x)≈ Iv(x, β̂) +Rv(β̂) (47)

where the first term was obtained numerically over β = [0, β̂] and the remainder, Rv(β̂), is an approximation to the integral315

over β = [β̂,∞]. Rv(β̂) is

Rv(β̂) = xR2
∞/(2β̂

3p4). (48)

The remainder for Ia is independent of x:

Ra(β̂) =R2
∞/(2β̂

2p3). (49)

This result also follows from (41) when z >> R∞.320

It was found that β̂ = 200π was sufficient to ensure six-figure accuracy of the integrals over the range of x considered below.

Iv converged faster than Ia, reaching 99% of the final value by β = 2π for any x.
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The Biot-Savart integrands in Equation (43) are plotted in Figures 3 and 2 for x close to the blade tip, in terms of axial

distance z = pβ where β is the vortex angle starting from zero at the rotor. The figures also show the small−β asymptotes in

Equations (45) and (46), and the large−β remainders defined in (48) and (49). If the tip vortex radius t remains at 1, Equation325

(44) gives Ia = 1/p for any x, and the conventional momentum equation (6) remains valid. We assume that 1/p is the minimum

value of Ia, and, as explained in the Appendix, we impose a≤ a∞ so that 1/p≤ Ia ≤ 2/p. For maximum power, the familiar

derivation of the Betz-Joukowsky limit suggests R2
∞ ≈ 2 so we investigate R∞ around that value. Note, however, the use of

Equation (6) to derive this limit means that it is applicable only to a wake that expands either very slowly, as explained above,

or very rapidly to t=
√

2, as Ia = 1/p for any constant t. We will show that generic wind turbine wakes at high λ expand at a330

rate that is intermediate between these extremes which causes Equation (6) to be inaccurate. There is no direct maximization

of power output in the following analysis. Instead, the wake model is constrained as we now describe.

Solving (37) for Ia and Iv , requires p and the tip vortex trajectory. We used the very simple form:

t=R∞− (R∞− 1)exp(−kβ) (50)

which satisfies three necessary conditions: t= 1 when β = 0, t→R∞ for large β, and t and its derivatives are continuous. The335

fourth condition is that k must satisfy the reduced version of Equation (2):

∞∫
0

(
I2v − I2a

)
xdx= 0. (51)

This integral will be called the “Expansion Integral”. It uniquely fixes k for any choice of R2
∞ and p. Ia and Iv were obtained

using the Matlab function integral over β = [0,200π] to an absolute tolerance of 10−6. The remainders, Equations (48) and (49),

were then added. The expansion integral, and the mass flux integral described below, were found by trapezoidal integration340

using the points shown in Figure 4. The expansion integral is large for small k as v is (not obviously) maximized when there is

very little vortex expansion near the rotor.

The mass flux through the rotor, using (33) to remove NΓ, determines a∞:

1− a∞p
1∫

0

Iaxdx= (1− a∞)R2
∞. (52)

Equation (32) then yields λ. A number of possible methods were considered for solving the integral in (52). ia(x,θ) can be345

written as

ia(x,θ) =
d

dx

(
x

d

)
− p2β2

d3
(53)

which allows an analytic integration of ia(x,θ)x in x. The resulting expression is complicated and probably requires numerical

integration in θ and β to obtain the mass flux. Further, the integrand is singular at a point that varies with θ and β. The simpler

alternative of numerical integration of Iax was used.350
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Figure 2. Integrand, iv , for p= 0.1,R2
∞ = 1.597. ◦,x= 0.9; �,x= 0.99,; and �, x= 0.999 from Equation (42). ia increases with x. × is

the integrand in (45). For clarity, only every second data point is plotted. The solid line shows the remainders from (48). The differences with

varying x are within the thickness of the line.

To find the unique R2
∞, we impose the further condition that k must match the slope of the vortex surface at the rotor. Then

k in Equation (50) equals k?, given by

dt

dz
(β = 0) =

v(x= 1)

1− a(x= 1)
= (R∞− 1)

k∗
p
. (54)

4.2 Results

The results in Table 1 were obtained using the Matlab routine patternsearch to minimize the single objective function that355

combined the magnitude of the expansion integral and |k− k∗|. This, surprisingly, occurred at a constant value of k∗/p,

implying that the vortex expansion to the far-wake radius happens over a fixed distance and the surface containing the vortices

has the same shape, independent of p or λ.
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Figure 3. Integrand, ia, for p= 0.1,R2
∞ = 1.597. ◦,x= 0.9; �,x= 0.99,; and �, x= 0.999 from Equation (43). ia increases with x. × is

the integrand in (46). For clarity, only every second data point is plotted. The solid line shows the remainders from (49).

p R2
∞ k∗ λ a∞ CP CT C′T ∆CT

0.10 1.597 0.4947 7.13 0.574 0.557 0.819 0.866 0.067

0.05 1.592 0.2482 14.28 0.572 0.556 0.817 0.864 0.067
Table 1. Results for the expanding Joukowsky wake with constant pitch

Figures 2 and 3 show the integrands iv and ia are large in the vicinity of the rotor. Their size implies that the simple assumed

shape of the tip vortex trajectory, Equation (50), is reasonable, and that adding a term or terms, say, to control the approach to360

the far-wake would not change the analysis significantly.

Figure 4 shows a and v at the rotor for the cases in Table 1 are independent of p. a(0) = 0.296, that is less than the Betz-

Joukowsky value of 1/3, and v(0) = 0 as it must. The “non-expansion” results for v and a= 1/3 within the wake, are shown

as solid lines. Note that a= 0 for x > 1 but v is very large near the edge of the rotor and it is clear that the expansion integral

cannot be satisfied. The limit a≤ a∞ was applied near the blade tip for the expanding wake, where v has increased to be nearly365
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are shown as dashed lines. Note that −a is shown to make it distinct from v. The solid lines show a and v for “no expansion”, i.e. k = 0,

R∞ = 2. The x−axis is logarithmic.

equal, but smaller than a. Outside the wake, v > a and takes till x= 3 to fall to 0.03. Similar shaped distributions of a and v

for a Joukowsky wake are shown in Figure 5 of van Kuik (2020), who also found that Equation (2) was satisfied in his low−λ
simulations.

The final calculations were for CT from (1) with w2 ignored because λ is large:

CT ≈NΓλ/π ≈ 2a∞pλ≈ 2a∞(1− a∞/2) (55)370

using (32) and (33). We note that (1) makes the high−λ blade element thrust constant across the rotor whereas the familiar

form involving the axial velocity equation in (6) requires a significant variation near the tip. From conservation of angular

momentum, and finding the power as the product of torque and angular velocity:

CP ≈ CT (1− a∞)R2
∞ (56)
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so the power extraction also decreases significantly near the tip. Equation (56) and the third component of (55) also hold for375

the conventional analysis that leads to the Betz-Joukowsky limit.

Table 1 shows the biggest change from the familiar Betz-Joukowsky wake is the 20% reduction inR2
∞ which occurs because

a > a∞/2 for much of the rotor, Figure 4. In other words, more of the expansion occurs upwind of the rotor. In contrast, the

maximum CP is reduced by only 6% to 0.557 and the mass flux is increased by 2%. The second last column in Table 1, gives

C ′T , the conventional thrust coefficient evaluated from Equation (6):380

C ′T = 8

1∫
0

a(1− a)xdx. (57)
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As shown by ∆CT = C ′T −CT , the conventional equation over-estimates the thrust by around 5%. From Equations (29) and

(30), we get the integrated asymmetry of the disc pressure distribution at high λ as

1∫
0

(
PU
ρ

+
PD
ρ

)
xdx≈

1∫
0

(a2− v2)xdx. (58)

From the data in Table 1, the integral of δP is 0.087, so the magnitude of PD is generally significantly less than that of PU . It385

was shown in the previous section that the pressure integrals are equal in magnitude in the minimally-expanding wake when

λ= 0 but the analysis in this section shows divergence in the expanding Joukowsky wake at high λ.

5 Discussion

The pressure in the expanding flow ahead of a wind turbine contributes to the axial force on the rotor and a momentum deficit

in the flow outside the rotor. Researchers have been aware of these two effects for many years but the present analysis provides390

the first quantitative determination of them in Equations (14) and (15) derived by approximating the rotor as an actuator disc.

The effects on the disc in integral and incremental form depend on a2− v2 where v is the normalized radial velocity and a is

the usual axial induction factor. Further, v2− a2 can be used to quantify the external flow disturbed by the wind turbine and

so may be useful to the study of multiple rotors in close proximity, as analyzed by, for example, Branlard and Meyer Forsting

(2020) . One way to do this is by defining IE as395

IE =

∞∫
xBS

(
v2− a2

)
xdx=−

xBS∫
0

(
v2− a2

)
xdx (59)

where xBS is the radius of BS at any z ≤ 0. The last integral is a consequence of Equation (2) being valid for SU lying

anywhere in the upwind flow. IE must be zero in the undisturbed upwind flow. It then increases to its maximum value at the

rotor according to the present analysis. IE then decreases in the wake to be zero in the far-wake. In other words, the perturbation

to the external flow is complete by the time the far-wake is reached. Note that the second equality in (59) does not hold in the400

wake.

The impulse analysis of Limacher & Wood (2020) (LW) showed that the Kutta-Joukowsky (KJ) equations for rotor thrust,

Equation (1), and for the blade element contributions to the thrust, (3), are exact in the presence of wake expansion, where

“exact” means using no more assumptions or approximations than the eight listed in the Introduction. The KJ equations,

containing only the circumferential velocity and tip speed ratio, are not equivalent to the conventional equation involving only405

the axial velocity, when the flow expands. This is the outcome of the analysis in Section 4 where an expanding Joukowsky wake

comprising tip and hub vortices of constant pitch was analyzed. The conventional thrust equation is altered by around 5-10%,

depending on the trajectory of the tip vortices because the geometrical relation in Equation (4) is modified by the expansion.

The first three sections of the paper used only the standard form of control volume (CV) analysis for axial momentum to

determine the thrust of the rotor and the incremental thrust of the blade elements comprising the rotor. To clarify the effects410

of expansion, most analysis in this paper used CVs with downwind faces in the immediate vicinity of the rotor, as opposed
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to their common placement in the far-wake. The rotor and the flow are assumed to be circumferentially-uniform. We argued

in the Introduction that the impulse analysis provides a simple and novel perspective on the role of the pressure. The thrust

equations derived in Section 3 for the rotor, and in Section 4 for the local flow at any radius, contain the pressure acting on the

downwind face of the actuator disk, which must be removed to make the equations suitable for actual blade analysis. Removal415

can be done accurately only for very low tip speed ratios where the expansion and its effects, are small.

To the rotor thrust, the pressure along the bounding streamsurface adds a term containing the integral of a2− v2 over the

rotor. This integral is equal and opposite the integral for the flow outside the wake so there is no net contribution to the thrust

determined using the CVs shown in Figure 1. Unsurprisingly, the corresponding term in the local thrust equation at any x also

contains a2− v2. It follows that the conventional local thrust equation implies a≈ v but a2 is generally larger than v2 over420

the rotor, but more precise estimates of v do not appear to be possible. a2 > v2 implies that the pressure adds to the rotor

thrust and is associated with a momentum deficit in the external flow. The common derivation of the axial momentum equation

which leads to the Betz-Joukowsky limit, ignores the interaction of pressure and external momentum and then ignores the

radial velocity in relating the pressure at the rear of the disc to the far-wake. These errors cancel, so the main failing of the

conventional equation is the breakdown of the relation a∞ = 2a when expansion is significant. The previous Section suggests425

this breakdown is due to the expanding tip vortices at high λ in the Joukowsky wake. At the rotor, the slope of the streamsurface

containing the tip vortices is 53◦ for maximum power extraction, Table 1, so their trajectory is intermediate between very slow

and very rapid expansion, either of which would require a∞ = 2a. This analysis used Equation (32) for the pitch of the tip

vortex, found by moving the CV outlet to the far-wake and using LW’s impulse equation for thrust. We note that van Kuik

(2020) estimated the streamsurface angle at the rotor edge to be 46◦ which is close to the present value. The effect of the430

expansion on a was constrained so that a≤ a∞ as an alternative to using a cut-off in the Biot-Savart integral. Figure 4 shows

that a increased with radius to reach a∞ in the streamtube bounded by the tip vortex, suggesting a very substantial effect of

expansion. Qualitatively, this large value of a is in agreement with the wind tunnel measurements of Krogstad & Adaramola

(2012) who found that a increased cross the rotor to reach 0.8 at the tip at high λ.

Including v in the axial momentum equation effectively adds an extra unknown to the conservation equations that may render435

them useless unless another equation for u,v or w could be derived. Further, high v may cause significant alterations to the

lift and drag of the blade elements near the tip. To our knowledge, radial velocity effects on airfoil lift and drag have not been

studied in the context of blade element theory.

The role of the radial velocity and flow expansion is probably more complicated in rotors with a limited number of blades

than the actuator discs considered here. Eriksen & Krogstad (2017) measured u, v, and w immediately behind the rotor of a440

model three-bladed turbine out to a radius 20% larger than the blade tip radius. They used phase-locked averaging to obtain

the flowfield as seen by an observer rotating with the blades. Significant phase variations occurred in a and v showing that

the averages a2 and v2 over a blade revolution could be large even if the mean values of a and v are small. Nevertheless, the

magnitude of both a and v was largest near the angular location of the blades, suggesting that the issues with radial deflection

will occur in real turbines. We hope that these comments, and the present analysis, will inspire further measurements to be445

made far enough outside the wake to help clarify the role of flow expansion and the disturbances to the external flow.
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6 Conclusion

This analysis started from the impulse-derived Kutta-Jukowsky equation for wind turbine thrust which does not involve the

axial velocity. The equation is valid for any amount of expansion in the upwind flow and the wake and any distribution of

bound circulation on the rotor. We were able to:450

– Demonstrate the conventional thrust equation containing the axial velocity can be correct only when the tip speed ratio

is large.

– Derive an exact expression for the effects of flow expansion on the conventional momentum equation. This involves the

axial induction factor and the radial velocity.

– Apply the conventional and impulse thrust equations in the far-wake to give the pitch of the tip vortices in the Joukowsky455

wake in terms of the tip speed ratio and the far-wake induction.

– Find a semi-analytic solution of the Biot-Savart law for the induced velocities at the rotor by assuming the tip vortex had

constant pitch. The axial velocity near the rotor tip approached the far-wake value, but was prevented from exceeding it

as an alternative to using the familiar cut-off in the Biot-savart integrals. The increase in the rotor value contradicts the

familiar relation that the axial induction factor everywhere at the rotor is half that of the far-wake.460

– Derive in Section 5 the following results from the model of constant pitch, expanding tip vortices.

1. The angle of the tip vortex surface to the wind direction was 53◦ for maximum power production, independently

of the tip speed ratio and vortex pitch.

2. Because it is neither very small nor very large, this expansion leads to an error of around 6% in the conventional

thrust equation which would be accurate for both extreme expansions.465

3. The resulting wake expands less than the familiar Betz-Jukowsky wake. For two pitch values corresponding to tip

speed ratios of 7 and 14, the far-wake area was 1.59 times the rotor area.

4. Find the reduction in the rotor power and thrust due to expansion. The maximum power coefficient and correspond-

ing thrust coefficient were 6% less than the values given by the Betz-Joukowsky limit.

5. Quantify the influence of the expansion on the flow outside the rotor. For example, the radial velocity at three rotor470

radii is still 3% of the wind speed when the rotor is producing maximum power. The axial induction factor decays

to zero more rapidly than the radial velocity as radius.
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