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Abstract. Wind turbines are complex multidisciplinary systems that are challenging to design because of the tightly coupled

interactions between different subsystems. Computational modeling attempts to resolve these couplings so we can efficiently

explore new wind turbine systems early in the design process. Low-fidelity models are computationally efficient but make

assumptions and simplifications that limit the accuracy of design studies, whereas high-fidelity models capture more of the

actual physics but with increased computational cost. This paper details the use of multifidelity methods for optimizing wind5

turbine designs by using information from both low- and high-fidelity models to find an optimal solution at reduced cost.

Specifically, a trust-region approach is used with a novel corrective function built from a nonlinear surrogate model. We

find that for a diverse set of design problems—with examples given in rotor blade geometry design, wind turbine controller

design, and wind power plant layout optimization—the multifidelity method finds the optimal design using 38%–58% the

computational cost of the high-fidelity-only optimization. The success of the multifidelity method in disparate applications10

suggests that it could be more broadly applied to other wind energy or otherwise generic applications.

1 Introduction

Wind turbines are complex systems, where aerodynamic, structural, acoustic, controls, manufacturing, logistics, and technoe-

conomic considerations are all design drivers. To design the optimal wind energy system, multidisciplinary design optimization

(MDO) approaches help capture the interconnected trade-offs among these disciplines while dramatically reducing the times15

and costs of design processes compared to sequential single-discipline design approaches. The past two decades have seen

the development of a variety of MDO models for wind turbine design, such as Giguere and Selig (2000); Fuglsang and Mad-

sen (1999); Ning et al. (2014); Ashuri et al. (2014); Fischer et al. (2014); Pourrajabian et al. (2016); Ning and Petch (2016);

Bortolotti et al. (2016); Barlas et al. (2020), among many others.

Choosing the correct fidelity level of analyses used in the MDO process is a crucial decision for the designer, who must20

meet the need of reasonable accuracy with tractable computational costs. Although lower fidelity tools offer the possibility

to explore a broad solution space and investigate uncommon design choices thanks to the lower computational costs, they

often run the risk of oversimplifying the design problem, which could lead to solutions that in reality might underperform or

violate unresolved constraints. In contrast, higher fidelity models are usually incompatible with numerical optimizations that

rely on hundreds or thousands of function evaluations. Higher computational costs can therefore be tolerated only when doing25

spot-checks and potential design changes are small.
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During the design process, model fidelity usually increases from low to high as more configuration and sizing choices are

finalized. Low-fidelity models are usually applied during the early, conceptual stages of design, when many different options,

architectures, goals, constraints, etc., are being considered. Because designing these systems using only high-fidelity tools

would lead to impossibly long development cycles caused by the computational expense, designers generally start with low-30

fidelity tools and increase simulation fidelity as the design cycle progresses. This approach usually works fairly well in practice,

but it requires frequent interventions and the expertise of the designers. More importantly, it still runs the risk of leading to

suboptimal design solutions when the designs are evaluated using more accurate models.

An alternative pathway consists of adopting formal multifidelity design optimization approaches. These methods capture

realistic physical trends while reducing the computational cost compared to optimizing using only high-fidelity methods. For35

applications where single-fidelity design and model iterations work well, multifidelity approaches simply make the design

process more efficient by combining information from the low- and high-fidelity models.

Multifidelity optimization methods have a long history across multiple fields, including applied mathematics (Kennedy and

O’Hagan, 2000; Forrester et al., 2007; Peherstorfer et al., 2018), aerospace engineering (Robinson et al., 2008; March and

Willcox, 2012), and wind energy. Specifically for wind energy, multifidelity methods have been used for aeroelastic blade40

design (Maki et al., 2012; McWilliam et al., 2017; Abdallah et al., 2019), wind plant layout optimization (Rahbari et al., 2014;

Réthoré et al., 2014), and wake steering uncertainty quantification (Quick et al., 2019).

An important subset of multifidelity optimization methods involves surrogate-based optimization (SBO), which is examined

within this paper. In SBO, an approximative or reduced-order model is constructed and optimization is performed in that space

instead of directly querying high-fidelity models, as detailed by Forrester and Keane (2009). Koziel and Leifsson (2013) give45

an overview of SBO provide guidance for how best to implement it whereas other work has been focused on efficient global

optimization using surrogates (Jones et al., 1998; Viana et al., 2013). The present work further builds upon these efforts by

applying multifidelity optimization methods using nonlinear surrogate models for wind energy design problems.

Delving deeper into the literature on multifidelity optimization within wind energy, Maki et al. (2012) use a series of nested

and sequential optimizations along with metamodels to minimize cost of energy for a given turbine design considering multiple50

fidelities. Réthoré et al. (2014) introduce TOPFARM, a tool for multifidelity layout optimization of wind farms, and they

demonstrate sequential optimizations at increasing levels of fidelity to show how optimal results from one model can speed up

the design process for a higher fidelity model. McWilliam et al. (2017) used an approximation model management framework

(AMMF) approach to perform multifidelity aerostructural optimization of a wind turbine blade. That work established AMMF

as a reasonable tool to enable multifidelity blade design, but it showed that the additional complexity of the AMMF algorithm55

led to slower overall convergence than high-fidelity-only optimization. This shows that the efficacy of multifidelity methods to

wind turbine design is both method- and model-dependent, and there is room for improvement for developing a method that

works more generally without expert intervention.

Building on previous work, questions remain about how to best use multifidelity methods for different wind energy ap-

plications. For example, depending on the relative computational cost between the low- and high-fidelity models, different60

approaches might be more effective. Additionally, the optimization problem size directly impacts how effective certain meth-
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ods are. We address these questions and examine how multifidelity methods can achieve high-performing designs using less

computational cost.

In this paper, we present best practices for using multifidelity optimization methods for wind energy design applications.

We do so by first detailing a trust-region-based multifidelity method with a novel correction function built on top of nonlinear65

surrogate models. We then formulate and solve three optimization problems: aerodynamic blade design for the IEA 15-MW

reference wind turbine; a controls optimization using both linearized and nonlinear state-space models; and a wind power

plant layout problem. The problems studied here were selected as they examine different disciplines within the larger wind

plant design problem and serve as meaningful representative cases to benchmark the multifidelity optimization method against

commonly-used single-fidelity methods. All tools and application cases studied here are open-source, allowing researchers to70

compare their methods, applications, and results directly with this paper. By solving disparate optimization problems involving

different simulation models, we demonstrate how multifidelity methods can be effectively used for the design of complex wind

energy systems.

Section 2 introduces the trust-region multifidelity optimization method we have implemented. Then Section 3 compares

the computational cost and design performance of the multifidelity optimization method as compared to both low- and high-75

fidelity optimization. Sections 3.1, 3.2, and 3.3 examine case studies concerning aerodynamic blade design, controller design,

and power plant layout, respectively. Each case study section details the design problem, approach, and tools used, which differ

for each study. Lastly, Section 4 presents key findings and takeaways, including which problem types within wind energy are

best suited for multifidelity optimization.

2 Multifidelity optimization methodology80

2.1 Multifidelity methods

In an optimization problem, we seek the minimum of a function within a design space subject to arbitrary constraints. The

optimizer selects design variable values, evaluates computational models at that design point to obtain objective and constraint

values, and then repeats until convergence is reached. In multifidelity optimization, multiple different types of computational

models are queried and information from each model is combined to determine where to sample the design space next. A com-85

prehensive survey of multifidelity methods is presented by Peherstorfer et al. (2018), where various approaches are categorized

as one of adaption, fusion, or filtering, with guidelines for matching methods to application. In this work, we focus on the

multifidelity optimization method using the adaptation model management strategy and simplified physics-based low-fidelity

models. We selected this model management strategy because it is non-intrusive and straightforward to implement in a general

manner.90

Here we loosely define fidelity as a qualitative measure of the accuracy of the underlying physical equations being modeled

compared to the real world. Related to fidelity is the concept of resolution, or how finely discretized a domain or set of inputs

might be.

3



2.2 Trust-region optimization method

We use a trust-region approach to perform multifidelity optimization. This method is well-studied in the fields of applied95

mathematics, computational sciences, and aerospace engineering (Alexandrov et al., 1998, 2001; March and Willcox, 2012). It

has also been used in other wind energy research, though those studies focused on different applications (Park and Law, 2015;

Yu et al., 2018) or used simplified corrective functions (McWilliam et al., 2017).

The trust-region method used in this work is shown in Alg. 1 and is adapted from March and Willcox (2012). The method

has been modified to relax the mathematical requirements for linearity on the corrective function, which allows for a better100

representation of nonlinear representations between fidelities. Additionally, constraint values are handled in the same way as

the objective function. Specifically, individual surrogate models are created for each function of interest.

The trust-region method progression is shown in Figure 1 using the XDSM graphical data-flow format from Lambe and

Martins (2012). The XDSM diagram format shows analysis and optimization processes as on-diagonal blocks in green and

blue respectively. Off-diagonal gray boxes show what data is passed between those process blocks and they are connected105

by gray lines to show data flow. Following this diagram for the trust-region method, the low- and high-fidelity models are

first called at a set of initial design points to establish the corrective function between the fidelities. The corrected function is

defined as fcorrected = flow-fidelity + fsurrogate. Then, a subset of the design space is established where the corrected low-fidelity

model is trusted. Local optimization within this region is then performed, and the high-fidelity model is queried at the locally

optimal point. Based on the actual reduction in the objective value compared to the expected reduction, the trust region is either110

expanded or contracted. The local optimization is then repeated within this new trust region, and the process is repeated.

Sample initial designs using

low- and high-fidelities

Initial designs and

performance metrics

Top-level Optimizer Trust-region parameters

Construct augmented

low-fidelity functions
Augmented low-fidelity functions

Locally optimal design
Local optimization

within trust-region
Locally optimal design

Evaluate high-fidelity model

at locally optimal design

Expected and

actual improvement

Updated trust-region parameters Update trust region

Figure 1. XDSM diagram of the trust-region method, specifically showing the top-level and inner-level optimizations.

A simple 1D example of how the trust region converges is shown in Figure 2, which highlights how the corrected low-fidelity

model is used to approximate the high-fidelity model. The trust region for local optimization is shown with a gray bar. Based

on the criteria defined in step 4 of Alg. 1, the trust region expands if the newly queried high fidelity point does not decrease
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Algorithm 1 An updated multifidelity trust region algorithm adapted from March and Willcox (2012).

1: k← 0

2: while ∆k > TOL do {Check for convergence when trust region size, ∆, is smaller than threshold}

3: sk← argminfcorr(xk + sk) 3 ‖sk‖ ≤∆k {Compute step, s, by solving trust region subproblem with design vector, x}

4: Store value of fhigh(xk + sk) {Run high-fidelity function, if not evaluated previously}

5: ρk←
fhigh(xk)−fhigh(xk+sk)
fcorr(xk)−fcorr(xk+sk

) {Ratio of actual improvement to predicted improvement, ρ}

6: xk+1←

xk + sk, if ρk > 0

xk, otherwise
{Accept or reject the trial point according to ρk}

7: ∆k+1←

min{γ1∆k,∆max}, if ρk ≥ η

γ0∆k, if ρk < η
, {Update trust region size with expansion and contraction parameters, γ1 & γ0.}

8: Update surrogate-corrected low-fidelity model fcorr, k+1(x)

9: end while

optimality by the expected amount and contracts if the value decrease threshold is met. We also show how the function and115

gradient values of the multifidelity approximation converge to the high-fidelity values for the same 1D example in Fig. 3.

(a) 0th iteration (b) 2nd iteration (c) 11th iteration

Figure 2. Trust-region optimization progression in the 1D example. In the 0th iteration, the initial trust region does not contain the entire

design space. In the 2nd iteration, the trust region has grown as the local optimizer found the best answer at the bounds of the trust region. In

the 11th iteration, the trust region narrows around the local minima.

2.3 Corrective function between low- and high-fidelity models

Within the trust-region method, we need to construct an approximation for the high-fidelity model using the low-fidelity model

and a corrective function. This approximation is devised to be interpolative, which means that the corrected low-fidelity model

is equal to the high-fidelity model at the points where we have high-fidelity data. This condition is not strictly necessary120

but leads to better posed multifidelity problems. In previous work in wind energy (McWilliam et al., 2017), this corrective
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Figure 3. Both the function and gradient values of the multifidelity approximation converge to the high-fidelity values for the 1D example.

function was simply an additive and/or multiplicative factor, leading to a first-order linear correlation between the models.

When dealing with nonlinear design spaces, it makes sense to use a more complex corrective function that can account for

nonlinear differences between the fidelity levels because there is no assurance that the trust region is small enough to support

a linear approximation of the high-fidelity space.125

In this work, we use a nonlinear surrogate model to construct the corrective function as fcorrected = flow-fidelity + fsurrogate,

which allows us to capture arbitrary correlations between the models. This nonlinear surrogate formulation is especially useful

when we do not have an a priori simple understanding of the correlation between the different fidelity levels, which is common

in physics-based modeling. Recent advances in surrogate modeling have increased the accuracy for a given model when using

a fixed number of data points while simultaneously decreasing computational cost. One example is the Kriging partial least130

squares (KPLS) method (Bouhlel et al., 2016), which is based on the Kriging method (Cressie, 1988). Typically, as problem

dimensionality increases, the cost of training the surrogate model increases as well; however, KPLS has much lower initial-

ization and training costs than ordinary Kriging due to its internal dimension reduction, leading to a lower computational cost

when training the model (Bouhlel et al., 2016). Additionally, the gain in surrogate accuracy is generally worth the increased

cost compared to using a simple piecewise-linear fit.135

A detailed explanation of KPLS is provided by Bouhlel et al. (2016), including how training cost varies with dimensionality

and number of training points. Across multiple benchmarks presented in that paper, KPLS obtains better accuracy in less central

processing unit (CPU) time than Kriging. The cost of training the surrogate increases sublinearly as both dimensionality and

number of training points increase. These gains are afforded by the partial least squares method that projects the relationships

between the output and input variables into a new space formed by the principal components (Bouhlel et al., 2016). The140

number of high-fidelity function evaluations needed to obtain reasonable accuracy is problem-dependent and largely based on

the nonlinearity of the design space.

Figure 4 shows the impact of the corrective function on the corrected low-fidelity model for a canonical 1D problem and

relatively few data points. Here, we plot the low fidelity, high fidelity, corrected low fidelity, and corrective function all on the
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same plots. Each case was trained using the same number and location of model samples. Figure 4a shows that using a simple145

piecewise linear fit achieves reasonable results, but it does not capture the high-fidelity function well. Sensibly, increasing

the order of the corrective function might produce a better result, but Figure 4b shows that a piecewise cubic fit leads to a

worse fit far from the data points. Last, Figure 4c shows how a KPLS-based corrective function does very well at capturing the

high-fidelity model trends in between the data points.
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Figure 4. Corrective function formulation with (a) piecewise-linear reasonably approximating the higher fidelity model, (b) piecewise-cubic

introducing unwanted oscillations in the approximation, and (c) KPLS-based corrective function matching the high-fidelity most accurately.

Although the trends shown in these figures suggest that KPLS is the best corrective function, the performance and accuracy150

of these corrections is entirely problem-dependent. For other problems a different surrogate model may be more advantageous.

That said, these advanced surrogate modeling techniques generally capture multidimensional nonlinear correlations much

better than more simplistic functions, especially when using a small number of high-fidelity data points. Additionally, if we

wanted to obtain a better fit with the high-fidelity model, we could use gradient information at each data point to ensure that

the corrected low-fidelity model has the same gradient values at those points. For this work, however, we purposefully do not155

assume that we have any high-fidelity gradient information, which makes the methods presented here applicable to a wider

range of real-world tools and applications. For the following case studies, we use a KPLS-based corrective function with the

number of sampling points depending on the application. The KPLS implementation is taken from the open-source surrogate

modeling toolbox (SMT) presented by Bouhlel et al. (2019) and available at github.com/SMTorg/smt.

Regarding our selected surrogate model as corrective function, we must note that the multifidelity optimum may not neces-160

sarily exactly match the high-fidelity optimum. Whereas prior work focused on producing a provably convergent trust-region

approach as detailed by March and Willcox (2012), we do not impose that requirement in this work. This allows for more

freedom in the type of corrective function used and is predicated on the basis that the multifidelity optimum is close to the

high-fidelity optimum in an engineering sense instead of a numerical one. The following case studies show differences be-

tween the optimal results in some cases and are commented on in more detail within their respective sections.165
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3 Case studies

We now study the efficacy of the multifidelity trust-region method on three different case studies representing common opti-

mization problems within wind energy. In order, we examine aerodynamic blade design, controller design, and power plant

layout design. Within each subsection we first detail the computational models used, the optimization problem formulation, then

show the multifidelity method’s results. We also perform single-fidelity optimizations using each of the low and high fidelity170

models to have a basis of comparison for the multifidelity results. These single-fidelity optimizations are formulated with the

same design variables, constraints, and objectives as the multifidelity approach. In each case, the single-fidelity optimizations

are solved using the gradient-based SNOPT (Sparse Nonlinear OPTimizer) method Gill et al. (2005) with finite-differencing

used to obtain the gradients.

The three case studies show problems with 7, 1, and 14 design variables. This is intended to showcase the multifidelity175

method’s scaling across optimization problems of different sizes. We use the KPLS surrogate as our correction method, which

scales well as the problem dimensionality increases Bouhlel et al. (2016), though the dimensionality of problems we can

reasonably solve is limited by the finite-differencing process used to obtain the gradients. The effects of these methods on the

case study results are discussed in detail below.

3.1 Blade design optimization180

This case study focuses on creating an aerodynamically optimal blade, a common and challenging problem in wind turbine

design. Blades are commonly designed using relatively low-fidelity aerodynamic models, such as steady-state blade-element

momentum theory (BEMT), which does not capture the effects that unsteady 3D flows have on blade performance. Using

multifidelity optimization methods for blade design would allow for more accurate aerodynamic considerations earlier in the

design cycle.185

3.1.1 Model descriptions and tools used

The multifidelity optimization method is implemented in the Wind Energy with Integrated Servo-control (WEIS) frame-

work (NREL, 2021c). WEIS is a new design tool that enables multifidelity wind turbine design by integrating the capabilities

of multiple tools from the National Renewable Energy Laboratory (NREL). Of the numerous WEIS component models, the

ones active in the first two case studies in this paper include the systems engineering framework Wind-Plant Integrated Sys-190

tem Design & Engineering Model (WISDEMr) (NREL, 2021d), the aeroservoelastic solver OpenFAST (NREL, 2021b), the

auto-tuning Reference OpenSource Controller (ROSCO) (NREL, 2020), the wind solver TurbSim (Jonkman, 2009), as well

as several pre- and post-processing routines. The primary goal of WEIS is to provide a framework for the controller codesign

of floating wind turbines alongside turbine and platform geometry at multiple fidelity levels. In this paper, we do not include

floating dynamics because incorporating that degree of complexity into the other case studies is the focus of future work. The195

next subsections present more details on the models of WEIS adopted in this work and the formulation of the optimization

problem.
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Within WEIS, users have the option to individually activate WISDEM and OpenFAST, with additional customization avail-

able for all of the various sub-modules. In this way, numerous simulation pathways are available, creating a spectrum of fidelity

options.200

WISDEM is built using OpenMDAO (Gray et al., 2019), the open-source Python-based optimization framework developed

at the National Aeronautics and Space Administration’s Glenn Research Center. WISDEM models the wind turbine as an

assembly of blocks, where each block models a specific component of the machine. The blocks are ordered following the

load path—namely, from the blades toward the tower—and once the machine is sized, cost models are called to compute the

levelized cost of energy. WISDEM computes only steady-state performance and loads and is therefore considered a lower205

fidelity simulation tool.

Wind turbine aerodynamics in WISDEM are computed with the CCBlade module, which implements the formulation of

the BEMT presented in Ning (2014), with hub and tip losses accounted for. The RotorSE module in WISDEM combines the

CCBlade-computed aerodynamic loads with a 1D element beam solver, based on Frame3DD (Gavin, 2014), which accounts

for centrifugal stiffening but otherwise assumes a rigid rotor with no aeroelastic iteration.210

OpenFAST is a multiphysics, multifidelity tool for simulating the coupled dynamic response of wind turbines in the time

domain. It is well represented in the literature and has undergone numerous validation studies. In this work, OpenFAST serves

as the high-fidelity level of the multifidelity optimization approach.

The aerodynamics in OpenFAST are handled by the module AeroDyn15, whose theory is described in Moriarty and Hansen

(2005). AeroDyn15 implements various permutations of the BEMT theory and, since recently, a free-wake vortex aerodynamic215

model (Shaler et al., 2020). Among the unsteady effects, the airfoil aerodynamics include the Onera stall model. Full aeroelastic

coupling is implemented in OpenFAST by combining the aerodynamic loads from AeroDyn with the blade structural dynamics

simulated by ElastoDyn using Rayleigh-Ritz shape functions. The user can model the wind as a steady-state flow or via

turbulent wind grids with the affiliated TurbSim (Jonkman, 2009) model. OpenFAST also includes two aerodynamic models

of the tower—namely, the Powles and the Eames models—and couples the turbine elastic behavior with the rotor and tower220

aerodynamics.

3.1.2 Optimization problem formulation

To study the efficacy of the trust region multifidelity method, we set up a simple blade design optimization case study using

the IEA 15-MW reference wind turbine (Gaertner et al., 2020) as the baseline. This reference turbine has a rotor diameter

of 242.2 m and a hub height of 150 m. The objective of the study is to maximize the electrical power of the generator at225

a given wind speed, 9 m/s, by varying the blade twist and chord. Notably, the problem focuses only on rotor aerodynamic

performance and does not consider any structural constraints or subsystem design constraints. For the low-fidelity model, we

use the steady-state BEMT solver CCBlade, as described in Section 3.1.1. For the high-fidelity model, we use the unsteady

BEMT solver within AeroDyn15 with the dynamic generator torque controller active. The inflow includes turbulence, and

flapwise and edgewise blade flexibility is accounted for.230
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The blade and twist profiles along the blade are controlled by continuous spline interpolations. Each profile is independently

parameterized using six control points, with the first two points fixed for both twist and chord and the outermost point fixed for

chord. The twist control point design variables act as an adder on top of the original distribution, and the chord control point

design variables act as a multiplier. This results in seven design variables, as shown in Table 1.

Table 1. Optimization problem formulation for the unconstrained power maximization case.

Category Name Quantity Lower bound Upper bound Units

Objective Power 1 – – MW

Design variables Twist adder 4 -14.32 14.32 degrees

Chord multiplier 3 0.5 1.50 –

To fairly evaluate the performance of the multifidelity method, we conducted three different blade chord and twist design235

optimizations:

1. Design optimization using only the low-fidelity model, CCBlade

2. Design optimization using only the high-fidelity model, AeroDyn15

3. Design optimization using the trust-region multifidelity method with the KPLS corrective function.

As a last step, we cross-checked the designs by computing the performance for each of the three blade shapes in both CCBlade240

and AeroDyn15.

3.1.3 Optimization results

The results of the single-fidelity and multifidelity optimizations are reported in Table 2. The optimization of the chord and twist

in CCBlade achieves the highest power of the three designs when evaluated by CCBlade but the lowest of the three in Aero-

Dyn15. On the contrary, the single-fidelity optimization in AeroDyn15 and the multifidelity optimization successfully identify245

the configuration generating the highest power in the high-fidelity model, with only small numerical differences in performance

between them. This result is even more compelling when considering the computational cost of the three optimizations. The

low-fidelity-only optimization completed in just under 9 CPU hours with 360 calls to CCBlade. The high-fidelity-only opti-

mization took nearly three times as long, with more than 1,511 function calls to AeroDyn15 due to the noisy gradients that are

common in unsteady turbulent simulations. In contrast, the multifidelity optimization made only 63 calls to AeroDyn15 but250

over 2,500 calls to CCBlade, with a net CPU time of 10.61 hours, only 19% higher than the low-fidelity-only optimization.

Figure 5 shows the design solutions identified in the three optimizations. The single-fidelity optimization with CCBlade

increases the power generation by simultaneously decreasing the twist and chord, effectively increasing the angles of attack

along the blade span and narrowing the margin to stall. Both the single-fidelity optimization in AeroDyn15 and the multifidelity

optimization choose instead the opposite route and increase the chord and twist, effectively reducing the angles of attack along255

the blade span. The different design trends can be explained by the unsteadiness of the operational angles of attack at high
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Table 2. Optimal results for aerodynamic blade power maximization.

Performance evaluation

Design Lo-fi calls Hi-fi calls CPU time Lo-fi power Hi-fi power

– – hrs kW kW

Low fidelity 360 – 8.91 9683.5 10733

High fidelity – 1511 23.97 9646.1 11043

Multifidelity 2564 63 10.61 9412.5 11023

fidelity caused by the turbulent wind. Such oscillations are less problematic with a higher twist and lower angles of attack,

whereas when the blade operates at a lower twist and higher angles of attack, the turbulent wind frequently pushes the blade

close to or into stall, increasing drag and decreasing power.

Although the multifidelity and high-fidelity optimal objective values are close, within 0.2% of each other, the optimal designs260

differ greatly. This is because the power-maximization problem results in a quite flat design space where multiple different

designs produce close to the same objective value. Given more constraints, a more complex set of design variables, or a

different objective function, the flatness and multimodality of the design space would change. For this case study, the low-

and high-fidelity models have differently shaped design spaces with different optima. Additionally, because the high-fidelity

optimum was obtained using a gradient-based method, the optimal answer is closer to the initial design point. We see that the265

trust-region multifidelity approach searches the design space more to find its optimal answer.

In this case study the optimal low- and high-fidelity designs differ due to the models capturing different physics. The rotor

design space is relatively flat, as discussed in McWilliam et al. (2021), though adding additional realistic constraints and

design variables alters the design space to be better posed, as discussed in Bortolotti et al. (2020). The blade design case study

presented showcases the multifidelity method well by focusing more on the different optimization results than the underlying270

physical models.

3.2 Controls optimization

Optimal turbine control, or specifically determining how to vary the pitch and yaw of the turbine for optimal performance

and longevity, is a complex and commonly-studied field. To demonstrate multifidelity optimization on a wind turbine control

problem, we tune the control bandwidth, ωPC, of the above-rated pitch controller to minimize tower fatigue loads with a con-275

straint on the maximum generator speed. When the generator speed exceeds some limit, the supervisory controller triggers a

shutdown procedure, which reduces the net annual energy production (AEP). Tower loads drive the tower design and its capital

expenditures. The pitch control bandwidth determines the proportional-integral (PI) gains of the blade pitch controller. Gener-

ally, lower bandwidths reduce tower loads but increase generator speed transients, so we expect the results of this optimization

procedure to seek the lowest bandwidth such that the generator speed constraint is not violated.280
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(a) Twist distributions along the blade span
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(b) Chord distributions along the blade span

Figure 5. Baseline and optimized chord and twist distributions.

3.2.1 Model descriptions and tools used

We simulate both a linearized and nonlinear version of the IEA 15-MW wind turbine with the University of Maine’s VolturnUS

semisubmersible (Allen et al., 2020) in extreme turbulence with a mean wind speed of 16 m/s. For the nonlinear simulation,

we use OpenFAST with the ROSCO controller (NREL, 2020) and a full-field turbulent wind input generated using TurbSim.

When this turbulent wind input is sampled by the blades, it results in 3P (per-revolution) oscillating loads on the tower. The285

nonlinear OpenFAST model is run for 800 simulation seconds, which requires approximately 3 minutes on a standard laptop

computer, and represents the high-fidelity model for this case study.

To serve as the low-fidelity model, we simulate a linearized turbine and control model, which requires less than 3 seconds on

a standard laptop computer. To create these low-fidelity models, we run OpenFAST in its linear mode, which creates linearized

snapshots of the turbine at several azimuth positions for a fixed wind speed (Jonkman and Jonkman, 2016). These linear290

snapshots are averaged using the multiblade coordinate transform (Bir, 2010) to create a linear time-invariant system relative

to the turbine’s operating points:

ẋ =A(uh)x+B(uh)[u−uop(uh)] (1)

y− yop(uh) = C(uh)x+D(uh)[u−uop(uh)] (2)

where u, x, and y are the inputs, states, and outputs of the linearized turbine, respectively. The input and output operating points,295

uop and yop, respectively, and the state-space matrices A, B, C, and D are determined during the OpenFAST linearization

process. When multiple wind speeds, uh, are linearized, we construct a set of state-space systems, which can be interpolated
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Eqs. (1–2)
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Linear control:
Eq. (3)

Rotor 
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FF turbulent wind input
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Output
time series

Figure 6. High- and low-fidelity control models. The high-fidelity model runs OpenFAST with the ROSCO controller and a full-field (FF)

turbulent wind input. The low-fidelity models are described in (1)–(3) and use a rotor-averaged wind speed as the input. Both models output

time series that can be processed to derive operational and load measures.

based on the mean wind speed, uh, so the system matrices and operating points are a function of uh. In this study, we focus on

above-rated control, and we linearize the turbine model at mean wind speeds of 14, 16, and 18 ms−1.

For the pitch control input, which is part of u, we connect the output of a linearized ROSCO controller:300

θc = kP (ωg −ωrat)+ kI

∫
(ωg −ωrat)+ kfloat

∫
ẍIMU, (3)

where kP and kI are the PI gains of the pitch controller, and kfloat =−9.49 seconds is the floating feedback gain. The PI

gains are a function of the bandwidth, ωPC, and turbine parameters (Abbas et al., 2021). Generally, as the design variable ωPC

increases, the PI gains also increase.

The inputs to the controller are the generator speed, ωg , and an acceleration measurement from the nacelle inertial measure-305

ment unit (IMU) in the nodding direction, ẍIMU; these are in y. When the linear turbine and control models are connected, we

have a set of closed-loop linear turbine models that depend on the wind speed.

Instead of a full-field turbulent wind input, as in the high-fidelity model, the rotor average wind speed is used to simulate

the linear model. The mean rotor average wind speed is used to determine the single closed-loop linear model from the

set by linearly interpolating the state-space matrices and operating points. Then, we integrate the linear system over time,310

which results in a time series that is similar to the nonlinear model (Figure 7). Nonlinear aerodynamic and hydrodynamic

effects are not captured in the linear state-space model, but they are part of the operating points. In the linear simulations, a
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Figure 7. Comparison between the time histories generated from the nonlinear and linearized OpenFAST simulations. The linearized model

generally has a smoother response than the nonlinear simulation.

constant operating point is chosen for the whole 800-second simulation (with the first 200 seconds typically omitted as startup

transients).

Both the linear and nonlinear turbine outputs can be processed to compute the generator speed maxima (constraint) and315

the damage equivalent loading (DELs) on the tower (objective), as shown in Figure 8. In general, trends, or changes, in the

linear and nonlinear models are in agreement and as expected: increasing the pitch control bandwidth increases tower DELs

and platform motion while decreasing generator speed transients. The linear models do not capture the 3P harmonic loading

on the tower, which accounts for most of the difference in the tower base fore-aft DELs between the two models. Finally, the

magnitude of the optimization constraints (maximum generator speed and platform pitch angle) are more accurately sampled320

from the nonlinear simulations; therefore, these constraints are active only in the nonlinear simulations, which creates a good

stress test for the multifidelity optimization where some constraints are violated only in the high-fidelity simulation.

3.2.2 Optimization problem formulation

The objective, design variables, and constraints for the controls optimization problems are shown in Table 3.
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Figure 8. The linearized and nonlinear functions of interest as we vary the pitch controller bandwidth, ωPC.

Table 3. Optimization problem formulation for the controls optimization case.

Category Name Lower bound Upper bound Units

Objective Tower base moment DEL – – –

Variables ωPC 0.1 0.4 –

Constraints Generator speed – 9 rpm

Platform pitch – 5 deg

3.2.3 Optimization results325

As in the previous case study, we performed single-fidelity optimization using both the low- and high-fidelity models and

compared the results to the multifidelity trust-region method. Table 4 contains the optimal ωPC values and the corresponding

functions of interest from each optimization. Using the high-fidelity optimization to evaluate true performance, the low-fidelity-

only optimization finds an infeasible solution that violates the generator speed constraint. Revisiting Figure 8, this is expected

due to the linearized model not resolving the same magnitude or trends found in the nonlinear model. Although the optimal330

pitch control bandwidths in the high-fidelity and multifidelity optimizations differ, the actual difference in objective value is

relatively small, approximately 0.03%, and the constraints are satisfied in both cases.

Table 4 also shows that the multifidelity method finds an optimal answer using 62% less computational expense than the

high-fidelity optimization. The one-time cost of linearizing the model across three wind speeds is included for both the low-

fidelity and multifidelity computational cost columns. Specifically, this upfront cost requires 944 core-seconds, but then each335
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Table 4. Optimal results for the controls problem.

Design Lo-fi calls Hi-fi calls CPU time ωPC Hi-fi DEL Hi-fi max gen speed Hi-fi max plat pitch

– – hrs – – rpm degrees

Low fidelity 8 – 0.263 0.1000 105389 9.8246 4.4500

High fidelity – 74 5.10 0.1935 111080 8.9379 4.4606

Multifidelity 755 23 1.96 0.1891 111114 8.9867 4.5088

function call to the low-fidelity model is quite low. at 0.55 core-seconds. Each function call to the high-fidelity model requires

248 core-seconds.

3.3 Wind power plant layout optimization

Wind power plant layout optimization is the practice of placing wind turbines within a plant to minimize the power production

losses caused by wakes from upstream turbines. This is a well-studied and challenging optimization problem due to the inherent340

multimodality of the design space (Samorani, 2013; Baker et al., 2019; Khan and Rehman, 2013; Stanley and Ning, 2019).

Turbine-wake interactions require high-fidelity simulations, including large-eddy simulations, to correctly resolve the highly

complex flows within a wind power plant (Fleming et al., 2013; Churchfield et al., 2016); however, the large computational

expense of these simulations limits their use in design optimization problems, which has encouraged the development of wind

power plant simulation tools that straddle multiple levels of fidelity (Sprague et al., 2020; Réthoré et al., 2014). In this case345

study, we optimize the layout of turbines using multiple different wake models and resolutions to represent different levels of

fidelity.

3.3.1 Model descriptions and tools used

To more easily study how wind turbine layout and controls affect plant performance using less computational cost, multi-

ple analytic wake models have been developed, including the Jensen (Jensen, 1983), Gaussian (Bastankhah and Porté-Agel,350

2014), and Gauss-Curl Hybrid (GCH) (King et al., 2020) models. Listed in order of increasing fidelity, these analytic models

capture simplified wake physics and have been verified against high-fidelity simulations and validated against experimental

results (King et al., 2020).

In this paper, we use the Jensen and GCH as the low- and high-fidelity wake models, respectively. The Jensen wake model

uses a simplistic velocity deficit to represent the wake, and this deficit is summed when wakes interact using the sum-of-squares355

method (Jensen, 1983). Additionally, the velocity deficit fans out linearly behind the turbine. The wakes from the Jensen model

for the initial plant used in this study are shown in Figure 9a. The GCH model modifies the Gaussian model (Bastankhah and

Porté-Agel, 2014) by including analytic approximations from the curl model (Martínez-Tossas et al., 2019), which leads to a

wake model that better resembles results from high-fidelity simulations. These more complex flow interactions are visible in

Figure 9b, which also uses a sum-of-squares method for wake interaction.360
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(a) Jensen wake model
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(b) GCH wake model

Figure 9. Simplistic velocity deficits of the Jensen wake model (Jensen, 1983) (a) versus the more accurately resolved flow field of the GCH

model (King et al., 2020).

These wake models are already integrated into FLOw Redirection and Induction in Steady State (FLORIS) (NREL, 2021a),

a controls-oriented wake modeling tool that performs wind power plant simulation and optimization. FLORIS is an open-

source tool that provides a common application programming interface for multiple wake models, which allows us to easily

investigate different levels of fidelity.

In addition to using different wake models, our low- and high-fidelity models for this problem use different wind roses365

and wind speed bin resolutions, leading to accuracy and computational differences caused by both fidelity and resolution.

The low-fidelity model samples six equally spaced wind directions (60◦ bins) and five wind speeds from 0–26 m/s, whereas

the high-fidelity model samples 18 wind directions (20◦ bins) and 14 wind speeds from 0–26 m/s. These relatively coarse

discretizations were selected so the optimization studies could be easily run on a laptop workstation. Both models use a

Weibull distribution for the wind speed frequencies.370

3.3.2 Optimization problem formulation

For this study, we optimize the locations of seven wind turbines within an area of 360000 square meters. Additionally, we

impose a two-rotor-diameter (2D or 262-m) spacing constraint between turbines to create a well-posed optimization problem.

We aggregate these turbine-turbine spacing constraints using the Kreisselmeier–Steinhauser functional (Poon and Martins,

2007), which reduces the number of constraints from 21 to 1, producing a less complex optimization problem. This problem375

formulation leads to 14 design variables, one objective, and one constraint, as shown in Table 5. The wind turbine model is

based on the NREL 5-MW reference turbine (Jonkman et al., 2009) and is provided within FLORIS.

3.3.3 Optimization results

As in the first two case studies, we performed single-fidelity and multifidelity optimizations for this plant layout case, with the

high-fidelity AEP evaluated at the optimal design from each method shown in Table 6. Each call to the low- and high-fidelity380
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Table 5. Optimization problem formulation for the wind power plant layout AEP maximization case.

Category Name Quantity Lower bound Upper bound Units

Objective AEP 1 – – GWh

Variables Turbine x-locations 7 0.0 600.0 m

Turbine y-locations 7 0.0 600.0 m

Constraints Turbine spacing 1 262 (2D) – m

models took 0.212 second and 7.13 seconds, respectively, meaning that the high-fidelity model is 33.6 times as expensive as the

low-fidelity model to evaluate. Overall, we see that the multifidelity method takes 58% as many core-hours to find an optimal

answer as the high-fidelity method. The multifidelity method resulted in a better layout than the low-fidelity optimization,

however, this AEP value was less than that from the high-fidelity optimization. Examining the physical layouts from the high-

fidelity and multifidelity cases shown in Figure 10, the results do not appear drastically different, although only one wind385

direction and speed from the wind rose is shown. The main difference between the two cases lies in the location of the central

turbine, which is farther north in the high-fidelity case. Note that in all cases, the turbine spacing constraint is not active at the

optimal design; thus, the trade-off between the computational savings and the optimality of the obtained design would vary

based on the number of wind turbine locations optimized.

Table 6. Optimization results for the wind power plant layout AEP maximization case.

Design Lo-fi calls Hi-fi calls CPU time Hi-fi AEP

– – hrs GWh

Low fidelity 6382 – 0.376 81.855

High fidelity – 3975 7.87 82.367

Multifidelity 56939 618 4.58 81.972

This wind power plant layout problem presents an interesting case for the multifidelity method due to the highly nonlinear390

design space as well as the number of design variables. The corrective function used to correlate the two fidelity levels needs to

be able to capture sharp changes in AEP with respect to changes in turbine location. By using surrogate corrective functions, as

detailed in Section 2.3, we are able to account for the design space nonlinearities. As the number of design variables increases,

however, the number of points needed to correctly correlate the two fidelities also increases. This trend is not due to the type

of corrective function used but is instead due to the well-known “curse of dimensionality,” which dictates that the cost of395

constructing an accurate representation of a high-dimensional space increases greatly as the number of dimensions increases.

These costs are problem-dependent, and this power plant layout problem is known to be highly nonlinear and high-dimensional,

which leads to a relatively large number of training points to correctly correlate the low- and high-fidelity models.
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(a) High-fidelity layout (b) Multifidelity layout

Figure 10. The optimal layout found by the (a) high-fidelity-only optimization (82.368 GWh AEP) and (b) the multifidelity method

(81.972 GWh AEP).

4 Conclusions

We have shown that multifidelity optimization methods are effective for a variety of wind energy applications to decrease the400

computational cost needed to find an optimal design. Optimizing using only a low-fidelity model might miss important physical

trends that the high-fidelity and multifidelity approaches will correctly capture. Researchers can adopt the multifidelity method

described here following the example cases uploaded to the code repository.

Across three distinct applications—aerodynamic blade design, controls tuning, and wind power plant layout optimization—

we have shown that obtaining an optimal result requires less computational cost compared to high-fidelity optimization, as405

depicted in Table 7. In each case, the multifidelity method finds a more optimal result than the low-fidelity-only approach. Due

to multimodality in the problems’ design spaces and optimization tolerances, the multifidelity method does not necessarily

converge to exactly the high-fidelity optimum. We discussed the optimal designs and the differences between the high fidelity

and multifidelity results in detail in each of the case study subsections.

Table 7. Each case is summarized here, showing the multifidelity method takes less computational time than the high-fidelity-only optimiza-

tion while finding improved designs compared to the low-fidelity-only approach.

Problem Blade design Controls Plant layout

CPU time Hi-fi power CPU time Hi-fi DEL CPU time Hi-fi AEP

Method hrs kW hrs Nm hrs GWh

Low fidelity 8.91 10733 0.263 105389 0.376 81.855

High fidelity 23.97 11043 5.10 111080 7.87 82.367

Multifidelity 10.61 11023 1.96 111114 4.58 81.972
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Although we used a traditional trust-region approach for multifidelity optimization, we offered a new corrective function410

technique based on efficient KPLS surrogate models, and we demonstrated its efficacy across three case studies. In this way,

the methods and results presented in this paper should be useful to wind energy researchers who seek optimal designs when

using multiple levels of model fidelity.

There are some limitations to the types of design problems for which multifidelity methods are effective. Specifically, there

needs to be an established model fidelity hierarchy with one model known to be of higher fidelity than another. If the accuracy415

of the models is unknown, then the trust-region method presented here is ill-posed. Each model used in the multifidelity method

must receive the same inputs and return the same outputs so the corrective function between fidelity levels can be constructed.

Additionally, higher dimensional design spaces lead to larger computational cost due to adequately explore the space. This is

especially true in the case of multimodal problems where there may be many local optima, such as the plant layout problem.

Finally, multifidelity methods are less beneficial when there is not a large difference between the computational expense of the420

models. Many engineering design problems meet these requirements, but special care is needed to select appropriate levels of

model fidelity and to pose a reasonable optimization problem.

Future work could involve more complicated design problems, additional fidelity tiers, or different types of model disci-

plines. For example, further work could solve the blade aerodynamic design problem using the multifidelity method with BEM

and a computational fluid dynamics or vortex wake model. Additionally, performance improvements from other multifidelity425

methods could be incorporated, such as gradient-based surrogate models using high-fidelity gradients, or more intelligent

expected improvement algorithms to find the next point to query using the high-fidelity model. This would decrease the com-

putational cost of performing these optimizations but would require additional developer time to construct the framework and

models correctly. As the optimization problems increase in complexity, the best multifidelity strategy might differ, including

which type of corrective function to use or how many correlative design points to use. A series of model fidelities could also430

be considered, with nested trust regions to conduct the model fidelity management. Last, in this paper we examined multiple

disciplines in wind energy systems engineering, but there are additional subsets of model disciplines that could benefit from

design exploration through these multifidelity methods.
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