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Abstract. Wind turbines are complex multidisciplinary systems that are challenging to design because of the tightly coupled
interactions between different subsystems. Computational modeling attempts to resolve these couplings so we can efficiently
explore new wind turbine systems early in the design process. Low-fidelity models are computationally efficient but make
assumptions and simplifications that limit the accuracy of design studies, whereas high-fidelity models capture more of the
actual physics but with increased computational cost. This paper details the use of multifidelity methods for optimizing wind
turbine designs by using information from both low- and high-fidelity models to find an optimal solution at reduced cost.
Specifically, a trust-region approach is used with a novel corrective function built from a nonlinear surrogate model. We
find that for a diverse set of design problems—with examples given in rotor blade geometry design, wind turbine controller
design, and wind power plant layout optimization—the multifidelity method finds the optimal design using 38%—-58% the
computational cost of the high-fidelity-only optimization. The success of the multifidelity method in disparate applications

suggests that it could be more broadly applied to other wind energy or otherwise generic applications.

1 Introduction

Wind turbines are complex systems, where aerodynamic, structural, acoustic, controls, manufacturing, logistics, and technoe-
conomic considerations are all design drivers. To design the optimal wind energy system, multidisciplinary design optimization
(MDO) approaches help capture the interconnected trade-offs among these disciplines while dramatically reducing the times
and costs of design processes compared to sequential single-discipline design approaches. The past two decades have seen
the development of a variety of MDO models for wind turbine design, such as Giguere and Selig (2000); Fuglsang and Mad-
sen (1999); Ning et al. (2014); Ashuri et al. (2014); Fischer et al. (2014); Pourrajabian et al. (2016); Ning and Petch (2016);
Bortolotti et al. (2016); Barlas et al. (2020), among many others.

Choosing the correct fidelity level of analyses used in the MDO process is a crucial decision for the designer, who must
meet the need of reasonable accuracy with tractable computational costs. Although lower fidelity tools offer the possibility
to explore a broad solution space and investigate uncommon design choices thanks to the lower computational costs, they
often run the risk of oversimplifying the design problem, which could lead to solutions that in reality might underperform or
violate unresolved constraints. In contrast, higher fidelity models are usually incompatible with numerical optimizations that
rely on hundreds or thousands of function evaluations. Higher computational costs can therefore be tolerated only when doing

spot-checks and potential design changes are small.
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During the design process, model fidelity usually increases from low to high as more configuration and sizing choices are
finalized. Low-fidelity models are usually applied during the early, conceptual stages of design, when many different options,
architectures, goals, constraints, etc., are being considered. Because designing these systems using only high-fidelity tools
would lead to impossibly long development cycles caused by the computational expense, designers generally start with low-
fidelity tools and increase simulation fidelity as the design cycle progresses. This approach usually works fairly well in practice,
but it requires frequent interventions and the expertise of the designers. More importantly, it still runs the risk of leading to
suboptimal design solutions when the designs are evaluated using more accurate models.

An alternative pathway consists of adopting formal multifidelity design optimization approaches. These methods capture
realistic physical trends while reducing the computational cost compared to optimizing using only high-fidelity methods. For
applications where single-fidelity design and model iterations work well, multifidelity approaches simply make the design
process more efficient by combining information from the low- and high-fidelity models.

Multifidelity optimization methods have a long history across multiple fields, including applied mathematics (Kennedy and
O’Hagan, 2000; Forrester et al., 2007; Peherstorfer et al., 2018), aerospace engineering (Robinson et al., 2008; March and
Willcox, 2012), and wind energy. Specifically for wind energy, multifidelity methods have been used for aeroelastic blade
design (Maki et al., 2012; McWilliam et al., 2017; Abdallah et al., 2019), wind plant layout optimization (Rahbari et al., 2014;
Réthoré et al., 2014), and wake steering uncertainty quantification (Quick et al., 2019).

Delving deeper into the literature on multifidelity optimization within wind energy, Maki et al. (2012) use a series of nested
and sequential optimizations along with metamodels to minimize cost of energy for a given turbine design considering multiple
fidelities. Réthoré et al. (2014) introduce TOPFARM, a tool for multifidelity layout optimization of wind farms, and they
demonstrate sequential optimizations at increasing levels of fidelity to show how optimal results from one model can speed up
the design process for a higher fidelity model. McWilliam et al. (2017) used an approximation model management framework
(AMMF) approach to perform multifidelity aerostructural optimization of a wind turbine blade. That work established AMMF
as a reasonable tool to enable multifidelity blade design, but it showed that the additional complexity of the AMMF algorithm
led to slower overall convergence than high-fidelity-only optimization. This shows that the efficacy of multifidelity methods to
wind turbine design is both method- and model-dependent, and there is room for improvement for developing a method that
works more generally without expert intervention.

Building on previous work, questions remain about how to best use multifidelity methods for different wind energy ap-
plications. For example, depending on the relative computational cost between the low- and high-fidelity models, different
approaches might be more effective. Additionally, the optimization problem size directly impacts how effective certain meth-
ods are. We address these questions and examine how multifidelity methods can achieve high-performing designs using less
computational cost.

In this paper, we present best practices for using multifidelity optimization methods for wind energy design applications.
We do so by first detailing a trust-region-based multifidelity method with a novel correction function built on top of nonlinear
surrogate models. We then formulate and solve three optimization problems: aerodynamic blade design for the IEA 15-MW

reference wind turbine; a controls optimization using both linearized and nonlinear state-space models; and a wind power
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plant layout problem. The problems studied here were selected as they examine different disciplines within the larger wind
plant design problem and serve as meaningful representative cases to benchmark the multifidelity optimization method against
commonly-used single-fidelity methods. By solving disparate optimization problems involving different simulation models,
we demonstrate how multifidelity methods can be effectively used for the design of complex wind energy systems.

Section 2 introduces the trust-region multifidelity optimization method we have implemented. The next three sections then
compare the computational cost and design performance of the multifidelity optimization method as compared to both low- and
high-fidelity optimization. Sections 3, 4, and 5 examine case studies concerning aerodynamic blade design, controller design,
and power plant layout, respectively. Each case study section details the design problem, approach, and tools used, which differ
for each study. Lastly, Section 6 presents key findings and takeaways, including which problem types within wind energy are

best suited for multifidelity optimization.

2 Multifidelity optimization methodology
2.1 Multifidelity methods

In an optimization problem, we seek the minimum of a function within a design space subject to arbitrary constraints. The
optimizer selects design variable values, evaluates computational models at that design point to obtain objective and constraint
values, and then repeats until convergence is reached. In multifidelity optimization, multiple different types of computational
models are queried and information from each model is combined to determine where to sample the design space next. A com-
prehensive survey of multifidelity methods is presented by Peherstorfer et al. (2018), where various approaches are categorized
as one of adaption, fusion, or filtering, with guidelines for matching methods to application. In this work, we focus on the
multifidelity optimization method using the adaptation model management strategy and simplified physics-based low-fidelity
models. We selected this model management strategy because it is non-intrusive and straightforward to implement in a general
manner.

Here we loosely define fidelity as a qualitative measure of the accuracy of the underlying physical equations being modeled
compared to the real world. Related to fidelity is the concept of resolution, or how finely discretized a domain or set of inputs

might be.
2.2 Trust-region optimization method

We use a trust-region approach to perform multifidelity optimization. This method is well-studied in the fields of applied
mathematics, computational sciences, and aerospace engineering (Alexandrov et al., 1998, 2001; March and Willcox, 2012). It
has also been used in other wind energy research, though those studies focused on different applications (Park and Law, 2015;
Yu et al., 2018) or used simplified corrective functions (McWilliam et al., 2017).

The trust-region method progression is shown in Figure 1 using the XDSM graphical data-flow format from Lambe and

Martins (2012). The XDSM diagram format shows analysis and optimization processes as on-diagonal blocks in green and
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blue respectively. Off-diagonal gray boxes show what data is passed between those process blocks and they are connected by
gray lines to show data flow. Following this diagram for the trust-region method, the low- and high-fidelity models are first
called at a set of initial design points to establish the corrective function between the fidelities. Then, a subset of the design
space is established where the corrected low-fidelity model is trusted. Local optimization within this region is then performed,
and the high-fidelity model is queried at the locally optimal point. Based on the actual reduction in the objective value compared
to the expected reduction, the trust region is either expanded or contracted. The local optimization is then repeated within this

new trust region, and the process is repeated.

Sample initial designs using Initial designs and
low- and high-fidelities performance metrics

Construct augmented

/Augmented low-fidelity functions

low-fidelity functions

- - Local optimization . .
Locally optimal design . P X Locally optimal design
within trust-region

Evaluate high-fidelity model Expected and

at locally optimal design actual improvement

Updated trust-region parameters/ Update trust region

Figure 1. XDSM diagram of the trust-region method, specifically showing the top-level and inner-level optimizations.

A simple 1D example of how the trust region converges is shown in Figure 2, which highlights how the corrected low-fidelity

model is used to approximate the high-fidelity model. The trust region for local optimization is shown with a gray bar.
2.3 Corrective function between low- and high-fidelity models

Within the trust-region method, we need to construct an approximation for the high-fidelity model using the low-fidelity model
and a corrective function. This approximation is devised such that it is equal to the high-fidelity model at the points where
we have high-fidelity data. In previous work in wind energy (McWilliam et al., 2017), this corrective function was simply an
additive and/or multiplicative factor, leading to a first-order linear correlation between the models. When dealing with nonlinear
design spaces, it makes sense to use a more complex corrective function that can account for nonlinear differences between
the fidelity levels because there is no assurance that the trust region is small enough to support a linear approximation of the
high-fidelity space.

In this work, we use a nonlinear surrogate model to construct the corrective function as feorrected = Sfiow-fidelity + Sfsurrogates
which allows us to capture arbitrary correlations between the models. This nonlinear surrogate formulation is especially use-

ful when we do not have an a priori simple understanding of the correlation between the different fidelity levels, which is
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x x x
(a) Oth iteration (b) 2nd iteration (c) 11th iteration

Figure 2. Trust-region optimization progression in the 1D example. In the Oth iteration, the initial trust region does not contain the entire
design space. In the 2nd iteration, the trust region has grown as the local optimizer found the best answer at the bounds of the trust region. In

the 11th iteration, the trust region narrows around the local minima.

common in physics-based modeling. Recent advances in surrogate modeling have increased the accuracy for a given model
when using a fixed number of data points while simultaneously decreasing computational cost. One example is the Kriging
partial least squares (KPLS) method (Bouhlel et al., 2016), which is based on the Kriging method (Cressie, 1988). Typically, as
problem dimensionality increases, the cost of training the surrogate model increases as well; however, KPLS has lower training
costs than ordinary Kriging due to its internal dimension reduction, leading to a lower computational cost when training the
model (Bouhlel et al., 2016). Additionally, the gain in surrogate accuracy is generally worth the increased cost compared to
using a simple piecewise-linear fit.

Figure 3 shows the impact of the corrective function on the augmented low-fidelity model for a canonical 1D problem and
relatively few data points. Figure 3a shows that using a simple piecewise linear fit achieves reasonable results, but it does
not capture the high-fidelity function well. Sensibly, increasing the order of the corrective function might produce a better
result, but Figure 3b shows that a piecewise cubic fit leads to a worse fit far from the data points. Last, Figure 3¢ shows how a
KPLS-based corrective function does very well at capturing the high-fidelity model trends in between the data points.

Although the trends shown in these figures suggest that KPLS is the best corrective function, the performance and accuracy
of these corrections is entirely problem-dependent. That said, these advanced surrogate modeling techniques generally capture
multidimensional nonlinear correlations much better than more simplistic functions, especially when using a small number of
high-fidelity data points. Additionally, if we wanted to obtain a better fit with the high-fidelity model, we could use gradient
information at each data point to ensure that the corrected low-fidelity model has the same gradient values at those points.
For this work, however, we purposefully do not assume that we have any high-fidelity gradient information, which makes the
methods presented here applicable to a wider range of real-world tools and applications. For the following case studies, we use
a KPLS-based corrective function with the number of sampling points depending on the application. The KPLS implementation

is taken from the open-source surrogate modeling toolbox based on the work of Bouhlel et al. (2019).
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Figure 3. Corrective function formulation with (a) piecewise-linear reasonably approximating the higher fidelity model, (b) piecewise-cubic

introducing unwanted oscillations in the approximation, and (c) KPLS-based corrective function matching the high-fidelity most accurately.

3 Case study: blade design optimization

This case study focuses on creating an aerodynamically optimal blade, a common and challenging problem in wind turbine
design. Blades are commonly designed using relatively low-fidelity aerodynamic models, such as steady-state blade-element
momentum theory (BEMT), which does not capture the effects that unsteady 3D flows have on blade performance. Using
multifidelity optimization methods for blade design would allow for more accurate acrodynamic considerations earlier in the

design cycle.
3.1 Model descriptions and tools used

The multifidelity optimization method is implemented in the Wind Energy with Integrated Servo-control (WEIS) frame-
work (NREL, 2021c). WEIS is a new design tool that enables multifidelity wind turbine design by integrating the capabilities
of multiple tools from the National Renewable Energy Laboratory (NREL). Of the numerous WEIS component models, the
ones active in the first two case studies in this paper include the systems engineering framework Wind-Plant Integrated Sys-
tem Design & Engineering Model (WISDEM®) (NREL, 2021d), the aeroservoelastic solver OpenFAST (NREL, 2021b), the
auto-tuning Reference OpenSource Controller (ROSCO) (NREL, 2020), the wind solver TurbSim (Jonkman, 2009), as well
as several pre- and post-processing routines. The primary goal of WEIS is to provide a framework for the controller codesign
of floating wind turbines alongside turbine and platform geometry at multiple fidelity levels. In this paper, we do not include
floating dynamics because incorporating that degree of complexity into the other case studies is the focus of future work. The
next subsections present more details on the models of WEIS adopted in this work and the formulation of the optimization

problem.
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Within WEIS, users have the option to individually activate WISDEM and OpenFAST, with additional customization avail-
able for all of the various sub-modules. In this way, numerous simulation pathways are available, creating a spectrum of fidelity
options.

WISDEM is built using OpenMDAO (Gray et al., 2019), the open-source Python-based optimization framework developed
at the National Aeronautics and Space Administration’s Glenn Research Center. WISDEM models the wind turbine as an
assembly of blocks, where each block models a specific component of the machine. The blocks are ordered following the
load path—namely, from the blades toward the tower—and once the machine is sized, cost models are called to compute the
levelized cost of energy. WISDEM computes only steady-state performance and loads and is therefore considered a lower
fidelity simulation tool.

Wind turbine aerodynamics in WISDEM are computed with the CCBlade module, which implements the formulation of
the BEMT presented in Ning (2014), with hub and tip losses accounted for. The RotorSE module in WISDEM combines the
CCBlade-computed aerodynamic loads with a 1D element beam solver, based on Frame3DD (Gavin, 2014), which accounts
for centrifugal stiffening but otherwise assumes a rigid rotor with no aeroelastic iteration.

OpenFAST is a multiphysics, multifidelity tool for simulating the coupled dynamic response of wind turbines in the time
domain. It is well represented in the literature and has undergone numerous validation studies. In this work, OpenFAST serves
as the high-fidelity level of the multifidelity optimization approach.

The aerodynamics in OpenFAST are handled by the module AeroDyn15, whose theory is described in Moriarty and Hansen
(2005). AeroDyn15 implements various permutations of the BEMT theory and, since recently, a free-wake vortex aerodynamic
model (Shaler et al., 2020). Among the unsteady effects, the airfoil aerodynamics include the Onera stall model. Full aeroelastic
coupling is implemented in OpenFAST by combining the aerodynamic loads from AeroDyn with the blade structural dynamics
simulated by ElastoDyn using Rayleigh-Ritz shape functions. The user can model the wind as a steady-state flow or via
turbulent wind grids with the affiliated TurbSim (Jonkman, 2009) model. OpenFAST also includes two aerodynamic models
of the tower—namely, the Powles and the Eames models—and couples the turbine elastic behavior with the rotor and tower

aerodynamics.
3.2 Optimization problem formulation

To study the efficacy of the trust region multifidelity method, we set up a simple blade design optimization case study using
the IEA 15-MW reference wind turbine (Gaertner et al., 2020) as the baseline. This reference turbine has a rotor diameter of
242.2 m and a hub height of 150 m. The objective of the study is to maximize the electrical power of the generator at a given
wind speed, 9 m/s, by varying the blade twist and chord. Notably, the problem focuses only on rotor aerodynamic performance
and does not consider any structural constraints or subsystem design constraints. For the low-fidelity model, we use the steady-
state BEMT solver CCBlade, as described in Section 3.1. For the high-fidelity model, we use the unsteady BEMT solver within
AeroDyn15 with the dynamic generator torque controller active. The inflow includes turbulence, and flapwise and edgewise

blade flexibility is accounted for.
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The blade and twist profiles along the blade are controlled by continuous spline interpolations. Each profile is independently
parameterized using six control points, with the first two points fixed for both twist and chord and the outermost point fixed for
chord. The twist control point design variables act as an adder on top of the original distribution, and the chord control point

design variables act as a multiplier. This results in seven design variables, as shown in Table 1.

Table 1. Optimization problem formulation for the unconstrained power maximization case.

Category Name Quantity Lower bound Upper bound  Units

Objective Power 1 - - MW

Design variables = Twist adder 4 -14.32 14.32  degrees
Chord multiplier 3 0.5 1.50 -

To fairly evaluate the performance of the multifidelity method, we conducted three different blade chord and twist design

optimizations:
1. Design optimization using only the low-fidelity model, CCBlade
2. Design optimization using only the high-fidelity model, AeroDyn15
3. Design optimization using the trust-region multifidelity method with the KPLS corrective function.

As alast step, we cross-checked the designs by computing the performance for each of the three blade shapes in both CCBlade
and AeroDynl5.

3.3 Optimization results

The results of the single-fidelity and multifidelity optimizations are reported in Table 2. The optimization of the chord and
twist in CCBlade achieves the highest power of the three designs when evaluated by CCBlade but the lowest of the three in
AeroDyn15. On the contrary, the single-fidelity optimization in AeroDynl5 and the multifidelity optimization successfully
identify the configuration generating the highest power in the high-fidelity model, with only small numerical differences in
performance between them. This result is even more compelling when considering the computational cost of the three opti-
mizations. The low-fidelity-only optimization completed in just under 9 central processing unit (CPU) hours with 360 calls to
CCBlade. The high-fidelity-only optimization took nearly three times as long, with more than 1,511 function calls to Aero-
Dyn1S5 due to the noisy gradients that are common in unsteady turbulent simulations. In contrast, the multifidelity optimization
made only 63 calls to AeroDyn15 but over 2,500 calls to CCBlade, with a net CPU time of 10.61 hours, only 19% higher than
the low-fidelity-only optimization.

Figure 4 shows the design solutions identified in the three optimizations. The single-fidelity optimization with CCBlade
increases the power generation by simultaneously decreasing the twist and chord, effectively increasing the angles of attack
along the blade span and narrowing the margin to stall. Both the single-fidelity optimization in AeroDyn15 and the multifidelity

optimization choose instead the opposite route and increase the chord and twist, effectively reducing the angles of attack along
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Table 2. Optimal results for aerodynamic blade power maximization.

Performance evaluation

Design Lo-ficalls Hi-ficalls CPUtime Lo-fipower Hi-fi power

- - hrs kW kW
Low fidelity 360 - 8.91 9683.5 10733
High fidelity - 1511 23.97 9646.1 11043
Multifidelity 2564 63 10.61 9412.5 11023

the blade span. The different design trends can be explained by the unsteadiness of the operational angles of attack at high
fidelity caused by the turbulent wind. Such oscillations are less problematic with a higher twist and lower angles of attack,
whereas when the blade operates at a lower twist and higher angles of attack, the turbulent wind frequently pushes the blade

close to or into stall, increasing drag and decreasing power.
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Figure 4. Baseline and optimized chord and twist distributions.

4 Case study: controls optimization

Optimal turbine control, or specifically determining how to vary the pitch and yaw of the turbine for optimal performance
and longevity, is a complex and commonly-studied field. To demonstrate multifidelity optimization on a wind turbine control
problem, we tune the control bandwidth, wpc, of the above-rated pitch controller to minimize tower fatigue loads with a con-

straint on the maximum generator speed. When the generator speed exceeds some limit, the supervisory controller triggers a
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FF turbulent wind input
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Output
time series

Rotor
averaging

Linear model:
Egs. (1-2)

Linear control:
Eq. 3)

Figure 5. High- and low-fidelity control models. The high-fidelity model runs OpenFAST with the ROSCO controller and a full-field (FF)
turbulent wind input. The low-fidelity models are described in (1)—(3) and use a rotor-averaged wind speed as the input. Both models output

time series that can be processed to derive operational and load measures.

shutdown procedure, which reduces the net annual energy production (AEP). Tower loads drive the tower design and its capital
expenditures. The pitch control bandwidth determines the proportional-integral (PI) gains of the blade pitch controller. Gener-
ally, lower bandwidths reduce tower loads but increase generator speed transients, so we expect the results of this optimization

procedure to seek the lowest bandwidth such that the generator speed constraint is not violated.
4.1 Model descriptions and tools used

We simulate both a linearized and nonlinear version of the IEA 15-MW wind turbine with the University of Maine’s VolturnUS
semisubmersible (Allen et al., 2020) in extreme turbulence with a mean wind speed of 16 m/s. For the nonlinear simulation,
we use OpenFAST with the ROSCO controller (NREL, 2020) and a full-field turbulent wind input generated using TurbSim.
When this turbulent wind input is sampled by the blades, it results in 3P (per-revolution) oscillating loads on the tower. The
nonlinear OpenFAST model is run for 800 simulation seconds, which requires approximately 3 minutes on a standard laptop
computer, and represents the high-fidelity model for this case study.

To serve as the low-fidelity model, we simulate a linearized turbine and control model, which requires less than 3 seconds on
a standard laptop computer. To create these low-fidelity models, we run OpenFAST in its linear mode, which creates linearized
snapshots of the turbine at several azimuth positions for a fixed wind speed (Jonkman and Jonkman, 2016). These linear

snapshots are averaged using the multiblade coordinate transform (Bir, 2010) to create a linear time-invariant system relative

10
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to the turbine’s operating points:

& = Aun)r + B(up)[u — uop(un)] (D)
Y —Yop(un) = Clun)z + D(un)[u—uop(un)] @)

where u, x, and y are the inputs, states, and outputs of the linearized turbine, respectively. The input and output operating points,
Uop and yop, respectively, and the state-space matrices A, B, C, and D are determined during the OpenFAST linearization
process. When multiple wind speeds, uy,, are linearized, we construct a set of state-space systems, which can be interpolated
based on the mean wind speed, uy, so the system matrices and operating points are a function of uy,. In this study, we focus on
above-rated control, and we linearize the turbine model at mean wind speeds of 14, 16, and 18 ms— 1.

For the pitch control input, which is part of u, we connect the output of a linearized ROSCO controller:

0. = kP(Wg - Wral) +kr /(Wg - Wral) + kﬁoat/leU; 3)

where kp and k; are the PI gains of the pitch controller, and kgoy = —9.49 seconds is the floating feedback gain. The PI
gains are a function of the bandwidth, wpc, and turbine parameters (Abbas et al., 2021). Generally, as the design variable wpc
increases, the PI gains also increase.

The inputs to the controller are the generator speed, w, and an acceleration measurement from the nacelle inertial measure-
ment unit (IMU) in the nodding direction, Zy\y; these are in y. When the linear turbine and control models are connected, we
have a set of closed-loop linear turbine models that depend on the wind speed.

Instead of a full-field turbulent wind input, as in the high-fidelity model, the rotor average wind speed is used to simulate
the linear model. The mean rotor average wind speed is used to determine the single closed-loop linear model from the
set by linearly interpolating the state-space matrices and operating points. Then, we integrate the linear system over time,
which results in a time series that is similar to the nonlinear model (Figure 6). Nonlinear aerodynamic and hydrodynamic
effects are not captured in the linear state-space model, but they are part of the operating points. In the linear simulations, a
constant operating point is chosen for the whole 800-second simulation (with the first 200 seconds typically omitted as startup
transients).

Both the linear and nonlinear turbine outputs can be processed to compute the generator speed maxima (constraint) and
the damage equivalent loading (DELs) on the tower (objective), as shown in Figure 7. In general, trends, or changes, in the
linear and nonlinear models are in agreement and as expected: increasing the pitch control bandwidth increases tower DELs
and platform motion while decreasing generator speed transients. The linear models do not capture the 3P harmonic loading
on the tower, which accounts for most of the difference in the tower base fore-aft DELs between the two models. Finally, the
magnitude of the optimization constraints (maximum generator speed and platform pitch angle) are more accurately sampled
from the nonlinear simulations; therefore, these constraints are active only in the nonlinear simulations, which creates a good

stress test for the multifidelity optimization where some constraints are violated only in the high-fidelity simulation.
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Figure 6. Comparison between the time histories generated from the nonlinear and linearized OpenFAST simulations. The linearized model

generally has a smoother response than the nonlinear simulation.

4.2 Optimization problem formulation
The objective, design variables, and constraints for the controls optimization problems are shown in Table 3.

Table 3. Optimization problem formulation for the controls optimization case.

Category Name Lower bound  Upper bound  Units
Objective Tower base moment DEL - - -
Variables wpC 0.1 04 -
Constraints ~ Generator speed - 9 rpm
Platform pitch - 5 deg

12
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Figure 7. The linearized and nonlinear functions of interest as we vary the pitch controller bandwidth, wpc.

4.3 Optimization results

As in the previous case study, we performed single-fidelity optimization using both the low- and high-fidelity models and
270 compared the results to the multifidelity trust-region method. Table 4 contains the optimal wp¢ values and the corresponding
functions of interest from each optimization. Using the high-fidelity optimization to evaluate true performance, the low-fidelity-
only optimization finds an infeasible solution that violates the generator speed constraint. Revisiting Figure 7, this is expected
due to the linearized model not resolving the same magnitude or trends found in the nonlinear model. Although the optimal
pitch control bandwidths in the high-fidelity and multifidelity optimizations differ, the actual difference in objective value is

275 relatively small, approximately 0.03%, and the constraints are satisfied in both cases.

Table 4. Optimal results for the controls problem.

Design Lo-ficalls Hi-ficalls CPU time wpc  Hi-fi DEL  Hi-fi max gen speed  Hi-fi max plat pitch

- - hrs - - rpm degrees
Low fidelity 8 - 0.263  0.1000 105389 9.8246 4.4500
High fidelity - 74 5.10 0.1935 111080 8.9379 4.4606
Multifidelity 755 23 1.96 0.1891 111114 8.9867 4.5088

Table 4 also shows that the multifidelity method finds an optimal answer using 62% less computational expense than the
high-fidelity optimization. The one-time cost of linearizing the model across three wind speeds is included for both the low-

fidelity and multifidelity computational cost columns. Specifically, this upfront cost requires 944 core-seconds, but then each
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function call to the low-fidelity model is quite low. at 0.55 core-seconds. Each function call to the high-fidelity model requires

248 core-seconds.

5 Case study: wind power plant layout optimization

Wind power plant layout optimization is the practice of placing wind turbines within a plant to minimize the power production
losses caused by wakes from upstream turbines. This is a well-studied and challenging optimization problem due to the inherent
multimodality of the design space (Samorani, 2013; Baker et al., 2019; Khan and Rehman, 2013; Stanley and Ning, 2019).
Turbine-wake interactions require high-fidelity simulations, including large-eddy simulations, to correctly resolve the highly
complex flows within a wind power plant (Fleming et al., 2013; Churchfield et al., 2016); however, the large computational
expense of these simulations limits their use in design optimization problems, which has encouraged the development of wind
power plant simulation tools that straddle multiple levels of fidelity (Sprague et al., 2020; Réthoré et al., 2014). In this case
study, we optimize the layout of turbines using multiple different wake models and resolutions to represent different levels of
fidelity.

5.1 Model descriptions and tools used

To more easily study how wind turbine layout and controls affect plant performance using less computational cost, multi-
ple analytic wake models have been developed, including the Jensen (Jensen, 1983), Gaussian (Bastankhah and Porté-Agel,
2014), and Gauss-Curl Hybrid (GCH) (King et al., 2020) models. Listed in order of increasing fidelity, these analytic models
capture simplified wake physics and have been verified against high-fidelity simulations and validated against experimental
results (King et al., 2020).

In this paper, we use the Jensen and GCH as the low- and high-fidelity wake models, respectively. The Jensen wake model
uses a simplistic velocity deficit to represent the wake, and this deficit is summed when wakes interact using the sum-of-squares
method (Jensen, 1983). Additionally, the velocity deficit fans out linearly behind the turbine. The wakes from the Jensen model
for the initial plant used in this study are shown in Figure 8a. The GCH model modifies the Gaussian model (Bastankhah and
Porté-Agel, 2014) by including analytic approximations from the curl model (Martinez-Tossas et al., 2019), which leads to a
wake model that better resembles results from high-fidelity simulations. These more complex flow interactions are visible in
Figure 8b, which also uses a sum-of-squares method for wake interaction.

These wake models are already integrated into FLOw Redirection and Induction in Steady State (FLORIS) (NREL, 2021a),
a controls-oriented wake modeling tool that performs wind power plant simulation and optimization. FLORIS is an open-
source tool that provides a common application programming interface for multiple wake models, which allows us to easily
investigate different levels of fidelity.

In addition to using different wake models, our low- and high-fidelity models for this problem use different wind roses
and wind speed bin resolutions, leading to accuracy and computational differences caused by both fidelity and resolution.

The low-fidelity model samples six equally spaced wind directions (60° bins) and five wind speeds from 0-26 m /s, whereas
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Figure 8. Simplistic velocity deficits of the Jensen wake model (Jensen, 1983) (a) versus the more accurately resolved flow field of the GCH

model (King et al., 2020).

the high-fidelity model samples 18 wind directions (20° bins) and 14 wind speeds from 0-26 m/s. These relatively coarse
discretizations were selected so the optimization studies could be easily run on a laptop workstation. Both models use a

Weibull distribution for the wind speed frequencies.
5.2 Optimization problem formulation

For this study, we optimize the locations of seven wind turbines within an area of 360000 square meters. Additionally, we im-
pose a two-rotor-diameter (2D or 262-unitm) spacing constraint between turbines to create a well-posed optimization problem.
We aggregate these turbine-turbine spacing constraints using the Kreisselmeier—Steinhauser functional (Poon and Martins,
2007), which reduces the number of constraints from 21 to 1, producing a less complex optimization problem. This problem
formulation leads to 14 design variables, one objective, and one constraint, as shown in Table 5. The wind turbine model is

based on the NREL 5-MW reference turbine (Jonkman et al., 2009) and is provided within FLORIS.

Table 5. Optimization problem formulation for the wind power plant layout AEP maximization case.

Category Name Quantity Lower bound Upper bound  Units
Objective AEP 1 - -  GWh
Variables Turbine z-locations 7 0.0 600.0 m
Turbine y-locations 7 0.0 600.0 m
Constraints ~ Turbine spacing 1 262 (2D) - m

5.3 Optimization results

As in the first two case studies, we performed single-fidelity and multifidelity optimizations for this plant layout case, with the

high-fidelity AEP evaluated at the optimal design from each method shown in Table 6. Each call to the low- and high-fidelity
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models took 0.212 second and 7.13 seconds, respectively, meaning that the high-fidelity model is 33.6 times as expensive as the
low-fidelity model to evaluate. Overall, we see that the multifidelity method takes 58% as many core-hours to find an optimal
answer as the high-fidelity method. The multifidelity method resulted in a better layout than the low-fidelity optimization,
however, this AEP value was less than that from the high-fidelity optimization. Examining the physical layouts from the
high-fidelity and multifidelity cases shown in Figure 9, the results do not appear drastically different, although only one wind
direction and speed from the wind rose is shown. The main difference between the two cases lies in the location of the central
turbine, which is farther north in the high-fidelity case. Note that in all cases, the turbine spacing constraint is not active at the
optimal design; thus, the trade-off between the computational savings and the optimality of the obtained design would vary

based on the number of wind turbine locations optimized.

Table 6. Optimization results for the wind power plant layout AEP maximization case.

Design Lo-ficalls Hi-ficalls CPUtime Hi-fi AEP

- - hrs GWh
Low fidelity 6382 - 0.376 81.855
High fidelity - 3975 7.87 82.367
Multifidelity 56939 618 4.58 81.972
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Figure 9. The optimal layout found by the (a) high-fidelity-only optimization (82.368 GWh AEP) and (b) the multifidelity method
(81.972 GWh AEP).

This wind power plant layout problem presents an interesting case for the multifidelity method due to the highly nonlinear
design space as well as the number of design variables. The corrective function used to correlate the two fidelity levels needs
to be able to capture sharp changes in AEP with respect to changes in turbine location. By not using simple additive or
multiplicative factors, and instead using surrogate corrective functions, as detailed in Section 2.3, we are able to account
for the design space nonlinearities. As the number of design variables increases, however, the number of points needed to

correctly correlate the two fidelities also increases. This trend is not due to the type of corrective function used but is instead
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due to the well-known “curse of dimensionality,” which dictates that the cost of constructing an accurate representation of a
high-dimensional space increases greatly as the number of dimensions increases. These costs are problem-dependent, and this
power plant layout problem is known to be highly nonlinear and high-dimensional, which leads to a relatively large number of

training points to correctly correlate the low- and high-fidelity models.

6 Conclusions

We have shown that multifidelity optimization methods are effective for a variety of wind energy applications to decrease
the computational cost needed to find an optimal design. Optimizing using only a low-fidelity model might miss important
physical trends that the high-fidelity and multifidelity approaches will correctly capture. Across three distinct applications—
aerodynamic blade design, controls tuning, and wind power plant layout optimization—we have shown that obtaining an
optimal result requires 38% to 58% of the computational cost compared to high-fidelity optimization, as depicted in Figure 10.
Showing the percentage change for each problem normalizes the computational costs across differences in core-hours and

function calls, which may vary depending on system type, parallelilzation, and compiler choices.

Problem Multifidelity cost relative to hi-fi
Blade design 0.44
Controls 0.38
Plant layout 0.58

Figure 10. The normalized relative computational cost for multifidelity optimization in each application case compared to high-fidelity

optimization shows that the trust-region method finds an optimal answer in less time.

Although we used a traditional trust-region approach for multifidelity optimization, we offered a new corrective function
technique based on efficient KPLS surrogate models, and we demonstrated its efficacy across three case studies. In this way,
the methods and results presented in this paper should be useful to wind energy researchers who seek optimal designs when
using multiple levels of model fidelity.

There are some limitations to the types of design problems for which multifidelity methods are effective. Specifically, there
needs to be an established model fidelity hierarchy with one model known to be of higher fidelity than another. If the accuracy
of the models is unknown, then the trust-region method presented here is ill-posed. Each model used in the multifidelity method
must receive the same inputs and return the same outputs so the corrective function between fidelity levels can be constructed.
Finally, multifidelity methods are less beneficial when there is not a large difference between the computational expense of the
models. Many engineering design problems meet these requirements, but special care is needed to select appropriate levels of
model fidelity and to pose a reasonable optimization problem.

Future work could involve more complicated design problems, additional fidelity tiers, or different types of model disci-

plines. As the optimization problems increase in complexity, the best multifidelity strategy might differ, including which type
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of corrective function to use or how many correlative design points to use. A series of model fidelities could also be considered,
with nested trust regions to conduct the model fidelity management. Last, in this paper we examined multiple disciplines in
wind energy systems engineering, but there are additional subsets of model disciplines that could benefit from design explo-

ration through these multifidelity methods.
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