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Abstract. This paper presents an efficient strategy for the Bayesian calibration of parameters of aerodynamic wind turbine

models. The strategy relies on constructing a surrogate model (based on adaptive polynomial chaos expansions), which is

used to perform both parameter selection using global sensitivity analysis and parameter calibration with Bayesian inference.

The effectiveness of this approach is shown in two test cases: calibration of airfoil polars based on the measurements from

the DanAero MW experiments, and calibration of five yaw model parameters based on measurements on the New MEXICO5

turbine in yawed conditions. In both cases, the calibrated models yield results much closer to the measurement data, and in

addition they are equipped with an estimate of the uncertainty in the predictions.

1 Introduction

Aeroelastic wind turbine models based on blade element momentum theory (BEM) are used extensively within the wind energy

community for simulating rotor characteristics such as aerodynamic loads, power and thrust. They are indispensable tools for10

the design and optimization of wind turbines. However, in several situations, the accuracy of such models can be unsatisfactory

when comparing the results of the model predictions with experiments (Buhl and Manjock, 2006). For instance, the ‘blind

comparison’ study organized by NREL (Simms et al., 2001) revealed large differences when comparing the predictions of

different aeroelastic models with experimental measurements. In some cases, differences exceeded 200%, even when simple

operating conditions were being considered (i.e. uniform wind-speed, fixed blade pitch and zero yaw angle). The differences15

were attributed to the several empirical correction factors or tuning parameters integrated into the aeroelastic models that are

used to improve the unsteady aerodynamic and aeroelastic force predictions. More recent results show better agreements, at

least for simple wind tunnel conditions, but many challenges exist, for example in dynamic wake prediction and yaw, especially

in the context of upscaling (see Schepers et al. (2021), Chapter 12). Examples are dynamic wake correction factors or dynamic

stall model parameters (Wang et al., 2016). These empirical correction factors suffer from inherent uncertainties. As explained20

by Leishman (2002) and Sørensen and Toft (2010), a major challenge is to identify the uncertainties associated with wind

turbine aerodynamics in order to develop more rigorous models suitable for a wider range of operating conditions, and to

better integrate and validate these models with reference to good quality experimental measurements. Similarly, Abdallah et al.

(2015) concluded that the uncertainties in the model parameters used in aeroelastic models have a significant impact on the
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accuracy of model predictions. In other words, in order to build robust aeroelastic wind turbine models with a quantified level25

of uncertainty, it is important to calibrate these models in a framework that includes uncertainty estimates (Murcia, 2016).

A common approach to calibrate aerodynamic models is via parameter tuning, in which one assumes that the form of the

model is in principle correct, and that the errors in the model outcomes can be reduced by properly choosing the value of one

or more parameters. These parameter values are preferably independent of the model inputs, i.e. they should lead to accurate

predictions for a wide range of operating conditions. Examples of parametric model calibration in wind energy applications30

can be found in Bottasso et al. (2014), Murcia et al. (2018) and van Beek et al. (2021). In these calibration studies, either

least-squares methods or maximimum likelihood estimation (MLE) methods are used. MLE determines the model parameters

such that it maximises the likelihood that describes the (presumed) relation between model and measurement data (Severini,

2000). However, a major drawback of least-squares and MLE methods is that prior information is not naturally included (Smith,

2013). Using prior information is especially relevant when few measurement data is available, which is a common situation35

in wind turbine model calibration (van Kuik et al., 2016). Consequently, the MLE method can exhibit large uncertainty in

the estimation of the parameters and, as a result, in the model predictions. Furthermore, in least-squares or MLE methods,

parameters are typically considered deterministic (fixed but unknown) so that a point estimate (plus confidence intervals)

results, which does not provide details regarding the full probability distribution of the calibrated parameters (Smith, 2013).

In order to address these issues, the goal of this paper is to set-up a framework for calibrating aerodynamic wind turbine40

models that also works in case of limited measurement data and gives full uncertainty estimates (in terms of probability

density functions) of the calibrated parameters. We propose a rigorous approach to the calibration problem by recasting it in a

probabilistic setting using a Bayesian framework (Kennedy and O’Hagan, 2001). Within this framework, the model parameters

are posed as random variables, and it is possible to include prior knowledge by specifying a prior distribution, thus allowing

model calibration even when small sample sizes are available. Bayes’ theorem (Bayes, 1763) is then used to calculate the45

posterior distribution of the model parameters conditioned on the given measurement data. The posterior distribution gives

more information than MLE about the calibrated parameters, i.e. it gives the entire posterior probability density function, from

which point estimates such as the posterior mean and the standard deviation can be calculated (if required). Furthermore, the

calibration can be verified by computing the posterior predictive distribution (Gelman et al., 2013). Since the expression for the

posterior distribution is generally not available in an analytically tractable form (Gelman et al., 2013), we will resort to Markov50

Chain Monte Carlo (MCMC) methods to sample from the posterior distribution (Papageorgiou and Traub, 1996; Andrieu

et al., 2003). The main downside of the Bayesian approach, associated to the MCMC sampling step, is its high computational

expense. We will alleviate this issue by constructing a surrogate model of the full aerodynamic model (Sudret, 2008), and

perform the MCMC sampling with the surrogate model in lieu of the full model. In this work, polynomial chaos expansions

(PCE) (Laloy et al., 2013) will be used, which can be constructed using a relatively small number of aerodynamic model runs.55

In addition, the cost of the Bayesian calibration can be reduced by eliminating non-influential parameters. These can be

determined by performing a sensitivity analysis (Oakley and O’Hagan, 2004). In this study we will employ a variance-based

global sensitivity analysis using Sobol’ indices (Sobol, 1993), based on our earlier work (Kumar et al., 2020). Determining

Sobol’ indices is straightforward once the PCE surrogate model has been determined.
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The novelty of this work lies in the construction of a Bayesian framework for aerodynamic wind turbine model calibration.60

In addition to that, two realistic calibration studies based on the DanAero MW experiments (Madsen et al., 2010) and the

New MEXICO experimental data (Boorsma and Schepers, 2016). The former dataset will be used to calibrate airfoil polars,

while the latter will be used to calibrate yaw model parameters. The DanAero experiments were supplied by DTU within

the framework of IEA Task 29. Although extensive comparisons between results from a large variety of codes (including the

AeroModule employed in this study) were performed on DanAero and NewMexico in Task 29 (Schepers et al., 2018, 2021),65

no thorough uncertainty analysis and calibration was performed yet. We stress that, even though these studies show a realistic

application of our method with actual data, they correspond to idealized situations, and the main purpose of this paper is to

demonstrate the calibration framework and its potential for application to a wide variety of wind engineering problems.

The outline of this paper is as follows: Section 2 discusses the two experimental datasets considered in this study (DanAero

and New MEXICO). Section 3 describes the aerodynamic code used in this work (the so-called Aero-Module), plus parame-70

terization of its inputs and outputs. The Bayesian calibration methodology, which is accelerated by constructing a PCE-based

surrogate model, is detailed in section 4. Finally, the results of the calibration and discussion are presented in section 5 followed

by conclusions drawn in section 6.

2 Experimental data description

In order to demonstrate the proposed Bayesian calibration framework, measurements from two experiments constitute the basis75

for the analysis, which are explained in sections 2.1 and 2.2.

2.1 DanAero MW experiment

The objective of the DanAero MW experiment was to provide an experimental basis that can improve the understanding of

the fundamental aerodynamic and aeroacoustic phenomena using a full scale wind turbine model (Madsen et al., 2010). A

2.3MW NM80 turbine located at the Tjæreborg Enge site and a nearby met mast were both instrumented with various sensors.80

A LM38.8m test blade (schematic) was instrumented with pressure taps at four blade sections is shown in Figure 1 (left). The

data acquisition rate was 35 Hz and in total about 275 ten minute time series were acquired between July and September 2009,

which were made available for the present analysis.

In the current study, we aim to calibrate airfoil polars (to be described later), and only a subset of the entire DanAero dataset

will be used. To be precise, data from ‘Run 14’ (a single 10-minute time series) on the first measurement day (16 July 2009) is85

used. This corresponds to a case with little yaw and shear and with little turbulence (roughly constant inflow conditions) under

normal operation. The inflow velocity for this case is around 6 m/s and the rotational speed is 12 rpm. Within this particular

10-minute series, the data corresponding to 200s< t < 450s was used, in which almost constant wind and rotor speed were

observed. For more details, we refer to Madsen et al. (2018). As a result, we have normal force measurements y(%)(t) at the
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Figure 1. Schematic of NM80 wind turbine blade implemented with surface pressure taps (left) and NACA 63-418 airfoil blade section

tested in the LM Wind Power wind tunnel in Lunderskov (right) (Özçakmak et al., 2018).

four blade sections (%= 1,2,3,4) at Nt = 8750 discrete time steps, gathered in the data matrix y:90

y =


y(1)(t1) · · · y(1)(tNt)

...
...

y(4)(t1) · · · y(4)(tNt)

 , (1)

where tj = jτ/Nt, τ = 250 seconds. The radial positions (measured from the center of the hub) corresponding to these sec-

tions are r = (13.116,19.06,30.216,36.775)m, see Figure 1 (left). To obtain the distance from the blade root, as used in the

Aero-Module calculations, we subtract the distance from the blade root to the hub centre which is 1.24m. Although using a

single 10-minute time series corresponding to a single operating condition is generally insufficient to perform accurate BEM95

model calibration, this experiment is merely used as a first demonstration of our framework. A more advanced calibration run

involving multiple operating conditions will be performed with the data from the New MEXICO experiment described in the

next section.

Besides the data obtained directly from the Tjæreborg Enge site, airfoil polars were obtained from several wind tunnel tests,

such as those on the NACA 63-418 airfoil cross-section in the LM Wind Power wind tunnel (Madsen et al., 2010); see Figure100

1 (right). These airfoil polars consist of lift, drag, and moment coefficients as a function of angle of attack. Four polars are

used in this study, whose location roughly (but not exactly) corresponds to the measurement positions mentioned above. These

polars will form the inputs to our BEM code (see section 3.1) and are to be calibrated in this study.

2.2 New MEXICO experiment

The main objective of the New MEXICO experimental campaign was to create a database of detailed aerodynamic and load105

measurements on an experimental wind turbine to be used for computational models validation and improvement (Boorsma
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Figure 2. New MEXICO rotor tested in the DNW-LLF wind tunnel (Boorsma and Schepers, 2014, 2016).

and Schepers, 2014, 2016). To this aim, a three bladed 4.5 m diameter wind turbine model was built and tested in the large low

speed facility of the German-Dutch wind tunnel (DNW-LLF) during a campaign in June-July 2014 (see Figure 2); a detailed

description of the experiment is available in Boorsma and Schepers (2014). The data acquisition system consists of dynamic

pressure sensors divided over five sections and distributed over three blades: at 25% and 35% (blade 1), 60% (blade 2), and110

82% and 92% (blade 3) radial position, respectively. These were post-processed to obtain (amongst others) sectional normal

forces, whose variations with azimuth and yaw angle will be considered in this study.

The corresponding operating conditions (‘scenarios’) are described by a vector Si:

Si = (ρ∞,V∞,β,φ), i= 1, . . . ,NS , (2)

where ρ∞ is the density, V∞ is the inflow velocity, β is the yaw angle, φ is the pitch angle, and NS the number of operating115

conditions. For the yawed flow case, 29 runs were performed in total, but in this study we restrict ourselves to NS = 3,

corresponding to IDs 935, 939 and 948 (see Table 1). These conditions are such that a significant induced velocity is expected

(so that the yaw model will have a significant effect), while at the same time there is little dynamic stall occurring. For

each operating condition, there is a corresponding dataset containing the normal force as a function of azimuth at five radial

sections %= 1, . . . ,5 (the tangential force is also available, but not used here due to the large uncertainty associated with the120

measurements). Similar to equation (1), this will be denoted by the data matrix y, but now with an additional subscript i to

indicate that there is a data matrix corresponding to each different operating condition:

yi =


y(1)(t1) · · · y(1)(tNt)

...
...

y(5)(t1) · · · y(5)(tNt)


i

, i= 1, . . . ,NS . (3)
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Table 1. New MEXICO operating conditions considered for yaw model calibration.

scenario run ID ρ∞ (kg/m3) V∞ (m/s) β (deg) φ (deg)

S1 935 1.20395 10.04 15.01 -2.3

S2 939 1.20395 9.98 30.01 -2.3

S3 948 1.20453 9.98 45.01 -2.3

3 Aerodynamic wind-turbine model

3.1 Aero-Module description and uncertainties125

TNO (Netherlands Organisation for Applied Scientific Research) is the developer of a state-of-the-art aerodynamic model

based on a BEM formulation, called the Aero-Module (Boorsma and Grasso, 2015) (formerly developed by ECN, now part of

TNO). The model simulates the aerodynamic behavior of wind turbines by combining the concept of momentum conservation

of the flow (BEM theory) and can be coupled to an aeroelastic model that solves the equations of motion for the structure,

possibly extended with the hydrodynamics of the sea and control algorithms. In this work, we concentrate on the first aspect,130

namely the prediction of flow and blade forces as given by the BEM method. All calculations are done for a rigid construction,

since the effects from flexibilities are considered small: in New Mexico a small rigid rotor was used, and for DanAero the elastic

effects were found to be small (Schepers et al., 2021). A detailed description of the BEM approach within the Aero-Module

is beyond the scope of the current discussion, and can be found in Boorsma et al. (2012). Important for the current discussion

is to distinguish between different types of inputs in the Aero-Module. The first type of inputs consists of external (operating)135

conditions, such as wind speed and air density. The second type consists of turbine specifications, such as the blade geometry.

The third type consists of model parameters inherent to the BEM formulation, such as lift- and drag-polars, tip correction

factors, yaw model parameters, etc. For the case of a rigid turbine, with a uniform inflow field, the main uncertainties in this

third type (the BEM model parameters) mainly arise from (Abdallah et al., 2015):

– Airfoil aerodynamics: The static airfoil data from wind tunnel experiments or from 2D airfoil codes, utilized as an input140

for the BEM simulations, have significant uncertainties and can be inaccurate (Bak et al., 2010).

– Empirical models: Several empirical models such as dynamic stall models, 3D correction models, and Prandtl correction

models are used to include unsteady and 3D effects in BEM models (Wang et al., 2016; Schepers, 2012). It is often the

choice of a designer to select between different empirical models, which can suffer from modelling uncertainty.

In the current study we will focus on calibrating this third type of input parameters, i.e. the model parameters, in particular145

static airfoil data (lift, drag and moment polars) and yaw model parameters. However, we stress that the calibration framework

that is presented here can be directly applied to the first and second type of uncertainties as well.

In mathematical notation, these uncertainties will be captured in a vector of model parameters θM = (θM,1, ...,θM,Nθ ) ∈
RNθ , to be described in more detail in section 3.2. The Aero-Module for a certain wind turbine is denoted byM and returns a
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vector of outputs Y , depending on the (uncertain) model parameters θM and on the (given) value of the operating conditions150

Si:

Yi = Yi(θM ) =M(θM ,Si), i= 1, . . . ,NS , (4)

where NS is the number of operating conditions. The output Y contains amongst others forces, moments, power, etc, which

are generally time-dependent. Typically only a subset of the entire Aero-Module output, indicated as the quantity of interest Q,

will be used to perform sensitivity analysis and calibration of the model. This will be further described in section 3.3. It should155

be stressed that θM , Y and Q are random vectors, each of which is associated with a joint probability density function.

Aero-Module

Model parametrization

Surrogate model

Sensitivity analysis Bayesian calibration

Experimental data

Figure 3. Flowchart for our Bayesian calibration framework.

The analysis carried out in this study is based on the procedure shown in Figure 3, including the steps that will be separately

described in the following sub-sections. The proposed Bayesian calibration approach is performed using the UQLab uncertainty

quantification software (Marelli and Sudret, 2014), especially the recently developed Bayesian inversion module (Wagner et al.,

2019).160

3.2 Input parametrization

3.2.1 DanAero case: uncertainty in polars

For the DanAero case, we will consider the uncertainties associated with the airfoil aerodynamics: lift coefficient (Cl), drag

coefficient (Cd) and moment coefficient (Cm). These coefficients are functions of both angle of attack α and radial position
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r along the blade (also Reynolds number and Mach number, but this dependence is not studied here); this give rise to a very165

large number of uncertain parameters. In order to reduce this number, we parametrize these uncertainties as a function of angle

of attack and radial position.

The parametrization as a function of radial position is automatically accounted for within the Aero-Module code: the user

has to provide the lift, drag and moment polars only for a few airfoil sections along the radius of the blade, e.g. Cl,j(α) for

j = 1 . . .Nsec; Nsec being the number of airfoil sections. The Aero-Module interpolates these polars to other radial positions170

based on the relative airfoil thickness.

The parametrization as a function of angle of attack is performed as follows. Given a reference polar, e.g. Cl,ref,j(α) for the

lift coefficient at airfoil section j, a perturbed polar C̃l,j is obtained by scaling the reference curve as follows:

C̃l,j(α) =

Cl,ref,j(α) · (1 + ∆Cl,j) αmin,j < α < αmax,j ,

Cl,ref,j(α) otherwise.
(5)

The same equation is used for the drag and moment coefficients. The value of ∆Cl,j determines how much the reference175

curve is scaled. The bounds αmin,j and αmax,j indicate for each airfoil section j which part of the polar is perturbed. The

unperturbed and perturbed parts of the polar are combined via a NURBS curve. A similar equation holds for the drag and

moment coefficients. Example curves obtained with different realizations of ∆Cl, ∆Cd and ∆Cm are shown in Figure 4.

Angle of attack [o]

C
l [

-]

Reference
Perturbed

Angle of attack [o]

C
d 

[-
]

Reference
Perturbed

Angle of attack [o]

C
m

 [
-]

Reference
Perturbed

Figure 4. Examples of perturbed Cl, Cd and Cm polars at section 2 as described by equation (5), with αmin =−10◦ and αmax = 50◦.

For the DanAero case, where the number of airfoil sections is Nsec = 4, the parameterization of lift, drag and moment

coefficients leads to the following Nθ = 12-dimensional parameter vector θM :180

θM = (∆Cl,1, . . . ,∆Cl,4,∆Cd,1, . . . ,∆Cd,4,∆Cm,1, . . . ,∆Cm,4). (6)

One advantage of the multiplicative-type of parameterization (5) is that the uncertainty becomes largest when the magnitude

of the reference curve is large; this is physically meaningful, as lift curves tend to be most uncertain around the region of

maximum lift (and/or at high angles of attack, but these are not considered here). However, other types of parameterization

could be considered. For example, Bottasso et al. (2014) considered an additive-type of correction (i.e. Cl,ref +∆Cl), with ∆Cl185
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expressed in terms of shape functions and coefficients, and applied a decorrelation procedure to improve the identifiability of

the drag coefficients. Matthäus et al. (2017) obtained a perturbed lift curve by interpolating between two reference lift curves

corresponding to clean and rough states. In Abdallah et al. (2015), a number of typical points along the Cl(α) curve (e.g.

maximum lift, separation point) was used to construct a parametric spline approximation to the lift curve. Since the focus of

this article lies in showing how the combination of surrogate models, sensitivity analysis and Bayesian inference can be used190

for efficient calibration, we have not considered such more advanced polar parameterizations, but we note that it is possible to

use any of them within our calibration framework.

3.2.2 New MEXICO case: uncertainty in yaw model

With the New MEXICO experiments, as described in section 2.2, the goal is to calibrate a set of parameters that determine

the yaw model of the Aero-Module. This yaw model is described in Schepers (2012) and consists of 10 amplitude coefficients195

denoted by AMkl and 10 phase coefficients denoted by PHkl (k = 1,2; l = 1 . . .5), which are used in an equation for the

induced velocity in yawed conditions (see equation (C1) in appendix C). We will (as a proof of concept) calibrate only the first

five parameters of this model, i.e. we take

θM = (AM11,AM12,AM13,AM14,AM15). (7)

The nominal values for these coefficients can be found in Appendix B in Schepers (2012) and are repeated in appendix C.200

The other yaw model parameters are associated to the phase shift of the induced velocity and to higher order harmonics and

will be left at their nominal values, since the amount of experimental data considered here is too limited to perform a sensible

calibration.

3.3 Output parameterization and quantity of interest

The Aero-Module predictions given by equation (4) involve a large set of time-dependent quantities, making the dimension of205

the output effectively very high-dimensional. For the purpose of sensitivity analysis and model calibration, it is highly desirable

to reduce the dimensionality of the output. As a first step (both for DanAero and New MEXICO simulations), out of all possible

outputs (forces, moments, power, etc.) we restrict ourselves to the normal forces FN (‘normal’ indicating normal to the chord),

interpolated to the radial positions corresponding to the measurement positions.

3.3.1 DanAero case: time-independent results210

For the DanAero case, the inflow conditions in the Aero-Module are assumed constant in time, and given that there is no shear

or yaw, this results in normal force predictions that are steady state (time-independent). The experimental data are, on the other

hand, only approximately steady state since they were performed in atmospheric conditions. The question then arises how

to perform the comparison between simulation and experiment in order to perform the desired calibration. The most natural

possibility would probably be to average the experimental data in time. However, since we have only a single 10-minute time215

series at this condition, this would effectively reduce the number of measurement points to just a single point, which would be
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too little to perform any sensible calibration. As a compromise, we decided to split the time series into a number of subsets (10,

50, 100 and 200) of the 8750 datapoints mentioned in equation (1), at regularly spaced intervals. The mean of each subset is then

considered to be an independent measurement point that will be used in the calibration process (as if they were corresponding

to different measurements). This approach allows us to clearly show the effect of increasing the number of measurement points220

on the convergence of the posterior distribution of the airfoil polars. This will be further detailed in section 5.1.

3.3.2 New Mexico case: time-dependent results

For the New MEXICO case, the operating conditions lead to results that are periodic in time. There are five measurement

positions, and after radial interpolation of the Aero-Module output to these positions, we effectively have for each operating

condition Si an output matrix of the form:225

Yi(θM ) =



F
(1)
N (t1) . . .F

(1)
N (tNt)

F
(2)
N (t1) . . .F

(2)
N (tNt)

F
(3)
N (t1) . . .F

(3)
N (tNt)

F
(4)
N (t1) . . .F

(4)
N (tNt)

F
(5)
N (t1) . . .F

(5)
N (tNt)


∈ R5×Nt . (8)

Here we write for notational simplicity that the time instances t1 . . . tNt of the simulation are the same as the measurement time

instances; see equation (1). This is in general not the case, but is not very important, because of the dimensionality reduction

technique that we use to compress the output data, which is described next.

Section 2 Section 3 Section 4 Section 5Section 1
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Figure 5. Representation of measurements (left, solid lines) and Aero-Module output (right, solid lines) using three Fourier coefficients

(dashed) at different radial sections, for scenario S1 (run 935) of the New MEXICO experiment (last revolution shown).

Since the normal force is relatively smooth in time, the solutions at different time instances are highly correlated, and230

dimensionality reduction techniques can be effectively applied. Commonly used techniques are based on principal component
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analysis (PCA) or the related singular value decomposition (SVD), see for example (Bottasso et al., 2014) and (Wagner et al.,

2020). In this work, the normal forces are periodic in time and a suitable reduction technique is to decompose the output signal

into Fourier modes via a discrete Fourier transform:

F̂
(%)
N (k) =

1

Nt

Nt−1∑
j=0

F
(%)
N (tj)exp−i2πjk/Nt , k = 0,1, . . . ,Nk − 1, (9)235

where i=
√
−1 and the resulting coefficients F̂ (%)

N (k) are complex valued. Note that both FN and F̂N effectively depend on

the parameters θM , but this dependence is omitted here to keep the notation concise. The normal force at a given section (%)

is then approximated by keeping Nk Fourier coefficients (ordered as k1,k2, . . .) that correspond to the modes that have the

largest power spectral density, plus the mean of the signal (k = 0). The selection of the PSD peaks was easy to automate since

the peaks are easily distinguishable from any background noise, and the signals are well represented in terms of a few Fourier240

coefficients. We expect this to be true also for different operating conditions, although we recommend as a best practice to plot

the original output alongside the Fourier representation when moving to new test cases.

An example of the Fourier representation of the normal force with three coefficients is shown in Figure 5 (right), together

with the experimental results and their Fourier representation (also with three coefficients) on the left. The physics of the yaw

model (Schepers, 2012) is such that its parameters are meant to change the amplitude and the phase shift of the normal forces245

(via the induced velocities), and not their mean value. Therefore, the mean of the signal will be left out from the calibration.

Furthermore, as we focus on calibrating the parameters of the yaw model that are amplitude coefficients (see equation (7)), we

will use the amplitude of the first mode (and not the phase shift).

3.3.3 Summary

The two previous sections can be summarized by introducing the quantity of interest Qi for a certain operating condition Si250

and model parameters θM as

Qi(θM ) :=Q
(
Yi(θM )

)
∈ RNsec×Nk , i= 1, . . . ,NS . (10)

For the DanAero case we have

DanAero: Q=


F̂

(1)
N (0)

F̂
(2)
N (0)

F̂
(3)
N (0)

F̂
(4)
N (0)

 , (11)

while for the New MEXICO case we have255

New MEXICO: Qi =



|F̂ (1)
N (k1)|
|F̂ (2)
N (k1)|
|F̂ (3)
N (k1)|
|F̂ (4)
N (k1)|
|F̂ (5)
N (k1)|


, i= 1,2,3, (12)
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where k1 = 1 for this test case, since the most energetic mode coincides with the one with the lowest frequency.

4 Methodology

4.1 PCE-based surrogate model

In order to perform parameter sensitivity and parameter calibration, typically a high number of computationally expensive260

Aero-Module runs M(θM ) are required. To reduce the computational time, a surrogate model or emulator is constructed

(for the quantity of interest) and used in lieu of the full model. Examples of some popular surrogate models include Kriging

(Gaussian process regression), polynomial chaos expansion (PCE), support vector machines (SVM) and radial basis functions

(RBF) (Schöbi, 2019). In this study, a PCE-based surrogate model will be used because PCE has been found to be an efficient

method in computing the stochastic responses of complex computational models (Soize and Ghanem, 2004; Guo et al., 2018;265

Dutta et al., 2018).

The PCE surrogate model is constructed to approximate the quantity of interest as predicted by the aerodynamic model:

QPCi (θM )≈Qi(θM ), i= 1, . . . ,NS , (13)

where the subscript i indicates that a different surrogate model is built for each operating condition Si, which depends on

the same parameter set θM . This subscript will be left out in what follows if no confusion can arise. A PCE approximation270

QPC(θM ) of the aerodynamic model Q(θM ) can be defined as a weighted sum of multivariate polynomials in θM (Marelli

and Sudret, 2019; Smith, 2013):

QPC(θM ) =
∑
k∈K

wkΨk(θM ), (14)

where Ψ(θM ) is the multivariate polynomial basis, and wk is the coefficient corresponding to basis function Ψk. k is the multi-

index and K is the set of multi-indices describing which polynomial basis functions are used. The set K in (14) depends on275

the truncation scheme; in this work, a hyperbolic truncation scheme is used with truncation parameter equal to 0.75 (Blatman,

2009). Furthermore, an adaptive strategy is followed in which sparse PCE expansions are pursued, by favouring low rank

truncation schemes (i.e. penalizing the norm ‖w‖1). To achieve this, the coefficients wk are computed from the following

adapted least-squares minimization problem (Marelli and Sudret, 2019):

ŵ = argmin
w

E
[(
wTΨ(θM )−Q(θM )

)2]
+λ||w||1. (15)280

This equation is solved with the Least-Angle Regression (LARS) algorithm (Efron et al., 2004), given that a set of N samples

of θM have been provided, which we denote by θ(n)M , with n= 1 . . .N . We will use Latin Hypercube Sampling to obtain these

samples.

The LARS algorithm in the context of PCE starts with all PCE coefficients set to zero, and then iteratively selects polynomials

based on the correlation with the current residual. After every iteration an a-posteriori error, namely the Leave-One-Out (LOO)285
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cross-validation error εLOO, is computed (Marelli and Sudret, 2019):

εLOO =
1

N

N∑
n=1

(
Q(θ

(n)
M )−QPC\(n)(θ(n)M )

)2
, (16)

whereQPC\(n) denotes the PCE surrogate model trained by leaving the n-th sample out. The surrogate model with the smallest

εLOO is then chosen as the best PCE model.

4.2 Sensitivity analysis290

Sensitivity analysis aims at finding which input parameters θM of the Aero-Module explain at best the uncertainties or varia-

tions in the model predictions. Sensitivity analysis aids in identifying non-influential parameters that can subsequently be fixed

at their nominal values in the calibration process. In this work, a so-called global sensitivity analysis using a variance-based

Sobol’ decomposition technique is performed. For the sake of conciseness, we describe this technique briefly; a more detailed

description in the same context of aerodynamic wind turbine models is available elsewhere Kumar et al. (2020).295

The idea of a variance-based analysis is to relate the variance in the model inputs to the variance in the model output. The

Sobol’ indices are defined as a ratio of variances. An important advantage of using PCE as surrogate model is that once the PCE

coefficients are determined, the first order and the total order Sobol’ indices can be obtained directly without any additional

model evaluations. In this work the total order Sobol’ index STi , corresponding to θM,i, is used and is given by:

STi =
1

D

∑
k∈Ki

w2
k, i= 1, . . . ,Nθ, (17)300

whereKi is a subset ofK which consists of the set of multivariate polynomials that are non-constant in the i-th input parameter

θM,i, and D = Var[QPC(θM )] is the variance of the PCE. The total sensitivity indices can be interpreted as an importance

measure for the parameter θM,i: a large STi implies, roughly speaking, that θM,i has a strong influence on Y . These total

indices include possible interaction effects between the parameters, which can be excluded by looking at the first order indices.

For the New MEXICO test case such an interaction is indeed present, but since it does not change the conclusions from the305

analysis, this will not be further reported here. Note that the sensitivity analysis is performed without taking into account any

measurement data, it is purely model-based. Furthermore, it should be noted that the analysis assumes that the parameters θM,i

are independent.

4.3 Bayesian calibration

A widely used Bayesian calibration framework has been introduced by Kennedy and O’Hagan (2001). The framework can310

be used to predict the ‘true’ behavior of a computational model by calibrating model parameters θM to make the model

predictions Y most likely to represent measurements y. We assume that the discrepancy E between the PCE approximation to

the Aero-Module prediction, QPC , and the measurement data y is of additive type, so that we can write:

Qdi =QPCi (θM ) +E, i= 1, . . . ,NS . (18)

13



The subscript i corresponds again to operating condition Si. QPC is the PCE approximation to the quantity of interest given315

by a few Fourier coefficients computed from the Aero-Module output Y ; see equation (10). Qd is the quantity of interest for

the measurement data y, which is determined in a similar fashion. The discrepancy term E accounts for both model error and

measurement errors, and is assumed to be a normally distributed random vector, written as:

E ∼N
(
0,Σ(θE)

)
, (19)

where N
(
0,Σ(θE)

)
denotes the multivariate normal distribution with zero mean value and diagonal covariance matrix Σ320

parameterized by a set of variance parameters θE ∈ RNsec·Nk . E will typically have a dependence on the operating condition,

but for sake of simplicity this is not considered in our test cases. We furthermore note that for the sake of simplicity, and also

due to the lack of knowledge of the model bias term, the discrepancy term is assumed to have a zero mean. This is a commonly

used approach in Bayesian model calibration, meaning that on average, we believe the model is able to reproduce the data.

More advanced approaches are possible (e.g. using a Gaussian process to model the discrepancy), also in the context of UQLab325

(by providing a user-defined likelihood function).

The parameters θE are known as hyperparameters and will be calibrated together with the model parameters θM . The

combined parameter vector θ = (θM ,θE) is assumed to be distributed according to a so-called prior distribution π(θ):

π(θ) = π(θM )π(θE), (20)

where we have assumed that the prior on the model parameters and on the hyperparameters are independent. The Gaussian330

discrepancy model from equation (19), induces the following likelihood function:

L(θ;Qd) =N
(
Qd|QPC(θM ),Σ(θE)

)
. (21)

The expression for the posterior distribution of the parameters θ then follows from Bayes’ theorem (Gelman et al., 2013):

π(θ|Qd) =
L(θ;Qd)π(θ)

Z
with Z =

∫
L(θ;Qd)π(θ)dθ, (22)

where π(θ|Qd) is the posterior distribution and Z is the normalizing factor called the evidence (the integration is over the335

domain of θ). The posterior distribution π(θ|Qd) in equation (22) can be interpreted as degree of belief about the parameters θ

given the measurement dataQd. Commonly reported point estimates derived from the posterior are the mean and the Maximum

a Posteriori (MAP) estimate, defined as the value where the posterior distribution is maximum, i.e. θMAP = argmaxθ π(θ|Qd).

We will also report the posterior predictive, which is obtained by propagating the posterior distribution, given by (22), through

the model:340

π(Q̂d|Qd) =

∫
L(θ;Q̂d)π(θ|Qd)dθ. (23)

Here Q̂d represent future observations of the quantity of interest, so the posterior predictive expresses the probability of ob-

serving new data Q̂d given existing data Qd. The posterior predictive is computed by using the samples of the posterior and
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evaluating the likelihood from the PCE model evaluations (adding an independently sampled discrepancy term) (Wagner et al.,

2019).345

The computation of the high-dimensional integral Z in equation (22) is not tractable for a general model QPC(θM ) . The

computation of Z can be circumvented by using Markov chain Monte Carlo (MCMC) methods, which avoid the need to

compute Z. MCMC techniques construct Markov chains to produce samples distributed according to the posterior distribution.

With these samples, the posterior characteristics can be evaluated. In this work, we will use the so-called affine-invariant

ensemble sampler (AIES) (invariant to affine transformations of the target distribution), which requires little tuning and is350

suitable for cases where strong correlations exist between the parameters (Goodman and Weare, 2010). However, each posterior

sample still requires an evaluation of the likelihood (cf. equation (22)), so even with AIES thousands of model evaluations are

still needed to obtain an accurate posterior. The PCE-based surrogate model QPC will therefore be used in place of the full

Aero-Module Q.

5 Results and discussion355

In this section, the framework presented in section 4 is applied to (i) calibrate the sectional lift polars that are input to the

Aero-Module using the DanAero MW experiment, and (ii) to calibrate the yaw model parameters of the Aero-Module using

the New MEXICO experimental data set.

5.1 Lift polar calibration with DanAero data

As described in section 2.1, the NM80 turbine at a mean wind speed at hub height set to 6.1 m/s will be considered. The turbine360

rotational speed is set at 12.3 rpm, the pitch angle to 0.15 degree and the yaw angle is set to zero.

5.1.1 Sensitivity analysis

In order to build the PCE surrogate model (14), the Aero-Module is evaluated at a number of random samples of the parameter

vector θM (given by equation (6)). We specify a normal distribution for each component of θM :

θM,i ∼N
(
0,σC), i= 1, . . . ,Nθ, (24)365

where C stands for either ∆Cl, ∆Cm or ∆Cd. We take σC = 0.125 (for all sections, and for both lift, drag, and moment

coefficient). This choice is such that the original polar is perturbed around its mean and that 95% of the samples will fall within

±25% of the unperturbed value. It also encodes our belief that very large perturbations from the original polar are less likely

than small perturbations. To avoid unphysical realizations (unlikely but not impossible), the normal distribution is truncated

to have a bounded support of [−0.5,0.5]. The resulting perturbed polars follow from equation (5), and examples are shown in370

Figure 4.

N = 32 model evaluations were sufficient to achieve an LOO-error (equation (16)) smaller than 10−3 (for details we refer

to appendix B). The total order Sobol’ indices STi following equation (17) are computed with the PCE surrogate model, as
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explained in sections 4.1-4.2. The resulting Sobol’ indices expressing the sensitivity of the mean normal force at each radial

section towards the perturbation in the lift, drag, and moment coefficients are shown in Figure 6. Note that we report here the375

sensitivity indices for the sectional normal forces, which is an extension compared to our sensitivity analysis (Kumar et al.,

2020), where we considered the total normal force. Figure 6 indicates that the variation in the normal forces can be completely

attributed to the variation in the lift coefficients. This conclusion is in line with what has been reported for the total normal force

(Kumar et al., 2020). However, we should note that it was not trivial to obtain these results, because there was an inconsistency

between the provided (‘planform’) thickness distribution of the blade and the provided thickness of the four airfoil sections.380

We have therefore changed the airfoil thicknesses as is explained in Appendix B2.

With the corrected thickness distribution the sensitivity analysis confirms what we know from BEM theory, namely that the

sectional normal force dFN depends on Cl and Cd via

dFN = dL(α)cosα+ dD(α)sinα where

dL(α) = Cl(α) 1
2ρV

2cdr,

dD(α) = Cd(α) 1
2ρV

2cdr.
(25)

Here dL and dD are the sectional lift and drag forces respectively, α is the local angle of attack, V is the relative velocity, dr385

indicates a spanwise section, and c is the local chord length. Since the angle of attack is only a few degrees at the measurement

stations under consideration, and the drag coefficient at small α is much smaller than the lift coefficient at small α, the normal

force is dominated by the lift coefficient. Note that since we consider the relation between normal force (normal to the chord)

and lift, the twist or pitch angle of the blade does not enter in equation (25). The moment coefficient does not influence the

normal force, which is consistent with aerodynamic theory.390

Given that the sensitivity of the normal force is dominated by the lift coefficients, we will consider only the calibration of

the lift coefficients in the next section. Calibrating the drag or the moment coefficients would require one to either use different

measurement data (e.g. tangential force measurements) or to use a more advanced technique to deal with the low identifiability

of the drag coefficients, such as the SVD-based decorrelation technique proposed by Bottasso et al. (2014). Since the purpose

of this test case is mainly to show an example of our methodology (sensitivity analysis and Bayesian inference with surrogate395

models), and not to accurately calibrate the airfoil polars over several operating conditions, this is not considered here.
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Figure 6. Sensitivity of sectional normal force with respect to perturbations in airfoil polars with adapted thickness.

5.1.2 Calibration

Following the sensitivity analysis, Bayesian calibration was performed for 8 parameters, namely the 4 model parameters

∆Cl,1 . . .∆Cl,4 and the 4 discrepancy parameters θE,1 . . .θE,4, using the normal force measurements obtained from the

DanAero MW experiment. The surrogate model constructed in section 5.1.1 is retrained, without the drag and moment co-400

efficients as uncertain parameters, again using N = 32 runs of the Aero-Module. Since the sampling method is random (LHS),

the surrogate model used for the calibration can in principle be somewhat different from the one used for the sensitivity analysis.

In practice the surrogate model for calibration will be even more accurate, since it involves fewer parameters.

In the Bayesian analysis, the prior on the model parameters is taken the same as in equation (24). The prior on the discrepancy

parameters is taken as a uniform distribution:405

θE,i ∼ U(0,σ2
E), i= 1, . . . ,4. (26)

Note that θE (N2/m2) and σ2
E model the variance between model and data, and are therefore positive quantities. We take

σ2
E = 5 · 104 (so that σE ≈ 223 N/m), which we determined by considering the standard deviation in the measurement data

(around 100 N/m) and doubling this value to get a sufficiently broad prior. One could argue that this error should depend on the

radial position along the blade, but this was not assumed in our prior specification. Instead, we did not want to introduce too410

much (possibly wrong or biased) a priori knowledge about the radial dependence but let the calibration process ‘do the job’.

The PCE-based surrogate model for the quantity of interest, QPC(θM ), is used in place of the Aero-Module throughout

the analyses. The AIES algorithm with 102 parallel chains and 103 steps is deployed (in total 105 MCMC iterations and
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concomitant surrogate model evaluations). Convergence is assessed based on the Gelman-Rubin diagnostic (Wagner et al.,

2019) and visual inspection of the MCMC trace plots (see Figure B4 in the appendix), and a burn-in of 50% is used. With the415

full Aero-Module, this would take several weeks to compute on a desktop computer. By using the surrogate model instead, this

is reduced to less than an hour.

As discussed in section 3.3.1, the number of ‘measurements’ is varied to illustrate the effect on the posterior distribution

of the parameters. As an example, Figure 7a illustrates how the prior on ∆Cl,1 (truncated normal) becomes more and more

dominated by the data when the number of measurement points increases. The marginal posteriors for the other parameters420

show similar behavior. If additional datapoints would be included, the posterior would become even stronger peaked (almost

independent of the prior distribution).
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Figure 7. Calibration results for the lift coefficient at the first radial section.

In what follows, we will focus on the case where 200 measurement points are used for the calibration. Figure 8 shows

the resulting samples of the posterior distribution for all parameters. The ellipsoidal form of the two-dimensional scatterplots

indicates that the different parameters are to good approximation uncorrelated. This is consistent with the outcome of the425

sensitivity analysis, which showed that each sectional lift force was basically only depending on the force coefficient at the

very same section, and not depending on the lift coefficient at other sections. Note that, if the original thickness distribution

would have been used (see Appendix B2), a strong correlation between the lift coefficients at section 3 and 4 would show up.

A summary of the posterior marginals displayed in Figure 8 is compiled in Table 2 in terms of the MAP and the standard

deviation. Based on the MAP values, an example of a calibrated Cl polar, compared with the reference Cl polar, is shown in430

Figure 7b. The MAP values of the lift coefficients all lie around −0.2, meaning that the original lift coefficients need to be
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for the DanAero test case with 200 measurements. The orange crosses correspond to the MAP estimates.

Table 2. Summary of prior and posterior distribution for DanAero calibration with 200 measurements. ∆Cl is dimensionless, θE has dimen-

sions N2/m2.

Parameter Prior Posterior - MAP Posterior - Standard deviation

∆Cl,1 N (0, 0.125) -0.23 1.1 · 10−2

∆Cl,2 N (0, 0.125) -0.17 1.1 · 10−2

∆Cl,3 N (0, 0.125) -0.22 7.1 · 10−3

∆Cl,4 N (0, 0.125) -0.21 5.6 · 10−3

θE,1 U(0, 50000) 2.9 · 103 2.9 · 102

θE,2 U(0, 50000) 4.6 · 103 5.1 · 102

θE,3 U(0, 50000) 9.0 · 103 9.4 · 102

θE,4 U(0, 50000) 7.0 · 103 7.3 · 102
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Figure 9. Comparison of uncalibrated and calibrated Aero-Module predictions of sectional normal forces with the DanAero measurements.

The grey shaded areas indicate the posterior predictive distributions. The large blue crosses indicate the mean of the measurement data

(at each section), the small crosses indicate the 200 measurements (at each section). The Aero-Module predictions are obtained from the

surrogate model and are essentially indistinguishable from the full Aero-Module results, which have therefore been omitted for the sake of

clarity.

corrected by about 20% in order to match the experimental results (we will comment on this relatively large change in the next

paragraph). Table 2 also lists the standard deviation associated to the ∆Cl parameters, which is in all cases small, confirming

the observation of Figure 7a that the posterior is sharply peaked when sufficient measurement points are included.

Given the samples of the posterior distribution, the posterior predictive distribution is computed following equation (23) and435

plotted along with the measurement data, the uncalibrated model results, and the model evaluated at the MAP in Figure 9.

Clearly, the calibrated Aero-Module (MAP) is overlapping with the mean of the experimental data. Furthermore, the posterior

predictive (which expresses the probability of observing new data given the calibrated lift polars), centers nicely around the

MAP and encapsulates the experimental data well. The results of the uncalibrated Aero-Module at the third and fourth radial

section are very unlikely given the calibrated lift polars.440

We note that in order to obtain the posterior predictive of other possible quantities of interest not considered in this work

(such as the power output or the blade bending moment), one would preferably add these quantities to the model output list

before the surrogate model is being trained, so that the posterior predictive can be efficiently evaluated without requiring full

model runs. Alternatively, one could use the full Aero-Module with the calibrated parameters and use these to determine the

posterior predictive for the power, but that would be computationally very expensive.445
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It is important to note that using the obtained lift polars and hyperparameters in a predictive setting for a different set of

operating conditions will require careful consideration. Firstly, using a single operating condition for calibrating the lift polars,

as is currently the case, makes their validity to other operating conditions limited. Secondly, the discrepancy between model

and measurement data (consisting of both model and measurement errors), E in equation (18), has been fully accounted for

by calibrating the lift coefficient. It is highly likely that E depends also on other factors, such as the simplifications (missing450

physics) present in BEM theory, the unsteadiness of the atmospheric conditions, the uncertainty in the measurements, etc. This

is perhaps the cause that relatively large changes (around 20%) in the sectional lift coefficients are needed to achieve a match

between the Aero-Module and the experimental data. Lastly, the values obtained for the hyperparameters θE,1 - θE,4 are very

much dependent on the aerodynamic model and the data used. These values currently include both the measurement noise

and the model inadequacy, which are not expected to be the same for a different set of measurements, a different operating455

condition, or a different aerodynamic model.

5.2 Yaw model calibration with New MEXICO data

In the previous section we showed as a proof of concept how the combination of surrogate modelling, sensitivity analysis and

Bayesian inference can be used to calibrate parameters of the Aero-Module. The test case was relatively simple in the sense

that only a single operating condition was used, and because the relation between lift coefficient and normal force (equation460

(25)) is linear, the sensitivity analysis and calibration results were quite straightforward. In this section we move to a more

advanced test case, in which the parameters of a yaw model are calibrated based on normal force measurements.

5.2.1 Sensitivity analysis

As mentioned in section 2.2, experiments and corresponding simulations were carried out for three different operating condi-

tions; the values are shown in Table 1. The parameters to be calibrated are the yaw model parameters given by equation (7) and465

repeated here for convenience:

θM = (AM11,AM12,AM13,AM14,AM15). (27)

The nominal (uncalibrated) values for these parameters are listed in table C1 in Appendix C. A normal distribution is assumed

for each amplitude coefficient, based on consultation with the developer of the yaw model (Schepers, 2012):

AM∼N (µ,σ), (28)470

where µ equals the nominal value provided in table C1, and σ is taken equal to 0.1. This value is such that the spread in the

experimental data can be captured by the AeroModule (as will be needed for calibration) and also makes sure that the induced

velocity is likely to remain positive.
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Figure 10. Sensitivity analysis for three different operating conditions: S1 (top), S2 (middle), S3 (bottom). Here θM = (θ1,θ2,θ3,θ4,θ5) =

(AM11,AM12,AM13,AM14,AM15).
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Similar to the previous case, a PCE is set-up by drawing random samples from the parameter vector. In appendix C the

convergence of the LOO error is assessed, and it is shown that by taking N = 256 samples (for each scenario) the LOO error475

is at most on the order of a few percent, which is sufficient to obtain accurate Sobol’ indices (and to perform calibration). The

total order Sobol’ indices ST following equation (17) are computed for the five dimensional parameter vector θM . In contrast

to the DanAero case, (where the normal force at section i depended exclusively on the lift coefficient at section i), in this case

the normal force at a certain section depends on the value of all model parameters, so that many more simulations are required

to obtain an accurate surrogate model.480

The resulting plots for the total Sobol’ indices are shown in Figure 10 for all three operating conditions. It is clear that pa-

rameter AM11 is especially important at the inner part of the blade, whereas parameters AM12 and AM13 become increasingly

important for the outboard sections. AM14 and AM15 have little dependency on r, but instead increase in importance when the

yaw angle is increased. This behavior is consistent with expression (C1). Overall, it can be concluded that all parameters are

significantly influencing the normal force behavior (under the assumed distributions).485

5.2.2 Calibration

The sensitivity analysis did not identify clear non-influential parameters, so all five yaw model parameters will be included in

the calibration process. The experimental data for the calibration consists of the normal force measurements obtained from the

New MEXICO experiment. However, the normal force measurements at section 3 were not included in the calibration process,

for the following reasons. Firstly, in Schepers et al. (2018) it was shown that the normal force amplitude measured at section 3490

(for case 2.1) appeared to be much lower than predicted by both BEM and CFD codes. Secondly, it turned out that under the

assumed range for the AM-parameters, it was not possible to get amplitudes as small as reported in the measurement data (and

this could not be fixed by increasing the range). Perhaps this could be fixed by including the other parameters of the yaw model,

but it is also likely that the measurement data is off at this point. Therefore, the normal force at section 3 has been removed

from the surrogate model constructed in section 5.2.1 for the purpose of calibration. The resulting PCE-based surrogate model495

for the quantity of interest, QPC(θM ), is based on 768 samples (256 for each scenario) and used in place of the Aero-Module

throughout.

The prior on the model parameters is taken the same as in equation (28). Given the limited amount of measurement data, the

discrepancy parameters are not calibrated in this test case, but are chosen to be fixed (with the same value for each scenario

and each radial section) at θE = σ2, where σ is taken equal to 3 as a rough estimate based on the uncertainty bands reported500

in Schepers et al. (2018). Like in the previous test case, the AIES MCMC algorithm with 103 steps and 102 parallel chains is

deployed. The posterior samples and the marginal distributions are shown in Figure 11, and corresponding statistics are given in

table 3 (for MCMC trace plot examples, we refer to Figure C2 in appendix C). One can observe that the posterior distributions

are still Gaussian-like, but with a shifted mean and a smaller standard deviation than the prior distribution. The largest shift

(in absolute sense) is incurred for parameters AM14 and AM15; the smallest shift happens for AM13, which is hardly changed505

when compared to the prior. In contrast to the DanAero test case, where the posterior was very much dominated by the data,

the posterior for the New MEXICO case is still close to the prior, because fewer data points are used. The posterior samples
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Figure 11. Samples of the posterior distribution of yaw model parameters for the New MEXICO test case. The orange crosses correspond to

the MAP estimates.

indicate a clear correlation between parameters AM12 and AM13, and between AM14 and AM15. This result is consistent with

the yaw model expression (equation (C1)), since AM12 and AM13 both relate to the relative radius, whereas AM14 and AM15

both relate to the yaw angle.510

The normal force amplitudes that are obtained with the calibrated model parameters (based on the MAP) are shown for

all operating conditions in Figure 12, together with the measurement data and the uncalibrated model output. Overall, we

observe that the calibration of the parameters has led to much improved model predictions. This is especially evident for

the outboard sections for operating conditions S2 and S3. For other scenarios and/or radial sections also an improvement is

generally observed, except for a few points, where the match is slightly worse (e.g. S2, section 2). Since the likelihood function515

in Bayes (equation (21) with covariance matrix chosen as Σ = σ2I) weighs the discrepancy in the different model outputs

equally, it is not surprising that at some points the discrepancy can increase slightly, while at other points it is significantly

reduced: on average the model fits the data much better.
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Table 3. Summary of prior and posterior distribution for New MEXICO yaw model calibration.

Parameter Prior Posterior - MAP Posterior - Standard deviation

AM11 N (0.445, 0.1) 0.41 0.046

AM12 N (-1.78, 0.1) -1.75 0.078

AM13 N (1.63, 0.1) 1.64 0.068

AM14 N (-0.0543, 0.1) 0.085 0.071

AM15 N (0.367, 0.1) 0.52 0.075
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Figure 12. Comparison of uncalibrated and calibrated AeroModule predictions with the New MEXICO measurements in terms of the

normal force amplitude. The grey areas (violin plots) are constructed from 500 draws of the posterior predictive distribution. The Aero-

Module predictions are obtained from the surrogate model and are essentially indistinguishable from the full Aero-Module results, which

have therefore been omitted for the sake of clarity.
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6 Conclusions

In this article we have proposed a computationally efficient framework to calibrate model parameters in aerodynamic wind520

turbine models. The three main ingredients that we use are: (i) a (polynomial) surrogate model that approximates the wind

turbine model, (ii) a sensitivity analysis to determine the most influential parameters, and (iii) Bayesian inference to calibrate

parameters in a probabilistic setting. The Bayesian inference step, which is typically computationally very expensive to solve,

is made computationally affordable through the use of the surrogate model. Evaluating 105 MCMC iterations takes less than

an hour with the surrogate model, whereas it would take weeks with the full Aero-Module model (when running on a desktop525

computer). The polynomial nature of the surrogate model furthermore allows quick evaluation of the Sobol’ indices in the

sensitivity analysis. The entire framework, known as UQ4Wind, is built around the UQLab software and tested on TNO’s

aerodynamic code Aero-Module.

Two realistic calibration studies have been performed with our proposed UQ4Wind framework in this paper. In the first test

case, we have used part of the DanAero experimental dataset to show how airfoil polars can be calibrated using normal force530

measurements. The sensitivity analysis clearly indicated that out of the lift, drag and moment coefficients, the lift coefficient is

most influential. After calibrating the lift coefficient values at the four radial sections, an excellent match with the experimental

data was observed.

In the second test case, we have used part of the New MEXICO experimental dataset to calibrate five parameters of the

yaw model that is used in the Aero-Module to estimate the induced velocity in yawed conditions. In order to handle the535

time dependence of both measurements and code output, we used a Fourier transform and considered the amplitude of the

most dominant Fourier mode as the quantity of interest for the calibration. The calibrated model leads to much improved

model predictions, especially regarding the normal force amplitude at the outboard sections of the blade under significant yaw

misalignment.

In both cases, the result of the Bayesian approach consists of distributions of the calibrated model parameters (the posterior540

distribution). The posterior distribution allows us to make predictions under uncertainty, for example by computing the posterior

predictive distribution, from which probabilistic statements can be deduced. At the same time, existing knowledge on the model

parameters (e.g. expert knowledge) can be included via the prior distribution, and any relation (not necessarily Gaussian)

between model and measurement data can be specified by choosing a likelihood function. These aspects form the true strength

of the Bayesian approach. However, it should be realized that in the practical setting of calibrating an aerodynamic wind545

turbine model, it is not always clear how representative choices for the prior distribution or the likelihood are to be made.

For the cases investigated in this paper, we have relied on expert knowledge and inspection of the measurement data. We

acknowledge that this process should be carefully performed when considering different experimental datasets and/or model

parameters. Similarly, the choice of distribution used in the sensitivity analysis (and in particular the corresponding variance)

can determine to a large extent the Sobol’ indices and has to be performed with care.550

Another aspect that requires careful attention is the selection of proper datasets. Initially, the plan was to use more datasets

from both DanAero and New MEXICO in the calibration runs, but it turned out that many were not directly useful, for example
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because of non-constant operating conditions (DanAero) or because the normal forces obtained from pressure distributions

were not considered accurate enough in yawed conditions (New MEXICO). As alternative, it is also possible to use models

with a higher physical fidelity (e.g. free vortex wake models, which perform well in yawed conditions) to generate data for the555

calibration.

A last aspect for future consideration is that of the steady nature of the DanAero test case, for which the airfoil polars could be

calibrated without taking into account the effect of the dynamic stall model. In more realistic settings (e.g. turbulent inflow), one

would have to calibrate both the airfoil polars and the dynamic stall model simultaneously. In the current case, time-dependent

data was not available for further cross-validation, and the accuracy of the calibrated polars in dynamic flow conditions remains560

uncertain. We note that if such data would be available, one should realize that the simultaneous calibration of both dynamic

stall model parameters and airfoil polars would constitute a high dimensional problem that might be computationally very

expensive. Our approach, in which such effects are separated by using a time-dependent and a time-independent case, is

effectively a way to reduce the high dimensionality of such a calibration problem.

Overall, we believe that the combination of surrogate modelling, sensitivity analysis and Bayesian inference provides a565

powerful approach towards model calibration. Calibrated models with a quantified level of uncertainty have many applications

in the wind energy industry beyond the aerodynamic models considered in this study, such as calibrating a dynamic wind farm

control model (this is part of our ongoing work). Another topic within wind energy that could benefit from the UQ4WIND

framework could be the calibration of low-order acoustic models using empirical correction factors for wind turbine noise

estimation. Furthermore, calibration of engineering wake models, which typically contain several uncertain model parameters570

(such as wake expansion coefficients), would benefit from calibration using high-fidelity models such as CFD results.

Code availability. The UQ4Wind software is available from https://github.com/bsanderse/uq4wind. UQ4Wind is built around the UQLab

software package (Marelli and Sudret, 2014), version 1.4, available from https://www.uqlab.com/. UQ4Wind does not include a license for

the Aero-Module, which has to be obtained separately from TNO).

Appendix A: Surrogate model details and UQLab settings575

The surrogate model is built using LARS. The sampling scheme is Latin Hypercube Sampling (LHS) in all cases. Adaptive,

sparse LARS is used, with possible polynomial degrees from 1 to 4 and truncation parameter 0.75 for DanAero, and polynomial

degrees from 1 to 10 and truncation parameter range from 0.5 to 1.5 for New MEXICO.

For the sensitivity analysis, the main UQLab commands are:

– uq_createInput (definition of model parameters),580

– uq_createModel (once for definition of model and quantities of interest, and once for setting up the PCE surrogate

model),
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– uq_createAnalysis (determining Sobol indices based on surrogate model).

For the Bayesian calibration, the same sequence of commands is used, with the difference that the uq_createAnalysis

command then takes as input the options for the Bayesian calibration (prior, likelihood, experimental data, MCMC settings).585

Appendix B: Details lift polar calibration

B1 LOO convergence

The surrogate model should be accurately approximating the full Aero-Module in order to use it for sensitivity analysis and

Bayesian inference. Figure B1a shows that the LOO error of the normal force at each airfoil section rapidly converges upon

increasing the number of samples. The convergence of the LOO also becomes more regular when adapting the thickness590

distribution as will be described in the next section B2, which can be observed in Figure B1b. This is because the surrogate

model at a certain section becomes almost independent of the parameters (lift coefficients) at other sections, making it easier

to train. Note that the reported datapoints are obtained by averaging over 5 simulation runs (so for N = 16 we perform 5× 16

simulations) in order to smooth out the randomness introduced by the LHS sampling method. For the results in sections 5.1 we

use the surrogate model with N = 32.595
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Figure B1. Convergence of LOO error as function of number of samples for DanAero test case with 12 parameters. Each datapoint corre-

sponds to the average over 5 runs.
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B2 Thickness adaptation

When using the original input files to perform the DanAero sensitivity study, it turned out that the normal force at section 3

depended on the lift coefficient at both sections 3 and 4 (see Figure B2). This peculiarity is caused by an inconsistency between

the provided (‘planform’) thickness distribution of the blade and the provided thickness of the four airfoil sections, as shown

in Figure B3. The lift coefficient at any radial position along the blade is determined by checking the local thickness in the600

planform graph, and then interpolating the lift coefficient from nearby airfoil sections, based on the relative thickness. For

example, at section 3 (r = 29m), the planform thickness is around 0.189. This value lies in between the values of section 3

(t/c= 0.197) and section 4 (t/c= 0.187), but is much closer to section 4 than section 3. This explains the large effect of ∆Cl,4

on the force at section 3.

After consultation with the DanAero experts1, the thickness of the airfoil sections was changed to match the planform data605

(see Figure B3). Figure 6 shows the results of the sensitivity analysis, indicating that with the adapted sectional thicknesses,

we correctly obtain the expected dependency of the sectional normal force on the corresponding sectional lift coefficient.

Thus, apart from identifying influential parameters, the sensitivity analysis step in our framework can also be used to correct

inconsistencies in the model formulation.
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Figure B2. Sensitivity of sectional normal force with respect to perturbations in airfoil polars with original thickness.

1We thank Georg Pirrung from DTU for providing us the adapted thickness values for the airfoil sections.
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discrepancy explains the observed sensitivity of the force at section 3 towards the lift coefficient at section 4.

B3 Calibration610

Figure B4 shows two examples of the convergence of the MCMC chains for the parameter ∆Cl,1 and hyperparameter θE,1,

where 200 datapoints were used for the calibration. The plot shows 100 chains that have been ran for 1000 steps using the

AIES algorithm. The trace plots for the other parameters show very similar behavior.
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Figure B4. Examples of MCMC chains and resulting posterior for model parameter ∆Cl,1 and hyperparameter θE,1, using 200 measurement

points. For the results reported in section 5.1, the first 50% of the chains is discarded (so-called burn-in).

Appendix C: Details yaw model calibration

The yaw model that is calibrated concerns an expression for the induced velocity (Schepers, 2012). The general form is615

ui(r̄,β,φr,θM ) = ui,0 (1−A1(r̄,β,θM )cos(φr −ψ1(r̄,β,θM ))−A2(r̄,β,θM )cos(2φr −ψ2(r̄,β,θM ))) . (C1)

Here r̄ is the relative radius (r̄ = r/R), φr the azimuth angle, and β the yaw angle. In this study, we focus on θM = (AM11, . . . ,AM15),

which appears in the expression for A1:

A1(r̄,β,θM ) = AM11 + AM12r̄+ AM13r̄
2 + AM14 sin |β|+ AM15 sin2β. (C2)

Note that each parameter is multiplied by a factor that is between 0 and 1, since 0≤ r̄ ≤ 1 and 0≤ β ≤ 90◦.620

The nominal values for the yaw model parameters are given in table C1 and taken from (Schepers, 2012).

Table C1. Summary of nominal value for yaw model parameters: amplitude coefficients (dimensionless).

AM11 AM12 AM13 AM14 AM15

0.445 -1.78 1.63 -0.0543 0.367

The convergence of the LOO error for the New MEXICO case, for all three operating conditions, is shown in Figure C1.

Examples of MCMC trace plots for two selected parameters (AM11 and AM14) are shown in Figure C2. The trace plots for the

other parameters are similar.
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Figure C1. Surrogate model convergence for S1 (dash-dot), S2 (dashed) and S3 (solid). Each datapoint corresponds to the average over 5

runs.
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Figure C2. Examples of MCMC chains and resulting posterior for parameters AM11 and AM14. For the results reported in section 5.2, the

first 50% of the chains is discarded (so-called burn-in).
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