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Abstract. Hub-height turbulence is essential for a variety of wind energy applications, ranging from wind plant siting to

wind turbine control strategies. Because deploying hub-height meteorological towers can be a challenge, alternative ways to

estimate hub-height turbulence are desired. In this paper, we assess to what degree hub-height turbulence can be estimated

via other hub-height variables or ground-level atmospheric measurements in complex terrain, using observations from three

meteorological towers at the Perdigão and WFIP2 field campaigns. We find a large variability across the three considered5

towers when trying to model hub-height turbulence intensity (TI) and turbulence kinetic energy (TKE) from hub-height or

near-surface measurements of either wind speed, TI, or TKE. Moreover, we find that based on the characteristics of the specific

site, atmospheric stability and upwind fetch either determine a significant variability in hub-height turbulence or are not a main

driver of the variability in hub-height TI and TKE. Our results highlight how hub-height turbulence is simultaneously sensitive

to numerous different factors, so that no simple and universal relationship can be determined to vertically extrapolate turbulence10

from near-surface measurements, or model it from other hub-height variables when considering univariate relationships. We

suggest that a multivariate approach should instead be considered, possibly leveraging the capabilities of machine learning

nonlinear algorithms.
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1 Introduction20

As wind energy expands and becomes an increasingly large portion of energy portfolios, collecting data on wind speed and

atmospheric conditions at turbine hub height is essential for the high performance of wind plants and their successful integration
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into the electric system. Hub-height quantities of wind speed and direction, turbulence intensity (TI), turbulence kinetic energy

(TKE), and atmospheric stability within the rotor disk and at turbine hub height impact turbine power generation (Wharton

and Lundquist, 2012a,b; Vanderwende and Lundquist, 2012; Murphy et al., 2020; Vahidzadeh and Markfort, 2019). Analysis25

of hub-height TI and TKE is instrumental in the control strategy for wake steering (Fleming et al., 2019, 2020). Turbine siting

and power forecasting also rely on hub-height quantities and are determining factors of whether a wind plant will be financially

advantageous (Optis and Perr-Sauer, 2019; Bodini et al., 2021).

Although useful, hub-height turbulence measurements are difficult to obtain because they require the construction and man-

agement of a 80-m or taller meteorological tower, or the installation of a lidar or sodar for an extended period of time (Brower,30

2012). Ground-level measurements are more readily obtainable—because shorter meteorological towers are easier and less

expensive to construct—and more can be deployed around a turbine site. To reduce dependence on hub-height meteorological

towers, researchers and wind turbine developers desire a method where ground-level measurements can be used to predict

hub-height quantities.

Various formulations have been proposed for estimating hub-height TI, or TI profiles, as a function of surface quantities.35

The Mann model (Mann, 1994, 1998) provided an analytic model for turbulence profiles in the presence of uniform linear

shear. Cheung et al. (2016) proposed and tested a formulation based on assumptions for turbulent boundary layers in a range of

stability conditions. Building from the power-law approach for extrapolating wind speeds from surface-level measurements to

hub height, Gualtieri (2017) proposed and tested an empirically based approach for using 30-m measurements to extrapolate

to 100-m altitudes, finding that considering atmospheric stability is critical.40

In this analysis we examine whether hub-height turbulence, measured in terms of either TI or TKE, can be successfully

derived from other atmospheric variables measured at ground level or hub height in complex terrain. We use data from two

meteorological towers at the Perdigão field campaign (Fernando et al., 2019) and one additional tower at the WFIP2 field

campaign (Shaw et al., 2019), both of which provide plentiful near-surface measurements as well as hub-height or near-hub-

height measurements. In Section 2 we define the atmospheric variables considered in the analysis and summarize the important45

features of the two field campaigns. We also analyze how hub-height measurements vary between the considered locations, and

suggest potential reasons for the observed variability. Section 3 investigates the efficacy of using ground-level measurements to

predict hub-height turbulence quantities, with a focus on the variability of the results among the considered locations. We also

segregate measurements by atmospheric stability condition and wind direction to assess whether these metrics are influential

factors in determining the observed variability of hub-height turbulence. Finally, we summarize our results and suggest future50

work in Section 4.

2 Data and methods

In our analysis, we focus on two observational data sets in complex terrain, which both offer profiles of turbulence measure-

ments from near the surface to hub height. Parameters useful to quantify atmospheric turbulence can be calculated by leveraging

2

https://doi.org/10.5194/wes-2021-68
Preprint. Discussion started: 23 July 2021
c© Author(s) 2021. CC BY 4.0 License.



the sonic anemometer high-frequency measurements at the sites. We calculate TI as55

TI =
σU

U
(1)

where σU is the variance of the horizontal wind speed, andU is the mean horizontal wind speed, both calculated over 10-minute

intervals to match the current wind energy industry standard (Emeis, 2018).

The TKE quantifies the mean kinetic energy per unit mass of air in turbulent flow and is defined as

TKE =
1
2
(σ2

u +σ2
v +σ2

w) (2)60

where we calculate the variances of the wind speed components over 30-minute intervals, a common choice to study atmo-

spheric boundary layer processes (De Franceschi and Zardi, 2003; Babic et al., 2012).

To classify atmospheric stability, we calculate the Obukhov length, defined as

L =− Tv ·u3
∗

k · g ·w′T ′
v

(3)

where Tv is the virtual temperature (K), u∗=(u′w′2 + v′w′2)
1
4 is the friction velocity (m s−1), k = 0.4 is the von Kármán65

constant, g = 9.8 is the acceleration due to gravity (m s−2), and w′T ′
v is the kinematic buoyancy flux (K m s−1). As for TKE,

we use a 30-minute average period to apply the Reynolds decomposition. To simplify the atmospheric stability classification,

we consider stable conditions for z/L > 0 m, and unstable conditions for z/L < 0 m. Other analyses of the stability conditions

at these campaigns find few times with neutral stratification given the strong diurnal forcing (Menke et al., 2018; Bodini et al.,

2019).70

2.1 The Perdigão field campaign

The Perdigão field campaign was designed to observe the microscale flow across a valley between two nearly parallel ridges in

central Portugal (Fernando et al., 2019). A multinational group of scientists carried out a massive data collection campaign from

1 May–15 June 2017. The site is largely covered in trees, which increases the surface roughness. The areas outside the ridges

and valley are largely farmland and eucalyptus groves. Instrumentation at the site includes meteorological towers, scanning75

and profiling lidars, sodars, radiosonde devices, and a host of other instruments. In our analysis, we consider observations

from two 100-m meteorological towers: TSE04, located on the southwest ridge, and TSE09, located on the valley floor, as

shown in the map in Figure 1. At each tower, we use data collected by sonic anemometers at 10 m above ground level and

80 m above ground level. The third 100-m tower at Perdigão was excluded from this analysis because of a data outage for a

significant portion of the campaign at the 10-m sonic anemometer. We also discard from the analysis time periods where the80

sonic anemometer observations are affected by the tower wake, which artificially enhance measured turbulence. To do so, we

eliminate observations when the wind direction is ±30◦ from the direction opposite to the tower boom (285–345◦ for TSE04,

305–5◦ for TSE09).

Because of the effect of the terrain, different wind regimes characterize the two towers considered here, as seen in the roses

in Figure 2. Located on the SW ridge, TSE04 mostly experiences wind from the NE and SW quadrants, with the wind flowing85
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Figure 1. Map showing the location of the two 100-m meteorological towers at Perdigão that we considered in the analysis.

perpendicular to the ridge. On the other hand, at TSE09, located on the valley floor, wind blows primarily from the NW and

SE directions, parallel to the valley axis. Also, TSE09 experiences lower wind speeds than TSE04 because it is sheltered

by the ridges. At TSE04, the majority of the wind from the SW is associated with unstable conditions, whereas NE winds

bring predominantly stable conditions. At TSE09, stability does not drive wind direction: both up-valley and down-valley

flows occur in both stable and unstable conditions. As for atmospheric turbulence, we see that the sheltered valley TSE0990

experiences stronger turbulence compared to TSE04, displaying more instances of both high TI and TKE values.

2.2 The WFIP2 field campaign

The Second Wind Forecast Improvement Project (WFIP2) took place in the United States Pacific Northwest region between

October 2015 and March 2017. Shaw et al. (2019) provide a general overview of the project, while Wilczak et al. (2019) de-

scribe the measurement campaign and Olson et al. (2019) summarize modeling advancements afforded by this campaign. Like95

the Perdigão campaign, the aim of the WFIP2 campaign was to better understand wind speed variability through complex ter-

rain to improve numerical weather prediction models. Instrumentation was arranged in a series of nested arrays that range from

the mesoscale, so that current numerical weather prediction models could be validated, to the microscale, with meteorological

towers and remote sensing instruments deployed amid wind plants along the Columbia River Gorge (Wilczak et al., 2019).

The wind plant shown in Figure 3 is located in very hilly terrain, with turbines arranged on the slope or on top of hills. High100

wind speeds are generated through the Columbia River Gorge by multiple influences, notably a pressure differential between

the cool damp air at the coast, and the warmer drier air to the east of the Cascade Mountains (Sharp and Mass, 2004).

In our analysis, we consider sonic anemometer measurements collected at the so-called Physics Site, the most densely in-

strumented location at WFIP2 (Figure 3). The data span from 16 July 2016 to 17 March 2017. We use data from a sonic

anemometer at 80 m above ground level on tower P12 to quantify hub-height wind speed and turbulence. We also use measure-105

ments collected from 10-m sonic anemometers at towers P04, P05, and P10, just a few kilometers west of P12. The median

value of the measurements from the three 10-m sonics was used to characterize near-ground level quantities for this analysis.
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Figure 2. Roses of wind speed, atmospheric stability (expressed in terms of z/L), TI, and TKE at Perdigão, using data from the 80-m sonic

anemometers. The left column shows values from the TSE04 ridge tower, and the right column shows the TSE09 valley tower. The gray

shaded regions show the wind direction sectors excluded because of tower wake effects.
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Figure 3. Map of the WFIP2 Physics Site, with the locations of the four meteorological towers considered in our study highlighted.

At P12, we discard all observations when wind direction is between 45◦ and 210◦, to filter out for wake effects caused

by either the meteorological tower itself or the nearby wind turbines. No such corrections were needed for the 10-m towers,

which are not in close proximity to wind turbines, and whose sonic anemometers were mounted directly on top of the towers,110

therefore not affected by tower wakes. Roses showing wind speed, stability, TI, and TKE as a function of wind direction at

WFIP2 are shown in Figure A1 in Appendix A.

2.3 Analysis of hub-height quantities

Hub-height TI and TKE are directly calculated using wind speed components, so the first relationship we consider is how they

vary as a function of hub-height wind speed itself. We first analyze the wind speed distributions at each tower (Figure 4), where115

Weibull distributions have been fitted to each case. TSE09 has the the lowest average wind speed given its location in the valley,

whereas wind speed at the WFIP2 tower has a much wider distribution, with high wind speed occurring more frequently than

at Perdigão.

Hub-height wind speeds influence hub-height TI and TKE. Figures 5 and 6 show how hub-height TI and TKE vary as a

function of hub-height wind speed at the three considered towers. Because of the large number of raw data points involved, in120

this and many of the subsequent plots in this paper we adopt a binning approach. In each plot, we bin individual measurements

based on the magnitude of the x-axis quantity, so that there are an equal number of raw data points represented by each point

shown in the plots. The x and y coordinates of each point shown in the plots are calculated as the median of all the raw

data points in each bin. A total of 100 points is shown for each relationship. Furthermore, we use a polynomial regression to

determine the line of best fit for each set of points. When looking at such a general relationship between binned data, a defined125

relationship between hub-height wind speed and TI emerge, but still with a large variability among different sites. In general,

hub-height TI displays an inverse relationship with speed—higher wind speed values display lower values of TI—as has been
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Figure 4. 80-m wind speed distributions with Weibull best-fit parameters for the Perdigão and WFIP2 towers.

seen at other locations (Emeis, 2018). At TSE04, this relationship levels out at wind speeds higher than about 7 m s−1. On the

other hand, the relationship at TSE09 is closer to being linear, likely because high wind speed rarely occurs at this location. On

the other hand, the WFIP2 data show a remarkable agreement with the TSE04 tower. Also, the WFIP2 data set contains more130

measurements at high wind speeds, where the TI values asymptote as wind speed increases.

On the other hand, hub-height TKE and hub-height wind speed have a direct relationship at all towers (Figure 6), again

with a large variability among the three locations. TSE09 generally displays higher values of TKE compared to TSE04, which

is consistent with the TKE roses in Figure 2. WFIP2 has lower TKE values at all wind speeds, but demonstrates a highly

consistent relationship.135

Interestingly, hub-height TI and TKE, when compared directly, show a larger divergence in trends between the three towers

(Figure 7). Both TSE04 and TSE09 have lines of best fit showing a proportional relationship between TI and TKE, as is

expected from the way those parameters are calculated in Section 2. However, the WFIP2 data show a different trend, with the

line of best fit trending slightly downward because of several high values of TI at low values of TKE, likely caused by the faster

horizontal winds at this location. If these points were excluded, WFIP2 would also show a proportional relationship between140

TI and TKE.

Although first-order relationships to predict hub-height turbulence metrics, such as the ones shown in Figures 5 and 6, might

seem simple and well-defined (at least when considering binned data), a host of atmospheric and topographic variables have

a strong influence on both TI and TKE. In fact, atmospheric turbulence is affected by a variety of conditions, including the

stability condition of the atmosphere, the wind direction, and the interaction between the wind flow and upwind terrain. As all145
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Figure 5. Hub-height TI as a function of hub-height wind speed at the Perdigão and WFIP2 towers.

these factors can greatly affect TI and TKE, analyzing different conditions separately will lead to a more accurate analysis of

the TI and TKE data sets. In the remainder of the analysis, we dive deeper into such multivariate variability to provide more

specific results. This analysis emphasizes the challenge of using surface variables to predict hub-height quantities.

To guide this additional analysis, we first assess the impact of atmospheric stability on the distributions of TI and TKE at hub

height. Histograms of TI and TKE at the TSE04, TSE09, and WFIP2 towers (Figure 8) show significant differences in TI and150

TKE frequency and magnitude when segregated by stability condition. The TI histograms for TSE04 and WFIP2 are skewed

left, showing higher instances of lower TI values, with stable measurements tending to have lower TI values than unstable

cases, consistent with the stronger turbulent mixing observed in daytime convective periods. At TSE09 in the valley, the TI

distribution is more symmetric, especially in unstable conditions, while the stable case still slightly skews left. Despite this

significant difference in TI distributions between the two Perdigão towers, the TKE histograms for TSE04 and TSE09 look155

similar, again with stable cases showing lower TKE values than the unstable cases, as would be expected. The WFIP2 data set

shows highly skewed distributions in both stability conditions, with smaller TKE values compared to Perdigão for both stable

and unstable cases.

Wind direction regimes can also impact atmospheric turbulence, because the flow interacts with different roughness and

vegetation based on the upwind fetch. Figure 9 shows histograms of hub-height TI and TKE for the dominant wind direction160

regimes (based on the wind roses in Figure 2) at the two Perdigão towers. At TSE04, we consider northeasterly (between 34◦
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Figure 6. Hub-height TKE as a function of hub-height wind speed at the Perdigão and WFIP2 towers.

and 74◦) and southwesterly winds (between 214◦ and 254◦) per Menke et al. (2019). On the other hand, at the TSE09 tower

in the valley, we focus on the down-valley (between 90◦ and 180◦) and up-valley (between 270◦ and 360◦) wind regimes. The

TI histogram for TSE04 shows similar distributions for both the SW and NE wind directions, with more measurements from

the NE having lower TI. At TSE09, there are fewer measurements from the NW up-valley direction, and these measurements165

have, on average, lower TI values. The TKE histogram for TSE04 displays similar distributions for both wind directions, again

with the NE winds usually associated with slightly lower TKE values. At TSE09, the TKE range is wider, with more values

between 5 and 10 m2 s−2 compared to the ridge tower. At the WFIP2 Physics Site, winds are dominantly from the west, and

a significant portion of the rest of the wind direction range was discarded from the analysis to avoid contamination caused by

wake effects, as shown in Figure A1. As a consequence of this reduced variability, we will not investigate the TI and TKE170

variability as a function of wind direction at WFIP2.

This preliminary analysis shows how clear differences emerge when TI and TKE are segregated by stability condition and

wind direction. In the following sections, we dive deeper into how these conditions affect the ability to estimate hub-height

turbulent quantities from ground-level measurements.
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Figure 7. Hub-height TI as a function of hub-height TKE at the Perdigão and WFIP2 towers.

3 Results175

3.1 Predicting hub-height TI from surface-based quantities

As mentioned in the Introduction, hub-height TI is essential for a variety of wind-energy-related tasks, ranging from siting and

turbine selection to wake steering and power forecasting. However, hub-height measurements can be difficult to obtain, whereas

ground-level measurements are more readily available. Here we test the ability of ground-level atmospheric measurements to

predict hub-height TI at the Perdigão and WFIP2 towers.180

The close relationship between hub-height TI and hub-height wind speed at the TSE04 and WFIP2 in Figure 5 points to the

potential predictive power of this metric. We test whether this still holds when using ground-level wind speed instead in Figure

10. As noted, we find reduced variability between the Perdigão tower TSE04 and WFIP2, while TSE09 predicts consistently

higher values of TI at 80 m due to its location in the valley. Even for TSE04 and WFIP2, which show a wide range of near-

surface wind speeds, the resulting relationship with hub-height TI is close to a constant horizontal line for the majority of the185

wind speed range, therefore limiting the practical applicability of these relationships to predict hub-height TI from a specific

value of near-surface wind speed.

Because ground-level wind speed cannot be used as a strong predictor of hub-height turbulence, there may be a better extrap-

olation performance when considering the same variable at both ground level and hub height. Figure 11 shows hub-height TI

10

https://doi.org/10.5194/wes-2021-68
Preprint. Discussion started: 23 July 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 8. TI and TKE histograms at hub height for the Perdigão and WFIP2 towers, with data segregated by atmospheric stability condition.

as a function of ground-level TI for the three considered towers. Each site displays a different relationship between hub-height190

TI and surface-based TI. The WFIP2 data appear in a tightly gathered cluster of near-surface TI data centered around 0.2, while

the TSE09 near-surface TI data are more loosely grouped and centered around 0.5, and TSE04 data are spread more evenly

across a wider range of near-surface TI. These differences in compactness and locations of data groupings drive differences in

the best-fit lines for each case. Although useful for visualizing an overall trend for the relationship between ground-level and

hub-height TI, the binning process applied in making these plots might obscure other important trends that could be used to195

estimate hub-height TI more accurately, if segregating the data based on atmospheric stability or wind direction.

We start by considering the impact of atmospheric stability, which we already found to have a significant impact on the

distribution of hub-height turbulence properties (histograms in Figure 8). When we segregate TI data at both hub height and

near the ground by stability condition (Figure 12), new specific trends emerge. At TSE04, there is a clear separation between

stable and unstable conditions, with the unstable cases predicting significantly larger values of 80-m TI for a given value of200
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Figure 9. TI and TKE histograms for the Perdigão towers, with data segregated by the dominant wind direction regimes.

ground-level TI. This separation is not at all evident in TSE09, where the stable and unstable cases exist as overlapping clouds,

indicating that stability is not the governing factor for TI in the Perdigão valley, producing no clear trends. At WFIP2, the

unstable condition displays higher values of hub-height TI overall, but the two sets of points overlap at low values of TI, and

the trend for the stable condition is downward, unlike the other lines that all trend upward. Therefore, when considering the

impact of atmospheric stability, there is no common trend between the three cases, and no general relationship to vertically205

extrapolate TI emerges.

Next, we consider how the relationship between ground-level and hub-height TI varies when considering different wind

direction regimes at Perdigão (Figure 13). In fact, these two 100-m meteorological towers at Perdigão experience different
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Figure 10. Hub-height TI as a function of ground-level wind speed at the Perdigão and WFIP2 towers.

upwind terrain and vegetation conditions, which influence atmospheric turbulence based on the direction the wind is flowing

from. At the ridge-top TSE04 we find a clear difference when comparing cases when the wind is from the SW or the NE. Wind210

from the SW, which flows perpendicular to the ridge without interacting with the valley, is consistently associated with higher

values of hub-height TI compared to wind measured from the NE direction, which includes the valley in the upwind fetch. On

the other hand, at TSE09 there is very little distinction between the relationships associated with up-valley and down-valley

flows, thus indicating that wind direction is not a primary driver of the variability of hub-height turbulence at this valley site.

We quantify this variability in terms of the different terrain roughness and vegetation height, which affect the wind flow for the215

considered wind direction regimes (Table 1). These terrain data sets are obtained from a lidar terrain survey at 20-m resolution

described in Santos et al. (2017); Costa et al. (2019). For each tower and each considered wind direction sector, we calculate

the mean and standard deviation of each terrain segment within a 5-km radius sector centered on the location of the tower.

We find that at TSE04, both upwind terrain roughness and vegetation height show larger values (both in terms of their means

and standard deviations) when the wind is coming from the SW compared to the NE. This variability is consistent with the220

large differences seen in Figure 13, so that the wind flow at TSE04 is much more turbulent when the wind has interacted with

a highly irregular terrain. On the other hand, up-valley and down-valley flow at TSE09 show similar surface roughness and

vegetation height, which is consistent with the little variability seen in Figure 13. As a reminder, WFIP2 was not included in

this analysis because the vast majority of the data share the same westerly wind regime.
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Figure 11. Hub-height TI as a function of ground-level TI at the Perdigão and WFIP2 towers.

TSE04—SW ridge TSE09—Valley

SW flow (214–254◦) NE flow (34–74◦) NW flow (270–360◦) SE flow (90–180◦)

Mean roughness 0.21 m 0.16 m 0.22 m 0.21 m

Std roughness 0.11 m 0.07 m 0.10 m 0.09 m

Mean vegetation height 2.54 m 1.98 m 2.44 m 2.33 m

Std vegetation height 2.94 m 2.04m 2.53 m 2.22 m
Table 1. Mean and standard deviation of terrain roughness and vegetation height for upwind land sectors with 5-km radius centered at the

locations of the two Perdigão towers.

225

Finally, we consider whether ground-level TKE might be a better predictor of hub-height TI (Figure 14). Once again, each

tower displays a different relationship, with the data largely forming loose clouds rather than clear trend lines, even when

considering binned data. This loose relationship demonstrates the low potential effectiveness for ground-level TKE to predict

TI aloft. As was done for ground-level TI, we segregated the relationships between hub-height TI and surface-based TKE

by stability condition and wind direction. We found no novel results, and included the corresponding plots in the appendix230

(Figures A2 and A4).
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Figure 12. Hub-height TI as a function of ground-level TI at the Perdigão and WFIP2 towers, with data segregated the stability condition

(z/L) calculated at ground level.

Figure 13. Hub-height TI as a function of ground-level TI at the two Perdigão towers, when data are segregated by wind direction.
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Figure 14. Hub-height TI as a function of ground-level TKE at Perdigão and WFIP2.

3.2 Predicting hub-height TKE from surface-based quantities

TKE is commonly used in atmospheric science, dispersion modeling, drone piloting, and forecasting applications, and therefore

estimating hub-height TKE from ground-level measurements would be beneficial to a variety of applications. The relationship

between hub-height TKE and ground-level wind speed (Figure 15) shows a similar positive, near-linear relation as seen when235

considering hub-height wind speed (Figure 6). However, in Figure 15 the trend lines for each tower diverge even more, with

WFIP2 predicting consistently low TKE values, and TSE09 predicting higher TKE values, but with data only available for low

wind speeds. Once again, the specific characteristics of each site have a strong impact on the variability of TKE, limiting the

predictive capability of ground-level wind speed.

We anticipate that using ground-level TKE to estimate hub-height TKE would produce the most straightforward relationship,240

because they are the same quantity measured at two heights. Figure 16 shows that for each tower studied, hub-height TKE has

a strong near-linear relationship with ground-level TKE. However, the slope of the trend lines varies depending on the site.

At TSE09 in the valley, surface-based measurements seen in Figure 16 correspond to hub-height measurements of TKE with

slopes higher than a 1:1 line. On the other hand, the trends at TSE04 and WFIP2 have slopes lower than a 1:1 line, allowing

for little universal predictive power for this metric across the three towers.245
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Figure 15. Hub-height TKE as a function of ground-level wind speed at the Perdigão and WFIP2 towers.

Finally, the relationship between hub-height TKE and surface-based TI is explored in Figure 17. While the best-fit lines for

the two towers at Perdigão have similar slopes, the WFIP2 tower shows a near-horizontal line. Once again, overall, using TI at

ground-level to predict hub-height TKE would not produce accurate results that can be generalized across different sites.

4 Conclusion

The ability to use measurements taken at ground level of wind speed, wind direction, TI, TKE, and atmospheric stability to es-250

timate hub-height quantities would be extremely useful in all applications where hub-height measurements are crucial, ranging

from wind turbine control to power forecasting and—in a broader perspective—pollutant dispersion and drone flight forecast-

ing. Meteorological towers that are tall enough to directly measure hub-height turbulence are both expensive and difficult to

construct, especially considering the ever-increasing size of commercial wind turbines, while near-surface measurements are

much more readily available. Despite this intense motivation to find accurate approaches for using ground-level measurements255

to estimate turbulence conditions at hub height, few models have been proposed to date for such application, each with their

inherent uncertainty and limitations. The challenge is even larger for sites in complex terrain.

We analyzed atmospheric data at 10 m and 80 m above ground level from three meteorological towers at two sites in complex

terrain: the TSE04 and TSE09 towers from the Perdigão field campaign, and a third tower from the WFIP2 field campaign.
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Figure 16. Hub-height TKE as a function of ground-level TKE at Perdigão towers and WFIP2.

Figure 17. Hub-height TKE as a function of ground-level TI at Perdigão and WFIP2.
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First, we investigated the relationships between hub-height TI and TKE as a function of other hub-height quantities. Although260

satisfactory site-specific relationships emerge when considering bin-averaged data, the raw data actually present a large scatter,

which makes such relationships murkier, as seen in Figure A3. In addition, a large variability among the different sites emerges,

even when comparing the TSE04 and TSE09 towers at Perdigão, which are only located a few kilometers apart. The limited skill

in predicting hub-height turbulence from a single other atmospheric variable is also confirmed when considering ground-level

measurements as predictors. We find large across-site variability when trying to predict hub-height TI and TKE from ground-265

level wind speed, TI, or TKE. Also, when segregating the data by atmospheric stability, a more nuanced picture emerges.

Although unstable conditions are connected to stronger turbulence at WFIP2 and the ridge-top TSE04, atmospheric stability is

not a main driver of hub-height turbulence regimes when considering the TSE09 valley tower. Finally, we find that the impact

of different wind direction regimes on hub-height turbulence is again highly site-specific, arising from the terrain roughness

and vegetation upwind.270

Clearly, the results of our analysis underscore the sensitivity of hub-height turbulence to numerous different factors that

simultaneously contribute to the variability of hub-height turbulence, so that no simple and universal relationships can be

derived when considering a univariate approach. Given the complexity of the desired relationship, and the inherent nonlinearity

of turbulent processes, machine learning could be leveraged to successfully model hub-height TI and TKE from a set of other

atmospheric variables. Recently, machine learning approaches have been successfully developed and applied to vertically275

extrapolate wind speed (Bodini and Optis, 2020b,a; Optis et al., 2021), both onshore and offshore, and to better parameterize

surface fluxes (Kosovic et al., 2020). Future work could expand these recently developed approaches to predict hub-height

turbulence instead, such that assessments of wake steering potential would not need to assume constant values of turbulence

Bensason et al. (2021). In addition, our analysis could be replicated in more simple terrain (Takle et al., 2019) or offshore, to

assess whether relationships to derive hub-height turbulence can more easily be derived in less complex topography.280

Data availability. WFIP2 observations are publicly available at https://a2e.energy.gov. Perdigão data are publicly available at https://data.

eol.ucar.edu/master_lists/generated/perdigao/.

Appendix A: Additional analysis for predicting hub-height TI

In this study, parameters from the WFIP2 field campaign were not separated by wind direction as was done with the Perdigão

towers. As seen in Figure A1, the dominant wind direction is from the west. Measurements from 45–210◦ were discarded due285

to wake effects from the tower or nearby wind turbines.

When segregated by stability condition, Figure 14 shows that stable conditions consistently display lower values of TI at each

TKE level. Even though TKE at ground level will not likely lead to an accurate prediction of TI at hub height, the differences

caused by stability further demonstrate the inability of TKE data at ground level to accurately predict TI aloft (Figure A2).
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Figure A1. Roses of wind speed, atmospheric stability (expressed in terms of z/L), TI, and TKE at WFIP2, using data from the 80-m sonic

anemometers.

At both TSE04 and TSE09, when segregated by wind direction, there is little distinction between the two dominant wind290

directions at each tower, as seen in Figure A4. For these two cases, segregating by wind direction does not improve the

predictive ability of ground-level TKE.

Appendix B: Additional analysis for predicting hub-height TKE

Hub-height TKE as a function of ground-level TKE segregated by stability condition is shown in B1. Each tower displays

widely varying trends between stable and unstable cases. At TSE09 there is little distinction, while at TSE04 and WFIP2 the295

fit lines of the stable and unstable cases depart dramatically. Overall, no universally valid relationship for using ground-level

TKE and atmospheric stability to predict hub-height TKE is found.
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Figure A2. Hub-height TI versus ground-level TKE at Perdigão and WFIP2 segregated by stability condition.

When considering the relationship between hub-height TKE and ground-level TKE when segregated by wind direction at

Perdigão (Figure B2), TSE04 shows a greater distinction between wind directions than TSE09, likely because there was a

greater difference in roughness and vegetation height in the SW and NE flow directions at TSE04, than between the NW and300

SE directions at TSE09 in the valley.

Hub-height TKE as a function of ground-level TI segregated by stability condition can be seen in Figure B3. Stable con-

ditions consistently predict lower values of hub-height TKE; however, the trend lines vary significantly across the sites, not

providing useful information regarding the relationship.

Finally, hub-height TKE as a function of ground-level TI segregated by wind direction is shown in Figure B4, once again305

without revealing any clear and universal trend.
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Figure A3. Raw (not-binned) data of hub height TI versus ground-level TI at TSE04 tower showing the large spread in the data as compared

to the processed data seen in Figure 11.

Figure A4. Hub-height TI versus ground-level TKE at Perdigão towers segregated by wind direction.
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Figure B1. Hub-height TKE versus ground-level TKE at Perdigão and WFIP2 segregated by stability condition.
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Figure B2. Hub-height TKE versus ground-level TKE at Perdigão towers segregated by wind direction.
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Figure B3. Hub-height TKE versus ground-level TI at Perdigão and WFIP2 segregated by stability condition.
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Figure B4. Hub-height TKE versus ground-level TI at Perdigão towers segregated by wind direction.
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