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Abstract. While most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear wind system 

equations is often important for understanding the system response and exploiting well-established methods and tools for 

analyzing linear systems. Linearized models are important for eigenanalysis (to derive structural natural frequencies, damping 

ratios, and mode shapes), controls design (based on linear state-space models), etc. In controls co-design, wherein methods 

often rely on linearized time-domain models of the physics, the physical structure (often called the plant) and controller are 10 

designed and optimized concurrently, so, it is important to understand how changes to the physical design affect the linearized 

system. This work summarizes efforts done to understand the impact of design parameter variations in the physical system 

(e.g., mass, stiffness, geometry, and aerodynamic and hydrodynamic coefficients) on the linearized system using OpenFAST. 

1 Introduction 

The Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and Integrated Servo-control (ATLANTIS) 15 

program funded by the U.S. Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) seeks to 

develop new technology pathways for the design of economically competitive floating offshore wind turbines (FOWTs) based 

on controls co-design (CCD) principles. Within ATLANTIS Topic Area 2 (Computer Tools), the National Renewable Energy 

Laboratory (NREL) leads a project developing the Wind Energy with Integrated Servo-control (WEIS) toolset, which is new 

independent software that combines Wind-Plant Integrated System Design & Engineering Model (WISDEM®), OpenFAST 20 

(formerly known as FAST), and CCD functionality together with the goal of providing the offshore wind energy industry and 

research communities with an open-source, user-friendly, flexible tool to enable true CCD of the FOWT physical design 

together with the controller (Jonkman et al., 2021). 

CCD methods, including those being implemented within WEIS, often rely on linearized time-domain models of the physics 

(e.g., an optimal open-loop controller is solved with direct transcription based on a linearized time-domain model using 25 

quadratic programming, from which an optimal closed-loop controller can be derived for use in a higher-fidelity nonlinear 

time-domain analysis). Here, the open-loop controller is optimized concurrently with the physical design (plant) via either a 

nested or simultaneous approach (Herber and Allison, 2019), so, it is important to understand how changes to the physical 

design affect the linearized system. 
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The open-source, physics-based engineering tool OpenFAST—developed by NREL via support from DOE and applicable to 30 

the loads analysis of land-based and offshore fixed-bottom and floating wind turbines—has had the ability to generate 

linearized representations of the underlying nonlinear system, wherein the linearized system (state-space) matrices are valid 

only for small perturbations about an operating point and for a fixed set of design parameters (Jonkman, 2013; Jonkman and 

Jonkman, 2016; Jonkman et al., 2018; Jonkman et al., 2020). The linearized system is expressed in terms of Jacobians of the 

state and output equations with respect to states and inputs. Although OpenFAST can be linearized each time the structure is 35 

changed within the design iteration loop directly in a brute-force way, the operating point calculation and linearization are 

computationally intensive operations. As a result, this direct evaluation method is not necessarily the best method. 

We originally considered computing Hessians—i.e., partial derivatives of the Jacobians with respect to design parameters—

directly within OpenFAST, such that the linearized system (including changes to the operating point) could be written as a 

function of design parameter perturbations. Although some theoretical expressions were developed—both at the module and 40 

full-system levels of OpenFAST, including algebraic constraints—and although this approach would likely be computationally 

efficient with the design cycle, this effort was abandoned because it would have required major changes to OpenFAST. 

Regardless, the theoretical work does provide some physical insight and will be summarized in Sect. 2. The theory is also 

applied to a simple forced mass-spring-damper system as an illustrative example in Sect. 3. 

Between the calculation of Hessians within OpenFAST and the direct evaluation (brute force) method of linearizing distinctly 45 

within every design iteration, is an intermediate method in terms of computational expense, whereby the linearized system is 

precomputed for a range of design parameter variations, and these linearized matrices are interpolated within the design 

iteration loop to find a representative linear system for specific design parameter values. Both the direct evaluation method 

and interpolation method have been implemented in WEIS, which interfaces to OpenFAST. The approaches used are explained 

in Sect. 4. A comparison between the results for a case study involving design parameter variations (tower density and stiffness, 50 

unstretched mooring line length) in the support structure of the International Energy Agency (IEA) Wind 15-MW reference 

wind turbine (Gaertner et al., 2020) atop the University of Maine semisubmersible (Allen et al., 2020) is presented in Sect. 5 

to assess the quality of the intermediate method. The results are compared in terms of the impact of design parameter changes 

on the eigensolution (natural frequencies and damping) of the linearized continuous state matrix and their computational 

expense. 55 

Although this exact topic is not found in literature to the authors’ knowledge, it is related to three fields of work. The first is 

linear parameter-varying (LPV) control, whereby a linear state-space system is described by known functions of parameters 

and gain scheduling is used to switch between the linear systems within the controller based on the current state of those 

parameters. In the wind turbine field, this technique has been applied to express a linear state-space model in terms of 

parameters that drive nonlinearities in the system behaviour (e.g., an effective wind speed or blade-pitch angle [Sundarrajan 60 

et al., 2021]). Sundarrajan et al. 2021 took this one step further and parameterized a linear floating wind turbine system used 

for control design in terms of floating platform mass for a CCD application. This article differs from that application in that 
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the approach we develop could apply to any design parameter of the wind turbine like mass, stiffness, geometry, or 

aerodynamic and hydrodynamic coefficients. 

The second field is the use of the Hessian in optimization applications. The Hessian describes the local curvature of the function 65 

in terms of second-order partial derivatives of the function. Knowledge of this curvature can greatly improve the convergence 

of gradient-based optimization methods (Martins and Ning, 2021). This article differs from that application in that Hessians 

are used in our theoretical approach to describe how the linear system varies with design parameter variation. 

Finally, linearized representations of the underlying nonlinear system are commonly generated from wind turbine physics-

based engineering tools other than OpenFAST. For example, linearization capability exists in Bladed (DNV GL, 2018) and 70 

HAWCStab2 (Hansen et al., 2017), which are other popular physics-based engineering tools used in wind turbine design. 

However, to the authors’ knowledge, the linear models generated from these tools only apply to a fixed set of design 

parameters, highlighting the novelty of the methods explored in this article. 

2 Theoretical Development 

2.1 Nonlinear system and linearization without parameters 75 

In the OpenFAST modularization framework, the most generalized nonlinear time-domain system implemented within a 

module that is still linearizable is given by Eq. (1) of Jonkman, 2013. For the sake of brevity and clarity in this article, we 

exclude possible discrete-time states and directly identify through a variable the set of parameters that characterize the system. 

The result is the semiexplicit differential algebraic equation of index 1 represented mathematically as: 

( )
( )
( )

, , , ,

0 , , , ,

, , , ,

x X x z u t p

Z x z u t p

y Y x z u t p

=

=

=



 with 0Z
z

∂
≠

∂
. (1) 80 

In Eq. (1), x  are the continuous states with first-time derivatives, x , determined explicitly by the continuous-state functions, 

( )X , z  are the constraint (algebraic) states determined implicitly by the constraint-state (algebraic) functions, ( )Z , y  

are the module-level outputs determined explicitly by the output functions, ( )Y , u  are the module-level inputs (derived 

from module-level outputs), p  are the parameters that characterize the functions, and all terms are shown evaluated at time, 

t . In wind turbine dynamics, continuous states may include displacement and velocity of the structure, constraint states may 85 

include quasi-steady induction in blade-element/momentum theory, inputs and outputs may include motions and loads, and 

parameters may include mass, stiffness, geometry, and aerodynamic and hydrodynamic coefficients. A more exhaustive list of 

example continuous states, constraint states, inputs, outputs, and parameters in wind turbine dynamics are given in Table 2 of 

Jonkman, 2013. 
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A linear representation of the nonlinear system from Eq. (1) is valid only for small deviations (perturbations) from an operating 90 

point (represented by op ). As shown in Jonkman, 2013, when holding the parameters fixed, each variable can be perturbed 

(represented by ∆ ) about their respective operating point values, 

op

op

op

op

op

x x x

x x x

z z z

u u u

y y y

= + ∆

= + ∆

= + ∆

= + ∆

= + ∆

  

, (2) 

resulting in a linear time-invariant system characterized by the state matrix, A , the input matrix, B , the state matrix for 

outputs, C , and the input-transmission matrix for outputs, D , all of which can be expressed in terms of Jacobians of the 95 

functions from Eq. (1) as follows: 

1 1

1 1

op op

A B

op op

C D

X X Z Z X X Z Zx x u
x z z x u z z u

Y Y Z Z Y Y Z Zy x
x z z x u z z u

− −

− −

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∆ = − ∆ + − ∆      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   ∆ = − ∆ + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         



 

  

u∆



. (3) 

The constraint-state (algebraic) equations have been eliminated from the linearized system of Eq. (3) because, once linearized, 

the constraint-state equations can be easily solved for the perturbations of constraint states, z∆ , shown in Eq. (4). Note that 

the requirement that the determinant of the Jacobian of the constraint-state function with respect to the constraint states, 
Z
z

∂
∂

100 

, not be equal to zero from Eq. (1) means that the matrix inverse of the Jacobian from Eq. (3), 
1Z

z

−∂ 
 ∂ 

, exists and is bounded in 

the neighbourhood around a solution. These details are discussed more in Jonkman, 2013. 

1

op op op

Z Z Zz x u
z x u

−
   ∂ ∂ ∂ ∆ = − ∆ + ∆   ∂ ∂ ∂      

. (4) 

Note also that the matrices in the linear state-space model depend on the parameters, p , which are fixed constants. 
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2.2 Linearization with respect to parameters, without constraints 105 

Now we wish to understand the impact of small deviations in the parameters—representing the evolution of the design 

variables in the physical design (plant) optimization—on the linear state-space model as follows: 

op
p p p= + ∆ . (5) 

We first present the approach without considering constraint (algebraic) states, so, z  and ( )Z  are empty and exluded. The 

formulation with constraint states is given in Sect. 2.3. 110 

For clarity, we only considered continuous parameters, neglected discrete parameters, and avoided tensor notation. In some 

instances, a specific element of a vector or matrix is given by a subscript after the variable, and the number of elements of each 

vector and matrix are written below each variable, with xN  being the number of continuous states, their first derivatives, and 

continuous-state functions; zN  represents the number of constraint (algebraic) states and constraint-state (algebraic) functions 

( 0zN =  in this section and is nonzero in Sect. 2.3); yN  is the number of module-level outputs and output functions; uN  is 115 

the number of module-level inputs; and pN  is the number of parameters that have perturbations (this may be a subset of the 

total number of parameters). The linearization of the nonlinear time-domain system from Eq. (1) with respect to design 

parameters can be expressed in terms of Hessians, which are third-order tensors for vector-valued functions. An example 

Hessian of the continuous-state functions with respect to parameters and continuous states evaluated at an operating point is 

written out in Eq. (6), where xn  is a counter through each continuous state. 120 

2 2 2

1 1 1 2 1

2 2 2
2

2 1 2 2 2

2 2 2

1 2

x x x

x

x x x

x

x

p x

x x x

p p p x

p x

n n n

N

n n n
n

N

op
N N

n n n

N N N N
op

N N

X X X
p x p x p x

X X X
X

p x p x p x
p x

X X X
p x p x p x

×

×

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂=
 ∂ ∂
 
 
∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ 



 

 for { }1,2, ,x xn N=   (6) 

Note that under the hypothesis of continuity of the second derivatives, the order of differentiation does not matter, and the 

Hessian matrices are symmetric, as illustrated in Eq. (7), where superscript T  represents the matrix transpose. 
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2 2
x x

p x x p

p x

T

n n

op op
N N N N

N N

X X
p x x p

× ×

×

 
 ∂ ∂

=  
∂ ∂ ∂ ∂ 

  

 for { }1, 2, ,x xn N=   (7) 

To avoid using tensor notation, a “loose notation” is introduced, whereby premultiplication of a Hessian by a row vector is a 125 

matrix. As an example, the premultiplication by the transpose of the parameter perturbation vector of the Hessian of the 

continuous-state functions with respect to parameters and continuous states evaluated at an operating point is outlined in Eq. 

(8). 

2
1

1

2
2

2
1

2

1

p

p x

p

p x

x x

x

p

p x

x x

T

N op
N N

T

NT op
N N

op
N N

NT

N
op

N N
N N

Xp
p x

Xp
X p xp

p x

X
p

p x

×

×

×

×

×

×

×

×

 ∂
∆ ∂ ∂ 

 
 ∂ ∆

∂ ∂ ∂ ∆ =  ∂ ∂  
 
 ∂ ∆
 ∂ ∂
  



 (8) 

Including all parameter-related Hessians, as well as all nonlinear combinations of the parameter variations, p∆ , the 130 

linearization of the nonlinear time-domain system from Eq. (1) with respect to design parameterswhile neglecting 

constraintsis given by Eq. (9) using the “loose notation” of Eq. (8). The last term could be simplified if only linear 

contributions of p∆  are considered. 

( ) ( ) ( )

2 2 2

2

1
2

p

T T T

op op opop op op

A p B p X p

X X X X X Xx p x p u p p
x p x u p u p p

∆ ∆ ∆

     ∂ ∂ ∂ ∂ ∂ ∂
∆ = + ∆ ∆ + + ∆ ∆ + + ∆ ∆     

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          


  

 (9a) 

( ) ( ) ( )

2 2 2

2

1
2

p

T T T

op op opop op op

C p D p Y p

Y Y Y Y Y Yy p x p u p p
x p x u p u p p

∆ ∆ ∆

     ∂ ∂ ∂ ∂ ∂ ∂
∆ = + ∆ ∆ + + ∆ ∆ + + ∆ ∆     

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          
  

 (9b) 135 
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The parameter-dependent variations of the linear state matrices from Eq. (9) include the perturbed parameter form of the state 

matrix, ( )A p∆ , the perturbed parameter form of the input matrix, ( )B p∆ , the perturbed parameter form of the state matrix 

for outputs, ( )C p∆ , and the perturbed parameter form of the input-transmission matrix for outputs, ( )D p∆ . The additional 

terms at the end of each linear state-space equation from Eq. (9), ( )pX p∆  and ( )pY p∆ , cause offsets of the state and 

output perturbations as a result of the parameter variation; effectively representing the change in operating point as a result of 140 

the change in parameter. To derive this offset, let 

op

op

x x x

x x

′∆ = ∆ + ∆

∆ = ∆ 

0

op

x

u u

′+ ∆

∆ = ∆



0

op

u

y y y

′+ ∆

′∆ = ∆ + ∆

, (10) 

where op
x∆  represents the change in the continuous-state operating point associated with the parameter variations, op

y∆  

represents the change in the module-level output operating point associated with the parameter variations, and the primed ( ' ) 
variables represent the perturbations about the updated operating point. The change in continuous-state operating point 145 

associated with parameter variations is independent of time, so, 0
op

x∆ = . Likewise, the module-level inputs are unaffected 

by parameter variations, so, 0
op

u∆ = .* Equation (9a) can then be used to derive op
x∆  from p∆ . This op

x∆  can then be 

used to derive op
y∆  using Eq. (9b), resulting in 

( ) ( )

( ) ( ) ( ) ( )

1

1

pop

p pop

x A p X p p

y Y p C p A p X p p

−

−

∆ = − ∆ ∆ ∆

 ∆ = ∆ − ∆ ∆ ∆ ∆ 
. (11) 

Equation (11) describes how the state and output operating points vary with parameter variations. The final expressions for the 150 

linearization of the nonlinear time-domain system from Eq. (1) with respect to design parameterswhile neglecting constraint 

states (represented by ∅ )is given by Eq. (12), which is the parameterized form of Eq. (2), and Eq. (13), which is the 

parameterized form of Eq. (3). 

 
*  This assumption is valid for an isolated module, uncoupled from other modules. For module interactions in coupled 
OpenFAST solutions, whose theoretical details are outside the scope of the present article, module-level inputs are derived 
from module-level outputs through algebraic constraints. So, the change in module-level input operating point can be derived 
from the change in module-level output operating point similar to how algebraic constraints are eliminated in Sect. 2.3. 
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'
op op

op op

x x x x

x x x

= + ∆ + ∆

= + ∆  

0
'

op

x

z z z

+ ∆

= + ∆



op op
u u u

∅

= + ∆
0

'

'
op op

op

u

y y y y

p p p

+ ∆

= + ∆ + ∆

= + ∆

 (12) 

 155 

( ) ( )
( ) ( )

x A p x B p u

y C p x D p u

′ ′ ′∆ = ∆ ∆ + ∆ ∆

′ ′ ′∆ = ∆ ∆ + ∆ ∆



 (13) 

2.3 Linearization with respect to parameters, with constraints 

The same process used in Sect. 2.2 can be applied when the underlying nonlinear system has constraint states—the equations 

just become more onerous, as shown in Eq. (14). As in Eq. (3), the constraint-state (algebraic) equations have been eliminated 

from the linearized system of Eq. (14) because, once linearized, the constraint-state equations can be easily solved for the 160 

perturbations of constraint states, shown in Eq. (15), which is the parameterized form of Eq. (4). Hereby, we assume 

2

0T

op op

Z Zp
z p z

∂ ∂
+ ∆ ≠

∂ ∂ ∂
. The final expressions for the linearization of the nonlinear time-domain system from Eq. (1) 

with respect to design parameters, while including constraint states, is still given by Eq. (12), which is the parameterized form 

of Eq. (2), and Eq. (13), which is the parameterized form of Eq. (3), except that ( )A p∆ , ( )B p∆ , ( )C p∆ , ( )D p∆ , 

( )pX p∆ , and ( )pY p∆  are given in Eq. (14) instead of Eq. (9) and the constraint states are no longer eliminated from Eq. 165 

(12), i.e., op
z z z= + ∆

∅
 must be replaced with 

op
z z z= + ∆ , with z∆  given by Eq. (15). 
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( )

1
2 2 2 2

2 2

T T T T

op op op opop op op op

A p

T T

op opop op

X X X X Z Z Z Zx p p p p x
x p x z p z z p z x p x

X X X Xp p
u p u z p z

−

∆

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∆ = + ∆ − + ∆ + ∆ + ∆ ∆     
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

∂ ∂ ∂ ∂
+ + ∆ − + ∆

∂ ∂ ∂ ∂ ∂ ∂





( )

1
2 2

1
2 2 2

2

1
2

T T

op opop op

B p

T T T

op opop opop op op

Z Z Z Zp p u
z p z u p u

X X X X Z Z Zp p p
p p z p z z p z p

−

∆

−

     ∂ ∂ ∂ ∂ + ∆ + ∆ ∆     
 ∂ ∂ ∂ ∂ ∂ ∂           

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + ∆ − + ∆ + ∆ +   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      



( )

2

2

1
2

p

T

op

X p

Zp p
p

∆

  ∂ ∆ ∆ 
 ∂   


 (14a) 

 

( )

1
2 2 2 2

2 2

T T T T

op op op opop op op op

C p

T T

op opop op

Y Y Y Y Z Z Z Zy p p p p x
x p x z p z z p z x p x

Y Y Y Yp p
u p u z p z

−

∆

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∆ = + ∆ − + ∆ + ∆ + ∆ ∆     
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           
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 (15) 

Note that the constraints cannot be algebraically eliminated until the parameter perturbations are explicitly set; this means that 

while the Jacobians and Hessians can be computed based only on knowledge of the parameter operating point, much of the 

algebraic manipulation to define the parameterized linear state-space matrices must be implemented in a postprocessing step 

(once the parameter perturbations are explicitly set). 175 

2.4 Observations 

The main physical insights that can be obtained by reviewing these mathematical details are summarized as follows: 
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1) The Hessians represent the change in Jacobians associated with the parameter variations and many Hessians are 

needed to represent the parameterized linear state-space matrices; that said, while the Hessian matrices could be fully 

populated—see Eq. (6)—they are likely quite sparse in practice. 180 

2) The constraints, if present in the underlying nonlinear model, cannot be algebraically eliminated until the parameter 

perturbations are explicitly set; this means that while the Jacobians and Hessians can be computed based only on 

knowledge of the parameter operating point, much of the algebraic manipulation to define the parameterized linear 

state-space matrices must be implemented in a postprocessing step (once the parameter perturbations are explicitly 

set). 185 

3) The parameterized linear state-space matrices are likely only valid for small parameter perturbations; for large 

parameter variations, multiple parameter operating points would need to be defined, op
p , and new Jacobians and 

Hessians would have to be computed for each parameter operating point. 

4) Parameter variations result in changes to the continuous-state and output operating points, op
x∆  and op

y∆ . 

5) Within the parameterized linear state-space matrices, the variation with parameter is linear by design, except when 190 

constraint states exist, whereby the variation with parameter may include nonlinear relations of the parameter 

perturbations (as a result of the matrix inverse inherent in Eq. (15)). 

6) Within the operating point changes associated with the parameter variations, op
x∆  and op

y∆ , there are nonlinear 

relations of the parameter perturbations (as a result of the matrix inverse inherent in Eq. (11)). 

7) The Hessians with respect to the parameters only, 
2

2p
∂
∂

, are only needed to improve the evaluation of the constraints 195 

and the change in operating points associated with the parameter variations; they do not affect the resulting 

parameterized linearized state-space matrices, and so, could be neglected if the linearized state-space matrices are of 

more interest than the change in operating points or constraints. 

8) When p∆  equals zero, the parameterized linear state-space model from Eqs. (12) and (13) reduces to the original 

linearized model in Eqs. (2) and (3), as expected. 200 

The first three items in this summary deterred us from implementing the theoretical approach outlined here directly within 

OpenFAST. As such, alternative methods have been implemented in WEIS, which interfaces to OpenFAST, instead; see Sect. 

4. 

The same approach applied above can be used to find the linearization with respect to design parameters of the overall coupled 

nonlinear system across all modules of OpenFAST—the parameterized extension of Eq. (18) from Jonkman, 2013—but this 205 

extension does not provide any new insight and is not shown here. 
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3 Illustrative Mass-Spring-Damper Example 

3.1 System and linearization without parameters 

To illustrate the theory developed in Sect. 2, the equations are applied to a simple forced mass-spring-damper system. Figure 

1 visualizes the system, where m  is the mass, c  is the damping of the dashpot, k  is the stiffness of the spring, q  is the 210 

displacement of the mass, F  is the force applied in the direction of displacement, and g  is the gravitational acceleration. 

The first-order system of Eq. (1) can be established by defining the states, inputs, outputs, and parameters as in Eq. (16). For 

illustrative purposes, the applied force is characterized as an input and the output is arbitrarily characterized as the full motion 

of the mass (displacement, q , velocity, q , and acceleration, q ), as well as the force transmitted to the foundation, TransmittedF

. There are no constraint (algebraic) states in this system, so, z  and ( )Z  are empty, represented by ∅ , and are neglected 215 

from subsequent equations. All parameters are included in p  for illustrative purposes, although gravity would not typically 

be a design variable.  

 
Figure 1: Visualization of the forced mass-spring-damper system. 
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 (16) 220 

The first-order system of Eq. (1) for the simple forced mass-spring-damper system can then be written following Newton’s 

second law, as in Eq. (17). 

g ↓ 
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       = = + +     −− −      
                = = + +     −− −     
            



 (17) 

The operating point in this is example is taken to be the static equilibrium of the mass-spring-damper system in absence of 

external forcing (input), as given in Eq. (18). The simple forced mass-spring-damper system is already linear in nature, so, Eq. 225 

(3) with fixed parameters can be written directly, as in Eq. (19). 
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m
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 (19) 

3.2 Analytical linearization with respect to parameters 230 

Now we wish to understand the impact of small deviations in the parameters on the linear state-space model. Of course, because 

the linear state-space model and associated operating point have already been expressed analytically in Eqs. (18) and (19) 

(which is not typically the case in complex wind turbine dynamics models like OpenFAST), it is trivial to write down what 
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the parameter-dependent variations of the linear state matrices and operating point changes should be exactly, as shown in 

Eqs. (20) and (21). Note that Eqs. (20) and (21) are the exact analytical expressions of the parameter-dependent linear state 235 

matrices and operating points, not derived from the theory of Sect. 2. 
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 (21) 

3.3 Hessian-based linearization with respect to parameters 240 

Now we wish to understand the impact of small deviations in the parameters on the linear state-space model following the 

theory presented in Sect. 2. In this simple example, the Hessians can be computed analytically. An example Hessian of the 

continuous-state functions with respect to parameters and continuous states evaluated at the operating point—written 

generically in Eq. (6)—is given for this simple forced mass-spring-damper example in Eq. (22). Note that in this example, 

2xN = , 0zN = , 1uN = , 4yN = , and 4pN = . 245 
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Carrying out the remainder of the math, Eq. (23) provides the parameter-dependent variations of the linear state matrices from 

Eq. (9) and Eq. (24) provides the change in operating point from Eq. (11) for this simple forced mass-spring damper example. 
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 250 
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 (24) 

3.4 Observations 

Comparing the two formulations, the exact formulation and the Hessian-based formulation—Eq. (23) with Eq. (20) and Eq. 

(24) with Eq. (21)—the following physical insights can be summarized: 

• In the Hessian-based formulation of the parameter-dependent variations of the linear state matrices, all parameter 255 

perturbations appear linear in nature because this simple example does not have constraint states. This follows directly 

from item five in Sect. 2. The end result is that any parameters that are linear in nature in the underlying formulation 

(e.g., damping, c , and stiffness, k ) are expressed exactly in the Hessian-based formulation. 

• The mass, m , however, is nonlinear in the underlying formulation (showing up as 
1
m

), and so, in the Hessian-based 

formulation of the parameter-dependent variations of the linear state matrices, the mass effect is approximated. 260 

Effectively, 
1

m m+ ∆
 in the exact formulation has been approximated as 2

1 m
m m

∆
−  in the Hessian-based 

formulation, and equating too, we see that ( )( )2 2 2m m m m m m m≈ −∆ + ∆ = −∆  only holds true when 

2 2m m∆  , which is a second-order error. The end result is that any parameters that are nonlinear in nature in the 

underlying formulation are approximated to first-order accuracy in the Hessian-based formulation of the parameter-

dependent variations of the linear state matrices. 265 

• Within the operating point changes associated with the parameter variations, there are nonlinear relations of the 

parameter perturbations (as a result of the matrix inverse inherent in Eq. (11)), which follows directly from item six 

in Sect. 2. However, the operating point changes are still not entirely exact in the Hessian-based formulation. It is 

interesting to note that the operating point changes are exact when any given parameter variation is treated in isolation 
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op

mgq
k

∆
∆ = −  and Transmission op

F mg∆ = −∆  when 0c k g∆ = ∆ = ∆ = ; likewise 270 

for other one-off parameter variations. 

• When Hessians with respect to the parameters only, 
2

2p
∂
∂

, are neglected, as discussed in item seven of Sect. 2, the 

Hessian-based operating point changes from Eq. (24) simplify a bit, as shown in Eq. (25). In Eq. (25), the operating 

point changes are still exact for one-off parameter variations of damping, c , and stiffness, k , and gravity, g , but 

the operating point changes are no longer exact when 0c k g∆ = ∆ = ∆ = , i.e., 
( )op

m mgq
k m m

∆
∆ = −

−∆
 and 275 

Transmission op

m mgF
m m
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∆ = −
−∆

. This demonstrates that the inclusion of the 
2

2p
∂
∂

 terms in the Hessians improves the 

change in operating points. 
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4 Numerical Implementation in WEIS 

4.1 The WEIS framework 280 

While the theoretical development presented in Sect. 2 has not been implemented in OpenFAST, we employed the direct 

evaluation and interpolation methods summarized in Sect. 1 within WEIS. The primary goal of WEIS is to provide a framework 

for the CCD of a floating wind turbine controller alongside turbine and platform geometry at multiple fidelity levels. The 

advantage of using WEIS for this work is that the wind turbine system is controlled by high-level design parameters (variables), 

wherein each variable can affect several OpenFAST inputs at once. For instance, a change of tower material mass density will 285 

change the distributed properties of the tower but also the shape functions of the tower; both of which are inputs to OpenFAST. 

WEIS handles such interdependencies automatically by propagating the effects of design variable changes through the entire 
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( )A p∆ , is used in the numerical case study (Sect. 5) and discussed below. OpenFAST was 290 

used within WEIS but not modified in any way for this work.  

4.2 Design of experiments 

For this article, we adapted the WEIS framework to incorporate the following workflow: call OpenFAST, retrieve the 

linearized state-space matrices, and store them at each evaluation call. In this study, we did not conduct the evaluations within 

an optimization loop, but within a parametric loop; also referred to as “design of experiment” or “parameter sweep.” We 295 

extended WEIS to be able to run design of experiments where: the user specifies a set of pN  design variables, 
pnp  for 

{ }1,2, ,p pn N=  , the interval over which the variables are to be varied, ,min ,max;
p pn np p 

  , and the number of 

subdivisions of each interval (linear spacing is used). Based on these user-specified settings, WEIS evaluates for all the 

combinations of the design variable values. In this article, the term “parameter” is used in place of “design variables.” 

4.3 Implementation of the direct evaluation method 300 

No specific treatment is needed for the direct evaluation method. For each parameter point, op
p p p= + ∆  ( op

p  is 

explicitly defined in the next section), we evaluated the linearized state matrix, ( )A p∆ , using a call to the linearization 

functionality of OpenFAST. The time necessary for a direct call is on the order of minutes for land-based wind turbines and 

up to an hour for a complex floating offshore wind turbine. The linearization time itself only accounts for about one minute of 

this total, but OpenFAST currently establishes the operating point by performing a trim solution using a time-marching loop. 305 

Because of the low frequencies of floating platforms, a significant amount of simulation time is necessary for the system to 

reach an equilibrium. In a separate project, we are currently working on a direct steady-state solve within OpenFAST to avoid 

this trim solution, which will significantly reduce the computational time needed.  

4.4 Implementation of the interpolation method 

The implementation of the interpolation method requires two WEIS steps: a preprocessing step, and a replacement of the 310 

OpenFAST call with an interpolation call. The preprocessing step proceeds as follows: 

• A nominal parameter point (operating point) is defined at the center of all the parameter intervals: 

,max ,min

2
p p

p

n n
n op

p p
p

+
=  for { }1, 2, ,p pn N=  . (26) 

• The nominal linearized state matrix is obtained using an OpenFAST call at this operating point, A . 
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• For each parameter, of index pn , two OpenFAST evaluations are made to retrieve the state-space model at the bounds 315 

of the parameter interval, ( )p pn nA p eδ , and ( )p pn nA p eδ− , wherein the parameter variation for each parameter, 

pnpδ , is defined in Eq. (27) and 
pne  is a unit vector the same size of p  with zeros for each element except for index 

pn , which equals unity: 

,max ,min

2
p p

p

n n
n

p p
pδ

−
=  for { }1, 2, ,p pn N=  . (27) 

• The slopes, 
pn

dA
dp
 
 
 

, corresponding to each parameter variation, each of which is a matrix, are then computed using 320 

a central finite difference: 

( ) ( )
2

p p p p

pp

n n n n

nn

A p e A p edA
dp p

δ δ

δ

− − 
= 

 
 for { }1,2, ,p pn N=  . (28) 

In total, the preprocessing steps comprise 2 1pN +  direct evaluations (calls to the OpenFAST linearization functionality). The 

nominal state-space model and slopes are stored for later use in the interpolation step. After the preprocessing step, the WEIS 

optimization loop, or design of experiment loop, proceed as usual, but whenever a linearized state-space model is needed for 325 

a given change in operating point, p∆ , instead of calling OpenFAST, an interpolation is done according to Eq. (29). The 

evaluation time is on the order of milliseconds, which is significantly smaller than a direct evaluation call. 

( )
1

p

p
p p

N

n
n n

dAA p A p
dp=

 
∆ = + ∆  

 
∑  (29) 

Figure 2 illustrates the interpolation method for the case with two parameter variations ( 2pN = ). 
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Figure 2: Visualization of the interpolation method for the case with two parameter variations. Left: Nominal (operating) parameter 
point in blue and the bounds of the parameter interval in orange. Middle: Slope (shown as the dash-dot line) of the state-space matrix 
values (shown as a continuous blue function) computed using finite differences from the bounds. Right: interpolation step. 

5 Numerical Case Study Using WEIS and OpenFAST 

Here, we apply the numerical methods presented in Sect. 4 to the IEA 15-MW reference wind turbine (Gaertner et al., 2020), 335 

which is placed atop the University of Maine semisubmersible (Allen et al., 2020). For simplicity, the sway and roll degrees 

of freedom of the floater are disabled, but other relevant structural degrees of freedom are enabled. The wind turbine rotates 

at a constant rotor speed of 5 rpm with a blade pitch of 2.7 deg, corresponding to the operating conditions for a wind speed at 

hub height of 5 m/s and a power law exponent of 0.12. These conditions, corresponding to 10% of rated power, were chosen 

to make it easier to identify the wind turbine modes (the automatic identification of modes above rated can be difficult for 340 

highly flexible rotors). We modeled the turbine using OpenFAST modules InflowWind, AeroDyn, ElastoDyn, HydroDyn, and 

MAP++. For the linearization, we modeled the aerodynamics using blade-element/momentum theory, with static airfoil data 

and frozen wake. The hydrodynamics of the platform are modeled with a hybrid combination of potential flow and a quadratic 

drag matrix, with the potential-flow solution in state-space form. 

We chose to vary three different parameters: the tower mass density, varying between 5460 and 10140 kg/m3; the tower 345 

Young’s modulus, varying between 1.4e10 and 2.6e10 N/m2; and the mooring line unstretched (rest) length, varying between 

800 and 900 m. The variations of the tower properties correspond to ±30% of their nominal value, whereas the rest length is 

varied with ±6% because of the important nonlinearity expected for this parameter. The nominal and parameterized linear 

state-space matrices are obtained using both the direct and interpolation methods for all parameter combinations, using nine 

values per range. Based on the state matrix, we performed an eigenvalue analysis and modal identification for each set of 350 

parameters, and compared the results from both methods in terms of the damped frequencies and linearized damping ratio for 

each full-system mode of the system. We present a subset of the results of this parametric study in the following paragraphs. 

The results for one-dimensional variation of the tower properties are given in Figure 3 ( 1pN = ). In this case, only the 

parameter on the abscissas is varied and other parameters are kept at their nominal values. We used a logarithmic scale on the 

ordinates to better distinguish between the different modes. The following abbreviations are used in the figure for the tower 355 

modes: fore-aft (FA) bending, side-side (SS) bending. The interpolation method requires three evaluations of OpenFAST and 

the direct method requires nine evaluations of OpenFAST per parameter. 
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Figure 3: Variation of the system damped frequencies and damping ratios as a function of tower properties evaluated using the 
direct method (plain lines) and the interpolation method (dashed lines). Left: variation of the tower density, ρ. Right: variation of 360 
the tower Young’s modulus, E. 

From Figure 3, we observe that the interpolation method and the direct method are in strong agreement for all modes of the 

structure. With the scale provided in the figure, the curves from both methods collapse on top of each other, except for the 

damping of the platform-heave mode when the tower density varies. We believe this is because of the numerical sensitivity of 

the eigenvalue analysis and the small value of the damping of this mode. The interpolation method is only expected to return 365 

the same value as the direct method when all values of the design parameters are at the nominal value. In Figure 3, this 

alignment corresponds to the middle point of the abscissas. We observe that the variations of damped frequencies and damping 

ratios with the tower properties are well-captured by the interpolation method, with the following expected behavior: the 

frequencies of the tower modes decrease with increasing density and rise with increasing stiffness. We also note that, despite 

the linear characteristics assumed for the state matrix in the interpolation method, the frequencies and damping ratios display 370 

nonlinear behaviour after performing the eigenvalue analysis. A zoomed-in view of the variation of the second tower modes 

is given in Figure 4. With this axis scale, one can observe some error between the interpolation and direct methods and that 

the error increases as the material density gets further away from the nominal value. No error is visible for variation of the 

material stiffness. This observation further exemplifies the results of Sect. 3: linearity is expected for variation of the stiffness 

but variations in mass are nonlinear and hence more difficult to capture by the interpolation method. 375 
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Figure 4: Variation of the second tower mode damped frequencies and damping ratios as a function of tower properties evaluated 
using the direct method (plain lines) and the interpolation method (dashed lines). Left: variation of the tower density, ρ. Right: 
variation of the tower Young’s modulus. 

We now present results in which the tower density and stiffness are changed together ( 2pN = ), using nine values for each 380 

parameter; for a total of 81 evaluations. That is, the interpolation method requires five evaluations of OpenFAST and the direct 

method requires 81. The interpolated method is only expected to be exact at the center of the parametric domain; that is, at the 

nominal values of the tower stiffness and density. The relative error in damped frequencies and damping ratios between the 

interpolated and direct methods is plotted in Figure 5 for the five modes that vary the most: the platform-pitch mode, and the 

two first tower-bending modes in the FA and SS directions.  385 

 

Figure 5: Relative errors in the system frequencies and damping ratios between the direct and interpolation methods as a function 
of tower properties (Young’s modulus, E, and mass density, ρ). Top: relative error in damped frequencies. Bottom: relative error in 
damping ratios. 

The results from Figure 5 confirm that the error of the interpolation method increases as the parameters get further away from 390 

the nominal values. The error is typically smaller along lines centered on the nominal values, and typically larger in the 

“corners.” These results are expected because the interpolation method uses slopes computed in each of the parameter 
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directions but does not account for slopes in other (combined) directions. Overall, despite parameter variations of ±30% of 

their nominal value, the error of the interpolated method remains within ±5% for both damped frequencies and damping ratios.  

In the final set of results, we present the impact of the mooring line unstretched length on the wind turbine modes as captured 395 

by both methods. Again, with 1pN = , the interpolation method requires three evaluations of OpenFAST and the direct 

method requires nine evaluations of OpenFAST. As shown in Figure 6, the mooring length mostly affects the surge mode of 

the semisubmersible, with some effect on the pitch mode. The interpolation method captures most of the trends, but the error 

in the surge mode appears more significant than what was observed for the tower study. This finding is likely the result of the 

strong nonlinear effect line length has on the force-displacement relationships of a catenary mooring system. Additionally, the 400 

surge mode becomes undetectable (and so is not plotted) using the state matrix obtained with the interpolation method for 

increased values of the mooring line unstretched length. It appears that the interpolation method fails in this situation, likely 

because of the numerical sensitivity of the eigenvalue analysis (i.e., the interpolation method does not provide enough precision 

for accurate eigensolution of all modes). 

Figure 6: Variation of the system damped frequencies and damping ratios as a function of the mooring line unstretched length 
evaluated using the direct method (plain lines) and the interpolation method (dashed lines). 
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Conclusions 

This work summarizes our efforts to better understand the impact of design parameter variations in the physical system (e.g., 

mass, stiffness, geometry) on the linearized system using OpenFAST. The results of this work have influenced the WEIS 410 

toolset being developed at NREL within the ATLANTIS program, with the goal of enabling CCD of the floating wind turbine 

structure and controller. 

Theoretical developments provide some physical insights, such as the impact of design parameter variations on the operation 

point, the role of specific Hessians on specific state matrices and the operating point changes (including when algebraic 

constraint states are present), and the errors that can arise when parameters function nonlinearly within the system. These 415 

insights were further exemplified in a simple forced mass-spring-damper system example, but characteristics of the theoretical 

approach deterred NREL from implementing it directly within OpenFAST. Instead, we implemented a direct evaluation 

method and an interpolation method in the WEIS toolset, which makes use of OpenFAST, that were compared in terms of 

computational cost and through a numerical case study. The results from the numerical examples were encouraging for the 

tower study, whereby the interpolation method yielded damped frequency and damping ratio results close to the direct 420 

evaluation method despite large variation in tower density and tower Young’s modulus from their nominal values. However, 

the interpolation method was less effective for the mooring line length study because of the strong nonlinear effect that line 

length has on the force-displacement relationships of a catenary mooring system. Moreover, the interpolation method failed 

for increased mooring rest length (with the surge mode undetectable), likely as a result of the numerical sensitivity of the 

eigenvalue analysis. 425 

Improvements to the interpolation method are possible but are left as future work. For example, an pN -linear interpolation 

(e.g., bilinear interpolation for 2pN =  or trilinear interpolation for 3pN = ) based on values at the corners of the pN  

hypercube could be used rather than using the centers of the faces of the hypercube, as is done here. Such an implementation 

would require 2 1pN +  evaluations of OpenFAST in the preprocessing step rather than the 2 1pN +  evaluations used here, 

which would improve the interpolation when multiple parameters are changed at the same time. Also, more advanced 430 

interpolations, such as pN -cubic could be postulated. 

Moreover, we may reconsider implementing the calculation of Hessians directly within OpenFAST, at least for some modules 

and classes of parameters. 

Code availability 

OpenFAST is publicly available as open-source software accessible at https://github.com/OpenFAST. 435 

WEIS is publicly available as open-source software accessible at https://github.com/WISDEM. 

https://github.com/OpenFAST
https://github.com/WISDEM
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publicly accessible at https://github.com/IEAWindTask37/IEA-15-240-RWT. 
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