
Dear Reviewer, 

 

Thank you very much for taking the time to study this paper and provide valuable 

constructive criticism, which we believe has helped to develop and strengthen this work 

significantly. Please find our answers to all your comments, by either corrected or added 

text sections or comments on your suggestions/concerns. We hope to have correctly 

understood and adequately accommodated all your concerns. Thank you again for your 

contribution. 

 

 

Major comments  

 

1. The link between the previous paper of the same Authors (Model updating of wind 

turbine blade cross sections with invertible neural networks) and the present one 

should be better highlighted, and the differences clearly stated. As far as we have 

understood, in the previous paper, only the final sectional properties are considered, 

while here the blade model is more complex and comprises detailed sectional 

descriptions. Moreover, the method for replacing the sensitivity computations (see sec. 

4.5) is new.  

 

Thank you for this comment, we fully agree that the manuscript lacks a clear 

demarcation of both studies. We have adapted Sec. 1.3 to highlight the differences to 

the previous study: 

 

The specific objective of this current investigation in contrast to the previous 

publication (Noever-Casteloset al., 2021a) is to: 

1. Extend the feasibility study and methodology to a complete three-dimensional finite 

element Tymoshenko beam model of a wind turbine blade, instead of analyzing 

isolated cross-sections 

2. Introduce parameter splines for the input variation along the blade 

3. Use modal blade shapes and frequencies as model response 

4. Replace the sensitivity analysis for the parameter subspace selection by the global 

variance-based Sobol method  (Sobol , 1993), which takes interactions of input 
parameters into account 

5. Implement a pre-processing feed-forward neural network for the cINN conditions 

6. Analyze the potential of replacing or neglecting the sensitivity analysis by training 

the cINN on the full parameter space   

 

We hope this sufficiently differentiates the two studies. 

 

If so, the Authors should also comment on the need of such an addition of complexity. 

What is the eventual balance between a higher complexity in the model (and in the 

updating process) and the performance potentially achievable? Does it worth it? 

 



We do not fully understand the reference of this question.  

a) If you mean the replaced sensitivity computation; this reduces dramatically the 

computational costs. See Sec. 4.5: 

That means, despite the 79,360 samples for the sensitivity analysis, an 
additional set of 30,000 samples has to be generated for training purposes and a 

second variably-sized set for validation and testing of the cINN.  

The method with no sensitivity analysis neglects the 79,360 samples for the 

sensitivity and thus: 

Relying on the same computing resources mentioned above, the overall process 

in this particular case adds up to a complete computation time of approximately 

20 h, which corresponds to a reduction of 69%.  

b) If you relate to the increased model complexity; We are now switching from an 

isolated single cross-sectional perspective to a complete 3D Tymoshenko beam, 

built up from several (>50) cross-sections. By that, we have stepped to a model 

complexity applied in real world problems. Therefore, it is necessary to reach an 

applicable model level. We hope this becomes clear in the new listing above. 

 

 

Finally, probably the word beam  in the title indicates a simpler blade model with 
respect to that used in the work which is characterized by a fully three-dimensional 

description. Please, check. 

 

This is a good note. We have added Tymoshenko in the title and named it at different 

locations in the text to make it clear. 

 

2. In Section 2.3 Selection of Sobol Indices , the Authors use the Sobol Indices to select only 
those parameters which significantly affect the system response (see lines 150-151 we aim 
to consider only features which have a significant impact during at least one event at one 

location, thus containing enough information for the updating process. . This is totally 

correct, but it is certainly possible that combinations of input features may lead to similar 

outputs. This implies that one cannot comprehend who does what , and in turn cannot 
generate a robust model. During the identification of physics-based models, this problem 

is called collinearity (ambiguity, in this paper) and is handled by looking at the sensitivity 

matrix (e.g., SVD of sensitivity matrix, Cramèr-Rao bounds). Even if neural networks are 

employed, the collinearity problem should stay the same, because it refers to the intrinsic 

properties of the system. Since the Sobol indices are just metrics to quantify the sensitivity 

of outputs respect inputs, I imagine that collinearity problem (if present) may be found 

looking at such indices as well. The Author should comment and possibly extend the 

treatment.  

 

We fully agree that it is a restricted view on the phyiscal model, if only the first order Sobol 

index is examined. And that intrinsic collinearities of parameter influences may be and 

actually are implied in the physical model is also correct. Now to fully understand the 

physical model it is of course interesting and important to analyze 2nd and probably 3rd 

order Sobol indices to extract any interactions. However, the purpose of this sensitivity 



analysis is to have an easy preselection of a parameter subspace to analyze. Now there are 

two ways of achieving this, either by computing the 1st and 2nd order Sobol index, which 

increases the computational cost by 2 or by analyzing the 1st and total order Sobol index, 

which can be calculated at the same cost as the 1st order index. The total order Sobol index 

includes the 1st and all higher order Sobol indicies. If the model is not purely additive, i.e., 

interactions of the model parameters exist, then the total index exceeds one for the 

analyzed response. By that, an existence of collinearity is proofed, however it is not shown 

which parameters are collinear. However, this is not that essential for the sake of selecting 

an appropriate parameter subspace.  

Concerning the method how to evaluate the indices, it is probably relevant to include not 

only the parameters, which exceed the threshold for the max. Sobol Index, but also those, 

that have on average a high contribution. You have suggested using the singular value 

decomposition SVD; actually we have found a publication dealing with subspace selection 

from a sensitivity analysis, that uses the SVD to reduce the dimensionality of the sensitivity 

matrix. After reducing the resulting singular value matrix to the p most contributing 

dimensions, it is followed by a QR factorization to map this again onto the real parameter 

space. Similar to principal component analysis (PCA) this reduces the parameter space to 

the most contributing parameters, where the contribution is measured with the total Sobol 

index. 

Finally, we have chosen a combination, we did the max. Sobol Index threshold and the SVD-

QR method and combined both selected subspaces to the final parameter subspace. As far 

as we can judge, this should include all your pronounced concerns on the subspace 

selection method. 

 

And you are totally right, that the cINN includes all this intrinsic collinearities of the physical 

model. And this is, what we can see in the further analysis in Section 4.2 Intrinsic 
Ambiguities  and 4.5 the Cross-Correlation. However, concerning the computational cost, it 

is much more expensive to calculate the 2nd order Sobol Index than to analyze the cINN 

predictions with a cross correlation matrix. And as model updating approaches are 

computationally very expensive, we have settled with the indepth analysis of the cINN 

predictions rather than the second order Sobol index. We hope this makes sense to you, 

though the subspace selection should now also consider interacting parameters. 

 

We will refrain from posting every particular change in the comment here, but all we have 

addressed above is included in the adaptions of Section 2. 

 

The wording ambiguity for collinearity, originates from the original publications to INN 

(Analyzing  Inverse  Problems  with  Invertible  Neural  Networks, Ardizzone et. al., 2019) 

and was also used in the first feasibility study and is kept here for consistency. 

 

3. Interpretation of the results in Section 4.1, (see especially fig. 9): At this point, it is essential 

to create the link between the goodness of the prediction and the Sobol indices. This will 

ease the comprehension of the results. For example, feature33 (ρFlange,N1) has a high Sobol 

index but an accuracy rather poor (R^2=0.8, with a significant spread around the 

regression line). On the other side, feature4 (E11,UD,N0) has a very low Sobol index (0.11 

close to the selected threshold) but has an excellent accuracy. Why? I imagine that the link 



between the sensitivity analysis and the estimation accuracy should be stronger than what 

we see in such results. Please, comment and possibly explain thoroughly the obtained 

results.  

 

Thank you for that notice, you are right, the link between the Sobol indices and the 

prediction accuracies was missing. We have added a paragraph to the end of the Section 

4.1 with a table highlighting and explaining the most strinking discrepencies of sensitivity 

index to prediction accuracy. In short the intrinsic collinearity of the physical model is the 

key problem, why high Sobol indices yet yield in low prediction accuracy. In the forward 

path (physical model), collinearities are easy to track as they add up to the final response, 

though the inverse path (cINN) has to map ambiguous responses to a set of possible input 

features. However, if this ambiguity is not existence, i.e., an input feature has no 

substantial collinearity with other features, then even a low sensitivity may be sufficient to 

map an input feature to only a very few determined responses. Please find a more detailed 

description at the end of Section 4.1. We hope this satisfies your concern. 

 

Minor comments  

 Line 85: Please, correct resimulationn   
Corrected here and at different locations in the text. Thank you for that comment. 

 Line 95: Please, remove comma in Sobol derived, the 1st order Sobol index…   
Corrected. 

 Line 113: symbol 𝑁  appears here for the first time, but its meaning was not 

previously defined.  

The sentence was rephrased to: 

Thus, the finite element model consists of 51 nodes (𝑁 )  

 Line 131: All applied variances are approximately twice the permitted manufacturing 
tolerances . Probably with the word Variances  the Authors refers to the difference 
imposed to the parameters to perform the sensitivity analysis. If so, the word 

variances  could be misleading as it often indicates a statistic metric.  
Thank you. This should of course mean variations . 

 Line 141: does the sentence … and the six degrees of freedom of each finite element 
beam node NFE are saved and…  refer to modal shapes?  
The sentence was rephrased to: 

For all 10 mode shapes of each configuration (free-free and clamped), the natural 

frequency and the three deflections and three rotations of each finite element beam 

node 𝑁  are saved.  

 Tab. 2: It would be interesting to plot Sobol indices as function of the blade span, 

parameterized with respect to the typology of the element, so as to give an idea on how 

the observability changes as function of the blade span. The Author may try convert the 

table into a plot.  

Although we have already suggested in a previous comment in the interactive 

discussion to plot the sensitivity matrix, which connects to the stated suggestion here, 

we have tried several plots. However, putting all information into one plot was 

impossible, while maintaining a good readability and providing an interpretable plot. 

For several presentations, which have been prepared on that topic, we could only come 



up with a plot as shown below. But this only represents one input spline, i.e., 5 Nodes, 

of a total of 33 splines.  

Just for the understanding of the plot: The figure shows two plots, one for the modes 

shapes of the free vibration (left) and one for the clamped vibration (right) for the E11,UD 

parameter. Each plot is divided into the five nodes of the spline along the x-Axis. For 

each Node the 10 mode shapes of each configuration are plotted over the radius (y-

Axis). That means each points represents one finite element node of the beam for the 

respective mode shape. However, it was still necessary to collapse the dimension of the 

DOFs, i.e., each point only takes the maximum value of the 1st order Sobol index of all 6 

DOFs of that finite element node. 

 

Therefore, in the end it would have been either too many necessary plots or too much 

information to condense into one plot. That is why we have to apologize and refrain 

from trying to visualize the sensitivity matrix. We hope this finds your approval. 

  
 Section 3: the description of the network could be improved. In particular, it could be 

important.  

o To clarify what is new with respect to previous works; it seems that the network 

is totally built on previous activities, and no dedicated updates were conducted 

for the present research.  

Yes, it is right, that the network is built on previous activities concerning the 

cINN. However, this present research includes an update as stated in Section 3 

in line 182-189: 

However, unlike the underlying feasibility study Noever-Castelos et al. (2021a), 

an additional feedforward network is implemented, referred to as a conditional 

network (violet). The idea is to preprocess the raw conditions c, i.e., beam 

responses, before passing them to the sub-networks in the CCs. It is trained in 



conjunction with the cINN, to extract relevant feature information optimally for 

each stage. The conditional network architecture is inspired by Ardizzone et al. 

(2019b) and should extract higher-level features of c to feed into the sequential 

CCs, which, according to Ardizzone et al. (2019b), should relieve the sub-

networks from having to relearn these higher-level features each time again. 

With a conditional beam response c of shape dim(c) = dim(NFE,sel) x dim(y), the 

conditional network applies 1D-convolutions (conv 1D) to process the data, 

which gradually increase in size to progressively extract higher-level features  

o To clarify the reason why this network type is better suited to the application at 

hand. From this point of view, I would expect here a connection with the 

Introduction, and especially with the three points listed in Sec. 1.2. Why is the 

present network able to handle more complex problem than those already 

studied in literature?  

This was added to the end of section 4.5: 

This gives cINN a huge advantage over common approaches as discussed in the 
introduction. The rely on a sensitivity analysis to identify a significant subspace 

to reduce the problem dimension. With 30,000 model evaluations for a total of 

49 updated features, the cINN is quite efficient. A stochastic updating approach 

demanded 1,200-12,000 evaluations for a simple 3-feature updating problem 

(Augustyn et al., 2020; Marwala et al., 2016). Higher dimensional problems could 

explode in computational costs for common deterministic approaches, even 

more relying on an additional pre-processed subspace selection (here: 79,000 

model evaluations). However, to the best of the authors knowledge, no model 

updating was found in literature for such a high parameter space as it is 

presented in this work.  

o How can the present network evaluate uncertainty in the results?  

The method is only scratched on the surface, as it is covered in the previous 

publication. However, we agree that at least a rough explanation should be 

provided with a reference to other publications for more in-depth information. 

Therefore, we have added extended the paragraph at the beginning of Section 4:  

The concept  and training of the cINN is based on the Bayes  theorem to infer a 
posterior distribution px(x|c) from a set of conditions c. Therefore, the cINN 

learns the conditioned transformation from  the  posterior  distribution px(x|c) 

onto  the  latent  distribution pz(z), as depicted in Fig. 6. This mapping can be 

achieved through maximum likelihood training. The training is performed over 

150 epochs, i.e., training iterations, with a samples size of 30,000 training 

samples, in order to minimize  the  negative  log-likelihood LNLL (given  in  Eq.  

(9)). For  a  more  detailed  description  of  the  inherent  method  of cINNs please 

refer to Noever-Castelos et al. (2021b); Ardizzone et al. (2019a).  

o Why is the present network able to create a generalize model not focused on a 

particular condition?   

This is a good comment. We like the idea of closing the circle of naming the 

problems and providing this solution. Therefore, we have moved this to the 

conclusion section, where we have integrated the following paragraph: 

Referring back to the three major problems of the approaches studied in the 
introduction, the cINN tackles these by: 



 A high computational efficiency in relation to the model complexity, i.e., 

updating parameter space. Even more by the evading computationally 

expensive sensitivity analysis. The cINN only demanded 30,000 model 

evaluations (20h) for a total of 49 features within an original space of 153 

features.  

 An inherent probabilistic evaluation, as it follows the Bayes' theorem and is 

trained to minimize the negative log-likelihood of the mapping between 

posterior distribution and latent distribution. 

 Representing a surrogate of the inverted model. By that, the cINN can be 

evaluated for any given response (in the model boundaries) at practically not 

additional costs after training. Any other approach is solved only for one 

particular model response and has to be repeated in case of a different set 

of response.  

 

 Section 4.1: The analysis is good and interesting, but here comes again the main 

question: as in a major comment, is it possible that the poor accuracy of some 

parameters may be connected to collinearity problems? 

This is correct and as the analysis evolves/continues these collinearities/ambiguities are 

highlighted and connected to the poor accuracy of the prediction. 

 Section 4.1, fig. 9: Instead of using in Feat_x , the reader could benefit from subtitles 
with the physical meaning. So, he/she does not have to jump to Tab.2  

We have adapted the descriptions of the plots, which really improved the readability, 

thanks.  

 Lines 316-322: These lines and the previous section talk about something that I had in 

mind since the beginning of the manuscript: the different properties of each section 

(Young modulus, densities, etc.…) may contribute together to the final sectional 
stiffness, and eventually it is hard to distinguish among those properties looking at 

global pieces of information (modal data). This, however, refers to an intrinsic problem 

of the systems. When Authors write we can state that the cINN should correctly predict 
the total mass and the stiffness contributions in a global manner … , at least for me, 
they report something rather obvious. Please, comment and, if needed, clarify.  

After talking with the authors of the original publications to cINNs and INNs, they were 

always interested if the cINN can accurately capture such ambiguities/collinearities in 

the inverse path. Of course, in the forward path it is obvious what a surrogate model  
does with such collinearities, as they kind of sum up, however, in the inverse path it is 

not clear, as the inverse surrogate model  does not know from which parameter the 
overall contribution comes from. Concerning the overall stiffness of the laminate a 

classical metaheuristic optimization approach could easily dedicate 100% to the first 

layer and 0% to the second, while achieving the right result. The cINN, however, learns 

from the given samples, a reasonable range for each layer, and give some more realistic 

results and they recognize the correct fraction of each layer contribution to the overall 

stiffness (see Sec. 4.2). And at the end of the paragraph, we have stated an easy 

solution for that issue by varying the properties of the laminate as whole and not the 

different layers. This should exclude this collinearities/ambiguities. we hope this makes 

clear why it is still interesting for some readers to see this behavior, while it is 

deductible from physical knowledge. 



 Fig. 15: The analysis underlying this plot is interesting. I was wandering whether a 

similar conclusion can be derived from the Sobol analysis of Sec. 2.1. I guess that 

features belonging to blade root and tip be associated to both lower estimation 

accuracy (see Fig 15) and lower Sobol indices (from Tab. 2). Please, verify and comment. 

Interesting idea. Parting from the point that the root and tip node of the variation 

splines only contribute to one respective side of the variation spline and the 

intermediate nodes to both sides, one could expect that these tip/root nodes have less 

impact on the modal response and thus on the sensitivity matrix. This would imply that 

the mode shapes include less information for the updating process. So your 

anticipation is most of the times right, but it does not hold necessarily for all cases, 

especially for the root nodes. By having information of the clamped and free vibrating 

configuration, it is possible to recover information on density (free vibration) and 

stiffness (clamped vibration) in the root section. However, we do not have this 

configuration for the tip section, thus here especially the density can be better 

recovered than the stiffness, as the tip has no boundary condition. What in most cases 

is visible is that the significant sensitivity indices move from root to tip with the node 

number of the parameter splines. The figure provided for the previous comment, 

shows clearly: 

o Node 1 (0m) can be found in the clamped configuration only contributing in the 

root section 

o Node 2-4 higher impact on their particular position (5m,10m,15m) but also 

contributions to the rest 

o Node 5 (20m) basically no contribution. 

And comparing to the cINN prediction on the basis of RMSE to the target values, the 

figure below shows, what you have expected for most of the cases: Root and Tip Node 

have low Sobol indices and also poor predictions of the cINN. 

 
 



However, as shown in the response to your last major comment, the cINN only needs 

one DOF of any mode shape, where the considered parameter contributes as one of 

the top input parameters, to retrieve enough information for the mapping of output to 

input parameter. Thus explains why in few cases the cINN can still compute a good 

prediction, although the Sobol index is low. 

 

We hope this answers your question or better confirms your anticipation. However, if 

you agree, we would still leave this analysis out, to not over inflate the presented study. 

 

 Line 386: cINN correctly captures the global model behavior with respect to mass and 
stiffness distribution. . What about the blade center of gravity position, which is a value 
simple to be measured? This data can be used in the estimation process. Was it done?  

No, it was not used. But the center of gravity position should be approximated good as 

long the mode shapes are accurately captured as these include the mass distribution 

and by that inherently the total mass and center of gravity location. 

 Section conclusion:  

o The sentence invertible neural networks are highly capable to efficiently dealing 
even with an extensive wind turbine blade model updating  should be better 
explained. In fact, the estimation problem is solved but still the updating process 

results accurate only for global model characteristics (see line 386: the cINN 
correctly captures the global model behavior with respect to mass and stiffness 

distribution ). I suggest stressing this fact.  
We have adapted this paragraph. We hope this follows your given idea: 

The model updating was performed on a global level. This took into account 5-

noded splines for input feature representation over the blade span of material 

density and stiffness, as well as layup geometry. The blade response used for the 

updating process is in form of modal shapes and frequencies. The outstanding 

updating results presented in this study strengthens the conclusion in Noever-

Castelos  et  al.  (2021a) that invertible neural networks are highly capable to 

efficiently dealing with a full wind turbine blade model updating for the given 

global fidelity level.  

 

o Lines 461-462: The ambiguities are captured very accurately by the network. . 
What do the Authors mean with this sentence? Does it mean that the cINN is 

able to get rid of ambiguities and not-identifiable combinations of features and 

perform the estimation accurately for the rest of the features? If so, maybe the 

sentence should be clarified.  

The cINN learns and understands the intrinsic collinearities of the physical 
model, which result in ambiguous inverse paths. However, the cINN is still not 

able to distinguish from which parameter the individual contribution comes. 

Nevertheless, in contrast to a deterministic approach, the user can see how 

uncertain the cINN is about the prediction due to its wide spreading of affected 

feature's prediction. In future contributions this can be handled by updating a 

joint density or stiffness variation, instead of individual features.  

 



 



Dear Sarah Barber, 

On behalf of all authors I gratefully thank you for reading the paper and providing 

valuable constructive criticism, which we believe has helped to develop and 

strengthen this work significantly. Please find our answers to all your comments, by 

either corrected or added text sections or comments on your suggestions/concerns. 

We hope to have correctly understood and adequately accommodated all your 

concerns. Thank you again for your contribution. 

 

Specific comments 

1. INTRODUCTION 

 

- Line 52: can you quantify "computationally expensive" in terms of 

computational time as well as just number of iterations? How long does one 

iteration typically take? 

This is impossible to quantify in a general manner, as it depends on the every 

model itself and the hardware you are using. The model generator we are 

using in this publication needs about: …on average approx. 80 s on a single-

core device.  (As mentioned in Sec. 4.5) I will include this number as 
exemplary reference in the introduction: 

Iterations are always model dependent, but as a reference for the real time 
consumption, the model generator used in this publication (Noever-Castelos 

et al., 2021a) takes on average approx. 80s on a single-core device for one 

iteration, i.e., model creation.  

 

- Section 1.2: it would be better to introduce the three "problems" and then 

describe them, rather than describing one of them and then introducing the 

three problems.  

This makes totally sense. Thank you! The order was swept, starting with the 

three bullet points introducing the issues and describing them afterwards. 

 

 

2. SENSITIVITY ANALYSIS 

 

- Introduction: Usually one would expect the text at the start of a section before the 

first sub-section to introduce the section. Instead, you just talk about a previous 

paper, which is confusing. I would suggest inserting a proper introduction to the 

section here, and/or just moving the existing text into the first sub-section. 

As suggested, the section was moved into Sec. 2.1 and a proper introduction is 

added. 



 

- Section 2.1: Please explain briefly why you are using the Sobol method. 

This method is widely used in research and is used here, as it also applies globally 

to non-linear models and analyzes interaction of input parameters on the model 

response.  

- Section 2.2: You refer to Figure 2 before Figure 1. Please swap the figures. 

Thanks for that notice. It was actually correct in latex, though the formatting process 

swapped them.  

- Section 2.2: Are you using one particular blade for this study or is it generalised? 

Please explain this better. 

Added: 

We will be performing the analysis on the DemoBlade of the SmartBlades2 project 
(SmartBlades2,  2016-2020).  

 

- Line 111: With "In contrast to the simplified visualisation" do you mean the one 

used in the previous study? 

That was a bit confusing I have to admit. No, the figure shows a coarse mesh, 

however, in the anaylsis a more refined mesh is applied. I have adapted the 

sentence to: 

In contrast to this simplified visualisation in Fig 1…  

 

- Line 118: Why "five equidistant nodes"? 

Added: 

The number of spline nodes can be chosen arbitrary; however, a high number 

increases the computational costs (more updating parameters) and can lead to 

collinear behavior if the nodes are to near, whereas a low number reduces the 

flexibility to adapt to short distance changes. For this study the number where 

chosen based on experience as a trade-off between computational costs and a 

sufficient approximation of a global parameter variation.  

 

- Line 163: "which does not necessarily improve the updating performance, but 

reduce the performance." This is a bit confusing. Does the second "performance" 

refer to the computational performance? 

Oh, this is really confusing. Yes, it is the computational performance. This sentence 

was changed to: 

This repeated information does not necessarily improve the updating results, but 
reduce the computational performance.  



3. INN ARCHITECTURE 

 

- Lines 179-184: I would make the two colours in Fig. 4 more clear - it's hard to see 

them and differentiate between them. 

We have changed the color and the thickness of the lines, to make it more clear. 

 

- Line 190-198: can you give non-cINN-experts an idea of what the consequences of 

the flattening process are? I find myself not able to understand the effect of this on 

the results and it would be nice if you helped me out here (and others). 

There are no effects on the results, it is just about how the data is processed in the 

network: 

A consequence is, that the sub-networks cannot make use of convolutional layers, 

but have to include feed-forward layers. However, this will not have any significant 

impact on the result. As mentioned before, the conditions and input features are 

stacked in the sub-networks, which thus need a similar spacial shape. Consequently, 

the conditional network has to flatten the shape to a vector for each output, in order 

to agree with the input shape in the sub-networks.  

 

- Line 201: Please explain the table structure briefly. Remind us what the different 

clusters are. 

As previously explained the conditional network processes the conditions c and has 
5 outputs at different stages of the processing. Each of this outputs is fed into a 

cluster of 3 CCs. the configuration for each cluster and the corresponding 

hyperparameters for the conditional network, cINN and sub-networks is 

summarized in Table 3.  

4. MODEL UPDATING 

 

- Line 244: Please quantify this, i.e. instead of "most of the values hit the ground 

truth." write something like "x% of the  values are within x% of the ground truth" 

However, the overall posterior prediction in this example is very good, as approx. 
70\% of the predictions are within a range of $\pm\,0.05$ (standardized scale) of the 

ground truth.  

 

- Line 249: You write "Thus, the ideal case would correlate to an exact line with a 

slope m = 1." (also with the intercept = 0?) - R^2 is not a measure of how close m is 

to one, but of how close the points are to the regression line y = mx + c (isn't it???). 

Please clarify this discrepancy and forgive me if I'm wrong. 

You are right. This has to be mentioned. However, the slope accuracy (to 1) and the 

R² value correlate in general for these results. This would only differ significantly if a 



systematic error appears in the predictions. For this publication the slope m was 

added as additional information in Figure 9 and is now discussed briefly in the text: 

Approximately 70% of the selected features reach a very satisfying linear correlation 
with R²>0.9, while showing a slope m of approx. 0.9 or higher. For the rest of the 

discussion we will be sticking with the R²-value for the accuracy, as the slope 

accuracy correlates with the R²-value.  

 

- Line 327: why 5%? 

This is arbitrary chosen on behalf of a maximum measurement error. For example, 

in the SmartBlades 2 Project the errors estimated for the strain gauges or the 

accelerometers were below 5%. 

 

- Line 331: Please quantify the statement "most of the input features are predicted 

as accurate as with a clean output." (i.e. what do you mean by "most" and "as 

accurate"?) 

We hope this satisfies your concerns: 

As visually confirmed in Fig. A1 the other features do not show a wider spread 
(orange) than the original values (blue) and therefore do not suffer from any 

accuracy loss.  

 

- Lines 377-378: Quantify these two statements too! 

Again,  all  mean  values  are  close  to  1  (90% with MAC 0.995),  so  an  overall  
excellent  updating  performance can be stated. Single predictions lead to worse 

results, as depicted by the minimum value (4.3% of all have a MAC 0.98), especially 
for the higher order modes, though the MAC value of less than 0.8 is only obtained 

for the 10th eigenmode of the free-free configuration.  

 

- Line 386: "The counteracting intrinsic model ambiguities cancel each other out". 

Could you explain this a bit more please? 

The counteracting intrinsic model ambiguities discussed in Sec. 4.2 cancel each 
other out, i.e., the overall shell laminate properties are correctly predicted, although 

the individual stiffness or density of the layers (Biax90 and Triax) are not predicted 

accurately. So the cINN still correctly captures the global model behavior with 

respect to mass and stiffness distribution.  

 

- Line 390: Quantify this! 

The overall cINN updating performance is strikingly good, with on average 90% of 

the mode shapes showing a MAC 0.995.  

 



- Line 396: It would be better to first mention this when introducing Sobol above (I 

already mentioned that you should expain why you chose the method), and then 

refer to it here. 

This is already mentioned in Sec. 2.2: 

SALib uses the quasi-random sampling with low-discrepancy sequences technique 

from Saltelli et al. (2008) for the sensitivity analysis. To compute the Sobol index, the 

algorithms require a variation of each input feature individually for each of  the n 

samples,  which  results  in  a  total  sample  size  of ntotal (dim(x) + 2) = 79,360 to 

compute the 1st order Sobol indices.  

CONCLUSIONS 

 

- Lines 471-475: Please say something about how realistic the assumptions were. 

You say that it should now be applied to a real life application. This means you think 

that the assumptions you made in this work will impact the results. How and why? 

We hope that the following rephrasing and additions make it clear, what are the 

limitations and what still should be targeted in future research: 

The cINN proved to be extremely capable of performing an efficient model updating 
with a larger parameter space. The physical model complexity in form of a 

Tymoshenko finite element beam is already at the state of the art level applied in 

industry. However, to ensure that the cINN learns the complete inverted physical 

model, it is important that all possibly relevant parameters have to be varied, so that 

the cINN is trained for all circumstances of variations for the model updating. 

Therefore, ongoing and future investigations should bring this method to a real life 

application, where the parameter space will span more relevant aspects of blade 

manufacturing deviations, such as e.g., adhesive joints.  

 

Technical corrections 

Thank you for your technical corrections, which were all considered in the revision. 


