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Abstract. Digitalization, especially in the form of a digital twin, is fast becoming a key instrument for the
monitoring of a product’s life cycle from manufacturing to operation and maintenance, and has recently been
applied to wind turbine blades. Here, model updating plays an important role for digital twins, in the form
of adjusting the model to best replicate the corresponding real-world counterpart. However, classical updating
methods are generally limited to a reduced parameter space due to low computational efficiency. Moreover, these
approaches most likely lack a probabilistic evaluation of the result.

The purpose of this paper is to extend a previous feasibility study to a finite element Timoshenko beam
model of a full blade, for which the model updating process is conducted through the novel approach with
invertible neural networks (INNs). This type of artificial neural network is trained to represent an inversion of
the physical model, which in general is complex and non-linear. During the updating process, the inverse model
is evaluated based on the target model’s modal responses, which then returns the posterior prediction for the
input parameters. In advance, a global sensitivity study will reduce the parameter space to a significant subset,
on which the updating process will focus.

The finally trained INN excellently predicts the input parameters’ posterior distributions of the proposed
generic updating problem. Moreover, intrinsic model ambiguities, such as material densities of two closely lo-
cated laminates, are correctly captured. A robustness analysis with noisy response reveals a few sensitive param-
eters, though most can still be recovered with equal accuracy. And, finally, after the resimulation analysis with
the updated model, the modal response perfectly matches the target values. Thus, we successfully confirmed that
INNs offer an extraordinary capability for structural model updating of even more complex and larger models of
wind turbine blades.

1 Introduction

Wind turbine blades are enormous composite structures ex-
posed to extreme and harsh environmental conditions. Due
to these circumstances, structural health or condition moni-
toring plays a critical role in reliably ensuring the endurance5

of the rotor blade. However, this raises the need for an ac-
curate model representation of the structure as built. In this
context, the digital twin is emerging as a powerful instrument
(Grieves, 2019) for these monitoring systems during opera-
tional time, though it can already be involved in early stages10

of manufacturing (Sayer et al., 2020). The concept of model
updating is central to achieving a digital product twin, for

example, by updating the preliminary blade design based on
sensor responses from blade characterization tests. This pro-
cess of model updating ensures that the current stage of the 15

digital twin represents the blade as built.

1.1 Model Updating of Wind Turbine Blades

Model updating has grown in importance in light of dig-
italization of the wind turbine blades, however, it is only
marginally explored in literature. Similar to other structural 20

dynamic model updating applications (Sehgal and Kumar,
2016), the publications on rotor blade model updating typ-
ically follow metaheuristic optimization techniques and de-
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fine the objective function based on the modal assurance
criterion (MAC), which represents a common metric for
the quantitative comparison of modal shapes (Pastor et al.,
2012). Other related modal metrics can be found in Allemang
(2003). The most recent publications, such as Hofmeister5

et al. (2019) and Bruns et al. (2019), apply classical meta-
heuristic optimization algorithms to update the model pa-
rameters and localize damage in a generic problem with a
finite element beam blade model. These publications eval-
uate a global pattern search and compare it to evolutionary,10

particle swarm, and genetic optimization algorithms. The ob-
jective function is based upon the natural frequencies and
the MAC value. Furthermore, the MAC and the coordinate
modal assurance criterion (COMAC) is applied in the model
updating process of a finite element shell model of a ro-15

tor blade conducted by Knebusch et al. (2020). That study
aims to update the blade model of a built blade along with
high-fidelity modal measurements and a gradient-based opti-
mization approach. Another approach presented by Schröder
et al. (2018) uses a two-stage metaheuristic optimization to20

detect damages and ice accretion on a rotor blade. A global
optimization with a simulated quenching algorithm is fol-
lowed by a local method (sequential quadratic programming)
to minimize the objective function, consisting of natural fre-
quencies and mode shapes. Omenzetter and Turnbull (2018)25

implemented metaheuristic optimization methods (fireflies
and virus optimization) to detect damages in a finite element
beam model of a blade and compare the performance to a
simplified beam experiment. Other publications cover sim-
plified model updating procedures of low-level wind turbine30

blade models (Velazquez and Swartz, 2015; Liu et al., 2012;
Lin et al., 2018). While most of the referred contributions
focus on the field of damage detection, the model updating
conducted by Luczak et al. (2014) highlights the impact of a
flexible support structure of the test setup of modern blades,35

which was also revealed by Knebusch et al. (2020).

1.2 Drawbacks of Current Updating Approaches

Most of the these publications encounter three major prob-
lems:

1. Due to the aforementioned computational effort, the40

studies have been restricted to simple models
2. They typically lack an efficient probabilistic approach

to evaluate the uncertainty of the results
3. All approaches only address one particular state of the

blade at a defined condition and not a generalized in-45

verse model

The aforementioned approaches can be classified as deter-
ministic and thus lead to results which are not necessarily the
global optima. Therefore, these methodologies may require
the process to be run several times to ensure the result50

validity (Schröder et al., 2018; Omenzetter and Turnbull,
2018). This is especially problematic, since metaheuristic

optimization algorithms are computationally expensive due
to their iterative model evaluation (Chopard and Tomassini,
2018). As a reference, Bruns et al. (2019) performed 500 55

iterations for two updating parameters and 1,500 iterations
for five updating parameters, while in Omenzetter and Turn-
bull (2018) the firefly optimization of two update parameters
required 157 iterations until convergence and the virus opti-
mization 5,000 iterations. Newer model updating techniques 60

involve probabilistic approaches such as a sensitivity-based
method (Augustyn et al., 2020) or Bayesian optimization
(Marwala et al., 2016). The latter is based on sampling
techniques such as Markov Chain Monte Carlo to cover
the complete parameter space. However, these approaches 65

typically require even more model evaluations as stated
in Patelli et al. (2017). There, a relatively simple model
of a 3 degree-of-freedom mass-spring system demanded
12,000 samples for the Bayesian solution, which was
approximately 10 times higher than for the sensitivity-based 70

method. Iterations are always model dependent, but to give a
reference for the real time consumption, the model generator
used in this publication (Noever-Castelos et al., 2021a)
takes on average approx. 80s on a single-core device for one
iteration, i.e., model creation. And finally, from the model 75

updating we obtain one solution of input parameters for a
particular set of model response parameters. However, if the
model response changes the whole optimization process has
to be repeated. While in most applications a solution for a
particular model is sufficient, an inverted model, which maps 80

model responses to input parameters, can be beneficial, e.g.,
in quality management during serial production. This reveals
a niche for an efficient method to invert the physical model,
enabling a fast evaluation of the model states at any time.

85

1.3 Model Updating via Invertible Neural Networks

This research framework is based on Noever-Castelos et al.
(2021a), a feasibility study on a first structural level of wind
turbine blades. The research performs a model updating with
conditional invertible neural networks (cINN) (Ardizzone 90

et al., 2019b) for four selected cross-sections of a wind tur-
bine blade. Noever-Castelos et al. (2021a) considers a set of
material and layup parameters as updateable inputs and takes
cross-sectional structural beam properties, such as stiffness
and mass matrix, as model outputs to define the objective 95

values. A sensitivity analysis following a one-at-a-time ap-
proach identified a parameter subspace selection of 19 sig-
nificant input parameters for the updating process. The spe-
cific objective of this current investigation in contrast to the
aforementioned publication (Noever-Castelos et al., 2021a) 100

is to:

1. Extend the feasibility study and methodology to a
complete three-dimensional finite element Tymoshenko
beam model of a wind turbine blade as applied in real
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world problems, instead of analyzing isolated cross-
sections

2. Introduce parameter splines for the input variation along
the blade

3. Use modal blade shapes and frequencies as model re-5

sponse
4. Replace the sensitivity analysis for the parameter sub-

space selection by the global variance-based Sobol
method (Sobol’, 1993), which takes interactions of in-
put parameters into account10

5. Implement a pre-processing feed-forward neural net-
work for the cINN conditions

6. Analyze the potential of replacing or neglecting the sen-
sitivity analysis by training the cINN on the full param-
eter space15

However, this investigation is still designed to reveal the fea-
sibility with respect to a complex full three-dimensional Ty-
moshenko beam model, before applying the method to a high
dimensional real-world and non-generic problem.

1.4 Outline20

This study will follow the outline of Noever-Castelos et al.
(2021a). The first section after the introduction presents
the sensitivity analysis procedure and discusses the phys-
ical model built in MoCA (Model Creation and Analy-
sis Tool for Wind Turbine Rotor Blades) (Noever-Castelos25

et al., 2021b) and BECAS (BEam Cross-section Analysis
Software) (Blasques, 2012). The chosen architecture of the
cINN is explained in Sect. 3. Sect. 4 covers the results dis-
cussion, with a general analysis of the updating results in
Sect. 4.1. Sect. 4.2 reveals intrinsic model ambiguities, be-30

fore the model robustness to noisy model responses is exam-
ined in Sect. 4.3. A resimulation analysis to ensure the high
updating quality is performed in Sect. 4.4. Sect. 4.5 presents
a method to replace the computational expensive sensitiv-
ity analysis. This is then all followed by the conclusion in35

Sect. 5.

2 Sensitivity Analysis of Modal Responses of a
Rotor Blade Finite Element Beam Model

Typically a physical model consists of several input parame-
ters defining the model behavior. The model is then evaluated40

or simulations are performed, which yield a model response.
However, not all input parameters are equally contributing
to the particular model response. A sensitivity analysis helps
to identify the most significant input parameters. It is an un-
derestimated powerful tool to reduce the model dimensions45

without loosing significant information. Especially for model
updating purposes this can make a huge difference in per-
formance. This section will discuss the applied sensitivity
method as well as the applied model and parameter subspace
selection.50

2.1 Sobol’ Sensitivity Method

Noever-Castelos et al. (2021a) performed a sensitivity anal-
ysis to reflect how input distributions influence the output
distribution’s variance and mean value in order to identify
relevant input and output features for the model updating 55

process with the invertible neural network. There, a one-
at-a-time approach is used, where values vary individually
and their impact on the output is analysed. In contrast to
Noever-Castelos et al. (2021a), this contribution will make
use of a variance-based approach, called Sobol method, or 60

Sobol index (Sobol’, 1993, 2001). This method is widely
used in research and is used here, as it also applies globally
to non-linear models and analyzes interaction of input pa-
rameters on the model response. For a multivariate function
y = f(x1, . . . ,xn), Sobol derived the 1st order Sobol index 65

Si for the variable xi as follows:

Si =
V [E(y|xi)]
V (y)

(1)

This is a measure to what extent the impact of varying xi
will result on the output y. On the basis of a random sam-
pling of the parameters x, E(y|xi) represents the expectation 70

E of all y for a constant value of xi. It can be understood
as an average of y corresponding to a slice of the xi domain
in the parameter space. V [E(y|xi)] is then the variance of
all expectations over the range of values of xi, i.e., slices
of the xi domain (Saltelli et al., 2008). This variance is fi- 75

nally related to the overall variance of y. The 1st order Sobol
index ranges in 0≤ Si ≤ 1. Higher-order Sobol indices can
also be extracted, see Saltelli et al. (2008), which measure
the sensitivity of parameter interactions. For instance the 2nd

order Sobol index shows the joint effect of two parameters 80

on the output, whereas 3rd indices express the joint effect of
three parameter interactions, and so on. Although these in-
dices can give a significant inside into the model, such as
existing collinearities, the number of indices grow geometri-
cal with the number of parameters, which quickly makes the 85

computation intractable. However, the total Sobol index STi

gathers the total sensitivity for a parameter including the first
order and all higher order interactions. According to Saltelli
et al. (2008) the total index STi is calculated as follows:

STi = 1− V [E(y|x∼i)]

V (y)
(2) 90

Where V [E(y|x∼i)] describes the variance of all expecta-
tions over the range where xi is not included. If the model
is purely additive for a particular parameter, the correspond-
ing total Sobol index should be equal to the 1st order index.
While the total index does not provide the information of 95

which interaction is significant, it does identify if any inter-
action exist, with the benefit, that it is computed alongside
the 1st order Sobol index without any significant additional
computational effort.
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For a multivariate function with multiple outputs
(y1, . . . ,ym) = f(x1, . . . ,xn) Eq. (1) and Eq. (2) can be ex-
pressed, respectively, as:

Sij =
V [E(yj |xi)]
V (yj)

(3)

5

STij = 1− V [E(yj |x∼i)]

V (yj)
(4)

2.2 Rotor Blade Finite Element Beam Model

The necessary model generation and variation is performed
with the model creator MoCA (Noever-Castelos et al.,
2021b) and its interface to BECAS (Blasques and Stolpe,10

2012) to create cross-sectional beam properties, which are
assembled to a finite element beam (FE beam) and evalu-
ated in ANSYS Mechanical (ANSYS Inc., 2021b). We will
be performing the analysis on the DemoBlade of the Smart-
Blades2 project (SmartBlades2, 2016-2020). Figure 1 de-15

picts a coarse version of the FE beam used in this study.
In contrast to this simplified visualisation in Fig 1, the ap-
plied FE beam model is built of 50 3D linear beam elements
(BEAM188) (ANSYS Inc., 2021a) with higher mesh density
to the root and tip section of the blade, where greater geo-20

metrical and material changes are expected. Thus, the finite
element model consists of 51 nodes (NFE). The input param-
eter selection of Noever-Castelos et al. (2021a) was slightly
expanded to cover more material properties, which will be
discussed in detail later. The input parameter selection spans25

a space with a maximum dimension of DCS = 33 for each
cross-section, though varying these for each of the 50 cross-
sections would result in Dtot = 1,650 parameters. Assuming
a smooth variation of each parameter over the radius, Akima
splines (Akima, 1970) were introduced to represent the pa-30

rameter variation along the blade. An exemplary spline is de-
picted in Fig. 2. The spline is built based upon five equidis-
tant nodes, that may vary in y-direction within the given vari-
ation range of the parameter. The number of spline nodes
can be chosen arbitrary; however, a high number increases35

the computational costs (more updating parameters) and can
lead to collinear behavior if the nodes are to near, whereas a
low number reduces the flexibility to adapt to short distance
changes. For this study the number where chosen based on
experience as a trade-off between computational costs and a40

sufficient approximation of a global parameter variation.
Table 1 summarizes all the investigated input parame-

ters xi and corresponding properties. Moreover, Table 1 lists
the number of spline nodes with their respective normalized
radial range and variance limits for each property. In this45

feasibility study, we consider the most significant indepen-
dent elastic properties for each material: the density ρ, the
Young’s modulus E11, the shear modulus G12, and the Pois-
son’s ratio ν12, which may be varied over all five nodes in

a range of ± 10%. Here, we have neglected all thickness- 50

related elastic constants, i.e., parameters including the in-
dex/direction 3 and E22, as these parameters offer no sig-
nificant contribution to the stiffness terms of the beam cross-
sectional properties according to Hodges (2006) and Noever-
Castelos et al. (2021a). Since foam is modeled as an isotropic 55

material, only two independent elastic properties E, G and
the density ρ are considered. In addition to the material prop-
erties, the division points are also varied. These subdivide
the shell in cross-sectional direction into different sections
with a constant material layup or define sub-component po- 60

sitions such as the web or adhesive (Noever-Castelos et al.,
2021b). The division point parameters P are allowed to vary
on the three mid nodes by the given absolute range. The root
and tip node cannot be varied due to model generation is-
sues within MoCA, thus the variance for node N0 and N4 65

will be kept at zero, similar to Fig. 2. All applied varia-
tions are approximately twice the permitted manufacturing
tolerances (Noever-Castelos et al., 2021a), in order to assure
some flexibility of the inverse model. Summing up all pa-
rameters and nodes, the problem spans a parameter space 70

of dim(x) = 153. The sensitivity study is conducted based
on the Python package SALib (Herman and Usher, 2017)
and a random sampling dimension of n= 29 = 512 samples.
SALib uses the quasi-random sampling with low-discrepancy
sequences technique from Saltelli et al. (2008) for the sensi- 75

tivity analysis. To compute the Sobol index, the algorithms
require a variation of each input feature individually for each
of the n samples, which results in a total sample size of
ntotal · (dim(x)+2) = 79,360 to compute the 1st and total or-
der Sobol indices. The sensitivity study as well as the up- 80

dating process is based on the modal beam response y, as
described in Gundlach and Govers (2019), in a free-free and
a clamped scenario, which is comparable to an elastic sus-
pension of the blade and a fixation of its root to a test rig,
respectively. In each case, the first 10 eigenmodes are ex- 85

tracted, excluding the rigid body motion modes in the free-
free scenario. For all 10 mode shapes of each configuration
(free-free and clamped), the natural frequency and the three
deflections and three rotations of each finite element beam
node NFE are saved. These are collected in a response matrix 90

with dim(y) = (10+10)·(1+6) = 140 columns. Throughout
this paper, input parameters and model responses will also be
referred to as input and output features or conditions, respec-
tively.

2.3 Feature Subspace Selection with Sobol Indicies 95

After computing the 1st order and total Sobol index Sij and
STij respectively for each input feature xi and output feature
yi at every NFE position, we obtain a matrix of size 140 x 51
x 153, i.e., dim(y) x dim(NFE) x dim(x). For the subspace
selection we follow two selection method: 100
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Figure 1. Exemplary finite element beam with reduced number of elements and exemplary cross-sectional illustration. The detail shows a
cross-sectional BECAS output (Blasques and Stolpe, 2012) as used in the feasibility study (Noever-Castelos et al., 2021a).
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Figure 2. Exemplary variation spline with five nodes.

Table 1. Input feature list analyzed in this study. Each feature and
property builds a distribution spline based on the given number of
equidistant nodes within the given normalized radial range of the
blade. Each node value may then vary in the listed variance range.

Parameter Property Nodes Norm. range Variance

UD ρ, E11, G12, ν12 5 [0, 1] ± 10%
Biax45◦ ρ, E11, G12, ν12 5 [0, 1] ± 10%
Biax90◦ ρ, E11, G12, ν12 5 [0, 1] ± 10%
Triax ρ, E11, G12, ν12 5 [0, 1] ± 10%
Flange ρ, E11, G12, ν12 5 [0, 0.1] ± 10%
Balsa ρ, E11, G12, ν12 5 [0, 1] ± 10%
Foam ρ, E, G 5 [0, 1] ± 10%

PSS,TE,offset Location 3 [0.25, 0.75] ± 10 mm
PSS,Mid,spar cap Location 3 [0.25, 0.75] ± 15 mm
PSS,LE,offset Location 3 [0.25, 0.75] ± 10 mm
PPS,TE,offset Location 3 [0.25, 0.75] ± 10 mm
PPS,Mid,spar cap Location 3 [0.25, 0.75] ± 15 mm
PPS,LE,offset Location 3 [0.25, 0.75] ± 10 mm

1. By computing the maximum appearing 1st order Sobol
index of each input feature and comparing it to a thresh-
old

2. By performing a singular value decomposition (SVD)
on the total Sobol sensitivit matrix to idetifiy the most5

relevant contributions and mapping these back onto the
input feature with a QR factorization with column pivot-
ing (Chakroborty and Saha, 2010; Olufsen and Ottesen,
2013)

The selected subspaces are merged to a final subspace, 10

which is applied for the model updating process.

For the first selection method the sensitivity matrix con-
taining the 1st order Sobol index is condensed to a single
maximum value Smax i for each input feature xi. Therefore, 15

it is reduced to identify relevant input features y by comput-
ing the maximum value along the other non-corresponding
dimensions, i.e., dimension 2 and 3. Subsequently, an arbi-
trary threshold Sthld is defined to reject all features with a
lower maximum index Smax i. By this, we aim to consider 20

only features which have a significant impact during at least
one event at one location, thus containing enough informa-
tion for the updating process. Based on experience, we have
chosen Sthld = 0.1.

The second method follows a combination of SVD and QR 25

factorization on the sensitivity matrix of the total Sobol index
according to Chakroborty and Saha (2010) for a given set of
n input parameters x. Here each mode shape is analyzed in-
dividually. Therefore, the sensitivity matrix is divided and
reshaped; the 1st dimension, i.e., the 6 DOFs plus frequency 30

and 2nd dimension, i.e., the node positionsNFE, are flattened,
while the 3rd dimension, i.e., input features, is kept yielding a
(m × n) matrix. Given this individual total Sobol sensitivity
matrix ST for each mode shape the singular value decompo-
sition according to Golub and van Loan (2013) is: 35

ST = UΣVT (5)

U and V denote the left and right singular vector matri-
ces, each column corresponding to the singular values in
Σ = diag{s1,s2, · · · ,sp} with p= min(m,n), respectively.
According to Chakroborty and Saha (2010), the criterion per- 40

centage of energy explained by the singular values is used to
identify the g most relevant features. The percentage of en-
ergy Pex is calculated as normalized cumulative sum of the
singular values:

Pex =

∑g
i=1 s

2
i∑p

i=1 s
2
i

· 100% (6) 45

The number of relevant singular values g is equal to the high-
est number g complying Pex ≤ 99%. The rest p− g singular
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values only contribute to 1% of the total energy and are there-
fore insignificant for the result.

A subsequent QR-factorization with column pivoting
(Golub and van Loan, 2013) is used according to Olufsen and
Ottesen (2013); Chakroborty and Saha (2010) to extract the5

order of the original input vector x, by sorting the columns
of the left singular vector matrix V of size n × n in order
of maximum Euclidean norm in successive orthogonal direc-
tions:

VTP = QR (7)10

Q is a matrix with orthonormal columns, R is an upper trian-
gular matrix and P is the permutation matrix. In this partic-
ular case of a square matrix V, all matrices are of the same
dimension as V. The permutation matrix P is finally applied
to the input parameter vector x to resort the vector according15

to sensitivity significance:

xs = xT ·P (8)

The sorted input vector xs is than reduced to the first g en-
tries, representing the most significant parameters for the an-
alyzed mode shape following the criterion explained above.20

After computing all xs for each mode shape these are all
merged to a final set of input parameters determined to be
relevant during at least one mode shape. With this SVD-QR
method applied to the total Sobol indices matrix, the authors
tried to identify parameters that are significant either on their25

on or in interaction with others. However, the significance is
not measured as maximum value in one occasion, such as in
the first method, but rather contribute substantially on aver-
age over a complete mode shape.

Both methods lead to the 49 selected features depicted in30

Table 2 with their respective Smax and a checkmark showing
the selection by the SVD-QR method.

When analyzing the rejections, it has to be noted that all
structural properties are condensed to cross-sectional beam
properties. That means, for example, Biax 45◦ as a face35

layer of the shear web is typically located near the elas-
tic and gravitational center of the cross-sections and thus
does not contribute in excess to the mass inertia according
to the Steiner theorem, nor to the overall bending stiffness
(Gross et al., 2012). Consequently, a variation of ρBiax45 and40

E11,Biax45 will not significantly impact the modal response
of the beam model. However, its shear modulus G12,Biax45
does have an impact when dealing with the shear forces
from flap-wise loading. Regarding foam and balsa as sand-
wich core materials, the stiffness contribution to the sand-45

wich panels is approximately 1% compared to the GFRP
(glass fiber-reinforced plastic) face sheets and this makes
their variations neglectable, while the mass contributions de-
pending on the layup can reach up to 66− 100%, which is
why a few of the density spline nodes are kept. Summariz-50

ing the sensitivity analysis reduced the input feature space

to dim(xsel) = 45, approximately 30% of dim(x). The out-
put features were all kept according to the feature selec-
tion approach. However, a reduced set of radial positions
can be applicable as the intrinsic information might be re- 55

peated in neighboring NFE. This repeated information does
not necessarily improve the updating results, but reduce the
computational performance. Therefore, the output of each
third node is selected, ending up with a radial output di-
mension of dim(NFE,sel) = 17. Thus, the final dimension for 60

the model updating process of the input feature space is
dim(input) = dim(xsel) = 45 and of the output feature space
is dim(output) = dim(NFE,sel) x dim(y) = 17 x 140.
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Table 2. Selected feature list from sensitivity study with their respective maximum 1st order Sobol indicies Smax i (values shown in bold meet
the given threshold Sthld = 0.1) and the selection mark for the SVD-QR method.

Feature Smax i SVD Feature Smax i SVD Feature Smax i SVD Feature Smax i SVD Feature Smax i SVD

ρUD,N1 0.248 X G12,Biax45,N3 0.149 X ρTriax,N3 0.462 X G12,Triax,N3 0.593 X G12,Flange,N3 0.015 X
ρUD,N2 0.381 X ρBiax90,N3 0.240 X ρTriax,N4 0.804 X G12,Triax,N4 0.343 X ρBalsa,N1 0.207 X
ρUD,N3 0.278 X ρBiax90,N4 0.109 E11,Triax,N0 0.312 X ρFlange,N0 0.214 ρFoam,N2 0.162 X
E11,UD,N0 0.109 X E11,Biax90,N0 0.116 X E11,Triax,N1 0.375 X ρFlange,N1 0.620 X PSS,Mid,spar cap,N0 0.669 X
E11,UD,N1 0.434 X E11,Biax90,N1 0.142 E11,Triax,N2 0.485 X E11,Flange,N0 0.087 X PSS,Mid,spar cap,N1 0.433 X
E11,UD,N2 0.432 X E11,Biax90,N2 0.132 X E11,Triax,N3 0.351 X E11,Flange,N1 0.413 X PSS,Mid,spar cap,N2 0.458 X
E11,UD,N3 0.371 X E11,Biax90,N3 0.218 X E11,Triax,N4 0.527 X E11,Flange,N2 0.485 X PPS,Mid,spar cap,N0 0.491 X
G12,Biax45,N0 0.099 X G12,Biax90,N3 0.112 X G12,Triax,N0 0.371 X E11,Flange,N3 0.044 X PPS,Mid,spar cap,N1 0.549 X
G12,Biax45,N1 0.224 X ρTriax,N1 0.291 X G12,Triax,N1 0.607 X G12,Flange,N1 0.331 X PPS,Mid,spar cap,N2 0.433 X
G12,Biax45,N2 0.262 X ρTriax,N2 0.211 X G12,Triax,N2 0.521 X G12,Flange,N2 0.275 X

3 Invertible Neural Network Architecture

Before proceeding to the model updating process, it is nec-
essary to define the invertible neural network architecture.
Similar to Noever-Castelos et al. (2021a), this work will built
on conditional invertible neural networks (cINN) (Ardizzone5

et al., 2019b) implemented in FrEIA – Framework for Eas-
ily Invertible Architectures (Visual Learning Lab Heidelberg,
2021). A basic cINN consists of a sequence of conditional
coupling blocks (CC), as shown in Fig. 3. Each of these rep-
resents affine transformations that can easily be inverted. The10

embedded sub-networks s1, t1, s2, t2 embody the trainable
functions of this type of artificial neural network.

v1

c

u2

in outCC s2t1s1

v2

u1

t2

Figure 3. The conditional coupling blocks CC with its embedded
sub-network s1, t1,s2, t2. This CC architecture can easily be in-
verted. Ardizzone et al. (2019b)

These sub-networks stack the conditions c and the input
slice u2 or v1 and transform them for further processing. The
stacking necessarily requires similar spacial dimensions of15

c and u2 or v1, respectively. For a further brief introduction
to cINN with topic-related application, please refer to
Noever-Castelos et al. (2021a). A more in-depth explanation
can also be found in Ardizzone et al. (2019b) and Ardizzone
et al. (2018).20

After an extensive hyperparameter study, the presented in-
vestigation applies the network depicted in Fig. 4. Hyper-
parameters describe the network or architecture parameters
of artificial neural networks, like number of layers or per-25

ceptrons. It consists of a cINN (blue) with a sequence of
15 CCs, grouped into clusters of three. This cINN transforms
between the beam input x and the latent space z. However,
unlike the underlying feasibility study Noever-Castelos et al.
(2021a), an additional feedforward network is implemented, 30

referred to as a conditional network (orange). The idea is to
preprocess the raw conditions c, i.e., beam responses, before
passing them to the sub-networks in the CCs. It is trained in
conjunction with the cINN, to extract relevant feature infor-
mation optimally for each stage. The conditional network ar- 35

chitecture is inspired by Ardizzone et al. (2019b) and should
extract higher-level features of c to feed into the sequential
CCs, which, according to Ardizzone et al. (2019b), should
relieve the sub-networks from having to relearn these higher-
level features each time again. With a conditional beam re- 40

sponse c of shape dim(c) = dim(NFE,sel) x dim(y), the condi-
tional network applies 1D-convolutions (conv 1D) to process
the data, which gradually increase in size to progressively
extract higher-level features, which are fed into the different
clusters of the cINN. 45

In general, the beam input would also be available in a 2D
shape (property × spline nodes), though the feature selec-
tion of the sensitivity analysis reduced the splines irregularly.
Thus, a 2D shape cannot be maintained anymore, as not all
splines have the same number of nodes. Therefore, the se- 50

lected beam input x for the updating process going into the
cINN, is flattened to a vector and is not present in a 2D shape,
as for example the beam response c. A consequence is, that
the sub-networks cannot make use of convolutional layers,
but have to include feed-forward layers. However, this will 55

not have any significant impact on the result. As mentioned
before, the conditions and input features are stacked in the
sub-networks, which thus need a similar spacial shape. Con-
sequently, the conditional network has to flatten the shape
to a vector for each output, in order to agree with the input 60

shape in the sub-networks. Before flattening the output, the
conditional network activates the convolutional layer output
with a parametric rectified linear unit (PReLU) (He et al.,
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Figure 4. Conditional invertible neural networks (cINN, in blue frame) with sequentially connected conditional coupling blocks CC. The
conditional feed-forward network (cond. net, in orange frame) preprocesses the condition y with 1D convolutional layers and PReLU (para-
metric rectified linear unit) activations. Average 1D pooling is performed on the output, before it is flattened and reduced in dimension with
a fully connected layer (fc-layer), to be then fed into the sub-networks of the CCs. The convolutions gradually increases in size in order to
progressively extract higher-level features from the condition c.

2015) and halves the dimension with an average 1D pooling
layer (Chollet, 2018) (avg. pool 1D). After flattening, the di-
mension is additionally reduced with a fully connected layer
(fc-layer) to subsequently relieve the sub-network’s compu-
tation.5

Within the cINN, the CCs are clustered into groups, which
are then each fed by the progressively processed conditions
c. All sub-networks have one hidden fc-layer, followed by a
batch normalization to improve generalization and a PReLU
(Chollet, 2018) activation layer, as depicted in Fig. 5. As10

previously explained the conditional network processes the
conditions c and has 5 outputs at different stages of the pro-
cessing. Each of this outputs is fed into a cluster of 3 CCs.
the configuration for each cluster and the corresponding hy-
perparameters for the conditional network, cINN and sub-15

networks is summarized in Table 3.
The training is performed with an AdaGrad optimizer

(Duchi et al., 2011) and an initial learning rate of 0.3, which
is gradually decreased throughout the training process. The
optimization minimizes the negative logarithmic likelihood20

(NLL) given in Eq. (9) in order to match the model’s poste-
rior prediction of px(x|y) with the true posterior of the in-
verse problem (Noever-Castelos et al., 2021a).

fc-layer-in

hidden
fc-layer

batch norm

act.: PReLU

fc-layer-out

sub-net

Figure 5. Sub-network with one hidden fully connected layer (fc-
layer), batch normalization, and a PReLU activation layer. Each
conditional coupling blocks CC has such a sub-network embedded.

LNLL = E
[
− log

(
p(xi | yi)

)]
= E

[
‖f(xi;yi)‖2

2
− log |det(Ji)|

]
+ const. (9) 25
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Table 3. Hyperparameter set of the complete network, including conditional network, conditional invertible neural networks (cINN), and
sub-network. The cINN is divided into 5 clusters, for which the hyperparameters are listed separately. In Cluster 1, the conditions are directly
fed into the conditional coupling blocks CC, without a prior convolutional layer (cf. Fig. 4).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Conditional Conv 1D kernel k 3 3 3 3
network stride s 1 1 1 1

padding p 1 1 1 1
out chan. out 32 64 128 256

Activation PReLU PReLU PReLU PReLU
Avgerage 1D pooling kernel k 2 2 2 2

stride s 2 2 2 2
padding p 0 0 0 0

Flatten X X X X X
Fully connected nodes 100 200 300 400 500

cINN Conditional coupling block (CC) 3 3 3 3 3

Sub-network Fully connected nodes 400 500 600 700 800
Batch normalization X X X X X
Activation PReLU PReLU PReLU PReLU PReLU

4 Model Updating of a Rotor Blade Beam Model

Having selected the significant features with the sensitiv-
ity analysis and defined the cINN architecture, we will now
move on to the model updating process and its evaluation.
Therefore, the workflow of the cINN if briefly explained5

along with the schematic view of the transformations per-
formed by the cINN in Fig. 6. The presented cINN in Sect. 3
is trained and tested with sample sets of input features x and
their corresponding conditions c in the form of the modal
beam responses as described in Sect. 2. The concept and10

training of the cINN is based on the Bayes’ theorem to in-
fer a posterior distribution px(x|c) from a set of conditions
c. Therefore, the cINN learns the conditioned transformation
from the posterior distribution px(x|c) onto the latent dis-
tribution pz(z), as depicted in Fig. 6. This mapping can be15

achieved through maximum likelihood training. The training
is performed over 150 epochs, i.e., training iterations, with
a samples size of 30,000 training samples, in order to mini-
mize the negative log-likelihood LNLL (given in Eq. (9)). For
a more detailed description of the inherent method of cINNs20

please refer to Noever-Castelos et al. (2021b) or Ardizzone
et al. (2019a). Additionally a sample set of 5,000 test sam-
ples, which have not been seen by the cINN during its train-
ing, are used for validating and testing the cINN after the
training. All input features are always sampled randomly and25

independently, but at the same time, in order to span the com-
plete parameter space. However, only features selected by the
sensitivity study (cf. Table 2) are passed on to the cINN, as
the other parameters are identified to be less relevant. As the
cINN is trained to map the input features x into a normally30

distributed latent space pz(z), during the inverse evalution
the process is reversed: the latent space is sampled from a

px(x|c) pz(z)

cINN

forward f(x; c)

inverse f−1(z; c)

Figure 6. Schematic view of the transformation between the in-
put features x and the latent space z for a given condition c
performed by the conditional invertible neural network. (Noever-
Castelos et al., 2021a)

Gaussian normal distribution (e.g., 50-100 samples), which
the cINN then transforms along with the beam response as
condition c to the posterior prediction of the input features. 35

This prediction results in a distribution for each input fea-
ture px(x|y) as depicted in Fig. 6. In order to generalize the
data for the training process and make it more comparable
for the evaluation, all input features and conditions are stan-
dardized to zero mean and a standard deviation of 1 over the 40

complete training set. The necessary scaling factors are addi-
tionally saved in the cINN to transform back and forth any in-
put features or conditions used in the cINN besides the train-
ing process. Consequently, all features and conditions during
the evaluation of the cINN are related to the complete train- 45

ing set’s mean and standard deviation. Generally, the poste-
rior predictions are also depicted with respect to their ground
truth, i.e., target value of the sample, to align multiple sam-
ples for enhanced comparison.

This section first analyses the overall updating results of 50

the model. The identified inference ambiguities are then
highlighted and discussed, before the model is checked
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against its robustness to noisy conditions cnoisy. Based on the
predicted posterior distribution of the input features p(x|y),
a resimulation analysis is performed, where the updated pa-
rameters are used to feed the phyiscal model and calculate
the beam response, in order to check the quality of the up-5

dating and sensitivity analysis results. Finally, a method for
avoiding the computational intensive sensitivity analysis is
presented.

4.1 General Analysis of the Updating Results

In the first instance the posterior distributions have to be ex-10

amined. Figure 7 shows as an example the predicted poste-
rior distribution of four different input features as a histogram
and fitted Gaussian distribution. The ground truth on the x-
axis represents the real value used to generate the sample,
while the distribution is obtained from the cINN. For the fur-15

ther analysis, the type of distribution must be known in ad-
vance for it to be possible to apply the correct metric, e.g.,
mean or median. In this case of a Gaussian distribution, the
mean is the most significant value and will thus be applied
in this study to reduce the posterior prediction distribution20

to a single value accompanied by the standard deviation as a
measure of uncertainty.

By shifting the former x-axis from Fig. 7 onto the y-axis
and reducing the distributions to their mean and standard de-
viation, as stated before, we obtain the graphs depicted in25

Fig. 8 for the same exemplary sample, but with all updated
parameters. Most values range close to their ground truth
value and with a narrow distribution, which is desired. For
some input features, e.g., ρBiax90,N4, the prediction is less ac-
curate. However, the overall posterior prediction in this ex-30

ample is very good, as approx. 70% of the predictions are
within a range of ±0.05 (standardized scale) of the ground
truth.

After having checked the results in detail for one exem-
plary sample, Fig. 9 shows the prediction result of all selected35

input features for the 5,000 test samples. The graphs scat-
ter the standardized mean posterior prediction p̄(x|y) against
their corresponding target value from the sample set. Thus,
the ideal case would correlate to an exact line with a slope
m= 1 and an interception b= 0. Each graph is equipped40

with the coefficient of determination R2 and shows a corre-
sponding regression line with slope m. Approximately 70%
of the selected features reach a very satisfying linear correla-
tion with R2 > 0.9, while showing a slope m of approx. 0.9
or higher. For the rest of the discussion the we will be stick-45

ing with the R2-value for the accuracy, as the slope accuracy
correlates with the R2-value.

In the following we will create the link between the sen-
sitivity results to enhance the comprehension and explain
possible discrepancies. In general a high sensitivity Smax,i >50

0.35 leads to a high prediction accuracy (R2 > 0.9). A sec-
ond major metric to fully understand the prediction accu-
racy is the cross-correlation of the input features, which re-
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Figure 7. Conditional invertible neural network’s standardized
posterior prediction distributions p(x|y) for four input features of
one example. Plotted as a histogram and fitted Gaussian distribu-
tion.
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Figure 8. The first two graphs show the standardized posterior pre-
diction for all updated input features related to the target value with
1-σ standard deviation as error, thus the mean value marks the dis-
tance to the target value, i.e., ground truth.
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Figure 9. Standardized mean of posterior prediction x̄ of the updated inputs over the corresponding target standardized value for the 5,000
test samples. The coefficient of determination and a corresponding linear regression line are shown. The corresponding parameter description
to the features can be found in Table 2.

veals collinearities within the physical model. These present
a problem for the inversion of the model, as the output re-
sponse of the physical model is ambiguous and can be traced
back to different combinations of input features. However,
this will be addressed in Sect. 4.2. Input features that do not5

have any substantial cross-correlation, but high Smax,i, reach
prediction accuracies of R2 ≈ 1.0 , e.g., all spar cap position
points PMid,sc or the Young’s modulus of the UD material
E11,UD. For instance, ρFlange,N1 has one of the highest sensi-
tivity index Smax,i = 0.62, but a comparable poor prediction 10
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accuracy of R2 = 0.82. This fact is due to a strong collinear-
ity to the input features ρFlange,N0, ρFlange,N2. In contrast, the
feature G12,Biax45,N0 has a low sensitivity Smax,i = 0.1 but
an excellent prediction accuracy of R2 = 1.0. The reason is
that this feature does not show any collinearity to other fea-5

tures. Although the Smax,i is low, according to the 1st order
Sobol index matrix it has at three nodes NFE the second and
third highest contribution of all input features for a particular
mode shape and DOF, reaching a magnitude of 50-75% of
the maximum value for that DOF. That shows the powerful10

capability of the cINN to learn the mapping of an input fea-
ture to only a very few output features out of the complete
response data. Table 4 completes this list of examples with
the most striking discrepancies of sensitivity index to pre-
diction accuracy of the input features. Hence, the sensitivity15

analysis is a good indication to detect a significant parameter
subspace for the model updating, though high sensitivities do
not directly promise highly accurate inverse prediction.



TEXT: TEXT 13

Table 4. Most striking discrepancies of sensitivity and prediction accuracy of input features.

Feature Smax i R2 XCorrmin Explanation

E11,UD,N0 0.110 1.000 -0.663 Low Smax i, however, for two sensors it has the third highest contribution in a
DOF during one mode shape. The values reach a magnitude of 66% and 50%
of the maximum value in their corresponding DOF.

G12,Biax45,N0 0.100 1.000 -0.179 Low Smax i, however, for three sensors it has the second and third highest contri-
bution in a DOF during one mode shape. The values reach a magnitude of 75%,
55% and 53% of the maximum value in their corresponding DOF.

G12,Biax45,N3 0.149 1.000 -0.383 Low Smax i, however, for one sensor it has the third highest contribution in a
DOF during one mode shape. The value reaches a magnitude of 83% of the
maximum value in its corresponding DOF.

ρTriax,N1 0.292 0.790 -0.537 Mid Smax i; Mixed collinearity with ρBiax90,N1 and ρBalsa,N1

ρTriax,N2 0.211 0.770 -0.678 Mid Smax i; Mixed collinearity with ρBiax90,N2 and ρBalsa,N2

ρFlange,N0 0.214 0.660 -0.952 Mid Smax i; Strong colinearity with ρFlange,N1

ρFlange,N1 0.620 0.820 -0.952 High Smax i; Strong colinearity with ρFlange,N0 and ρFlange,N2

G12,Flange,N1 0.332 0.720 -0.857 Mid Smax i; Strong colinearity with G12,Flange,N1

G12,Flange,N2 0.276 0.690 -0.876 Mid Smax i; Strong colinearity with G12,Flange,N0 and G12,Flange,N2

4.2 Intrinsic Model Ambiguities

Ambiguities can originate from different sources, such as lit-
tle significant responses or modeling issues (Ardizzone et al.,
2019a). Noever-Castelos et al. (2021a) revealed some intrin-
sic model ambiguities of counteracting density values of the5

Biax90◦ and Triax layer in the blade cross-section. This was
also handled by the cINN in this study, although it was only
checked for the two spline nodes N3 and N4, as these co-
incide in the feature selection. The results are depicted in
Fig. 10, showing the standardized mean posterior prediction10

for the 5,000 test samples related to their ground truth and
the linear regression as well as the corresponding slope m in
the label. While the mean posterior predictions at node N3

were detected rather accurately (cf. Fig. 8), i.e., represent a
circular area in Fig. 10, the values of node N4 spread more15

and correlate to the plotted regression line.
In addition to the density, another ambiguity was detected

in the Young’s modulus E11 of both these materials, shown
in Fig. 11 for the nodes N0−3. Here, the correlation of the
mean posterior predictions is reasonably well described by20

the calculated regression lines. Finally, the last correlation
was found for the shear modulus G12,N3 between the same
materials (Fig. 12).

−2 −1 ground
truth

1 2

ρBiax90

−2

−1

ground
truth

1

2

ρ
T

ri
a
x

N3, m = −0.268

regression samples

−2 −1 ground
truth

1 2

ρBiax90

N4, m = −0.355

Figure 10. Interaction of density ρBiax90 and ρTriax describing the
intrinsic model ambiguities. The depicted values correspond to the
standardized mean posterior prediction for the 5,000 test samples.

All ambiguities rely on the same fact that the Biax90◦

and Triax layers appear subsequently in the stacking of the 25

sandwich panels of the blade shell. The stacking is schemat-
ically illustrated in Fig. 13 with a detailed view of the
shell, showing the stacking in exploded view. Together, these
layers build the symmetric inner and outer face sheets of
the shell, with a layer thickness of tBiax90 = 0.651mm and 30

tTriax = 0.922mm, same density ρBiax90 = ρTriax = 1,875 kg
m3 ,

Young’s modulus E11,Biax90 = 26,430 N
mm2 and E11,Triax =

29,873 N
mm2 , and shear modulusG12,Biax90 = 3,464 N

mm2 and
G12,Triax = 6,918 N

mm2 .
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Figure 11. Interaction of stiffness E11,Biax90 and E11,Triax describ-
ing the intrinsic model ambiguities. The depicted values correspond
to the standardized mean posterior prediction for the 5,000 test sam-
ples.
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Figure 12. Interaction of shear stiffness G12,Biax90 and G12,Triax de-
scribing the intrinsic model ambiguities. The depicted values cor-
respond to the standardized mean posterior prediction for the 5,000
test samples.

The contributions of the properties to the model behavior
must be analyzed for it to be possible to understand these
ambiguities further. As described in Sect. 2, a finite element
beam model is composed of beam elements containing cross-
sectional properties (Blasques, 2012). These basically con-5

sist of mass and stiffness terms, which can be directly linked
to ρ and E11 or G12, respectively (Hodges, 2006). The up-
coming deductions follow classical mechanics theories found
for example in Gross et al. (2012). First, considering the mass
contribution, we stick with the simplified example of the cen-10

Shell

Figure 13. Schematic blade cross-sectional view at a radial position
of r = 12 m with a detailed explosion drawing of the shell.

ter of gravity:

xs =
1

mtot

∫
x2dm=

1

mtot

∑
x2
jmj (10)

where xj represents the center of gravity of each component
and mi the corresponding mass. Due to the very thin thick-
ness of both layers and the overall cross-sectional dimension 15

being about 103 greater for both materials, it can be assumed
that xj = xs. And by expecting that the cINN correctly pre-
dicts the total mass mtot, Eq. (10) yields:

xs =
1

mtot
·xs
∑

mj (11)

mtot =
∑

mj (12) 20

= kBiax90 · tBiax90 · ρBiax90 + kTriax · tTriax · ρTriax (13)

And this obviously leads to the summation of all individ-
ual masses to the total mass, where k represents the number
of layers. This of course holds for higher order moments of
mass, due to the given proximity of both layers. Thus, a ratio 25

between both materials can be expressed:

kBiax90 · tBiax90 · ρBiax90 : kTriax · tTriax · ρTriax (14)

A similar behavior is also found for the stiffness. This is ex-
plained in a simplified example for the flexural rigidity of a
beam in Eq. (15), which extends with the Steiner theorem to 30

Eq. (16).

EIx̄ =
∑

EjIx̄,j (15)

=
∑

Ej(Ix,j +x2
s ·Aj) (16)

Assuming the layers have a rectangular shape, the area mo-
ment of inertia is Ix,j = w·t3

12 , though the widthw of the layer 35

is large, the thickness t is 10−3 smaller and thus this term
vanishes. With that, Eq. (16) reduces to Eq. (17). As stated
before, xs can be assumed to be constant and the same holds
for the width wi, as in the cross-sectional direction both ma-
terial layers cover the complete circumference of the blade. 40
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This results in the proportionality in Eq. (18)

EIx̄ =
∑

Ej(x
2
s ·Aj) =

∑
Ej(x

2
s · kj · tj ·wj) (17)

EIx̄ ∝
∑

Ej · kj · tj (18)

Similarly, to the total mass mtot, we expect the cINN to pre-
dict the global EIx̄ accurately and, consequently we can es-5

tablish the following ratio for the stiffness:

kBiax90 · tBiax90 ·EBiax90 : kTriax · tTriax ·ETriax (19)

Analog derivations can be made for the shear modulus, which
ends up in the ratio:

kBiax90 · tBiax90 ·GBiax90 : kTriax · tTriax ·GTriax (20)10

Figure 14 shows the number of each layer for the respec-
tive material along the blade, which corresponds to both the
inner and outer face sheet of the shell. The corresponding
spline nodes positions are also depicted. Table 5 shows the
ratios according to Eq. (14), Eq. (19), and Eq. (20) of the dif-15

ferent possible stacking options in Fig. 14. Looking back to

0.00 0.25 0.50 0.75 1.00
rnorm [−]

N0 N1 N2 N3 N4

1x Triax

1x Biax90

2x Triax

2x Biax90

3x Triax

Figure 14. Layup of the sandwich laminate face sheets of the blade
shell, consisting of Triax and Biax90◦. The inner and outer face
sheets are symmetric.

Table 5. Ratio between Biax90◦ and Triax layers for density and
stiffness contribution, considering different layer constellation.

kBiax90 1 1 1 2 2 2
kTriax 1 2 3 1 2 3

kBiax90·ρBiax90·tBiax90
kTriax·ρTriax·tTriax

0.706
1

0.353
1

0.235
1

1.412
1

0.706
1

0.471
1

kBiax90·EBiax90·tBiax90
kTriax·ETriax·tTriax

0.625
1

0.312
1

0.208
1

1.249
1

0.625
1

0.416
1

kBiax90·GBiax90·tBiax90
kTriax·GTriax·tTriax

0.354
1

0.177
1

0.118
1

0.707
1

0.354
1

0.236
1

the identified ambiguities in Fig. 10 of the density at node
N4, the linear regression shows a slope of m=−0.355. As-
suming each spline node contributes to the variance of half
of the space to the left and right of it, the given slope agrees20

extremely well with the ratio of kBiax90 = 1 and kTriax = 2.
This corresponds to the stacking shown near the node N4

in Fig. 14. Due to the poor linear regression of node N3 in
Fig. 10, the slope is not reliable, thus no conclusion can be
drawn. 25

However, the counteracting Young’s moduli in Fig. 11 can
be very accurately captured by the ratios for most spline
nodes. Starting with Node N2 (figure 11 bottom-left), which
is clearly affected by only one layer to the left and right of
it (cf. Fig. 14), the line slope m=−0.618 matches the value 30

in Table 5 (kBiax90 = 1, kTriax = 1) of 0.625. Node N0 has a
slope of m=−0.579, which agrees well with the value cor-
responding to kBiax90 = 2 and kTriax = 2, but tending towards
kBiax90 = 1 and kTriax = 2, which is also in the scope of this
node according to the layup in Fig. 14. Similar behavior is 35

found for node N1. Node N3 does not fully agree with this
argumentation, though the point scatters less and the regres-
sion line might not be accurate enough. The same holds for
the shear modulus in Fig. 12.

As assumed in the derivation of the ratios, we can state 40

that the cINN should correctly predict the total mass and the
stiffness contributions in a global manner, but suffers from an
intrinsic model ambiguity affected by the counteracting den-
sities ρ, Young’s moduli E11, and shear moduli G12 of the
neighbouring materials Biax90◦ and Triax. However, it of- 45

fers posterior predictions for these features, but with a wide
distribution expressing the uncertainty of the cINN based on
the given ambiguity. Merging both materials to a face sheet
material following laminate theory, would avoid these am-
biguities and improve the prediction qualities for the over- 50

all laminate. It is assumed that, based on the relatively low
layer thickness, the infusion and therefore the fiber volume
fraction of both layers is very similar, so that this approach
should be valid.

4.3 Model Robustness 55

So far the analysis of this feasibility study was conducted on
the exact test sample data, i.e., for a given input sample the
corresponding exact output sample is generated with the tool
chain MoCA + BECAS + ANSYS. In future studies, this pre-
sented method should be applied to real measured data of a 60

blade and this normally suffers from measurement uncertain-
ties. It is thus important to analyze the model robustness with
respect to a measurement error of the output features. There-
fore, an error of 5% as normally distributed random noise is
applied to the clean output response of each sample, which 65

is then used as a condition to infer the posterior prediction
of the input features. The results are shown in Fig. A1 in the
appendix, comparing the noisy (orange) and the clean (blue)
mean posterior predictions p̄(x|y) against their correspond-
ing targets for all 5,000 test samples. The graphs show some 70

features that are sensitive for noise, such as E11,Flange,N0-3,
G12,Flange,N3. As visually confirmed in Fig. A1, the other fea-
tures do not show a wider spread (orange) than the original
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values (blue) and therefore do not suffer from any accuracy
loss. Additionally, tests were performed resuming the train-
ing of the cINN with noisy conditions in order to improve the
prediction quality, though no benefit was identified.

4.4 Resimulation Analysis5

A resimulation analysis aims to utilize the posterior predic-
tions of the cINN based on the original response to resimu-
late/recalculate the response with the physical model in or-
der to compare it to the original response used to perform
the prediction. For all samples, the correct input features and10

their corresponding response features are known, which we
will be referring to as targets. The target response is used as
a condition for the cINN to infer the posterior prediction of
the selected input features. From these inferred input features
we can create new input splines for each input, as depicted15

exemplarily in Fig. 15. However, the prediction is not a dis-
crete value but a Gaussian distribution as we have seen before
in Sect. 4.1. Additionally, there are nodes that the sensitiv-
ity analysis excluded from the updating process; these may
take every value within their variation range, as they were20

sampled uniformly. Hence, for each input feature we obtain
a range of possible splines as Fig. 15 illustrates. Here, the
orange spline represents the target variance of the input pa-
rameter and the dark blue area represents the expected value,
i.e., the mean prediction from the updated nodes. In the case25

of the first spline for ρUD, nodes N0 and N4 were excluded
from the updating process and can thus take any value in
the range of ± 10%, as we do not have any prediction for
them. As such the blue area covers all possible splines a user
would take as the result from the model updating process.30

However, the purpose of this first evaluation of the resimu-
lation analysis is to examine, if sampling splines from the
given distributions will all lead to appropriate results. There-
fore, the 1−σ−uncertainty displayed in light blue shows the
standard deviation of the predicted nodes. In this first analy-35

sis, we sample uniformly from the not updated nodes (dark
blue range) and normally distributed from the updated nodes
(light blue) to create a spline. This will be done 1,000 times
for the same given target response of the selected single test
sample. Subsequently, these 1,000 sets of input splines are40

then used to create the model and calculate its modal re-
sponse. For the sake of completeness, Table A2 gathers the
identified mode shapes of both configurations. The resultant
mode shapes of the free-free and the clamped configurations
are then compared to the target response with the help of the45

modal assurance criterion (MAC) (Allemang, 2003).

MACij =
|Φi ·Φj |2

|Φi ·Φi| · |Φj ·Φj |
(21)

The MAC is the scalar product of two normalized vectors,
each representing all the model’s degrees of freedoms of a
particular mode shape. It is basically an orthogonality check:50

equal mode shapes reach a value of MAC = 1, while a value

of MAC> 0.8 is already assumed to show good coherence
(Pastor et al., 2012). For a multiple number of modes, a MAC
matrix summarizes all MAC values of all mode shapes com-
pared against each other. 55
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Figure 15. Exemplary inferred spline prediction range for ρUD,
E11,Biax90 andE11,Triax. The graphs depict the target spline in orange,
the mean prediction in dark blue, and the 1-σ-uncertainty in light
blue, for the updated spline nodes.

In our use case, the MAC matrix is computed individually
for all responses of the previously generated 1,000 samples
against the target response. For the free-free configuration,
Fig. 16 illustrates the mean value of the MAC matrix over 60

all samples in the top graph. The corresponding standard de-
viation is depicted below. The main diagonal ideally takes
values of MACij = 1, as the same mode shape of the sample
and the target is compared. Additionally, the matrix should
be symmetric, as the comparison of MACij = MACji rep- 65

resents the same two mode shapes. Figure 16 confirms this
ideal symmetric matrix structure for the re-simulated sam-
ples, with mean values MAC> 0.9975 in the diagonal and
extremely low standard deviations of σMAC < 0.003. For the
clamped configuration, the values on the diagonal are also 70

strikingly close to one (MAC> 0.9960, σMAC < 0.005) and
the overall matrix appears symmetric. In this way, sampling
from the distribution predicted by the cINN for each selected
input feature and arbitrarily choosing a value for the not up-
dated values yields an exact coherence of target and com- 75

puted mode shapes.
After having analysed a single target sample, the resimula-

tion is expanded to more samples to show the cINN’s general
performance. Therefore, posterior predictions for the 5,000
test samples of the test set are inferred with the cINN. Con- 80

trary to the resimulation case before, only one input is gener-
ated for each of the samples by choosing the mean value of
the prediction and, in the case of excluded variables, a node
value of zero (i.e., no variation). That represents a typical
choice a user would make, based on predicted posterior dis- 85

tributions. Figure 17 depicts the mean (horizontal marker),
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Figure 16. Mean values (top) and standard deviations (bottom) of
the MAC matrix for the free-free modal configuration based on
1,000 spline samples inferred for one target response.

max and min value (bar) of the diagonal entries of the MAC
matrices computed for all samples and both configurations,
comparing the re-simulated model and their respective tar-
get response. Again, all mean values are close to 1 (90%
with MAC≥ 0.995), so an overall excellent updating per-5

formance can be stated. Single predictions lead to worse re-
sults, as depicted by the minimum value (4.3% of all have a
MAC≤ 0.98), especially for the higher order modes, though
the MAC value of less than 0.8 is only obtained for the 10th

eigenmode of the free-free configuration.10
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Figure 17. Mean, maximum, and minimum diagonal entries of the
MAC matrices computed for 1,000 target responses.

The generally good performance is also confirmed by
the predicted corresponding natural frequencies. Figure 18
shows the relative error from the re-simulated frequencies to
the target frequencies of each mode for both configurations,
giving the mean and standard deviation over all re-simulated15

samples. The range of the mean error is |ēf |< 0.25% and

the standard deviation σef < 1.50%.
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Figure 18. Mean and standard deviation of the natural frequency
error ef computed for 1,000 target responses.

The results of the presented resimulation analysis show
that: 20

1. The counteracting intrinsic model ambiguities dis-
cussed in Sect. 4.2 cancel each other out, i.e., the over-
all shell laminate properties are correctly predicted, al-
though the individual stiffness or density of the layers
(Biax90 and Triax) are not predicted accurately. So the 25

cINN still correctly captures the global model behavior
with respect to mass and stiffness distribution.

2. As expected, the insensitive and thereby excluded input
parameters really do not have an impact on the results
and can be chosen arbitrarily (cf. Fig. 15). 30

3. The overall cINN updating performance is strikingly
good, with on average 90% of the mode shapes of the
resimulated samples showing a MAC≥ 0.995. The fre-
quencies were recovered with a mean error of |ēf |<
0.25%. 35

4.5 Replacing Sensitivity Analysis

Similar to other model updating studies such as Luczak et al.
(2014), this work relies on a sensitivity study to reduce the
parameter space of the updating problem to significant pa-
rameters. This so-called feature selection is performed in 40

this particular investigation with the aforementioned Sobol
method. A quasi-random sampling with low-discrepancy se-
quences (Dick and Pillichshammer, 2010) is applied to com-
pute the Sobol indicies, which is a computational and space-
efficient sampling method for the sensitivity analysis. How- 45

ever, the sampling set to train the cINN in general has to span
a real random sampling space, where all features are varied
independently, but simultaneously. That means, despite the
79,360 samples for the sensitivity analysis, an additional set
of 30,000 samples has to be generated for training purposes 50

and a second variably-sized set for validation and testing of
the cINN. In total, this results in approximately 115,000 sam-
ples and thus model evaluations. This is crucial considering
that the model evaluation in general is the computational bot-
tleneck. Although a classical optimization algorithm would 55

also need a feature selection to reduce the updating problem
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complexity on top of its usual model evaluation number for
the optimization process, the overhead of the sensitivity cuts
down the computational benefit of the cINN. A single model
evaluation from creating the input parameter set to importing
the modal response of the model took on average approx. 80 s5

on a single-core device. We generated the 115,000 samples
on a 40-core computing cluster in slightly less than 2.66 days.
In contrast, the cINN training for 150 epochs took only 0.67 h
on an NVIDIA Tesla P100 GPU.

To reduce the computational sampling time, the idea is to10

apply the cINN on the full input parameter set x to identify
relevant parameters. The cINN implicitly detects irrelevant
features by predicting an uncertain posterior distribution, i.e.,
high standard deviation, due to missing information for the
inference in the response. However, the current Sect. 4 and15

4.2 showed that intrinsic model ambiguities lead to wider
distributions, without being inaccurate in the global model
behavior. This means the respective input parameters should
not be rejected due only to a widely distributed posterior pre-
diction. Therefore, we combine three metrics to perform the20

feature selection on the posterior predictions of the full input
parameter set with respect to standardized values:

1. Root mean square error (RMSE) of the predicted poste-
rior’s mean and target value

2. Standard deviation of the predicted posterior distribu-25

tion
3. Cross-correlation matrix of the predicted posterior’s

mean values

The RMSE should reject features that might have a nar-
row predicted posterior distribution, but do not match the30

target value. This is more a security or backup metric. The
standard deviation is a metric for the confidence of the cINN
and should reject features that are not significantly included
in the information of the modal beam response. And finally,
a cross-correlation matrix should reveal intrinsic model am-35

biguities from feature interactions, in order to keep the re-
spective features, though the other two metrics would reject
them. The cross correlation matrix of this inverse problem
is depicted in Fig. 19. The input feat40−54 and feat60−74

in the matrix correspond to ρBiax90,N0-N4, E11,Biax90,N0-N4,40

G12,Biax90,N0-N4 and ρTriax,N0-N4, E11,Triax,N0-N4, G12,Triax,N0-N4,
respectively, which show the high negative correlation of the
interacting features discussed in Sect. 4.2. This matrix also
helps to detect other relevant correlations. Especially nearby
nodes of the same feature (e.g., feat85−87, E11,Flange,N0-2) can45

counteract each other, as these have to predict in combination
the spline behavior in between them, i.e., if one increases, the
other has to diminish. Similar behavior was already detected
in Bruns et al. (2019).

Similar to the Sobol threshold Sij,thld = 0.1, thresholds50

for the given metrics can be chosen arbitrarily again and
rely on experience. In this case we have chosen RMSEthld =
0.5, σthld = 0.5, XCorrthld,max =−0.75. Table A1 lists all
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Figure 19. Cross-correlation of all input feature based on mean
posterior prediction of the 5,000 test samples.

features selected by the sensitivity analysis and the cINN
in comparison. The sensitivity analysis selects 49 features, 55

while the cINN includes 54 features. Most of the features
agree for both selection methods, except those included in
Table 6. The cINN, for example, includes the input features:
E11,UD,N4, G12,Balsa,N1, which can be very well predicted by
the cINN, but which are not detected by the sensitivity anal- 60

ysis to be significant for the response variations. Addition-
ally, it detects a few highly negative correlating features:
E11,Biax90,N4 and G12,Biax90,N0-2,4, which follow the similarly
ambiguous behavior shown in the Sect. 4.2, counteracting the
respective Triax properties. However, the features: ρTriax,N1,2, 65

ρFoam,N1, detected by the sensitivity analysis were excluded
by the cINN, though at least the first two show a significant
Smax > 0.200.

Table 6. Feature selection discrepancies between both methods:
sensitivity analysis (SA) and the cINN-based approach, and their
corresponding metrics. All values depicted in bold meet their corre-
sponding threshold and are thus selected by the respective approach.

Feature SA Smax SVD cINN RMSE σ XCorrmin

E11,UD,N4 0.006 X 0.340 0.354 -0.4407
E11,Biax90,N4 0.051 X 0.913 0.881 -0.9524
G12,Biax90,N0 0.040 X 0.862 0.833 -0.8341
G12,Biax90,N1 0.062 X 0.454 0.374 -0.8889
G12,Biax90,N2 0.078 X 0.941 0.920 -0.986
G12,Biax90,N4 0.009 X 1.014 0.991 -0.9485
ρTriax,N1 X 0.292 X 0.648 0.531 -0.5367
ρTriax,N2 X 0.211 X 0.652 0.604 -0.6785
GBalse,N1 0.017 X 0.285 0.230 -0.2985
ρFoam,N2 X 0.163 X 0.623 0.538 -0.4732
ρFoam,N3 0.072 X 0.478 0.483 -0.5273
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Finally, this procedure is based on 30,000 samples and
the same cINN architecture and hyperparameters. Figure A2
shows the correlation results for all features included in the
sensitivity analysis, where the orange scatter represents the
prediction with the model trained on the full input set and5

the blue scatter the prediction by the former model based
on the feature selection from the sensitivity analysis. Only
very few features show a significant loss in accuracy com-
pared to the original model, and most likely for the feature
with a worse prediction quality. Thus, there is no need to10

perform a second training process with a reduced data set
for the sensitivity-free procedure, though the selection of the
samples should still reveal the significant parameters of the
model. Relying on the same computing resources mentioned
above, the overall process in this particular case adds up to15

a complete computation time of approximately 20 h, which
corresponds to a reduction of 69%. It also reveals that the
cINN can handle a higher number of parameters, while ex-
tracting the relevant information from the response to predict
the significant input features. On account of that, there is no20

need for a pre-analysing sensitivity study in future investiga-
tions. This gives cINN a huge advantage over common ap-
proaches as discussed in the introduction. The rely on a sen-
sitivity analysis to identify a significant subspace to reduce
the problem dimension. With 30,000 model evaluations for25

a total of 49 updated features, the cINN is quite efficient. A
stochastic updating approach demanded 1,200-12,000 eval-
uations for a simple 3-feature updating problem (Augustyn
et al., 2020; Marwala et al., 2016). Higher dimensional prob-
lems could explode in computational costs for common de-30

terministic approaches, even more relying on an additional
pre-processed subspace selection (here: 79,000 model eval-
uations). However, to the best of the authors knowledge, no
model updating was found in literature for such a high pa-
rameter space as it is presented in this work.35

5 Conclusions

The current study aims to extend the feasibility study of
model updating with invertible neural networks presented
in Noever-Castelos et al. (2021a) to a more complex and
application-oriented level in form of a Tymoshenko beam.40

The model updating was performed on a global level. This
took into account 5-noded splines for input feature represen-
tation over the blade span of material density and stiffness,
as well as layup geometry. The blade response used for the
updating process is in form of modal shapes and frequen-45

cies. The outstanding updating results presented in this study
strengthens the conclusion in Noever-Castelos et al. (2021a)
that invertible neural networks are highly capable in effi-
ciently dealing with wind turbine blade model updating for
the given global fidelity level.50

In comparison with Noever-Castelos et al. (2021a), this
investigation increased the model complexity from a sin-

gle cross-sectional representation to a finite element Ty-
moshenko beam model of the complete blade. The update
parameter space was only slightly expanded for the materi- 55

als to cover the most relevant, independent elastic proper-
ties of orthotropic materials. These, however, are varied over
the complete blade length with 3 to 5 noded splines. More-
over, an established, global, variance-based sensitivity anal-
ysis with the Sobol method was performed to determine the 60

relevant update parameters. A total of 49 input parameters
were updated based on modal responses of the blade in a
free-free boundary configuration and a root clamped config-
uration. The applied cINN approximately doubled its depth
and an additional feedforward network was implemented to 65

preprocess the conditions of the cINN in order to improve the
network’s flexibility and accuracy.

The result analysis of the predicted parameters shows
strikingly high coherence with the target values with
R2 scores over 0.9 for 75% of the updated parameters. The 70

very high updating certainty of the network is reflected in
the narrow predicted posterior distributions of the updated
parameters. Moreover, this study revealed more intrinsic
model ambiguities of material properties (E11, G12, ρ) of
the laminate face sheets Biax90◦ and Triax due to their 75

proximity in the layup. The cINN learns and understands
the intrinsic collinearities of the physical model, which
result in ambiguous inverse paths. However, the cINN
is still not able to distinguish from which parameter the
individual contribution comes. Nevertheless, in contrast to 80

a deterministic approach, the user can see how uncertain
the cINN is about the prediction due to its wide spreading
of affected feature’s prediction. In future contributions this
can be handled by updating a joint density or stiffness
variation, instead of individual features. However, the 85

resimulation analysis revealed the modal response of the
updated models matches the target results exceptionally
well, 90% of the mode shapes of the resimulated samples
show a MAC≥ 0.995 and a mean error in the natural fre-
quencies of |ēf |< 0.25% over 1,000 randomly chosen test 90

samples. Finally, this study presents a method for avoiding
the computationally expensive sensitivity analysis by fully
exploiting the opportunities of the cINN. For this reason,
the full parameter set of Dtot = 153 was used for the update
process. Thanks to the underlying probabilistic approach 95

of the cINN, a similar set of significant input features was
detected from the complete parameter space, based on the
predicted posterior distributions and a cross correlation
between the input feature to identify the ambiguities. Thus,
the necessary sample number for the complete process was 100

reduced to 30,000 samples and the computational time by
69%, while maintaining similar outstanding updating results.

Referring back to the three major problems of the ap-
proaches studied in the introduction, the cINN tackles these 105

by:
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1. A high computational efficiency in relation to the model
complexity, i.e., updating parameter space. Even more
by the evading computationally expensive sensitivity
analysis. The cINN only demanded 30,000 model eval-
uations (≈20 h) for a total of 49 updated features within5

an original space of 153 features.
2. An inherent probabilistic evaluation, as it follows the

Bayes’ theorem and is trained to minimize the negative
log-likelihood of the mapping between posterior distri-
bution and latent distribution.10

3. Representing a surrogate of the inverted model. By that,
the cINN can be evaluated for any given response (in
the model boundaries) at practically not additional costs
after training. Any other approach is solved only for one
particular model response and has to be repeated in case15

of a different set of response.

In conclusion, the feasibility study was highly successfully
extended to a full blade beam model, though with a still lim-
ited parameter set. The cINN proved to be extremely capable
of performing an efficient model updating with a larger pa-20

rameter space. The physical model complexity in form of a
Tymoshenko finite element beam is already at the state of
the art level applied in industry. However, to ensure that the
cINN learns the complete inverted physical model, it is im-
portant that all possibly relevant parameters have to be var-25

ied, so that the cINN is trained for all circumstances of vari-
ations for the model updating. Therefore, ongoing and future
investigations should bring this method to a real life appli-
cation, where the parameter space will span more relevant
aspects of blade manufacturing deviations, such as e.g., ad-30

hesive joints. Moreover, the combined laminate properties
of the face sheets might be able to prevent the model am-
biguities and even to improve the already good prediction
accuracy. One possible application scenario could be a final
quality control after manufacturing, if the response genera-35

tion can be automated. The benefit would be to find rough
manufacturing deviations and even provide individually up-
dated models for each blade, which could for example en-
hance turbine controls.

Code and data availability. Code and data available in a publicly40

accessible repository:
https://github.com/IWES-LUH/Beam-ModelUpdating-cINN

Appendix A: Tables & Figures

Table A1. Comparison of the feature selection performed by the
sensitivity analysis (SA) and directly with the cINN applied to the
full input parameter set.

Feature Smax i SVD cINN Feature Smax i SVD cINN

ρUD,N0 X X X E11,Triax,N1 X X X
ρUD,N2 X X X E11,Triax,N2 X X X
ρUD,N3 X X X E11,Triax,N3 X X X
E11,UD,N0 X X X E11,Triax,N4 X X X
E11,UD,N1 X X X G12,Triax,N0 X X X
E11,UD,N2 X X X G12,Triax,N1 X X X
E11,UD,N3 X X X G12,Triax,N2 X X X
E11,UD,N4 X G12,Triax,N3 X X X
G12,Biax45,N0 X X G12,Triax,N4 X X X
G12,Biax45,N1 X X X ρFlange,N0 X X
G12,Biax45,N2 X X X ρFlange,N1 X X X
G12,Biax45,N3 X X X E11,Flange,N0 X X
ρBiax9,N3 X X X E11,Flange,N1 X X X
ρBiax9,N4 X X E11,Flange,N2 X X X
E11,Biax9,N0 X X X E11,Flange,N3 X X
E11,Biax9,N1 X X G12,Flange,N1 X X X
E11,Biax9,N2 X X X G12,Flange,N2 X X X
E11,Biax9,N3 X X X G12,Flange,N3 X X
E11,Biax9,N4 X ρBalsa,N1 X X X
G12,Biax9,N0 X GBalse,N1 X
G12,Biax9,N1 X ρFoam,N2 X X
G12,Biax9,N2 X ρFoam,N3 X
G12,Biax9,N3 X X X PSS,Mid,spar cap,N0 X X X
G12,Biax9,N4 X PSS,Mid,spar cap,N1 X X X
ρTriax,N1 X X PSS,Mid,spar cap,N2 X X X
ρTriax,N2 X X PPS,Mid,spar cap,N0 X X X
ρTriax,N3 X X X PPS,Mid,spar cap,N1 X X X
ρTriax,N4 X X X PPS,Mid,spar cap,N2 X X X
E11,Triax,N0 X X X

Table A2. Identified mode shapes of the first 10 modes (excluding
rigid body motion) of the free-free and the clamped modal configu-
ration.

Mode no. Free-free Clamped

1 1.Flap 1. Flap
2 1. Edge 1. Edge
3 2. Flap 2. Flap
4 1.Torsion 2. Edge
5 3. Flap 3. Flap
6 2. Edge 1. Torsion
7 4. Flap 4. Flap
8 2. Torsion 2. Torsion
9 5. Flap 3. Torsion

10 3. Edge 5. Flap

https://github.com/IWES-LUH/Beam-ModelUpdating-cINN
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Figure A1. Standardized mean of posterior prediction x̄ of the updated inputs over the corresponding target standardized value for the
5,000 test samples. The original samples predicted with clean conditions in blue, compared to samples with noisy flawed conditions (5%
random noise) in orange. The noisy conditions are intended to simulate measurement inaccuracies of the modal beam response.
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Figure A2. Standardized mean of posterior prediction x̄ of the inputs selected by the sensitivity analysis, over the corresponding target
standardized values for the 5,000 test samples. The original samples predicted with the reduced input set according to the sensitivity analysis
selection are depicted in blue. They are compared with the inputs predicted by the cINN trained on the full input set (in orange).
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