
Model updating of a wind turbine blade finite element beam model
with invertible neural networks
Pablo Noever-Castelos1, David Melcher2, and Claudio Balzani1

1Leibniz University Hannover, Institute for Wind Energy Systems, Appelstr. 9A, Hanover, 30167, Germany
2Fraunhofer IWES, Fraunhofer Institute for Wind Energy Systems, Am Seedeich 45, 27572 Bremerhaven, Germany

Correspondence: Pablo Noever-Castelos (research@iwes.uni-hannover.de)

Abstract. Digitalization, especially in the form of a digital twin, is fast becoming a key instrument for the monitoring of a

product’s life cycle from manufacturing to operation and maintenance, and has recently been applied to wind turbine blades.

Here, model updating plays an important role for digital twins, in the form of adjusting the model to best replicate the corre-

sponding real-world counterpart. However, classical updating methods are generally limited to a reduced parameter space due

to low computational efficiency. Moreover, these approaches most likely lack a probabilistic evaluation of the result.5

The purpose of this paper is to extend a previous feasibility study to a finite element beam model of a full blade, for which

the model updating process is conducted through the novel approach with invertible neural networks (INNs). This type of

artificial neural network is trained to represent an inversion of the physical model, which in general is complex and non-linear.

During the updating process, the inverse model is evaluated based on the target model’s modal responses, which then returns

the posterior prediction for the input parameters. In advance, a global sensitivity study will reduce the parameter space to a10

significant subset, on which the updating process will focus.

The finally trained INN excellently predicts the input parameters’ posterior distributions of the proposed generic updating

problem. Moreover, intrinsic model ambiguities, such as material densities of two closely located laminates, are correctly

captured. A robustness analysis with noisy response reveals a few sensitive parameters, though most can still be recovered with

equal accuracy. And, finally, after the resimulation analysis with the updated model, the modal response perfectly matches the15

target values. Thus, we successfully confirmed that INNs offer an extraordinary capability for structural model updating of

even more complex and larger models of wind turbine blades.

1 Introduction

Wind turbine blades are enormous composite structures exposed to extreme and harsh environmental conditions. Due to these

circumstances, structural health or condition monitoring plays a critical role in reliably ensuring the endurance of the rotor20

blade. However, this raises the need for an accurate model representation of the structure as built. In this context, the digital

twin is emerging as a powerful instrument (Grieves, 2019) for these monitoring systems during operational time, though it

can already be involved in early stages of manufacturing (Sayer et al., 2020). The concept of model updating is central to

achieving a digital product twin, for example, by updating the preliminary blade design based on sensor responses from blade
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characterization tests. This process of model updating ensures that the current stage of the digital twin represents the blade as25

built.

1.1 Model Updating of Wind Turbine Blades

Model updating has grown in importance in light of digitalization of the wind turbine blades, however, it is only marginally

explored in literature. Similar to other structural dynamic model updating applications (Sehgal and Kumar, 2016), the publica-

tions on rotor blade model updating typically follow metaheuristic optimization techniques and define the objective function30

based on the modal assurance criterion (MAC), which represents a common metric for the quantitative comparison of modal

shapes (Pastor et al., 2012). Other related modal metrics can be found in Allemang (2003). The most recent publications, such

as Hofmeister et al. (2019) and Bruns et al. (2019), apply classical metaheuristic optimization algorithms to update the model

parameters and localize damage in a generic problem with a finite element beam blade model. These publications evaluate

a global pattern search and compare it to evolutionary, particle swarm, and genetic optimization algorithms. The objective35

function is based upon the natural frequencies and the MAC value. Furthermore, the MAC and the coordinate modal assurance

criterion (COMAC) is applied in the model updating process of a finite element shell model of a rotor blade conducted by Kneb-

usch et al. (2020). That study aims to update the blade model of a built blade along with high-fidelity modal measurements and

a gradient-based optimization approach. Another approach presented by Schröder et al. (2018) uses a two-stage metaheuristic

optimization to detect damages and ice accretion on a rotor blade. A global optimization with a simulated quenching algorithm40

is followed by a local method (sequential quadratic programming) to minimize the objective function, consisting of natural

frequencies and mode shapes. Omenzetter and Turnbull (2018) implemented metaheuristic optimization methods (fireflies and

virus optimization) to detect damages in a finite element beam model of a blade and compare the performance to a simpli-

fied beam experiment. Other publications cover simplified model updating procedures of low-level wind turbine blade models

(Velazquez and Swartz, 2015; Liu et al., 2012; Lin et al., 2018). While most of the referred contributions focus on the field of45

damage detection, the model updating conducted by Luczak et al. (2014) highlights the impact of a flexible support structure

of the test setup of modern blades, which was also revealed by Knebusch et al. (2020).

1.2 Drawbacks of Current Updating Approaches

The aforementioned approaches can be classified as deterministic and lead to results which are not necessarily the global

optima. Therefore, this methodology may require the process to be run several times to ensure the result validity (Schröder50

et al., 2018; Omenzetter and Turnbull, 2018). This is especially problematic, since metaheuristic optimization algorithms are

computationally expensive due to their iterative model evaluation (Chopard and Tomassini, 2018). As a reference, Bruns et al.

(2019) performed 500 iterations for two updating parameters and 1,500 iterations for five updating parameters, while in Omen-

zetter and Turnbull (2018) the firefly optimization of two update parameters required 157 iterations until convergence and the

virus optimization 5,000 iterations. Newer model updating techniques involve stochastic approaches such as a sensitivity-based55

method (Augustyn et al., 2020) or Bayesian optimization (Marwala et al., 2016). The latter is based on sampling techniques

such as Markov Chain Monte Carlo to cover the complete parameter space. However, these approaches typically require even
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more model evaluations as stated in Patelli et al. (2017). There, a relatively simple model of a 3 degree-of-freedom mass-spring

system demanded 12,000 samples for the Bayesian solution, which was approximately 10 times higher than for the sensitivity-

based method.60

Most of the aforementioned research encountered three major problems:

1. Due to the aforementioned computational effort, the studies have been restricted to simple models

2. They typically lack an efficient probabilistic approach to evaluate the uncertainty of the results

3. All approaches only address one particular state of the blade at a defined condition and not a generalized inverse model65

While in most applications a solution for a particular model is sufficient, an inverted model, which maps model responses to

input parameters, can be beneficial, e.g., in quality management during serial production. This reveals a niche for an efficient

method to invert the physical model, enabling a fast evaluation of the model states at any time.

1.3 Model Updating via Invertible Neural Networks

This research framework is based on Noever-Castelos et al. (2021a), a feasibility study on a first structural level of wind turbine70

blades. The research performs a model updating with conditional invertible neural networks (cINN) (Ardizzone et al., 2019b)

for a cross-section of a wind turbine blade. Noever-Castelos et al. (2021a) considers a reduced number of material and layup

parameters as updateable inputs and takes cross-sectional beam properties as model responses to define the objective values.

The updating space covers 14 significant input parameters. The specific objective of this current investigation is to extend the

feasibility study and methodology in Noever-Castelos et al. (2021a) to a complete finite element beam model of a wind turbine75

blade, while slightly increasing the input space with additional material properties to update. This investigation is still designed

to reveal the feasibility with respect to a more complex model before applying the method to a high dimensional real-world

and not generic problem.

1.4 Outline

This study will follow the outline of Noever-Castelos et al. (2021a). The first section after the introduction presents the sensitiv-80

ity analysis procedure and discusses the physical model built in MoCA (Model Creation and Analysis Tool for Wind Turbine

Rotor Blades) (Noever-Castelos et al., 2021b) and BECAS (BEam Cross-section Analysis Software) (Blasques, 2012). The

chosen architecture of the cINN is explained in Sect. 3. Section 4 covers the results discussion, with a general analysis of

the updating results in Sect. 4.1. Sect. 4.2 reveals intrinsic model ambiguities, before the model robustness to noisy model

responses is examined in Sect. 4.3. A resimulationn analysis to ensure the high updating quality is performed in Sect. 4.4.85

Section 4.5 presents a method to replace the computational expensive sensitivity analysis. This is then all followed by the

conclusion in Sect. 5.
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2 Sensitivity Analysis of Modal Responses of a Rotor Blade Finite Element Beam Model

Noever-Castelos et al. (2021a) performed a sensitivity analysis to reflect how input distributions influence the output distri-

bution’s variance and mean value in order to identify relevant input and output features for the model updating process with90

the invertible neural network. There, a one-at-a-time approach is used, where values vary individually and their impact on the

output is analysed.

2.1 Sobol’ Sensitivity Method

In contrast to Noever-Castelos et al. (2021a), this contribution will apply a global variance-based approach, called Sobol

method, or Sobol index (Sobol’, 1993, 2001). For a multivariate function y = f(x1, . . . ,xn), Sobol derived, the 1st order Sobol95

index Si for the variable xi as follows:

Si =
V [E(y|xi)]
V (y)

(1)

This is a measure to what extent the impact of varying xi will result on the output y. On the basis of a random sampling of the

parameters x, E(y|xi) represents the expectation E of all y for a constant value of xi. It can be understood as an average of y

corresponding to a slice of the xi domain in the parameter space. V [E(y|xi)] is then the variance of all expectations over the100

range of values of xi, i.e., slices of the xi domain (Saltelli et al., 2008). This variance is finally related to the overall variance of

y. The 1st order Sobol index ranges in 0≤ Si ≤ 1. Higher-order Sobol indices can also be extracted, see Saltelli et al. (2008);

however, those will be ignored in this work, as we are mainly interested in the influence of individual parameters on the outputs

for the feature selection process. For a multivariate function with multiple outputs (y1, . . . ,ym) = f(x1, . . . ,xn) Eq. (1) can be

expressed as:105

Sij =
V [E(yj |xi)]
V (yj)

(2)

2.2 Rotor Blade Finite Element Beam Model

The necessary model generation and variation is performed with the model creator MoCA (Noever-Castelos et al., 2021b) and

its interface to BECAS (Blasques and Stolpe, 2012) to create cross-sectional beam properties, which are assembled to a finite

element beam (FE beam) and evaluated in ANSYS Mechanical (ANSYS Inc., 2021b). Figure 2 depicts a coarse version of110

the FE beam used in this study. In contrast to the simplified visualisation, the applied FE beam model is built of 50 3D linear

beam elements (BEAM188) (ANSYS Inc., 2021a) with higher mesh density to the root and tip section of the blade, where

greater geometrical and material changes are expected. Thus, the finite element model consists of dim(NFE) = 51 nodes. The

input parameter selection of Noever-Castelos et al. (2021a) was slightly expanded to cover more material properties, which

will be discussed in detail later. The input parameter selection spans a space with a maximum dimension of DCS = 33 for each115

cross-section, though varying these for each of the 50 cross-sections would result in Dtot = 1,650 parameters. Assuming a

smooth variation of each parameter over the radius, Akima splines (Akima, 1970) were introduced to represent the parameter
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variation along the blade. An exemplary spline is depicted in Fig. 1. The spline is built based upon five equidistant nodes, that

may vary in y-direction within the given variation range of the parameter.
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Figure 1. Exemplary variation spline with five nodes.

Figure 2. Exemplary finite element beam with reduced number of elements and exemplary cross-sectional illustration. The detail shows a

cross-sectional BECAS output (Blasques and Stolpe, 2012) as used in the feasibility study (Noever-Castelos et al., 2021a).

Table 1 summarizes all the investigated input parameters xi and corresponding properties. Moreover, Table 1 lists the number120

of spline nodes with their respective normalized radial range and variance limits for each property. In this feasibility study, we

consider the most significant independent elastic properties for each material: the density ρ, the Young’s modulus E11, the

shear modulus G12, and the Poisson’s ratio ν12, which may be varied over all five nodes in a range of ± 10%. Here, we have

neglected all thickness-related elastic constants, i.e., parameters including the index/direction 3 and E22, as these parameters

offer no significant contribution to the stiffness terms of the beam cross-sectional properties according to Hodges (2006) and125

Noever-Castelos et al. (2021a). Since foam is modeled as an isotropic material, only two independent elastic properties E, G

and the density ρ are considered. In addition to the material properties, the division points are also varied. These subdivide the

shell in cross-sectional direction into different sections with a constant material layup or define sub-component positions such

as the web or adhesive (Noever-Castelos et al., 2021b). The division point parameters P are allowed to vary on the three mid

nodes by the given absolute range. The root and tip node cannot be varied due to model generation issues within MoCA, thus the130

variance for node N0 and N4 will be kept at zero, similar to Fig. 1. All applied variances are approximately twice the permitted

manufacturing tolerances (Noever-Castelos et al., 2021a), in order to assure some flexibility of the inverse model. Summing up

all parameters and nodes, the problem spans a parameter space of dim(x) = 153. The sensitivity study is conducted based on

the Python package SALib (Herman and Usher, 2017) and a random sampling dimension of n= 29 = 512 samples. SALib uses

the quasi-random sampling with low-discrepancy sequences technique from Saltelli et al. (2008) for the sensitivity analysis. To135
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compute the Sobol index, the algorithms require a variation of each input feature individually for each of the n samples, which

results in a total sample size of ntotal·(dim(x)+2) = 79,360 to compute the 1st order Sobol indices. The sensitivity study as well

as the updating process is based on the modal beam response y, as described in Gundlach and Govers (2019), in a free-free and

a clamped scenario, which is comparable to an elastic suspension of the blade and a fixation of its root to a test rig, respectively.

In each case, the first 10 eigenmodes are extracted, excluding the rigid body motion modes in the free-free scenario. For all 10140

modes of each modal configuration (free-free and clamped), the natural frequency and the six degrees of freedom of each finite

element beam node NFE are saved and summed up to a response dimension of dim(y) = (10+10) · (1+6) = 140. Throughout

this paper, input parameters and model responses will also be referred to as input and output features or conditions, respectively.

Table 1. Input feature list analyzed in this study. Each feature and property builds a distribution spline based on the given number of

equidistant nodes within the given normalized radial range of the blade. Each node value may then vary in the listed variance range.

Parameter Property Nodes Norm. range Variance

UD ρ, E11, G12, ν12 5 [0, 1] ± 10%

Biax45◦ ρ, E11, G12, ν12 5 [0, 1] ± 10%

Biax90◦ ρ, E11, G12, ν12 5 [0, 1] ± 10%

Triax ρ, E11, G12, ν12 5 [0, 1] ± 10%

Flange ρ, E11, G12, ν12 5 [0, 0.1] ± 10%

Balsa ρ, E11, G12, ν12 5 [0, 1] ± 10%

Foam ρ, E, G 5 [0, 1] ± 10%

PSS,TE,offset Location 3 [0.25, 0.75] ± 10 mm

PSS,Mid,spar cap Location 3 [0.25, 0.75] ± 15 mm

PSS,LE,offset Location 3 [0.25, 0.75] ± 10 mm

PPS,TE,offset Location 3 [0.25, 0.75] ± 10 mm

PPS,Mid,spar cap Location 3 [0.25, 0.75] ± 15 mm

PPS,LE,offset Location 3 [0.25, 0.75] ± 10 mm

2.3 Feature Selection with Sobol Indicies

After computing the 1st order Sobol index Sij for each input feature xi and output feature yi at every NFE position, we obtain145

a matrix of size 140 x 51 x 153, i.e., dim(y) x dim(NFE) x dim(x). The matrix is then condensed to a single maximum value

Smax for each input and output feature. Therefore, it is reduced to identify relevant input features y by computing the maximum

value along the other non-corresponding dimensions, i.e., dimension 2 and 3. This is done respectively for the output features x

along the dimensions 1 and 3. Subsequently, an arbitrary threshold Sthld is defined to reject all features with a lower maximum

index Smax. By this, we aim to consider only features which have a significant impact during at least one event at one location,150

thus containing enough information for the updating process. Based on experience, we have chosen Sthld = 0.1. This leads to

the selected features depicted in Table 2 with their corresponding Smax and their individual feature index.
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When analyzing the rejections, it has to be noted, that all structural properties are condensed to cross-sectional beam prop-

erties. That means, for example, Biax 45◦ as a face layer of the shear web is typically located near the elastic and gravitational

center of the cross-sections and thus does not contribute in excess to the mass inertia according to the Steiner theorem, nor to the155

overall bending stiffness (Gross et al., 2012). Consequently, a variation of ρBiax45 and E11,Biax45 will not significantly impact

the modal response of the beam model. However, its shear modulus G12,Biax45 does have an impact when dealing with the shear

forces from flap-wise loading. Regarding foam and balsa as sandwich core materials, the stiffness contribution to the sandwich

panels is approximately 1% compared to the GFRP (glass fiber-reinforced plastic) face sheets and this makes their variations

neglectable, while the mass contributions depending on the layup can reach up to 66−100%, which is why a few of the density160

spline nodes are kept. Summarizing the sensitivity analysis reduced the input feature space to dim(xsel) = 45, approximately

30% of dim(x). The output features were all kept according to the feature selection approach. However, a reduced set of radial

positions can be applicable as the intrinsic information might be repeated in neighboring NFE, which does not necessarily

improve the updating performance, but reduce the performance. Therefore, the output of each third node is selected, ending up

with a radial output dimension of dim(NFE,sel) = 17. Thus, the final dimension for the model updating process of the input fea-165

ture space is dim(input) = dim(xsel) = 45 and of the output feature space is dim(output) = dim(NFE,sel) x dim(y) = 17 x 140.
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Table 2. Selected feature list from sensitivity study with their respective feature index and maximum 1st order Sobol indicies Smax.

Feat. Parameter Smax feat. Parameter Smax

1 ρUD,N1 0.248 24 E11,Triax,N2 0.485

2 ρUD,N2 0.382 25 E11,Triax,N3 0.352

3 ρUD,N3 0.279 26 E11,Triax,N4 0.527

4 E11,UD,N0 0.110 27 G12,Triax,N0 0.371

5 E11,UD,N1 0.435 28 G12,Triax,N1 0.608

6 E11,UD,N2 0.432 29 G12,Triax,N2 0.522

7 E11,UD,N3 0.371 30 G12,Triax,N3 0.594

8 G12,Biax45,N1 0.224 31 G12,Triax,N4 0.343

9 G12,Biax45,N2 0.263 32 ρFlange,N0 0.214

10 G12,Biax45,N3 0.149 33 ρFlange,N1 0.620

11 ρBiax90,N3 0.241 34 E11,Flange,N1 0.414

12 ρBiax90,N4 0.109 35 E11,Flange,N2 0.486

13 E11,Biax90,N0 0.116 36 G12,Flange,N1 0.332

14 E11,Biax90,N1 0.143 37 G12,Flange,N2 0.276

15 E11,Biax90,N2 0.132 38 ρBalsa,N1 0.207

16 E11,Biax90,N3 0.219 39 ρFoam,N2 0.163

17 G12,Biax90,N3 0.112 40 PSS,Mid,spar cap,N1 0.670

18 ρTriax,N1 0.292 41 PSS,Mid,spar cap,N2 0.433

19 ρTriax,N2 0.211 42 PSS,Mid,spar cap,N3 0.458

20 ρTriax,N3 0.463 43 PPS,Mid,spar cap,N1 0.492

21 ρTriax,N4 0.804 44 PPS,Mid,spar cap,N2 0.550

22 E11,Triax,N0 0.312 45 PPS,Mid,spar cap,N3 0.434

23 E11,Triax,N1 0.375

3 Invertible Neural Network Architecture

Before proceeding to the model updating process, it is necessary to define the invertible neural network architecture. Similar to

Noever-Castelos et al. (2021a), this work will built on conditional invertible neural networks (cINN) (Ardizzone et al., 2019b)

implemented in FrEIA – Framework for Easily Invertible Architectures (Visual Learning Lab Heidelberg, 2021). A basic cINN170

consists of a sequence of conditional coupling blocks (CC), as shown in Fig. 3. Each of these represents affine transformations,

that can easily be inverted. The embedded sub-networks s1, t1, s2, t2 embody the trainable functions of this type of artificial

neural network.

These sub-networks stack the conditions c and the input slice u2 or v1 and transforms them for further processing. The

stacking necessarily requires similar spacial dimensions of c and u2 or v1, respectively. For a further brief introduction to cINN175
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Figure 3. The conditional coupling blocks CC with its embedded sub-network s1, t1,s2, t2. This CC architecture can easily be inverted.
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Figure 4. Conditional invertible neural networks (cINN, in blue frame) with sequentially connected conditional coupling blocks CC. The

conditional feed-forward network (cond. net, in violet frame) preprocesses the condition y with 1D convolutional layers and PReLU (para-

metric rectified linear unit) activations. Average 1D pooling is performed on the output, before it is flattened and reduced in dimension with

a fully connected layer (fc-layer), to be then fed into the sub-networks of the CCs. The convolutions gradually increases in size in order to

progressively extract higher-level features from the condition c.

with topic-related application, please refer to Noever-Castelos et al. (2021a). A more in-depth explanation can also be found in

Ardizzone et al. (2019b) and Ardizzone et al. (2018).
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After an extensive hyperparameter study, the presented investigation applies the network depicted in Fig. 4. Hyperparameters

describe the network or architecture parameters of artificial neural networks, like number of layers or perceptrons. It consists of180

a cINN (blue) with a sequence of 15 CCs, grouped into clusters of three. This cINN transforms between the beam input x and

the latent space z. However, unlike the underlying feasibility study Noever-Castelos et al. (2021a), an additional feedforward

network is implemented, referred to as a conditional network (violet). The idea is to preprocess the raw conditions c, i.e., beam

responses, before passing them to the sub-networks in the CCs. It is trained in conjunction with the cINN, to extract relevant

feature information optimally for each stage. The conditional network architecture is inspired by Ardizzone et al. (2019b) and185

should extract higher-level features of c to feed into the sequential CCs, which, according to Ardizzone et al. (2019b), should

relieve the sub-networks from having to relearn these higher-level features each time again. With a conditional beam response

c of shape dim(c) = dim(NFE,sel) x dim(y), the conditional network applies 1D-convolutions (conv 1D) to process the data,

which gradually increase in size to progressively extract higher-level features.

In general, the beam input would also be available in a 2D shape (property x spline nodes), though the feature selection of190

the sensitivity analysis reduced the splines irregularly. Thus, a 2D shape cannot be maintained anymore, as not all splines have

the same number of nodes. Therefore, the selected beam input x for the updating process going into the cINN, is flattened to a

vector and is not present in a 2D shape, as the beam response c is. However, as mentioned before, the conditions and input fea-

tures are stacked in the sub-networks and thus need a similar spacial shape. Consequently, the conditional network has to flatten

the shape to a vector for each output, in order to agree with the input shape in the sub-networks. Before flatting the output, the195

conditional network activates the convolutional layer output with a parametric rectified linear unit (PReLU) (He et al., 2015)

and halves the dimension with an average 1D pooling layer (Chollet, 2018) (avg. pool 1D). After flattening, the dimension is

additionally reduced with a fully connected layer (fc-layer) to subsequently relieve the sub-network’s computation.

Within the cINN, the CCs are clustered into groups, which are then each fed by the progressively processed conditions c. All

sub-networks have one hidden fc-layer, followed by a batch normalization to improve generalization and a PReLU (Chollet,200

2018) activation layer, as depicted in Fig. 5. All hyperparameters of the complete network are summarised in Table 3.

The training is performed with an AdaGrad optimizer (Duchi et al., 2011) and an initial learning rate of 0.3, which is

gradually decreased throughout the training process. The optimization minimizes the negative logarithmic likelihood (NLL)

given in Eq. (3) in order to match the model’s posterior prediction of px(x|y) with the true posterior of the inverse problem

(Noever-Castelos et al., 2021a).205

LNLL = E
[
− log

(
p(xi | yi)

)]

= E
[‖f(xi;yi)‖2

2
− log |det(Ji)|

]
+ const. (3)
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Figure 5. Sub-network with one hidden fully connected layer (fc-layer), batch normalization, and a PReLU activation layer. Each conditional

coupling blocks CC has such a sub-network embedded.

Table 3. Hyperparameter set of the complete network, including conditional network, conditional invertible neural networks (cINN), and

sub-network. The cINN is divided into 5 clusters, for which the hyperparameters are listed separately. In Cluster 1, the conditions are directly

fed into the conditional coupling blocks CC, without a prior convolutional layer (cf. Fig. 4).

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Conditional Conv 1D kernel k 3 3 3 3

network stride s 1 1 1 1

padding p 1 1 1 1

out chan. out 32 64 128 256

Activation PReLU PReLU PReLU PReLU

Avgerage 1D pooling kernel k 2 2 2 2

stride s 2 2 2 2

padding p 0 0 0 0

Flatten X X X X X
Fully connected nodes 100 200 300 400 500

cINN Conditional coupling block (CC) 3 3 3 3 3

Sub-network Fully connected nodes 400 500 600 700 800

Batch normalization X X X X X
Activation PReLU PReLU PReLU PReLU PReLU
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4 Model Updating of a Rotor Blade Beam Model

Having selected the significant features with the sensitivity analysis and defined the cINN architecture, we will now move

on to the model updating process and its evaluation. Therefore, the workflow of the cINN if briefly explained along with the210

schematic view of the transformations performed by the cINN in Fig. 6. The presented cINN in Sect. 3 is trained and tested with

sample sets of input features x and their corresponding conditions c in the form of the modal beam responses as described in

Sect. 2. During the training, the cINN is evaluated in the forward direction as depicted in Fig. 6, transforming the input features

x into the normally distributed latent space z for given conditions c. The training is performed over 150 epochs, i.e., training

iterations, with a samples size of 30,000 training samples, in order to minimize the LNLL (given in Eq. (3)). Additionally a215

sample set of 5,000 test samples, which have not been seen by the cINN during its training, are used for validating and testing

the cINN after the training. All input features are always sampled randomly and independently, but at the same time, in order

to span the complete parameter space. However, only features selected by the sensitivity study (cf. Table 2) are passed on to

the cINN, as the other parameters are identified to be less relevant. As the cINN is trained to map the input features x into

px(x|c) pz(z)

cINN

forward f(x; c)

inverse f−1(z; c)

Figure 6. Schametic view of the transformation between the input features x and the latent space z for a given condition c performed by the

conditional invertible neural network. (Noever-Castelos et al., 2021a)

a normally distributed latent space pz(z), during the inverse evalution the process is reversed: the latent space is sampled220

from a Gaussian normal distribution (e.g., 50-100 samples), which the cINN then transforms along with the beam response

as condition c to the posterior prediction of the input features. This prediction results in a distribution for each input feature

px(x|y) as depicted in Fig. 6. In order to generalize the data for the training process and make it more comparable for the

evaluation, all input features and conditions are standardized to zero mean and a standard deviation of 1 over the complete

training set. The necessary scaling factors are additionally saved in the cINN to transform back and forth any input features225

or conditions used in the cINN besides the training process. Consequently, all features and conditions during the evaluation of

the cINN are related to the complete training set’s mean and standard deviation. Generally, the posterior predictions are also

depicted with respect to their ground truth, i.e., target value of the sample, to align multiple samples for enhanced comparison.

This section first analyses the overall updating results of the model. The identified inference ambiguities are then highlighted

and discussed, before the model is checked against its robustness to noisy conditions cnoisy. Based on the predicted posterior230

distribution of the input features p(x|y), a resimulationn analysis is performed, where the updated parameters are used to feed

the phyiscal model and calculate the beam response, in order to check the quality of the updating and sensitivity analysis

results. Finally, a method for avoiding the computational intensive sensitivity analysis is presented.

12

https://doi.org/10.5194/wes-2021-84
Preprint. Discussion started: 17 September 2021
c© Author(s) 2021. CC BY 4.0 License.



4.1 General Analysis of the Updating Results

In the first instance the posterior distributions have to be examined. Figure 7 shows as an example the predicted posterior235

distribution of four different input features as a histogram and fitted Gaussian distribution. The ground truth on the x-axis

represents the real value used to generate the sample, while the distribution is obtained from the cINN. For the further analysis,

the type of distribution must be known in advance for it to be possible to apply the correct metric, e.g., mean or median. In

the case of a Gaussian distribution, the mean is the most significant value and will thus be applied in this study to reduce the

posterior prediction distribution to a single value accompanied by the standard deviation as a measure of uncertainty.240

By shifting the former x-axis from Fig. 7 onto the y-axis and reducing the distributions to their mean and standard deviation,

as stated before, we obtain the graphs depicted in Fig. 8 for the same exemplary sample, but with all updated parameters. Most

values range close to their ground truth value and with a narrow distribution, which is desired. For some input features, e.g.,

ρBiax90,N4, the prediction is less accurate. However, the overall posterior prediction in this example is very good, as most of the

values hit the ground truth.245

After having checked the results in detail for one exemplary sample, Fig. 9 shows the prediction result of all selected

input features for the 5,000 test samples. The feature description corresponding to each feature index can be looked up in

Table 2. The graphs scatter the standardized mean posterior prediction p̄(x|y) against their corresponding target value from

the sample set. Thus, the ideal case would correlate to an exact line with a slope m= 1. Each graph is equipped with the

coefficient of determination R2 and shows a corresponding regression line. Approximately 75% of the selected features reach250

a very satisfying linear correlation with R2 > 0.9. Here, the authors would like to highlight that in the case of feat12,13,15 and

feat21,22,24 the prediction losses in accuracy are due to intrinsic model ambiguities that will be discussed in the next section.

0

1

2

3

p
(x
|y

)

ρUD,N2 G12,Biax45,N1

−2 −1 ground
truth

1 2

stand. prediction

0

1

2

3

p
(x
|y

)

E11,Biax90,N0

distribution histogram

−2 −1 ground
truth

1 2

stand. prediction

E11,Triax,N0

Figure 7. Conditional invertible neural network’s standardized posterior prediction distributions p(x|y) for four input features of one exam-

ple. Plotted as a histogram and fitted Gaussian distribution.
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Figure 8. The first two graphs show the standardized posterior prediction for all updated input features related to the target value with 1-σ

standard deviation as error, thus the mean value marks the distance to the target value, i.e., ground truth.
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Figure 9. Standardized mean of posterior prediction x̄ of the updated inputs over the corresponding target standardized value for the 5,000

test samples. The coefficient of determination and a corresponding linear regression line are shown. The corresponding parameter description

to the features can be found in Table 2.
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4.2 Intrinsic Model Ambiguities

Ambiguities can originate from different sources, such as little significant responses or modeling issues (Ardizzone et al.,

2019a). Noever-Castelos et al. (2021a) revealed some intrinsic model ambiguities of counteracting density values of the255

Biax90◦ and Triax layer in the blade cross-section. This was also handled by the cINN in this study, although it was only

checked for the two spline nodes N3 and N4 (respectively feat11,12 and feat20,21), as these coincide in the feature selection.

The results are depicted in Fig. 10, showing the standardized mean posterior prediction for the 5,000 test samples related to

their ground truth and the linear regression as well as the corresponding slope m in the label. While the mean posterior pre-

dictions at node N3 were detected rather accurately (cf. Fig. 8), i.e., represent a circular area in Fig. 10, the values of node N4260

spread more and correlate to the plotted regression line.

In addition to the density, another ambiguity was detected in the Young’s modulus E11 of both these materials, shown in

Fig. 11 for the nodes N0−3 (respectively feat13−16 and feat22−25). Here, the correlation of the mean posterior predictions

is reasonably well described by the calculated regression lines. Finally, the last correlation was found for the shear modulus

G12,N3 (feat17 and feat30) between the same materials (Fig. 12).265

−2 −1 ground
truth

1 2

ρBiax90

−2

−1

ground
truth

1

2

ρ
T

ri
a
x

N3, m = −0.226

regression samples

−2 −1 ground
truth

1 2

ρBiax90

N4, m = −0.357

Figure 10. Interaction of density ρBiax90 and ρTriax describing the intrinsic model ambiguities. The depicted values correspond to the stan-

dardized mean posterior prediction for the 5,000 test samples.

All ambiguities rely on the same fact that the Biax90◦ and Triax layers appear subsequently in the stacking of the sand-

wich panels of the blade shell. The stacking is schematically illustrated in Fig. 13 with a detailed view of the shell, show-

ing the stacking in exploded view. Together, these layers build the symmetric inner and outer face sheets of the shell, with

a layer thickness of tBiax90 = 0.651mm and tTriax = 0.922mm, same density ρBiax90 = ρTriax = 1,875 kg
m3 , Young’s modulus

E11,Biax90 = 26,430 N
mm2 andE11,Triax = 29,873 N

mm2 , and shear modulusG12,Biax90 = 3,464 N
mm2 andG12,Triax = 6,918 N

mm2 .270
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Figure 11. Interaction of stiffness E11,Biax90 and E11,Triax describing the intrinsic model ambiguities. The depicted values correspond to the

standardized mean posterior prediction for the 5,000 test samples.
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Figure 12. Interaction of shear stiffness G12,Biax90 and G12,Triax describing the intrinsic model ambiguities. The depicted values correspond

to the standardized mean posterior prediction for the 5,000 test samples.

The contributions of the properties to the model behavior must be analyzed for it to be possible to understand these ambi-

guities further. As described in Sect. 2, a finite element beam model is composed of beam elements containing cross-sectional

properties (Blasques, 2012). These basically consist of mass and stiffness terms, which can be directly linked to ρ and E11 or

G12, respectively (Hodges, 2006). The upcoming deductions follow classical mechanics theories found for example in Gross
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Shell

Figure 13. Schematic blade cross-sectional view at a radial position of r = 12 m with a detailed explosion drawing of the shell.

et al. (2012). First, considering the mass contribution, we stick with the simplified example of the center of gravity:275

xs =
1

mtot

∫
x2dm=

1
mtot

∑
x2

jmj (4)

where xj represents the center of gravity of each component and mi the corresponding mass. Due to the very thin thickness

of both layers and the overall cross-sectional dimension being about 103 greater for both materials, it can be assumed that

xj = xs. And by expecting that the cINN correctly predicts the total mass mtot, Eq. (4) yields:

xs =
1

mtot
·xs

∑
mj (5)280

mtot =
∑

mj (6)

= kBiax90 · tBiax90 · ρBiax90 + kTriax · tTriax · ρTriax (7)

And this obviously leads to the summation of all individual masses to the total mass, where k represents the number of layers.

This of course holds for higher order moments of mass, due to the given proximity of both layers. Thus, a ratio between both

materials can be expressed:285

kBiax90 · tBiax90 · ρBiax90 : kTriax · tTriax · ρTriax (8)

A similar behavior is also found for the stiffness. This is explained in a simplified example for the flexural rigidity of a beam

in Eq. (9), which extends with the Steiner theorem to Eq. (10).

EIx̄ =
∑

EjIx̄,j (9)

=
∑

Ej(Ix,j +x2
s ·Aj) (10)290

Assuming the layers have a rectangular shape, the area moment of inertia is Ix,j = w·t3
12 , though the width w of the layer is

large, the thickness t is 10−3 smaller and thus this term vanishes. With that, Eq. (10) reduces to Eq. (11). As stated before,

xs can be assumed to be constant and the same holds for the width wi, as in the cross-sectional direction both material layers
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cover the complete circumference of the blade. This results in the proportionality in Eq. (12)

EIx̄ =
∑

Ej(x2
s ·Aj) =

∑
Ej(x2

s · kj · tj ·wj) (11)295

EIx̄ ∝
∑

Ej · kj · tj (12)

Similarly, to the total mass mtot, we expect the cINN to predict the global EIx̄ accurately and, consequently we can establish

the following ratio for the stiffness:

kBiax90 · tBiax90 ·EBiax90 : kTriax · tTriax ·ETriax (13)

Analog derivations can be made for the shear modulus, which ends up in the ratio:300

kBiax90 · tBiax90 ·GBiax90 : kTriax · tTriax ·GTriax (14)

Figure 14 shows the number of each layer for the respective material along the blade, which corresponds to both the inner and

outer face sheet of the shell. The corresponding spline nodes positions are also depicted. Table 4 shows the ratios according to

Eq. (8), Eq. (13), and Eq. (14) of the different possible stacking options in Fig. 14. Looking back to the identified ambiguities in

0.00 0.25 0.50 0.75 1.00
rnorm [−]

N0 N1 N2 N3 N4

1x Triax

1x Biax90

2x Triax

2x Biax90

3x Triax

Figure 14. Layup of the sandwich laminate face sheets of the blade shell, consisting of Triax and Biax90◦. The inner and outer face sheets

are symmetric.

Table 4. Ratio between Biax90◦ and Triax layers for density and stiffness contribution, considering different layer constellation.

kBiax90 1 1 1 2 2 2

kTriax 1 2 3 1 2 3

kBiax90·ρBiax90·tBiax90
kTriax·ρTriax·tTriax

0.706
1

0.353
1

0.235
1

1.412
1

0.706
1

0.471
1

kBiax90·EBiax90·tBiax90
kTriax·ETriax·tTriax

0.625
1

0.312
1

0.208
1

1.249
1

0.625
1

0.416
1

kBiax90·GBiax90·tBiax90
kTriax·GTriax·tTriax

0.354
1

0.177
1

0.118
1

0.707
1

0.354
1

0.236
1
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Fig. 10 of the density at node N4, the linear regression shows a slope of m=−0.357. Assuming each spline node contributes305

to the variance of half of the space to the left and right of it, the given slope agrees extremely well with the ratio of kBiax90 = 1

and kTriax = 2. This corresponds to the stacking shown near the node N4 in Fig. 14. Due to the poor linear regression of node

N3 in Fig. 10, the slope is not reliable, thus no conclusion can be drawn.

However, the counteracting Young’s moduli in Fig. 11 can be very accurately captured by the ratios for most spline nodes.

Starting with Node N2 (figure 11 bottom-left), which is clearly affected by only one layer to the left and right of it (cf. Fig. 14),310

the line slopem=−0.614 matches the value in Table 4 (kBiax90 = 1, kTriax = 1) of 0.625. NodeN0 has a slope ofm=−0.571,

which agrees well with the value corresponding to kBiax90 = 2 and kTriax = 2, but tending towards kBiax90 = 1 and kTriax = 2,

which is also in the scope of this node according to the layup in Fig. 14. Similar behavior is found for node N1. Node N3 does

not fully agree with this argumentation, though the point scatters less and the regression line might not be accurate enough.

The same holds for the shear modulus in Fig. 12.315

As assumed in the derivation of the ratios, we can state that the cINN should correctly predict the total mass and the

stiffness contributions in a global manner, but suffers from an intrinsic model ambiguity affected by the counteracting densities

ρ, Young’s moduli E11, and shear moduli G12 of the neighbouring materials Biax90◦ and Triax. However, it offers posterior

predictions for these features, but with a wide distribution expressing the uncertainty of the cINN based on the given ambiguity.

Merging both materials to a face sheet material following laminate theory, would avoid these ambiguities and improve the320

prediction qualities for the overall laminate. It is assumed that, based on the relatively low layer thickness, the infusion and

therefore the fiber volume fraction of both layers is very similar, so that this approach should be valid.

4.3 Model Robustness

So far the analysis of this feasibility study was conducted on the exact test sample data, i.e., for a given input sample the

corresponding exact output sample is generated with the tool chain MoCA + BECAS + ANSYS. In future studies, this presented325

method should be applied to real measured data of a blade and this normally suffers from measurement uncertainties. It is thus

important to analyze the model robustness with respect to a measurement error of the output features. Therefore, an error of 5%

as normally distributed random noise is applied to the clean output response of each sample, which is then used as a condition

to infer the posterior prediction of the input features. The results are shown in Fig. A1 in the appendix, comparing the noisy

(orange) and the clean (blue) mean posterior predictions p̄(x|y) against their corresponding targets for all 5,000 test samples.330

The graphs show some features that are sensitive for noise, such as feat4 (E11,UD,N0) or feat34−37 (E11,Flange,N1-2, G12,Flange,N1-2),

but most of the input features are predicted as accurate as with a clean output. Additionally,tests were performed resuming the

training of the cINN with noisy conditions in order to improve the prediction quality, though no benefit was identified.

4.4 Resimulationn Analysis

A resimulationn analysis aims to utilize the posterior predictions of the cINN based on the original response to resimu-335

late/recalculate the response with the physical model in order to compare it to the original response used to perform the

prediction. For all samples, the correct input features and their corresponding response features are known, which we will be
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referring to as targets. The target response is used as a condition for the cINN to infer the posterior prediction of the selected

input features. From these inferred input features we can create new input splines for each input, as depicted exemplarily in

Fig. 15. However, the prediction is not a discrete value but a Gaussian distribution as we have seen before in Sect. 4.1. Ad-340

ditionally, there are nodes that the sensitivity analysis excluded from the updating process; these may take every value within

their variation range, as they were sampled uniformly. Hence, for each input feature we obtain a range of possible splines as

Fig. 15 illustrates. Here, the orange spline represents the target variance of the input parameter and the dark blue area represents

the expected value, i.e., the mean prediction from the updated nodes. In the case of the first spline for ρUD, nodes N0 and N4

were excluded from the updating process and can thus take any value in the range of ± 10%, as we do not have any prediction345

for them. As such the blue area covers all possible splines a user would take as the result from the model updating process.

However, the purpose of this first evaluation of the resimulationn analysis is to examine, if sampling splines from the given

distributions will all lead to appropriate results. Therefore, the 1−σ− uncertainty displayed in light blue shows the standard

deviation of the predicted nodes. In this first analysis, we sample uniformly from the not updated nodes (dark blue range) and

normally distributed from the updated nodes (light blue) to create a spline. This will be done 1,000 times for the same given350

target response of the selected single test sample. Subsequently, these 1,000 sets of input splines are then used to create the

model and calculate its modal response. For the sake of completeness, Table A2 gathers the identified mode shapes of both

configurations. The resultant mode shapes of the free-free and the clamped configurations are then compared to the target

response with the help of the modal assurance criterion (MAC) (Allemang, 2003).

MACij =
|Φi ·Φj |2

|Φi ·Φi| · |Φj ·Φj |
(15)355

The MAC is the scalar product of two normalized vectors, each representing all the model’s degrees of freedoms of a particular

mode shape. It is basically an orthogonality check: equal mode shapes reach a value of MAC = 1, while a value of MAC> 0.8

is already assumed to show good coherence (Pastor et al., 2012). For a multiple number of modes, a MAC matrix summarizes

all MAC values of all mode shapes compared against each other.

360

In our use case, the MAC matrix is computed individually for all responses of the previously generated 1,000 samples

against the target response. For the free-free configuration, Fig. 16 illustrates the mean value of the MAC matrix over all

samples in the top graph. The corresponding standard deviation is depicted below. The main diagonal ideally takes values of

MACij = 1, as the same mode shape of the sample and the target is compared. Additionally, the matrix should be symmetric,

as the comparison of MACij = MACji represents the same two mode shapes. Figure 16 confirms this ideal symmetric matrix365

structure for the re-simulated samples, with mean values MAC> 0.9975 in the diagonal and extremely low standard deviations

of σMAC < 0.003. For the clamped configuration, the values on the diagonal are also strikingly close to one (MAC> 0.9960,

σMAC < 0.005) and the overall matrix appears symmetric. In this way, sampling from the distribution predicted by the cINN

for each selected input feature and arbitrarily choosing a value for the not updated values yields an exact coherence of target

and computed mode shapes.370
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Figure 16. Mean values (top) and standard deviations (bottom) of the MAC matrix for the free-free modal configuration based on 1,000

spline samples inferred for one target response.

After having analysed a single target sample, the resimulationn is expanded to more samples to show the cINN’s general

performance. Therefore, posterior predictions for the 5,000 test samples of the test set are inferred with the cINN. Contrary to

the resimulationn case before, only one input is generated for each of the samples by choosing the mean value of the prediction

22

https://doi.org/10.5194/wes-2021-84
Preprint. Discussion started: 17 September 2021
c© Author(s) 2021. CC BY 4.0 License.



and, in the case of excluded variables, a node value of zero (i.e., no variation). That represents a typical choice a user would

make, based on predicted posterior distributions. Figure 17 depicts the mean (horizontal marker), max and min value (bar)375

of the diagonal entries of the MAC matrices computed for all samples and both configurations, comparing the re-simulated

model and their respective target response. Again, all mean values are extremely close to 1, so an overall excellent updating

performance can be stated. Single predictions lead to worse results, as depicted by the minimum value, especially for the higher

order modes, though the MAC value of less than 0.8 is only obtained for the 10th eigenmode of the free-free configuration.
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Figure 17. Mean, maximum, and minimum diagonal entries of the MAC matrices computed for 1,000 target responses.

The generally good performance is also confirmed by the predicted corresponding natural frequencies. Figure 18 shows the380

relative error from the re-simulated frequencies to the target frequencies of each mode for both configurations, giving the mean

and standard deviation over all re-simulated samples. The range of the mean error is |ēf |< 0.25% and the standard deviation

σef
< 1.50%.
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Figure 18. Mean and standard deviation of the natural frequency error ef computed for 1,000 target responses.

The results of the presented resimulationn analysis show that:385

1. The counteracting intrinsic model ambiguities cancel each other out, so the cINN correctly captures the global model

behavior with respect to mass and stiffness distribution.

2. As expected, the insensitive and thereby excluded input parameters really do not have an impact on the results and can

be chosen arbitrarily (cf. Fig. 15).

3. The overall cINN updating performance is strikingly good.390
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4.5 Replacing Sensitivity Analysis

Similar to other model updating studies such as Luczak et al. (2014), this work relies on a sensitivity study to reduce the pa-

rameter space of the updating problem to significant parameters. This so-called feature selection, is performed in this particular

investigation with the aforementioned Sobol method. A quasi-random sampling with low-discrepancy sequences (Dick and

Pillichshammer, 2010) is applied to compute the Sobol indicies, which is a computational and space-efficient sampling method395

for the sensitivity analysis. However, the sampling set to train the cINN in general has to span a real random sampling space,

where all features are varied independently, but simultaneously. That means, despite the 79,360 samples for the sensitivity

analysis, an additional set of 30,000 samples has to be generated for training purposes and a second variably-sized set for

validation and testing of the cINN. In total, this results in approximately 115,000 samples and thus model evaluations. This

is crucial considering that the model evaluation in general is the computational bottleneck. Although a classical optimization400

algorithm would also need a feature selection to reduce the updating problem complexity on top of its usual model evaluation

number for the optimization process, the overhead of the sensitivity cuts down the computational benefit of the cINN. A single

model evaluation from creating the input parameter set to importing the modal response of the model took on average approx.

80 s on a single-core device. We generated the 115,000 samples on a 40-core computing cluster in slightly less than 2.66 days.

In contrast, the cINN training for 150 epochs took only 0.67 h on an NVIDIA Tesla P100 GPU.405

To reduce the computational sampling time, the idea is to apply the cINN on the full input parameter set x to identify

relevant parameters. The cINN implicitly detects irrelevant features by predicting an uncertain posterior distribution, i.e., high

standard deviation, due to missing information for the inference in the response. However, the current Sect. 4 and 4.2 showed

that intrinsic model ambiguities lead to wider distributions, without being inaccurate in the global model behavior. This means

the respective input parameters should not be rejected due only to a widely distributed posterior prediction. Therefore, we410

combine three metrics to perform the feature selection on the posterior predictions of the full input parameter set with respect

to standardized values:

1. Root mean square error (RMSE) of the predicted posterior’s mean and target value

2. Standard deviation of the predicted posterior distribution

3. Cross-correlation matrix of the predicted posterior’s mean values415

The RMSE should reject features that might have a narrow predicted posterior distribution, but do not match the target value.

This is more a security or backup metric. The standard deviation is a metric for the confidence of the cINN and should reject

features that are not significantly included in the information of the modal beam response. And finally, a cross-correlation

matrix should reveal intrinsic model ambiguities from feature interactions, in order to keep the respective features, though the

other two metrics would reject them. The cross correlation matrix of this inverse problem is depicted in Fig. 19. The input420

feat40−54 and feat60−74 in the matrix correspond to ρBiax90,N0-N4, E11,Biax90,N0-N4, G12,Biax90,N0-N4 and ρTriax,N0-N4, E11,Triax,N0-N4,

G12,Triax,N0-N4, respectively, which show the high negative correlation of the interacting features discussed in Sect. 4.2. This

matrix also helps to detect other relevant correlations. Especially nearby nodes of the same feature (e.g., features 85-87,
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E11,Flange,N0-2) can counteract each other, as these have to predict in combination the spline behavior in between them, i.e., if

one increases, the other has to diminish. Similar behavior was already detected in Bruns et al. (2019).
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Figure 19. Cross-correlation of all input feature based on mean posterior prediction of the 5,000 test samples.

425

Similar to the Sobol threshold Sij,thld = 0.1, thresholds for the given metrics can be chosen arbitrarily again and rely on

experience. In this case we have chosen RMSEthld = 0.5, σthld = 0.5, XCorrthld,max =−0.75. Table A1 lists all features

selected by the sensitivity analysis and the cINN in comparison. The sensitivity analysis selects 45 features, while the cINN

includes 54 features. Most of the features agree for both selection methods, except those included in Table 5. The cINN, for

example, includes the input features: E11,UD,N4, G12,Biax45,N0, G12,Balsa,N1, which can be very well predicted by the cINN, but430

which are not detected by the sensitivity analysis to be significant for the response variations. Additionally, it detects a few

highly negative correlating features: E11,Biax90,N4 and G12,Biax90,N0-2,4, which follow the similarly ambiguous behavior shown in

the Sect. 4.2, counteracting the respective Triax properties. However, the features: ρTriax,N1,2, ρFoam,N1, detected by the sensitivity

analysis were excluded by the cINN, though at least the first two show a significant Smax > 0.200.

Finally, this procedure is based on 30,000 samples and the same cINN architecture and hyperparameters. Figure A2 shows435

the correlation results for all features included in the sensitivity analysis, where the orange scatter represents the prediction with

the model trained on the full input set and the blue scatter the prediction by the former model based on the feature selection

from the sensitivity analysis. Only very few features show a significant loss in accuracy compared to the original model, and

most likely for the feature with a worse prediction quality. Thus, there is no need to perform a second training process with

a reduced data set for the sensitivity-free procedure, though the selection of the samples should still reveal the significant440

parameters of the model. Relying on the same computing resources mentioned above, the overall process in this particular case

adds up to a complete computation time of approximately 20 h, which corresponds to a reduction of 69%. It also reveals that
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Table 5. Feature selection discrepancies between both methods: sensitivity analysis (SA) and the cINN-based approach, and their corre-

sponding metrics.

Feature SA Smax cINN RMSE σ XCorrmin

E11,UD,N4 0.006 X 0.340 0.354 -0.4407

G12,Biax45,N0 0.099 X 0.196 0.156 -0.1787

E11,Biax90,N4 0.051 X 0.913 0.881 -0.9524

G12,Biax90,N0 0.040 X 0.862 0.833 -0.8341

G12,Biax90,N1 0.062 X 0.454 0.374 -0.8889

G12,Biax90,N2 0.078 X 0.941 0.920 -0.986

G12,Biax90,N4 0.009 X 1.014 0.991 -0.9485

ρTriax,N1 X 0.292 0.648 0.531 -0.5367

ρTriax,N2 X 0.211 0.652 0.604 -0.6785

E11,Flange,N0 0.087 X 0.713 0.597 -0.9262

E11,Flange,N3 0.044 X 0.346 0.256 -0.6693

G12,Flange,N3 0.016 X 0.405 0.410 -0.8762

GBalse,N1 0.017 X 0.285 0.230 -0.2985

ρFoam,N2 X 0.163 0.623 0.538 -0.4732

ρFoam,N3 0.072 X 0.478 0.483 -0.5273

the cINN can handle a higher number of parameters, while extracting the relevant information from the response to predict the

significant input features. On account of that, there is no need for a pre-analysing sensitivity study in future investigations.

5 Conclusions445

The current study aims to extend the feasibility study of model updating with invertible neural networks presented in Noever-

Castelos et al. (2021a) to a more complex and application-oriented level. The outstanding updating results presented in this

study strengthens the conclusion in Noever-Castelos et al. (2021a) that invertible neural networks are highly capable to effi-

ciently dealing even with an extensive wind turbine blade model updating.

In comparison with Noever-Castelos et al. (2021a), this investigation increased the model complexity from a single cross-450

sectional representation to a finite element beam model of the complete blade. The update parameter space was only slightly

expanded for the materials to cover the most relevant, independent elastic properties of orthotropic materials. These, however,

are varied over the complete blade length with 3 to 5 noded splines. Moreover, an established, global, variance-based sensitivity

analysis with the Sobol method was performed to determine the relevant update parameters. A total of 45 input parameters

were updated based on modal responses of the blade in a free-free boundary configuration and a root clamped configuration.455
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The applied cINN approximately doubled its depth and an additional feedforward network was implemented to preprocess the

conditions of the cINN in order to improve the network’s flexibility and accuracy.

The result analysis of the predicted parameters shows strikingly high coherence with the target values withR2 scores over 0.9

for 75% of the updated parameters. The very high updating certainty of the network is reflected in the narrow predicted posterior

distributions of the updated parameters. Moreover, this study revealed more intrinsic model ambiguities of material properties460

(E11, G12, ρ) of the laminate face sheets Biax90◦ and Triax due to their proximity in the layup. The ambiguities are captured

very accurately by the network. However, the resimulationn analysis revealed the modal response of the updated models

matches the target results exceptionally well, with MAC values mostly above 0.97 and a mean error in the natural frequencies of

|ēf |< 0.25% over 1,000 randomly chosen test samples. Finally, this study presents a method for avoiding the computationally

expensive sensitivity analysis by fully exploiting the opportunities of the cINN. For this reason, the full parameter set of465

Dtot = 153 was used for the update process. Thanks to the underlying probabilistic approach of the cINN, a similar set of

significant input features was detected from the complete parameter space, based on the predicted posterior distributions and

a cross correlation between the input feature to identify the ambiguities. Thus, the necessary sample number for the complete

process was reduced to 30,000 samples and the computational time by 69%, while maintaining similar outstanding updating

results.470

In conclusion, the feasibility study was highly successfully extended to a full blade beam model, though with a still limited

parameter set. The cINN proved to be extremely capable of performing an efficient model updating with a larger parameter

space. Ongoing and future investigations should bring this method to a real life application. There, the parameter space will

span more relevant aspects of blade manufacturing deviations, such as e.g., adhesive joints. Moreover, the combined laminate

properties of the face sheets might be able to prevent the model ambiguities and even to improve the already good prediction475

accuracy.

Code and data availability. Code and data available in a publicly accessible repository:

https://github.com/IWES-LUH/Beam-ModelUpdating-cINN
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Appendix A: Tables & Figures

Table A1. Comparison of the feature selection performed by the sensitivity analysis (SA) and directly with the cINN applied to the full input

parameter set.

Feature SA cINN feature SA cINN

ρUD,N1 X X E11,Triax,N1 X X
ρUD,N2 X X E11,Triax,N2 X X
ρUD,N3 X X E11,Triax,N3 X X
E11,UD,N0 X X E11,Triax,N4 X X
E11,UD,N1 X X G12,Triax,N0 X X
E11,UD,N2 X X G12,Triax,N1 X X
E11,UD,N3 X X G12,Triax,N2 X X
E11,UD,N4 X G12,Triax,N3 X X
G12,Biax45,N0 X G12,Triax,N4 X X
G12,Biax45,N1 X X ρFlange,N0 X X
G12,Biax45,N2 X X ρFlange,N1 X X
G12,Biax45,N3 X X E11,Flange,N0 X
ρBiax90,N3 X X E11,Flange,N1 X X
ρBiax90,N4 X X E11,Flange,N2 X X
E11,Biax90,N0 X X E11,Flange,N3 X
E11,Biax90,N1 X X G12,Flange,N1 X X
E11,Biax90,N2 X X G12,Flange,N2 X X
E11,Biax90,N3 X X G12,Flange,N3 X
E11,Biax90,N4 X ρBalsa,N1 X X
G12,Biax90,N0 X GBalse,N1 X
G12,Biax90,N1 X ρFoam,N2 X
G12,Biax90,N2 X ρFoam,N3 X
G12,Biax90,N3 X X PSS,Mid,spar cap,N1 X X
G12,Biax90,N4 X PSS,Mid,spar cap,N2 X X
ρTriax,N1 X PSS,Mid,spar cap,N3 X X
ρTriax,N2 X PPS,Mid,spar cap,N1 X X
ρTriax,N3 X X PPS,Mid,spar cap,N2 X X
ρTriax,N4 X X PPS,Mid,spar cap,N3 X X
E11,Triax,N0 X X
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Table A2. Identified mode shapes of the first 10 modes (excluding rigid body motion) of the free-free and the clamped modal configuration.

Mode no. Free-free Clamped

1 1.Flap 1. Flap

2 1. Edge 1. Edge

3 2. Flap 2. Flap

4 1.Torsion 2. Edge

5 3. Flap 3. Flap

6 2. Edge 1. Torsion

7 4. Flap 4. Flap

8 2. Torsion 2. Torsion

9 5. Flap 3. Torsion

10 3. Edge 5. Flap
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Figure A1. Standardized mean of posterior prediction x̄ of the updated inputs over the corresponding target standardized value for the

5,000 test samples. The original samples predicted with clean conditions in blue, compared to samples with noisy flawed conditions (5%

random noise) in orange. The noisy conditions are intended to simulate measurement inaccuracies of the modal beam response.

30

https://doi.org/10.5194/wes-2021-84
Preprint. Discussion started: 17 September 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure A2. Standardized mean of posterior prediction x̄ of the inputs selected by the sensitivity analysis, over the corresponding target

standardized values for the 5,000 test samples. The original samples predicted with the reduced input set according to the sensitivity analysis

selection are depicted in blue. They are compared with the inputs predicted by the cINN trained on the full input set (in orange).
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