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Abstract. The magnitude of wake interactions between individual wind turbines depends on the atmospheric stability. We

investigate strategies for wake loss mitigation through the use of closed-loop wake steering using large eddy simulations of

the diurnal cycle, where variations in the surface heat flux in time modify the atmospheric stability, wind speed and direction,

shear, turbulence, and other atmospheric boundary layer flow (ABL) features. The closed-loop wake steering control method-

ology developed in Part 1 (Howland et al., Wind Energy Science, 2020, 5, 1315-1338) is implemented in an example eight5

turbine wind farm in large eddy simulations of the diurnal cycle. The optimal yaw misalignment set-points depend on the wind

direction, which varies in time during the diurnal cycle. To improve the application of wake steering control in transient ABL

conditions with an evolving mean flow state, we develop a regression-based wind direction forecast method. We compare the

closed-loop wake steering control methodology to baseline yaw aligned control and open-loop lookup table control for various

selections of the yaw misalignment set-point update frequency, which dictates the balance between wind direction tracking10

and yaw activity. In our diurnal cycle simulations of a representative wind farm geometry, closed-loop wake steering with

set-point optimization under uncertainty results in higher collective energy production than both baseline yaw aligned control

and open-loop lookup table control. The increase in energy production for the simulated wind farm design for closed- and

open-loop wake steering control compared to baseline yaw aligned control, is 4.0–4.1% and 3.4–3.8%, respectively, with the

range indicating variations in the energy increase results depending on the set-point update frequency. The primary energy in-15

creases through wake steering occur during stable ABL conditions in our present diurnal cycle simulations. Open-loop lookup

table control decreases energy production in the example wind farm in the convective ABL conditions simulated, compared to

baseline yaw aligned control, while closed-loop control increases energy production in the convective conditions simulated.

1 Introduction

Collective wind farm power maximization through wake steering control has demonstrated potential in large eddy simulations20

(LES) of idealized atmospheric boundary layer (ABL) conditions (Gebraad et al., 2016), wind tunnel experiments (Campagnolo
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et al., 2020), and in initial field experiments (Fleming et al., 2019; Howland et al., 2019; Doekemeijer et al., 2021). The primary

approach of wake steering control has been open-loop, where a lookup table of model-optimal yaw misalignment set-points

is constructed as a function of the incident wind direction, wind speed, and turbulence intensity (Fleming et al., 2019). The

set-points are optimized using a steady-state, physics-based wake model and applied at the wind farm in time based on an25

estimate of the incident wind conditions at the farm. However, several challenges arise in open-loop wake steering control,

including time-varying ABL flow conditions with measurement uncertainty (Quick et al., 2017; Annoni et al., 2019) and wake

model parameter uncertainty (Schreiber et al., 2019; Howland, 2021b), which may lead to a discrepancy between the optimal

yaw misalignment set-points in the steady-state wake model and the true optimal yaw misalignment values which vary in time.

Recent studies have developed closed-loop control methodologies (Ciri et al., 2017; Campagnolo et al., 2020; Doekemeijer30

et al., 2020; Howland et al., 2020c) which improve wake steering performance in flow with evolving mean states by incorporat-

ing wind farm measurements to modify wind condition (Doekemeijer et al., 2020) and wake model parameter (Howland et al.,

2020c) estimates. The reader is directed to Part 1 of this study (Howland et al., 2020c) for further motivation of closed-loop

wake steering control. Doekemeijer et al. (2020) investigated the performance of a proposed closed-loop control methodol-

ogy in LES of the idealized neutral ABL with a prescribed time-varying wind direction. Howland et al. (2020c) evaluated35

the performance of closed-loop wake steering control in the conventionally neutral ABL, which is characterized by neutral

stratification in the boundary layer capped by a stable free atmosphere (e.g. Allaerts and Meyers, 2015), with fixed bound-

ary conditions. The occurrence of the conventionally neutral ABL is rare in practice since the flow in the boundary layer is

generally affected by non-neutral atmospheric stability. While numerical investigations often isolate atmospheric stability to

characterize its effects (Abkar and Porté-Agel, 2015), the transition between states of stability influences the ABL structure40

(Basu et al., 2008b; Fitch et al., 2013) and affects wind farm performance (Abkar et al., 2016). In this study, we investigate the

performance of the closed-loop wake steering control methodology developed in Part 1 (Howland et al., 2020c) in the stratified

ABL with time-varying wind direction and atmospheric stability.

Wind conditions evolve over the diurnal cycle through modifications to the surface heat flux (Stull, 2012). The daytime ABL

is characterized by surface heating and convection, giving rise to enhanced mixing and turbulent kinetic energy. Convective45

rolls with elongated streamwise length scales are observed for the weakly convective ABL (Deardorff, 1972; Atkinson and

Wu Zhang, 1996; Salesky et al., 2017). Conversely, the stratification in the nocturnal ABL suppresses vertical velocity fluctu-

ations and limits the flow length scales (Sullivan et al., 2003). The stable ABL is characterized by enhanced wind speed and

direction shear (Wyngaard, 2010) and subgeostrophic (or low-level) jets (Thorpe and Guymer, 1977). Stable ABL low-level

jets are generated, in part, by Coriolis-induced wind veer (van der Laan et al., 2021) and by inertial oscillations induced by50

Coriolis forces (Van de Wiel et al., 2010). Through modifications of the structure of the ABL, stratification influences wind

farm performance (Wharton and Lundquist, 2012b).

In some instances, wind farm efficiency is diminished in stable conditions, compared to convective (Barthelmie and Jensen,

2010). Other studies have identified increases in power during stable ABL operation (Wharton and Lundquist, 2012a). Differ-

ences in reported wind farm performance in stable ABL conditions may relate to site- and time-specific wind direction shear55

(Sanchez Gomez and Lundquist, 2020; Howland et al., 2020d) or low-level jets (Gadde and Stevens, 2021). Wind turbines
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generally operate in time-varying yaw misalignment due to slowly reacting yaw control systems and control error (Fleming

et al., 2014). The power production of a wind turbine in yaw misalignment depends on the incident velocity field (Howland

et al., 2020d; Liew et al., 2020). Since the wind speed and direction variations over the rotor area depend on the atmospheric

stability, the power-yaw relationship for a given wind turbine depends on the stability (Howland et al., 2020d), in addition to60

the control system in use. While the overall wind turbine performance depends on the interaction between these effects, the

influence of stability on wake recovery is more clear. Wakes recover faster in convective ABL conditions compared to stable

or neutral (Iungo and Porté-Agel, 2014), and relatedly, the wake meandering is enhanced (Abkar and Porté-Agel, 2015). Pro-

vided slower wake recovery as a function of streamwise distance downwind of a wind turbine in stable ABL conditions, wake

interactions are generally increased (Abkar et al., 2016). Overall, the potential for wake steering control to increase wind farm65

power production is anticipated to be higher in stable conditions, and initial empirical results confirm this trend (Fleming et al.,

2019).

Wake models parameterize the effects of ABL turbulence on the wake recovery through a prescribed wake spreading rate

(Jensen, 1983). Since the wake recovery depends on the atmospheric stability (Abkar and Porté-Agel, 2015), the wake spread-

ing coefficient should depend on the wind conditions. Niayifar and Porté-Agel (2016) proposed a model for the wake spreading70

rate as a function of the turbulence intensity, but the formulation considers only neutral stability. Instead, we leverage closed-

loop control (Howland et al., 2020c) to estimate the wake spreading rate using time-dependent wind farm measurements.

Through closed-loop control, the yaw misalignment set-point optimization adapts to the estimated wake model parameters,

which vary with atmospheric stability. We anticipate that the primary benefits of the proposed closed-loop control approach

result from adapting the model used for set-point optimization to time-varying wind conditions.75

The optimal wake steering strategy depends on the wind farm design and the wind conditions, including the wind speed, wind

direction, and atmospheric stability. With the effects of turbulent diffusion parameterized with the wake spreading rate, the wind

farm flow is estimated using a steady-state wake model with prescribed wind conditions (e.g. Gebraad et al., 2016). Recent

studies have extended yaw misalignment set-point optimization to consider wind condition variability and uncertainty about the

mean state of yaw misalignment (Quick et al., 2017), wind direction (Rott et al., 2018), and joint yaw misalignment and wind80

direction (Simley et al., 2020). Howland (2021b) extended methods for set-point optimization under uncertainty to consider

wake model parameter uncertainty, and empirical improvements for open-loop and closed-loop control were demonstrated.

Quick et al. (2020) estimated the expected value of wind farm power under wind condition uncertainty using polynomial chaos

expansion and demonstrated that wind direction uncertainty was the primary uncertainty in determining model-optimal yaw

set-points.85

Beyond wind condition variations about a known mean state, the low-frequency mean state of the atmosphere evolves in time

due to mesoscale meteorological processes (e.g. Sanz Rodrigo et al., 2017a) and the diurnal cycle (Kumar et al., 2006; Fitch

et al., 2013) and is challenging to forecast. Existing wind farm control reacts to low-pass filtered wind condition measurements

(e.g. Fleming et al., 2019). Since the optimal wind farm control strategy inherently depends on the transient atmospheric

conditions, wake steering control based on a forecast of future wind conditions over a finite time horizon is anticipated to90

improve performance, rather than reacting to past data. Recently, Simley et al. (2021) demonstrated in idealized wake model
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numerical experiments that perfect wind direction preview information slightly improves wake steering control. In this study,

we develop a regression-based statistical methodology to forecast future wind direction over a prediction horizon of minutes.

We focus on a horizon of minutes based on the timescales of turbine yaw motors. In our approach, the yaw set-points are

optimized using the wake model and the wind direction prediction, rather than the low-pass filtered historical wind direction95

data. The performance of wake steering control in transient ABL conditions also depends on the yaw misalignment update

frequency (Kanev, 2020), which represents a balance between yaw duty (frequency of yaw motor motions) and reacting to

flow features of certain length and time scales. In this study, we compare the performance of closed-loop control to open-loop

lookup table control for several yaw misalignment update frequency selections.

The set of findings presented here demonstrate the utility of closed-loop wake steering control in more realistic ABL con-100

ditions, with time-varying wind direction, wind speed, and atmospheric stability. The potential for wake steering control to

increase wind farm power production inherently depends on the atmospheric conditions and the wind farm geometry. To test

the closed-loop control methodology, we select a representative, idealized wind farm design and diurnal cycle simulation setup.

The effect of wake steering on wind farm energy production will depend on the wind farm and atmospheric conditions of in-

terest. To assess the different control strategies, we focus on controlled numerical experiments where we modify the wind farm105

control between cases which have the same wind farm design and incident atmospheric conditions.

This paper represents Part 2 of the closed-loop wake steering control study presented by Part 1 (Howland et al., 2020c). The

technical details associated with the model-based wake steering control are detailed in Part 1. Given recent advances in the

literature, some methods are updated in this study, and the updates are described in §2. The diurnal cycle ABL case is described

in §3 and the results are presented in §4. There are several appendices to provide supporting technical information. The wind110

direction forecast algorithm is in Appendix A. The diurnal cycle setup is described in Appendix B. The diurnal cycle code

validation is presented in Appendix C. Appendix D discusses the initialization of the LES cases for reproducible numerical

experiments of wind farm control. Finally, the lookup table construction, for open-loop control, is discussed in Appendix E.

2 Model-based closed-loop wake steering control methodology updates

The model-based closed-loop wake steering control methodology used in this study is presented in Section 2 of Howland et al.115

(2020c). Since the publication of Part 1, there have been several additional studies in the literature with improvements to wake

steering control methodologies. The updates to the wake steering methodology proposed in Part 1 are introduced in this section.

Several studies have investigated the superposition of individual wind turbine wakes in engineering wake models. Zong and

Porté-Agel (2020) propose a momentum conserving superposition methodology under assumptions of uniform, steady inflow

and negligible turbulent transport. Various wake superposition methodologies are investigated for the application of closed-loop120

control with parameter estimation by Howland and Dabiri (2021), which demonstrated that momentum conserving and mod-

ified linear superposition (Niayifar and Porté-Agel, 2016) perform similarly, while linear superposition (Lissaman, 1979) has

degraded predictive accuracy. However, since the momentum conserving superposition (Zong and Porté-Agel, 2020), requires

iterations, it is more computationally expensive than modified linear superposition. Therefore, modified linear superposition
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(Niayifar and Porté-Agel, 2016) is used in this study (more details are provided in Howland and Dabiri (2021)). The secondary125

steering model proposed by Howland and Dabiri (2021) is also used.

The power production of a yaw misaligned turbine depends on the incident flow field (Liew et al., 2020; Howland et al.,

2020d). Howland et al. (2020d) developed a blade-element model which predicts the power production of a wind turbine

in yaw misalignment given an incident ABL flow and validated the model with utility-scale turbine data operating under

various wind speed and direction shear profiles and yaw misalignments. Since the present LES uses non-rotational actuator disk130

modeling (ADM), the blade element approach is not a representative model. Instead, we use the cosine model, P̂ (γs) = P̂ (γ =

0) · cosPp(γs), where Pp is a tuned empirical parameter. The Pp exponent depends on the time-varying inflow. Additional

inaccuracies arise in the cosine model since the power production as a function of the yaw misalignment is not generally

symmetric in non-uniform flow (Howland et al., 2020d; Doekemeijer et al., 2021). Numerical experiments in Part 1 (Howland

et al., 2020c) demonstrated that underestimating Pp leads to poor wake steering performance. We select Pp = 2.5 for the135

particular ADM used in this study based on empirical tuning to LES of the conventionally neutral ABL (Howland and Dabiri,

2021). Since the main purpose of the present study is to characterize the performance of open- and closed-loop methodologies

with a shared wake model, we do not dynamically adapt Pp in the closed-loop method in this study. Future work should either

use a blade element model to predict the power-yaw relationship for a rotating wind turbine model (Howland et al., 2020d) or

adapt Pp depending on the incident flow conditions for a non-rotational model.140

Part 1 (Howland et al., 2020c) utilized deterministic programming to optimize the yaw misalignment set-points for fixed

incident wind speed and direction. In this study, the yaw misalignment set-points are optimized using stochastic programming

under wind condition (Quick et al., 2017) and model parameter uncertainty (Howland, 2021b). The deterministic and stochastic

(optimization under uncertainty, OUU) programming approaches to yaw set-point optimization will be compared. Since the

ADM used in this study has fixed CT and Cp as a function of the wind speed, the wind direction is the primary factor145

influencing the yaw set-points (Quick et al., 2020). We therefore consider variations in wind direction α only. The yaw set-

points are optimized at each control update step with period T . At current time t, the goal of the set-point optimization is to

find the optimal yaw misalignment angles for time window t through t+T . The yaw set-point optimization is given by

γ∗s (α,ψ) = argmax
γs

E [G(α,ψ,γs)] , (1)

where G(α,ψ,γs) is the modeled wind farm power production as a function of the wind direction α, yaw misalignment set-150

point γs, and wake model parameters ψ. In this study, the wake model parameters to be estimated are the wake spreading rate

kw and the Gaussian wake proportionality constant σ0 for each turbine in the wind farm (see Part 1, Howland et al., 2020c).

The optimal yaw misalignment set-point is γ∗s . The expected value of the power production is

E [G(α,ψ,γs)] =

∫
· · ·
∫
f(α)f(ψ)G(α,ψ,γs)dα,dψ. (2)

The probability distributions are indicated by f(·). The wake model used in Eqs. 1 and 2 is steady-state, which inherently155

assumes statistically steady-state flow over the time horizon t through t+T . We neglect the wake and rotor dynamics associated

with the yaw maneuver (Macrí et al., 2021) and the advection time of the modification to the wake. We account for variations
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in the wind direction through f(α). The probability distributions are estimated using the wind farm data collected over the

window t−T through t, with current time t. The mean wind direction estimate for the next period (t through t+T ) is indicated

by α̂. The wind direction is assumed to be uniformly distributed between α̂−σα and α̂+σα, where σα is the standard deviation160

in time of the wind direction measured over the interval T with a sampling rate of ∆t, the computational time step in LES.

Previous studies have used Gaussian (Rott et al., 2018; Simley et al., 2020) and Laplacian (Quick et al., 2020) distributions to

represent turbulent wind direction variations about a mean state. The diurnal cycle has a non-stationary mean wind direction.

With a time-varying flow state, a Gaussian distribution may underpredict the frequency of variations about the mean state. We

anticipate that the most appropriate choice of f(α) depends on time-averaging length T , and we recommend that other wind165

direction probability distributions be considered in future work. Methods for estimating α̂ are discussed in §2.1. The model

parameter probability distributions are estimated using the methodology proposed in Howland (2021b), although it is noted

that f(ψ) can be estimated using Bayesian uncertainty quantification in future work. Eq. 2 is approximated using numerical

quadrature with the midpoint rule. The yaw set-points are optimized using Eq. 1, solved with gradient-based optimization

(Howland et al., 2019). While gradient-based optimization of Eq. 1 may be affected by local extrema, the analytic gradient-170

based optimization enables real-time set-point optimization on the order of seconds for the eight turbine case considered here.

Future work may consider the combination of gradient-free search algorithms and gradient-based optimization. In this study,

closed-loop control cases with deterministic yaw set-point optimization are also performed. The deterministic yaw set-point

optimization is the method presented in Part 1, with deterministic wind directions and a single set of wake model parameters

estimated using the ensemble Kalman filter (EnKF) (Evensen, 2003).175

2.1 Statistical wind direction forecast

Existing wake steering control methodologies, including in Part 1, implement yaw misalignment angles based on the low-pass

filtered measurements of the wind direction (see e.g. Fleming et al., 2019; Howland et al., 2020c). However, due to turbulent and

large-scale wind variations, the wind direction varies in time. Methods which react to previous low-pass filtered wind direction

measurements may implement a suboptimal yaw misalignment strategy, depending on the future wind direction trajectory.180

A recent study using idealized wake model numerical experiments by Simley et al. (2021) demonstrated that using perfect

preview wind direction measurements improves wake steering but using a preview based on a empirically fit cross-spectrum,

between the wind direction measurements of two neighboring turbines, did not increase power over the standard method. The

empirically fit cross-spectrum model based wind direction prediction requires measurements of the wind direction by a wind

turbine, MET mast, or LiDAR at an upwind location.185

The goal of the optimization (Eq. 1) in closed-loop control is to estimate the optimal yaw set-point angles γs for the time

window of t to t+T , during which the yaw angles will be applied. In this study, we use a steady-state wake model for yaw

set-point optimization which estimates the time averaged power production, based on time averaged wind conditions. With
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perfect wind direction information, the yaw set-point optimization is performed at time t with

α=
1

T

t+T∫
t

α(t′)dt′. (3)190

We therefore focus on methods to forecast α. In this study, two methods are used to estimate α, with the estimate given by

α̂. The standard approach (termed the filtered method) is α̂= 1
T

∫ t
t−T α(t′)dt′, which assumes that the moving averaged wind

direction is not changing. The moving average is a low-pass filter. We note that some previous approaches used other low-pass

filters, such as a first-order low-pass filter (e.g. Simley et al., 2020), rather than a moving average, but we do not anticipate the

results of the present study to be substantially different based on the particular wind direction filter used.195

Here, we develop an alternative approach to estimate the future mean wind direction α based on regression (termed predictive

method). The wind direction forecast first uses wind direction data from t− 2T to t to identify if the low frequency wind

direction is stationary or varying. A linear regression model is fit to wind direction data from t− 2T to t−T . The regression

model is then used to predict the wind direction from t−T to t. If the coefficient of determination (R2) of the regression is

above a set threshold value of Rmin = 0.2 and the regression model has lower mean square error (MSE) than predicting the200

wind direction from t−T to t as 1
T

∫ t−T
t−2T α(t′)dt′, then the wind direction is considered to be varying, otherwise it is considered

stationary. With the low-frequency wind direction determined to be varying, a second regression model is fit to wind direction

data from t−T to t. The future wind direction α̂ is then predicted using the second regression model at time t+T/2. If the

wind direction is considered stationary, it is estimated as α̂= 1
T

∫ t
t−T α(t′)dt′, the default filtered method. The full algorithm

is presented in Appendix A in Figure A1 and Algorithm 1. While this method does not require external upwind wind direction205

measurements, it could be improved with additional upwind sensors. Closed-loop wake steering cases are performed in LES

with both the filtered and predictive wind direction estimates. We selected a linear regression approach for simplicity. We

recommend future investigation of methodologies for short-term wind direction forecasting in future work.

3 Setup of large eddy simulations of the diurnal cycle

Large eddy simulations are performed using the open-source pseudo-spectral code PadéOps (Ghate and Lele, 2017; Ghate210

et al., 2018). The solver is introduced in detail in Part 1 (Howland et al., 2020c). The LES code has been previously used for

simulations of the stable ABL (Ghate, 2018; Howland et al., 2020b). The code is validated for the simulation of the diurnal

cycle through a comparison to the LES data of Kumar et al. (2006) in Appendix C. The equation for the transport of the filtered

nondimensional potential temperature θ is given by

∂θ

∂t
+uj

∂θ

∂xj
=

∂

∂xj

(
νT
Pr

∂θ

∂xj

)
, (4)215

with velocity u, SGS heat flux with eddy viscosity νT and turbulent Prandtl number Pr. The wall model is constructed using

the SURFFLUX1 algorithm (Basu et al., 2008a) to estimate friction velocity based on a prescribed surface heat flux. The

simulation details are provided in Table 1. We use the concurrent precursor methodology to simulate a finite wind farm (see
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Variable Value

Domain size (km) 12× 4× 2

Grid points 480× 320× 320

Geostrophic wind vector [8 m/s, 0, 0]

Latitude φ= 36◦

Coriolis term Traditional approximation

Rotor diameter D = 126 m

Hub height zh = 100 m

CT 0.75

Table 1. Diurnal cycle large eddy simulation setup.

e.g. Munters et al., 2016; Howland et al., 2020a) with fringe regions (Nordström et al., 1999) in the last 25% of the domain in

the x and y horizontal directions.220

A representative diurnal cycle ABL is designed based on the study of Kumar et al. (2006). The geostrophic wind speed is

fixed at G= 8 m/s and is in the positive x direction. We consider a barotropic ABL with no geostrophic wind shear (baro-

clinicity). The wind speed is initialized with u=G and v = w = 0 throughout the domain. The surface heat flux is prescribed

following the time-varying profile shown in Figure B1(a) in Appendix B. Further diurnal cycle setup details are provided in

Appendix B. The full 24 hour diurnal cycle is not simulated since the 12 period captures the stability transition of interest225

and for computational limitations. The surface heat flux is initialized at w′θ′s = 0.05 K ·m/s, with positive and negative heat

flux corresponding to surface heating and cooling, respectively. The convective ABL is run for one hour to remove startup

transience before the wind farm control is initiated. A note on LES initialization for reproducible wind farm control numerical

experiments is given in Appendix D.

A nine turbine wind farm is located in the computational domain. The wind turbines are modeled using the ADM. The wind230

farm geometry is shown in Figure 1. The turbines are spaced uniformly with distances Sx = 6D and Sy = 3D in the x and

y directions, respectively. Eight wind turbines are considered for wake steering control with one turbine used for reference.

Given the initialization in the convective ABL, the wind direction in the ABL will initially be oriented in the positive x direction

(Figure 2(a)). As the surface heat flux becomes negative, the convective ABL will transition to a stable boundary layer. During

the transition, the reduced vertical mixing and inertial oscillations will result in an Ekman spiral, which is characterized by235

counter-clockwise turning of the wind from the geostrophic wind direction (parallel to isobars) to the surface wind direction

(cross-isobaric). As a result, the mean wind direction at the wind turbine hub height will become positive (with the angle

measured between the wind direction and the x axis), as shown in Figure 2(a). A zoomed wind direction profile between

hours 2 and 3 is shown in Figure 2(b) to show the turbulent variations. In summary, in the convective ABL, the flow will be

approximately in the positive x direction, resulting in wake interactions along the columns of turbines. During the transition240
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Sx = 6D

Sy = 3D

Figure 1. The wind farm layout considered in this study within the domain of interest (excluding the sections influenced by the fringe region).

The reference turbine (shown in red) is used for power normalization and uses yaw alignment control for each case.

(a) (b) (c)

Figure 2. Diurnal cycle flow (a) hub height wind direction, (b) hub height wind direction zoomed to show variations between hours two and

three, and (c) hub height turbulence intensity.

and stable regimes, the flow will be oriented with a positive angle, measured from the x axis, and wake interactions will be

along the farm diagonals (e.g. turbine 4 in the wake of turbine 1).

The streamwise hub-height turbulence intensity in the inflow to the wind farm, computed from the concurrent precursor,

is shown in Figure 2(c). The convective ABL is characterized by approximately 10% streamwise turbulence intensity. The

turbulence intensity decreases below 5% during stable conditions. The incident wind speed profiles over the diurnal cycle are245

shown in Figure 3(a). The unstable wind speed has low shear above the near-wall region. As the flow transitions to nocturnal

conditions, the shear across the rotor area is enhanced and a subgeostrophic jet emerges. Given the setup of the representative

ABL used in this study, the maximum wind speed is above the rotor area. The wind direction as a function of height α(z)−
α(zh) is shown in Figure 3(b). The wind direction change over the rotor area is minimal during the convective conditions and

is enhanced during stable conditions. The peak veer across the rotor area is approximately 15◦. The stable boundary layer wind250

direction variation as a function of height z is consistent with Ekman turning (see e.g. Wyngaard, 2010).
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(a) (b)

Figure 3. Diurnal cycle flow (a) wind speed and (b) wind direction, α(z)−α(zh), as a function of height z, where zh is the wind turbine hub

height. The profiles are 30 minute averages at hourly intervals throughout the 12 hour simulation, with lighter colors near the initialization

(unstable ABL) and darker colors corresponding to later times of the simulation (stable ABL). The simulation is initialized at time t= 0

corresponding to 18:00. The horizontal dashed line corresponds to hub height and the horizontal dashed dotted lines are the rotor extents.

As the boundary layer transitions during the diurnal cycle, the structure of the turbulence will be modified, in addition to

the mean wind profile changes. An instantaneous hub-height wind speed snapshot during convective conditions is shown in

Figure 4(a) for wind turbines operating in baseline yaw aligned control. A zoomed image focusing on the wind farm region is

shown in Figure B2. There are large-scale structures of high and low wind speed. The wake meandering is qualitatively seen255

in the variations of the y position of the wake velocity deficits as a function of x. The mean wind direction at hub height is in

the positive x direction during convective conditions. An instantaneous snapshot during stable conditions is shown in Figure

4(b). Compared to the convective conditions (Figure 4(a)), the stable flow field has diminished length scales and the wake

meandering is reduced. The wind direction has also shifted, to approximately 20-30◦, with respect to the x-axis (see Figure

2(a)). A 10-minute moving average of the instantaneous flow fields, sampled at a rate of approximately 15 seconds, is taken for260

the convective and stable conditions, shown in Figure 4(c,d), respectively. The same timestep as the instantaneous snapshots

is shown. The 10-minute moving average does not eliminate the heterogeneity from the convective ABL flow field. Longer

time averages reduce flow field heterogeneity but also average over mean state transitions. Flow field heterogeneity can be

physically modeled in future work (e.g. Starke et al., 2021; Martínez-Tossas et al., 2021). Conversely, the 10-minute moving

average used for the stable conditions removed nearly all inflow heterogeneity. The time averaged wake regions trailing the265

individual turbines are qualitatively different in the two atmospheric stability regimes. The effective wake diameters in the time

averaged convective ABL are significantly larger than in stable conditions.

4 Wake steering results

In this section, wake steering control cases are run in the representative diurnal cycle simulation environment discussed in §3.

The wake steering and yaw aligned control cases are run with a prescribed, fixed yaw update period of T . The wind farm control270
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(d)(c)

Figure 4. Hub height streamwise velocity during (a,c) unstable and (b,d) stable ABL conditions for the baseline yaw aligned control case.

Instantaneous snapshots are shown in (a,b) and 10 minute moving averaged flow fields are shown in (c,d). The streamwise velocity zoomed

in to focus on the wind farm area is shown in Figure B2.

Case label Description Wake steering Closed-loop α forecast OUU

A Aligned - - - -

L Lookup - - -

D Deterministic -

D-F Deterministic, α forecast -

OUU-F OUU, α forecast
Table 2. The diurnal cycle atmospheric boundary layer wake steering cases. Cases with α forecast checked use the DirectionEstimation

(Algorithm 1) to forecast the wind direction over future time T . Cases with optimization under uncertainty (OUU) use the OUU methodology

described in §2. Each case represents a separate LES simulation.
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cases performed in this study are described in Table 2. A baseline, yaw aligned control case (Case A) is run for reference. As

in Part 1, a basic yaw controller is used, such that the nacelle position of each turbine is updated to orient towards the mean

wind direction measured at each local turbine, averaged over time T . We compare four wake steering control strategies. We

consider one open-loop wake steering case and three closed-loop control cases, which differ only through their yaw set-point

optimization methods.275

Case D (D for deterministic) is closed-loop wake steering with deterministic yaw set-point optimization. The yaw set-points

are optimized with estimated wake model parameters using the EnKF and mean wind conditions prescribed as the average

conditions observed over previous time T . Case D-F (D for deterministic, F for wind direction forecasting) is closed-loop wake

steering with deterministic yaw set-point optimization which uses the wind direction forecast methodology. Comparing Cases

D and DF, differences will arise only from the wind direction used in the yaw set-point optimization. Case D uses the mean280

wind direction measured over the previous time T while Case D-F uses DirectionEstimation (Algorithm 1) to forecast the

wind direction over future time T . Case OUU-F uses optimization under uncertainty (OUU, see §2) and the wind direction

forecast methodology. For brevity, we do not include a case with OUU without the wind direction forecast. Case L uses

open-loop lookup table control. The lookup table synthesis is described in Appendix E. In §4.1, the power-yaw relationship

for the freestream turbines are presented. The performance of the various control strategies are compared in §4.2. The wake285

model predictions are compared for closed- and open-loop control methodologies. The influence of the yaw update period is

considered in §4.4.

For the purpose of parsing the diurnal cycle results by atmospheric stability, we define the stable regime as 0< L< 200

(Van Wijk et al., 1990), where L is the Obukhov length

L=− u∗3θ0

κgθ′w′s
, (5)290

with friction velocity u∗, reference potential temperature θ0, von Karman constant κ, and gravitational acceleration g. For

L < 0, the flow is unstable or near neutral, while for L > 200 the flow is near neutral. Conditions of L < 0 and L > 200

are combined into unstable and stability transition periods. This stability characterization is qualitative and is used for the

interpretation of the results in the following sections.

4.1 Power-yaw relationship295

The power productions of the leading two wind turbines in the array, turbines 1 and 2 (see layout in Figure 1), as a function

of their yaw misalignment with respect to the turbine-specific hub height wind direction, are shown in Figure 5. The results

are shown for a yaw update period of T = 30 minutes, and therefore, each data sample shown is a 30 minute average. Since

the wind direction changes as a function of time, the magnitude and sign of the model-optimal yaw misalignment set-points

will also change. Given the incident wind direction and wind farm geometry, turbine 2 will initially yaw misalign to benefit300

turbine 4. With the wind direction shifting away from 0◦ with respect to the x-axis, there are no turbines downwind of turbine

2 (see Figure 4(b)) and its yaw misalignment set-point will become zero. Turbine 1 will continue to yaw misalign to benefit

either turbine 3 or turbine 4. The power ratios for the convective ABL are shown with open markers. Given the highly turbulent
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(a) (b)

Figure 5. Power ratio Pr = Pi/Pref for turbines 1 and 2 (see layout in Figure 1) for (a) open-loop lookup table control and (b) Case D

closed-loop control shown as a function of the realized yaw misalignment with respect to the hub height wind direction. Power ratios for

stable atmospheric stability (Obukhov length L < 200) are shown with filled markers and hollow markers are unstable and stability transition

periods. The power ratio is averaged for 30 minutes for each sample.

convective ABL, the finite time averaged inflow wind to a given turbine may differ from the winds incident to the reference

turbine (see Figure 4). This effect is not accounted for in the cosine models, and is the primary cause for the significant spread305

in the power ratios in convective conditions.

While there are a limited number of data samples for γ > 0◦, the power ratio shown in Figure 5 appears asymmetric about

γ = 0◦ during stable conditions (filled markers). Given the nocturnal wind speed and direction profiles shown in Figure 3,

the power production for the yawed wind turbines will be asymmetric as a function of the sign of the yaw misalignment

angle (Howland et al., 2020d). Considering a non-rotational actuator disk model representation of a wind turbine, the power310

production P ∝ (u · n̂)3, where u is the incident wind velocity vector and n̂ is the unit vector normal to the rotor area. Given

the Ekman spiral, negative yaw misalignment, a clockwise rotation of the wind turbine viewed from above, will locally align

the turbine above hub-height where the wind speed is larger than the hub-height speed (Figure 3(a)). Conversely, positive yaw

misalignment will locally align the turbine below hub-height, where the wind speed is lower than hub-height speed.

The power ratio of turbine 1 for negative yaw misalignment is near the cos1.5(γ) curve. Conversely, the data samples for315

positive yaw are generally between cos1.5(γ) and cos3(γ). In this study, the Pp parameter for the simplified cosine power ratio

model Pr = cosPp(γ) was set to Pp = 2.5 based on previous tuning in conventionally neutral ABL conditions (see §2). Since

the simplified cosine model is not the focus of the present study, and since the most accurate Pp factor depends on the incident

wind profiles and on the sign of γ, the value is not further tuned and is fixed at Pp = 2.5 for closed- and open-loop control

cases. The results of Part 1 (Howland et al., 2020c) indicate that overestimating the power degradation as a function of the yaw320

misalignment angle is preferred for wake steering, compared to underestimation.

The power-yaw relationship is often considered for an isolated wind turbine (Howland et al., 2020b) although wake effects

have also been considered by Liew et al. (2020). In this discussion, we have considered the leading turbines in the farm to
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Figure 6. Comparison of the mean wind direction estimation methods to the measured instantaneous (α) and mean (αT ) wind direction

data. A standard approach is shown where the low-pass filtered wind direction αT is estimated through a moving average. The predictive

method is shown where αT is estimated using the proposed DirectionEstimation algorithm, described in Figure A1 and Algorithm 1. The

horizontal black line corresponds to the wind direction of alignment between turbines 1 and 4.

behave approximately as isolated wind turbines. The leading turbines in the array may be affected by the presence of the

downwind turbines, which may alter the power-yaw relationship. This effect may be considered in future work.325

4.2 Comparison of control strategies

In this section, the various control strategies introduced in §4 are implemented in the diurnal cycle ABL flow with a fixed

control update period of T = 30 minutes. We first investigate the influence of the wind direction estimation methodologies.

The statistical wind direction forecast (§2.1) is compared to a wind direction estimate using a moving average filter with

timescale T . The instantaneous α and mean αT wind direction as a function of time, as measured by the reference wind330

turbine, is shown in Figure 6. The mean wind direction estimates using a moving average and using the wind direction forecast

methodology are shown, termed filtered αT and predictive αT , respectively. The mean wind direction prediction methods have

access to α(0 : t), where t is the current time, and predict αT (t+T/2). In the limiting cases of high wind direction variability

about a mean value (hours 0-3) or low mean wind direction changes in time (hours 6-10), the predictive methodology defaults

to the same estimate as the filtered value. However, for periods of transitioning mean wind directions (hours 3-6), the predictive335

wind direction forecast more accurately estimates the mean wind direction for the future time horizon of length T . The mean

absolute error (MAE) for the filtered and predictive methods for estimating αT are 1.9◦ and 1.3◦, respectively. The mean

square error (MSE) for the filtered and predictive methods for estimating αT are 6.0 and 3.7 (degrees squared), respectively.

Closed-loop wake steering control is implemented in the diurnal cycle ABL with deterministic yaw set-point optimization

with the filtered (Case D) and predictive forecast (Case D-F) methodologies for the estimation of αT . Two separate LES cases340

are run with the only difference as the estimated mean wind direction (αT ) provided to the yaw set-point optimizer. The yaw

set-points for turbine 1 are shown in Figure 7(a) for the two cases. The realized yaw misalignment angles are shown in Figure
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(a) (b)

Figure 7. Yaw misalignment for turbine 1 (a) applied and (b) realized for the deterministic optimization methodology with filtered (Case D)

and predictive forecast (Case D-F) wind direction-based yaw optimization.

7(b). Since the initial conditions are fixed (the processor topology is also fixed, see Appendix D), during the initial four control

update steps in which the filtered and predictive mean wind directions are the same (see Figure 6), the yaw misalignment values

are identical. For step five and beyond, the estimates for the mean wind direction differ, resulting in a divergence of the yaw345

control approaches. The primary differences between the cases arise between hours 3.5 and 6, during which the mean wind

direction transitions over the inflow angle of alignment between turbines 1 and 4. At this inflection point, the optimal yaw

set-point angle will transition from positive to negative yaw. The predictive methodology estimates that the wind direction will

transition to an angle greater than the inflection point, resulting in a negative yaw set-point, while the filtered methodology

results in a positive yaw set-point. The positive yaw set-point, given the resulting trajectory of α, results in wrong way steering350

that increases the wake losses at turbine 4.

The performance of each case is characterized using an energy ratio

Er =

∫ t2
t1

∑Nt

i=1Pi(t)dt∫ t2
t1

∑Nt

i=1P
γ0
i (t)dt

, (6)

which quantifies the wind farm performance compared to baseline yaw aligned control, indicated with γ0, over time interval

t1 to t2. The percent gain in energy through wake steering is G= 100 · (Er − 1). We first focus on the time periods in which355

the filtered and predictive wind direction methodologies differ (control update periods 6 through 9, approximately hours 3.5 to

6). The gain for this time period is −0.1% and 1.1% for the filtered (Case D) and predictive (Case D-F) cases, respectively.

As a result of the transitioning mean wind direction, reacting to the filtered history of wind direction results in the incorrect

yaw misalignment direction, and therefore reduced energy production compared to baseline yaw aligned control. Conversely,

the predictive wind direction methodology results in the appropriate yaw misalignment set-point direction and increases power360

compared to baseline control. The energy gain G for Cases D and DF for the full simulation are shown in Table 3. Overall,

the wind direction forecast method increases the energy production using wake steering control in both atmospheric stability

regimes, with the predominant energy improvements occurring during the time periods of hours 3.5 to 6, described above.
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(a) (b)

Figure 8. Power production results from the closed-loop control Case D and baseline yaw aligned control cases. The LES power data is

given by P and the wake model estimates are given by P̂ . The subscripts on the power denote the turbine number. The yaw misaligned and

aligned cases are denoted by γ and γ0, respectively.

The energy gain resulting from the use of a wind direction forecast methodology in wake steering control is case specific

and depends on several factors. First, the performance gain depends on the fidelity of the predictive methodology. In this study,365

we have proposed a linear regression-based wind direction forecast which demonstrates empirical success in this application

(Figure 6). For different ABL forcing, site-specific characteristics, or different update periods T , linear regression may not be

sufficient, and other data-driven prediction approaches can be implemented in the framework outlined here (see Appendix A).

Future work should consider nonlinear regression or more complex machine learning timeseries prediction methods. Further,

the improvements herein predominantly stem from the occurrence of wind direction changes across the turbine alignment370

inflow angle. The degree to which a wind direction forecast methodology improves overall wake steering performance will

depend on the frequency of such occasions.

In the closed-loop wake steering control approach proposed in Part 1 (Howland et al., 2020c), the wake model parameters ψ

are estimated at each control update step, with time increment T . The LES power production P, γ as a function of the control

update step for Case D is shown in Figure 8. In addition, the wake model power estimates P̂, γ for wake steering control and375

the LES power production for yaw aligned control P, γ0, are shown. The power productions for the pair of turbines 1 and

4 are shown in Figure 8(a) and for turbines 5 and 8 in Figure 8(b). The wake model estimates for the power production of

turbines 4 and 8 exhibit low error, as anticipated because the wake model is calibrated using these data with the EnKF. We test

the effect of the EnKF parameter estimation of wake model predictions for out-of-sample data in §4.3. Larger error arises in

the prediction of upwind, freestream power production for turbines 1 and 5, given the simple cosine model (see discussion in380

§4.1). The power increase for the downwind turbines is more substantial in the stable regime (control update 9 and after). The

estimated wake model parameters are shown in Figure 9. The parameters are averaged over the upwind turbines 1, 3, and 5.

Both the wake spreading rate and the proportionality constant are reduced in stable atmospheric stability, compared to unstable

conditions, as anticipated from the time averaged velocity fields (Figure 4).

16



(a) (b)

Figure 9. Estimated wake model parameters averaged over turbines 1, 3, and 5 as a function of the control update step. (a) Wake spreading

coefficient kw. (b) Gaussian wake proportionality constant σ0.

Case Prevailing α(zh) Deterministic Deterministic, α forecast OUU, α forecast Lookup table (open-loop)

Label Case D Case D-F Case OUU-F Case L

Unstable & transition Westerly −0.18% 0.08% 1.00% −0.74%

Stable South-westerly 4.61% 4.87% 4.80% 4.70%

Full simulation - 3.50% 3.86% 4.00% 3.43%

Table 3. Wind farm energy production increase compared to baseline yaw aligned control, G= 100 · (Er − 1) with Er in Eq. 6. Cases

with α forecast use the DirectionEstimation algorithm. Case OUU-F uses stochastic programming for yaw set-point optimization under

uncertainty (OUU). The case with the highest overall wind farm energy production for a given time period is shown in green. The stable

periods correspond to 0< L< 200 with unstable and transition times otherwise. We note that the hub-height wind direction and wind speed

also vary with stability. We denote the approximate mean wind direction at the wind turbine hub-height during each stability period with

α(zh) (see Figures 4 and 6).

Closed-loop wake steering control is implemented with optimization under uncertainty (see §2) and the wind direction385

forecast methodology in Case OUU-F. The energy gain results for Case OUU-F are shown in Table 3. Generally, set-point

optimization under uncertainty (OUU) will reduce the magnitude of the peak yaw misalignment angles, especially near the

inflow angle of alignment (see e.g. Quick et al., 2020). Given the high turbulence in the convective ABL, the wind direction

standard deviations are large (see Figure 6) and the yaw set-points will be reduced, compared to deterministic optimization.

Case OUU-F has improved performance compared to Case D-F. The OUU (Case OUU-F) has improved performance as a390

result of increases in energy production during unstable and transition regimes. The energy production is slightly less for OUU
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(a) (b)

Figure 10. Diurnal cycle flow turbine-specific energy ratio Er,i (Eq. 7) for (a) the odd and (b) even rows. The odd row consists of turbines

1, 3, 5, and 7. The even row consists of turbines 2, 4, 6, and 8. The turbine layout is provided in Figure 1. Wake steering results from Case

OUU-F are shown.

in the stable regime. The energy ratio between times t1 and t2 for a given turbine is

Er,i =

∫ t2
t1
Pi(t)dt∫ t2

t1
P ref(t)dt

, (7)

with the power production of the reference turbine given by P ref (see Figure 1 for the layout). The reference turbine is used for

normalization rather than P γ0i to maintain information in the turbine energy ratio metric Er,i about wake losses. The turbine395

energy ratios for Case OUU-F are shown in Figure 10. Small reductions in Er,i for yaw misaligned turbines (1, 3, and 5) result

in large increases in energy ratios for the waked turbines (4, 6, and 8). Turbine 7 is not yaw misaligned during the simulation

and slightly outperforms the reference turbine, likely due to mean flow effects such as induction and blockage in the stable

ABL (Segalini and Dahlberg, 2020).

Open-loop wake steering is implemented in the diurnal cycle ABL LES (Case L). The open-loop yaw misalignment lookup400

table synthesis is described in Appendix E. The yaw misalignment set-points and realized yaw values for turbines 1, 2, and 3

for closed-loop Case OUU-F and open-loop Case L are shown in Figure 11. The yaw misalignment set-points are qualitatively

similar in their approach but quantitatively differ. The differences between the closed- and open-loop yaw set-points are larger

in the unstable and transition regimes of the simulation than the stable regime. Comparing the yaw misalignment applied in the

open- and closed-loop control cases, there are differences in the yaw duty, with the closed-loop control introducing some small405

amplitude (O(1◦)) higher frequency variations in the applied yaw. Modifying yaw duty can affect loads on the yaw bearing

and other wind turbine components (see e.g. Hure et al., 2015; Campagnolo and Bottasso, 2021). For open-loop wake steering,

the yaw duty depends both on the objective function used to generate the lookup table and on how the lookup table is applied.

The objective function used in the optimization step of the closed-loop control considers only farm power production. Future

work should incorporate yaw duty penalties in the optimization objective function.410
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(d) (e) (f)

Figure 11. Comparison of the yaw misalignment set-point values as a function of time from the OUU closed-loop control (Case OUU-F)

and from open-loop lookup table control (Case L) for turbines (a) 1, (b) 2, and (c) 3. (d-f) Same as (a-c) with realized yaw.

The energy gains for the open-loop wake steering case are shown in Table 3. The lookup table control performance is similar

to closed-loop control with deterministic set-point optimization but without the wind direction forecast method (Case D).

Lookup table control has less energy production than baseline yaw aligned control for unstable and transition regimes, with a

0.74% energy loss. For stable conditions, the open-loop lookup table control has 4.70% energy increase over baseline control.

Overall, the open-loop control case has diminished performance compared to all closed-loop control cases.415

4.3 Wake model predictions

The predictive performances of the open- and closed-loop control methodologies are assessed by comparing the power produc-

tion predictions from the wake model to the LES power for stable atmospheric conditions. The row averaged power production

is shown for upwind turbines, averaged over turbines 1, 3, and 5, and for downwind turbines, averaged over turbines 4, 6,

and 8. The wake model power predictions from open-loop control, using the predefined wake model parameters depending on420

turbulence intensity in the inflow, are shown in Figure 12(a). The LES power production from the open-loop wake steering

case (denoted with γ) is shown, in addition to the baseline yaw aligned control case (denoted with γ0). The predefined wake

model parameters result in significant predictive bias for the downwind waked turbines for both yaw aligned and wake steering

control. The absolute errors are 0.146 and 0.165 for the yaw misaligned and yaw aligned wake model estimates, respectively.

The LES power production is compared to the closed-loop wake model estimates, where the wake model parameters are es-425
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(a) (b)

Figure 12. Comparison of LES row averaged power data and wake model predictions for the closed-loop (Case OUU-F) and lookup table

(Case L) wind farm control methodologies for the stable stratification regime. (a) Lookup table control data and predictions. (b) Closed-loop

control data and predictions. Baseline yaw aligned control results are indicated with γ0 and wake steering results are indicated with γ. The

upwind row is an average of turbines 1, 3, and 5. The downwind row is an average of turbines 4, 6, and 8.

timated using the ensemble Kalman filter, in Figure 12(b). The ensemble Kalman filter adapts the wake model parameters to

accurately estimate the wake steering power production. Since the closed-loop control LES power is used in the Kalman filter,

this result is a wake model estimate (training data). Conversely, the wake model estimates for the power production in baseline

yaw aligned control (γ0) are predictions, since the Kalman filter does not use the power production from the separate yaw

aligned LES case to estimate wake model parameters. The absolute errors are 0.0004 and 0.039 for the yaw misaligned and430

yaw aligned wake model estimates, respectively.

4.4 Comparison of yaw update periods

In this section, the sensitivity of the wind farm energy production for the various control cases to the yaw set-point update

period T is investigated. Baseline yaw aligned control and three wake steering cases previously described are implemented in

LES of the diurnal cycle of the ABL with control update periods of T = 30 and T = 15 minutes. Case D is not repeated with435

T = 15 minutes in this section for brevity. Each case with a specified control update period represents an independent LES

simulation. Again, all simulations are initialized from the same initial conditions. The energy gain, G= 100 · (Er − 1) with

Er in Eq. 6, with respect to baseline yaw aligned control Case A for T = 30 minutes is shown in Table 4. For yaw aligned

control, decreasing T will increase the frequency of updates wherein the nacelle position is updated according to the measured

wind direction. It is therefore anticipated that reducing T will increase the energy production in yaw aligned control (see e.g.440

Fleming et al., 2014), at the compromise of increased yaw duty (we do not account for the yaw motor energy consumption

in this study). Table 4 demonstrates a 0.43% increase in energy production for the baseline yaw aligned control with T = 15

minutes, compared to T = 30 minutes.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Comparison of the yaw misalignment set-point values as a function of time for turbine 1 from the (a) lookup table (Case L), (b)

deterministic optimization (Case D-F), and (c) closed-loop control with optimization under uncertainty (Case OUU-F). (d-f) Same as (a-c)

with realized yaw.

The wake steering control cases are implemented with T = 15 minutes. The yaw misalignment set-points and realized yaw

for T = 30 and 15 minutes for open-loop lookup table control (Case L), closed-loop control with deterministic optimization445

(Case D-F), and closed-loop control with OUU (Case OUU-F) are shown in Figure 13. A lower control update period increases

the variability in the yaw set-point values as the yaw control reacts to higher frequency timescales. Notably, the T = 30 minutes

closed-loop control cases transition to negative yaw misalignment in the stable regime (around 5 hours) sooner than the faster

update frequency cases (T = 15 minutes). For T = 15 minutes, the wind direction forecast method defaults to the moving

average filter for most time steps. For T = 30 minutes, the wind direction forecast results in negative yaw misalignment angles450

as the flow is transitioning across the inflow angle of turbine alignment (proactive), rather than after the transition has occurred

(reactive).

The energy gain for each case with respect to the energy production in baseline yaw aligned control with T = 30 minutes

is shown in Table 4. The highest energy production among all cases considered is optimization under uncertainty (Case OUU-

F) with the wind direction forecast methodology and T = 15 minutes. The reduced yaw update period increases the energy455

production of closed-loop wake steering performed with OUU (Case OUU-F) while it slightly decreases the energy production

of closed-loop wake steering with deterministic set-point optimization (Case D-F). There are several factors which contribute

to this result. The closed-loop control method estimates wake model parameters based on the average power measurements. For
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Case Baseline, γ0 Deterministic, α forecast OUU, α forecast Lookup table (open-loop)

Label Case A Case D-F Case OUU-F Case L

T = 30 min − 3.86% 4.00% 3.43%

T = 15 min 0.43% 3.82% 4.14% 3.83%

Table 4. Wind farm energy production increase compared to baseline yaw aligned control with T = 30 min, G= 100 · (Er − 1) with Er

in Eq. 6. Cases with α forecast use the DirectionEstimation algorithm. The case with the highest overall wind farm energy production is

shown in green. The full simulation period is considered, with stable, unstable, and transition regimes.

the closed-loop control methodology used here, the moving average for wind turbine power production uses the same timescale

T used by the control updates. Therefore, reductions in T also reduce the time averaging length of the power production,460

which is used for parameter estimation. The reduction in T increases the variability of the mean power data, by the central

limit theorem. Reductions in T may therefore lead to higher variability in the estimated wake model parameters. However, the

averaging and control update timescale T must be sufficiently small to adapt the wind farm control to the time-varying mean

wind conditions. The selection of T is a trade-off between these competing effects and may be site and ABL condition specific.

While the optimal selection of T is not the focus of this study, T = 15 minutes empirically demonstrates the highest overall465

energy production in these LES cases. The optimal update period should be investigated jointly with wind condition forecast

methodologies. Future work should consider de-coupling the parameter estimate and control updates.

Contrary to deterministic set-point optimization, Case OUU-F, which utilizes set-point optimization under model parameter

uncertainty, has improved performance with decreasing update periods T . This empirical result is also reproduced for unsta-

ble ABL conditions in Howland (2021b). Optimizing yaw misalignment set-points under a distribution of model parameters470

reduces the sensitivity to noise in the wind farm power production data. The effect of reducing the yaw update period for

open-loop control is anticipated to be similar to baseline yaw aligned control, since the yaw set-points have been pre-defined

in the lookup table. The energy production from open-loop control is increased by 0.4% by reducing T to 15 minutes. For

T = 15 minutes, open-loop lookup table control (case L) has a similar performance to closed-loop control with deterministic

optimization (Case D-F). Closed-loop control with yaw set-point OUU (Case OUU-F) has the highest energy production for475

both yaw update periods and the highest overall energy production occurs with T = 15 minutes.

5 Conclusions

The closed-loop wake steering control methodology, developed in Part 1 (Howland et al., 2020c) is extended here. We com-

pared closed-loop wake steering to baseline yaw aligned control and open-loop lookup table control in idealized large eddy

simulations of the diurnal cycle for yaw set-point update periods of T = 15 and 30 minutes. The effect of wake steering on480

energy production depends on the wind farm geometry and the atmospheric conditions. For the idealized wind farm and ABL

setup considered here, wake steering has a larger increase in energy production for stable ABL conditions than for convective.
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Importantly, other details of the flow, such as hub-height wind direction and speed, change along with stability in the diurnal

cycle simulations presented in this study. Therefore, the present diurnal cycle simulations do not represent controlled exper-

iments to isolate the effects of the stability on wake steering control. Such controlled experiments are suggested for future485

work.

Open-loop lookup table control and closed-loop wake steering control with deterministic set-point optimization have reduced

energy production in convective conditions compared to baseline yaw aligned control, in the considered cases. Closed-loop

wake steering with set-point optimization under uncertainty increases energy in convective conditions, compared to baseline

control. The highest overall energy production is achieved with closed-loop wake steering with yaw misalignment set-point490

optimization under wind direction and model parameter uncertainty for T = 15 minutes. Reducing the yaw set-point update

period increases the energy production for all cases except for closed-loop wake steering control with deterministic set-point

optimization, where the yaw set-points are influenced by data measurement noise. The influence of the data measurement noise

is alleviated with set-point optimization under uncertainty.

The optimal yaw misalignment set-points depend on the incident wind direction. Rather than assuming that the future wind495

direction will be equal to the low-pass filtered recorded wind direction data, in this study, we develop a regression-based wind

direction forecast. The wind direction forecast uses two previous time windows to identify if the wind direction is stationary

or varying in time. If the wind direction is stationary, the standard filtered wind direction is used. If the wind direction is

identified to be varying in time, a linear regression is used to forecast the future wind direction. The proposed framework can

be used with arbitrary wind direction timeseries estimation methods. Future work should consider nonlinear regression or more500

complex timeseries machine learning methodologies, such as recurrent neural networks.

The results of Part 1 and 2 of this study suggest several directions of future work. Future work should investigate the

optimal yaw set-point update period in tandem with wind condition prediction methodologies. Since the closed-loop control

method impacts yaw duty, realistic utility-scale turbine yaw duty penalties, based on yaw motor energy usage and increased

maintenance costs, should also be considered in the set-point optimization. Improved estimates for the wake model parameter505

probability distributions with physical constraints should be considered. Additionally, future work should consider model form

uncertainty and modeling error in connection with model parameter estimation. Future studies should compare various model-

based closed-loop wake steering approaches which use steady-state and dynamic wind farm models to model-free closed-loop

wake steering control.

We note that the simulations presented in this study are an idealization of the diurnal ABL with fixed geostrophic wind510

speed and direction (Beare et al., 2006; Svensson et al., 2011; Fitch et al., 2013). While observations occasionally demonstrate

approximately steady geostrophic winds over timescales up to a day (Bosveld et al., 2014), variations in the large-scale forcings

in the atmosphere influence the ABL (Muñoz-Esparza et al., 2017) and wind farm flows (Sanz Rodrigo et al., 2017a, b).

Methodologies to investigate wake steering control in more realistic ABL wind conditions through meso-microscale coupling

should be considered in future work. Finally, future work should consider wake steering in complex terrain.515
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Figure A1. Wind direction estimation algorithm DirectionEstimation. Dashed lines are wind direction predictions using regression and

dotted lines are predictions using the mean values.

Appendix A: Statistical wind direction forecast algorithm

The regression-based statistical wind direction forecast discussed in §2.1 is described in this section. A schematic of the

algorithm is shown in Figure A1. The algorithm is presented in Algorithm 1. The inputs are the measurement time series t, the

measured wind direction time series α, the current time ts, the yaw set-point update period T , and the minimum coefficient of

determination value Rmin. The algorithm Regression() is provided time and wind direction vectors and uses linear regression520

to estimate the wind direction over the next time period of length T (αF ). Averaging is denoted by 〈·〉.
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Algorithm 1 Regression-based wind direction forecast with uncertainty

DirectionEstimation(t, α, ts, T , Rmin):

αF1, R
2
1← Regression(t(ts− 2T : ts−T )), α(ts− 2T : ts−T ), T )

αF2, R
2
2← Regression(t(ts−T : ts), α(ts−T : ts), T )

εf ←
〈
(α(ts−T : ts)−αF1(ts−T : ts))

2
〉

εm←
〈
(α(ts−T : ts)−〈α(ts− 2T : ts−T )〉)2

〉
if εf < εm and R2

1 ≥Rmin and R2
2 ≥Rmin then

αSTD = STD(α(ts−T : ts)−αF1(ts−T : ts))

α̂=αF2(ts +T/2)

else

αSTD = STD(α(ts−T : ts))

α̂= 〈α(ts−T : ts)〉

end if

return α̂, αSTD

(a) (b)

Figure B1. (a) Time-varying surface heat flux w′θ′s. The simulation is initialized at time t= 0 corresponding to 18:00. Positive heat flux

corresponds to surface heating and negative flux is cooling. (b) Initial potential temperature θ profile.

Appendix B: Idealized diurnal cycle setup

The surface heat flux boundary condition used in the idealized diurnal cycle simulation is shown in Figure B1(a). The initial

potential temperature profile is shown in Figure B1(b). The streamwise velocity at the wind turbine hub height, zoomed in to

the wind farm region, is shown in Figure B2.525
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(a) (b)

(c) (d)

Figure B2. Zoomed in hub height streamwise velocity during (a,c) unstable and (b,d) stable ABL conditions for the baseline yaw aligned

control case. Instantaneous snapshots are shown in (a,b) and 10 minute moving averaged flow fields are shown in (c,d). The streamwise

velocity in the full domain is shown in Figure 4.

Appendix C: Diurnal cycle validation

The diurnal cycle implementation in PadéOps1 (Ghate, 2018) is validated in this section. The diurnal cycle LES case of Kumar

et al. (2006) is used as a reference. The boundary conditions constructed in Kumar et al. (2006) correspond to the HATS field

campaign (Horst et al., 2004). The full details of the diurnal cycle initialization are provided in Kumar et al. (2006). The free

atmosphere is in geostrophic balance. Only the vertical component of Earth’s rotation is included (traditional approximation is530

enforced (Howland et al., 2020b)). The prescribed geostrophic wind speed and surface heat flux are shown in Figure C1.

The validation focuses on two integrated quantities in the ABL. The friction velocity is shown in Figure C2(a). There is

sufficient agreement between the present LES and the reference case. The boundary layer height zi, normalized by the Obukhov

length, is shown in Figure C2(b). There is qualitative agreement between the cases with some quantitative discrepancy in the

stability transition regions of the profile. The quantitative discrepancies in the normalized boundary layer height are primarily535

the result of the differing numerics and subgrid scale models used in the two simulations. Primary discrepancies arise in the

stable ABL since the Ozmidov scale is of the same order as the grid spacing (Sullivan et al., 2016). The present LES uses a

6th order compact finite difference scheme (Lele, 1992) in the vertical direction, whereas Kumar et al. (2006) implemented

a 2nd order finite difference scheme. Overall, the results suggest that the diurnal cycle boundary condition implementation is

sufficient for the simulation of a representative diurnal cycle of the ABL.540
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(a) (b)

Figure C1. Diurnal cycle validation case (Kumar et al., 2006). (a) Diurnal cycle geostrophic wind speed. (b) Diurnal cycle surface heat flux

w′θ′s.

(a) (b)

Figure C2. Diurnal cycle validation case (Kumar et al., 2006). (a) Diurnal cycle friction velocity u∗. (b) Diurnal cycle boundary layer height

normalized by the Obukhov length zi/L. Details for boundary layer height estimation provided in Kumar et al. (2006).
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(a) (b)

Figure D1. (a) Reference turbine wind direction for open-loop wake steering control cases for two differing parallel processor topologies.

The simulations are executed from identical initial conditions. (b) The yaw misalignment set-points implemented in the two open-loop lookup

table control cases.

Appendix D: Note on wake steering LES initialization

Since turbulent flows exhibit a chaotic dependence on initial conditions (e.g. Pope, 2001), the initial conditions for all LES

cases presented in this study are executed from the same initial conditions. Further, differences in parallel processor topology

can result in round-off errors which will exponentially grow toO(1) differences in the instantaneous flow fields. In this section,

we highlight the differences that arise in the comparison of separate wind farm control LES cases due to the chaotic nature of545

turbulence. Two simulations of open-loop lookup table control are implemented in the diurnal cycle simulations described in

§3. The lookup table methodology is described in Appendix E. The simulations are started from identical initial conditions but

with different parallel processor topology, which will result in an initial round-off error difference (10−8) between the cases.

The reference turbine wind directions are shown in Figure D1(a) and the applied yaw misalignments are shown in Figure

D1(b). While the differences between the cases appear minor visually, they differ in their energy ratio results. The energy550

gains for the two cases with respect to baseline yaw aligned control are 3.43% and 3.17% for cases 1 and 2, respectively. The

primary differences arise in convective ABL conditions, where the energy gains are −0.74% and −1.69% for cases 1 and 2,

respectively. Conversely, the differences in stable conditions are minor, with gains of 4.70% and 4.72% for cases 1 and 2,

respectively. Overall, the results suggest that the initialization and parallel processor topology round-off must be identical to

machine precision to ensure accurate comparisons between LES control cases. Primary differences arise in ABL conditions555

with high turbulence.

Appendix E: Lookup table synthesis

The yaw misalignment lookup table synthesis is described in this section. The wake model presented in Part 1 (Howland

et al., 2020c) is used for yaw set-point optimization for the eight wind turbines of interest (Figure 1) for the wind directions
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Figure E1. Yaw misalignment set-point lookup table for open-loop control for turbines 1, 2, and 3 as a function of the incident wind direction.

encountered in the LES case, between−10◦ < α < 30◦ (Figure 2(a)). The wake spreading rate is prescribed using the empirical560

fit of Niayifar and Porté-Agel (2016), k∗ = 0.3837 ·TI + 0.003678, where TI is the streamwise turbulence intensity. The

proportionality constant of the presumed Gaussian wake is set to σ0 = 0.25 (Shapiro et al., 2019; Howland et al., 2020c). The

parameter k∗ in the empirical fit of Niayifar and Porté-Agel (2016) is not identical to the parameter kw used in the lifting line

wake model (Shapiro et al., 2018). An empirical calibration for kw is not available in the literature. Instead, the wake spreading

rate kw is found by equating the Gaussian wake model form used by Niayifar and Porté-Agel (2016) with the form used in this565

study. The resulting empirical kw is

kw =
k∗x+ 0.2

√
1+
√
1−CT

2
√
1−CT

− 1

σ0 log(1 + exp(2(x− 1)))
, (E1)

where x is the streamwise distance between the turbines normalized by the rotor diameter, CT is the coefficient of thrust, and

k∗ is defined in the relationship above.

The yaw set-point lookup table is constructed with a wind direction discretization of ∆α= 2.5◦. The turbulence intensity is570

extracted from the baseline yaw aligned control simulation as a function of time. The mean turbulence intensity in each wind

direction bin (see Figure 2(c)) is used to estimate the wake spreading rate k∗, which is then used to compute kw in Eq. E1. The

yaw set-points are then optimized in each wind direction bin for the prescribed kw and σ0. The resulting yaw set-points for

turbines 1, 2, and 3 are shown in Figure E1. The other yaw misalignments are not shown for brevity, but are provided in the

dataset accompanying this study. The yaw misalignments are applied to the wind farm by selecting the closest wind direction575

bin to the moving average filtered wind direction estimate (see Figure 11).
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