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Abstract. The magnitude of wake interactions between individual wind turbines depends on the atmospheric stability. We

investigate strategies for wake loss mitigation through the use of closed-loop wake steering using large eddy simulations of the

diurnal cycle, where variations in the surface heat flux in time modify the atmospheric stability, wind speed and direction, shear,

turbulence, and other atmospheric boundary layer flow (ABL) features. The closed-loop wake steering control methodology

developed in Part 1 (Howland et al., Wind Energy Science, 2020, 5, 1315-1338) is implemented in an eight turbine wind farm5

in large eddy simulations of the diurnal cycle. The optimal yaw misalignment set-points depend on the wind direction, which

varies in time during the diurnal cycle. To improve the application of wake steering control in transient ABL conditions with

an evolving mean flow state, we develop a regression-based wind direction forecast method. We compare the closed-loop wake

steering control methodology to baseline yaw aligned control and open-loop lookup table control for various selections of the

yaw misalignment set-point update frequency, which dictates the balance between wind direction tracking and yaw activity.10

Closed-loop wake steering with set-point optimization under uncertainty results in higher collective energy production than

both baseline yaw aligned control and open-loop lookup table control. The increase in wind farm energy production for closed-

and open-loop wake steering control compared to baseline yaw aligned control, is 4.0–4.1% and 3.4–3.8%, respectively,

with the range indicating variations in the energy increase results depending on the set-point update frequency. The primary

energy increases through wake steering occur during stable ABL conditions. Open-loop lookup table control decreases energy15

production in the convective ABL conditions simulated, compared to baseline yaw aligned control, while closed-loop control

increases energy production in convective conditions.
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1 Introduction

Collective wind farm power maximization through wake steering control has demonstrated potential in large eddy simulations20

(LES) of idealized atmospheric boundary layer (ABL) conditions (Gebraad et al., 2016), wind tunnel experiments (Campagnolo

et al., 2020), and in initial field experiments (Fleming et al., 2019; Howland et al., 2019; Doekemeijer et al., 2021). The primary

approach of wake steering control has been open-loop, where a lookup table of model-optimal yaw misalignment set-points

is constructed as a function of the incident wind direction, wind speed, and turbulence intensity (Fleming et al., 2019). The

set-points are optimized using a steady-state, physics-based wake model and applied at the wind farm in time based on an25

estimate of the incident wind conditions at the farm. However, several challenges arise in open-loop wake steering control,

including time-varying ABL flow conditions with measurement uncertainty (Quick et al., 2017; Annoni et al., 2019) and wake

model parameter uncertainty (Schreiber et al., 2019; Howland, 2021b), which may lead to a discrepancy between the optimal

yaw misalignment set-points in the steady-state wake model and the true optimal yaw misalignment values which vary in time.

Recent studies have developed closed-loop control methodologies (Ciri et al., 2017; Campagnolo et al., 2020; Doekemeijer30

et al., 2020; Howland et al., 2020c) which improve wake steering performance in flow with evolving mean states by incorporat-

ing wind farm measurements to modify wind condition (Doekemeijer et al., 2020) and wake model parameter (Howland et al.,

2020c) estimates. The reader is directed to Part 1 of this study (Howland et al., 2020c) for further motivation of closed-loop

wake steering control. Doekemeijer et al. (2020) investigated the performance of a proposed closed-loop control methodol-

ogy in LES of the idealized neutral ABL with a prescribed time-varying wind direction. Howland et al. (2020c) evaluated35

the performance of closed-loop wake steering control in the conventionally neutral ABL, which is characterized by neutral

stratification in the boundary layer capped by a stable free atmosphere (e.g. Allaerts and Meyers, 2015), with fixed bound-

ary conditions. The occurrence of the conventionally neutral ABL is rare in practice since the flow in the boundary layer is

generally affected by non-neutral atmospheric stability. While numerical investigations often isolate atmospheric stability to

characterize its effects (Abkar and Porté-Agel, 2015), the transition between states of stability influences the ABL structure40

(Basu et al., 2008b; Fitch et al., 2013) and affects wind farm performance (Abkar et al., 2016). In this study, we investigate the

performance of the closed-loop wake steering control methodology developed in Part 1 (Howland et al., 2020c) in the stratified

ABL with time-varying wind direction and atmospheric stability.

Wind conditions evolve over the diurnal cycle through modifications to the surface heat flux (Stull, 2012). The daytime ABL

is characterized by surface heating and convection, giving rise to enhanced mixing and turbulent kinetic energy. Convective45

rolls with elongated streamwise length scales are observed for the weakly convective ABL (Deardorff, 1972; Atkinson and

Wu Zhang, 1996; Salesky et al., 2017). Conversely, the stratification in the nocturnal ABL suppresses vertical velocity fluctu-

ations and limits the flow length scales (Sullivan et al., 2003). The stable ABL is characterized by enhanced wind speed and

direction shear (Wyngaard, 2010) and subgeostrophic (or low-level) jets (Thorpe and Guymer, 1977). Stable ABL low-level

jets are generated, in part, by inertial oscillations induced by Coriolis forces (Van de Wiel et al., 2010). Through modifications50

of the structure of the ABL, stratification influences wind farm performance (Wharton and Lundquist, 2012b).
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In some instances, wind farm efficiency is diminished in stable conditions, compared to convective (Barthelmie and Jensen,

2010). Other studies have identified increases in power during stable ABL operation (Wharton and Lundquist, 2012a). Differ-

ences in reported wind farm performance in stable ABL conditions may relate to site- and time-specific wind direction shear

(Sanchez Gomez and Lundquist, 2020; Howland et al., 2020d) or low-level jets (Gadde and Stevens, 2021). Wind turbines55

generally operate in time-varying yaw misalignment due to slowly reacting yaw control systems and control error (Fleming

et al., 2014). The power production of a wind turbine in yaw misalignment depends on the incident velocity field (Howland

et al., 2020d; Liew et al., 2020). Since the wind speed and direction variations over the rotor area depend on the atmospheric

stability, the power-yaw relationship for a given wind turbine depends on the stability (Howland et al., 2020d), in addition to

the control system in use. While the overall wind turbine performance depends on the interaction between these effects, the60

influence of stability on wake recovery is more clear. Wakes recover faster in convective ABL conditions compared to stable

or neutral (Iungo and Porté-Agel, 2014), and relatedly, the wake meandering is enhanced (Abkar and Porté-Agel, 2015). Pro-

vided slower wake recovery as a function of streamwise distance downwind of a wind turbine in stable ABL conditions, wake

interactions are generally increased (Abkar et al., 2016). Overall, the potential for wake steering control to increase wind farm

power production is anticipated to be higher in stable conditions, and initial empirical results confirm this trend (Fleming et al.,65

2019).

Wake models parameterize the effects of ABL turbulence on the wake recovery through a prescribed wake spreading rate

(Jensen, 1983). Since the wake recovery depends on the atmospheric stability (Abkar and Porté-Agel, 2015), the wake spread-

ing coefficient should depend on the wind conditions. Niayifar and Porté-Agel (2016) proposed a model for the wake spreading

rate as a function of the turbulence intensity, but the formulation considers only neutral stability. Instead, we leverage closed-70

loop control (Howland et al., 2020c) to estimate the wake spreading rate using time-dependent wind farm measurements.

Through closed-loop control, the yaw misalignment set-point optimization adapts to the estimated wake model parameters,

which vary with atmospheric stability. We anticipate that the primary benefits of the proposed closed-loop control approach

result from adapting the model used for set-point optimization to time-varying wind conditions.

The optimal wake steering strategy depends on the wind conditions, including the wind speed, wind direction, and atmo-75

spheric stability. With the effects of turbulent diffusion parameterized with the wake spreading rate, the wind farm flow is

estimated using a steady-state wake model with prescribed wind conditions (e.g. Gebraad et al., 2016). Recent studies have

extended yaw misalignment set-point optimization to consider wind condition variability and uncertainty about the mean state

of yaw misalignment (Quick et al., 2017), wind direction (Rott et al., 2018), and joint yaw misalignment and wind direction

(Simley et al., 2020). Howland (2021b) extended methods for set-point optimization under uncertainty to consider wake model80

parameter uncertainty, and empirical improvements for open-loop and closed-loop control were demonstrated. Quick et al.

(2020) estimated the expected value of wind farm power under wind condition uncertainty using polynomial chaos expansion

and demonstrated that wind direction uncertainty was the primary uncertainty in determining model-optimal yaw set-points.

Beyond wind condition variations about a known mean state, the low-frequency mean state of the atmosphere evolves in time

due to mesoscale meteorological processes (e.g. Sanz Rodrigo et al., 2017a) and the diurnal cycle (Kumar et al., 2006; Fitch85

et al., 2013) and is challenging to forecast. Existing wind farm control reacts to low-pass filtered wind condition measurements
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(e.g. Fleming et al., 2019). Since the optimal wind farm control strategy inherently depends on the transient atmospheric

conditions, wake steering control based on a forecast of future wind conditions over a finite time horizon is anticipated to

improve performance, rather than reacting to past data. Recently, Simley et al. (2021) demonstrated in idealized wake model

numerical experiments that perfect wind direction preview information slightly improves wake steering control. In this study,90

we develop a regression-based statistical methodology to forecast future wind direction over a prediction horizon of minutes.

We focus on a horizon of minutes based on the timescales of turbine yaw motors. In our approach, the yaw set-points are

optimized using the wake model and the wind direction prediction, rather than the low-pass filtered historical wind direction

data. The performance of wake steering control in transient ABL conditions also depends on the yaw misalignment update

frequency (Kanev, 2020), which represents a balance between yaw duty (frequency of yaw motor motions) and reacting to95

flow features of certain length and time scales. In this study, we compare the performance of closed-loop control to open-loop

lookup table control for several yaw misalignment update frequency selections.

The set of findings presented here demonstrate the utility of closed-loop wake steering control in more realistic ABL condi-

tions, with time-varying wind direction, wind speed, and atmospheric stability. This paper represents Part 2 of the closed-loop

wake steering control study presented by Part 1 (Howland et al., 2020c). The technical details associated with the model-based100

wake steering control are detailed in Part 1. Given recent advances in the literature, some methods are updated in this study,

and the updates are described in §2. The diurnal cycle ABL case is described in §3 and the results are presented in §4. There are

several appendices to provide supporting technical information. The wind direction forecast algorithm is in Appendix A. The

diurnal cycle code validation is presented in Appendix B. Appendix C discusses the initialization of the LES cases for repro-

ducible numerical experiments of wind farm control. Finally, the lookup table construction, for open-loop control, is discussed105

in Appendix D.

2 Model-based closed-loop wake steering control methodology updates

The model-based closed-loop wake steering control methodology used in this study is presented in Section 2 of Howland et al.

(2020c). Since the publication of Part 1, there have been several additional studies in the literature with improvements to wake

steering control methodologies. The updates to the wake steering methodology proposed in Part 1 are introduced in this section.110

Several studies have investigated the superposition of individual wind turbine wakes in engineering wake models. Zong and

Porté-Agel (2020) propose a momentum conserving superposition methodology under assumptions of uniform, steady inflow

and negligible turbulent transport. Various wake superposition methodologies are investigated for the application of closed-loop

control with parameter estimation by Howland and Dabiri (2021), which demonstrated that momentum conserving and mod-

ified linear superposition (Niayifar and Porté-Agel, 2016) perform similarly, while linear superposition (Lissaman, 1979) has115

degraded predictive accuracy. However, since the momentum conserving superposition (Zong and Porté-Agel, 2020), requires

iterations, it is more computationally expensive than modified linear superposition. Therefore, modified linear superposition

(Niayifar and Porté-Agel, 2016) is used in this study (more details are provided in Howland and Dabiri (2021)). The secondary

steering model proposed by Howland and Dabiri (2021) is also used.
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The power production of a yaw misaligned turbine depends on the incident flow field (Liew et al., 2020; Howland et al.,120

2020d). Howland et al. (2020d) developed a blade-element model which predicts the power production of a wind turbine

in yaw misalignment given an incident ABL flow and validated the model with utility-scale turbine data operating under

various wind speed and direction shear profiles and yaw misalignments. Since the present LES uses non-rotational actuator disk

modeling (ADM), the blade element approach is not a representative model. Instead, we use the cosine model, P̂ (γs) = P̂ (γ =

0) · cosPp(γs), where Pp is a tuned empirical parameter. The Pp exponent depends on the time-varying inflow. Additional125

inaccuracies arise in the cosine model since the power production as a function of the yaw misalignment is not generally

symmetric in non-uniform flow (Howland et al., 2020d; Doekemeijer et al., 2021). Numerical experiments in Part 1 (Howland

et al., 2020c) demonstrated that underestimating Pp leads to poor wake steering performance. We select Pp = 2.5 for the

particular ADM used in this study based on empirical tuning to LES of the conventionally neutral ABL (Howland and Dabiri,

2021). Since the main purpose of the present study is to characterize the performance of open- and closed-loop methodologies130

with a shared wake model, we do not dynamically adapt Pp in the closed-loop method in this study. Future work should either

use a blade element model to predict the power-yaw relationship for a rotating wind turbine model (Howland et al., 2020d) or

adapt Pp depending on the incident flow conditions for a non-rotational model.

Part 1 (Howland et al., 2020c) utilized deterministic programming to optimize the yaw misalignment set-points for fixed

incident wind speed and direction. In this study, the yaw misalignment set-points are optimized using stochastic programming135

under wind condition (Quick et al., 2017) and model parameter uncertainty (Howland, 2021b). The deterministic and stochastic

(optimization under uncertainty, OUU) programming approaches to yaw set-point optimization will be compared. Since the

ADM used in this study has fixed CT and Cp as a function of the wind speed, the wind direction is the primary factor

influencing the yaw set-points (Quick et al., 2020). We therefore consider variations in wind direction α only. The yaw set-

points are optimized at each control update step with period T . At current time t, the goal of the set-point optimization is to140

find the optimal yaw misalignment angles for time window t through t+T . The yaw set-point optimization is given by

γ∗s (α,ψ) = argmax
γs

E [G(α,ψ,γs)] , (1)

where G(α,ψ,γs) is the wind farm power production as a function of the wind direction α, yaw misalignment set-point γs, and

wake model parameters ψ. In this study, the wake model parameters to be estimated are the wake spreading rate kw and the

Gaussian wake proportionality constant σ0 for each turbine in the wind farm (see Part 1, Howland et al., 2020c). The optimal145

yaw misalignment set-point is γ∗s . The expected value of the power production is

E [G(α,ψ,γs)] =
∫
· · ·
∫
f(α)f(ψ)G(α,ψ,γs)dα,dψ. (2)

The probability distributions are indicated by f(·). The probability distributions are estimated using the wind farm data col-

lected over the window t−T through t, with current time t. The mean wind direction estimate for the next period (t through

t+T ) is indicated by α̂. The wind direction is assumed to be uniformly distributed between α̂−σα and α̂+σα, where σα is150

the standard deviation in time of the wind direction measured over the interval T with a sampling rate of ∆t, the computational

time step in LES. Other wind direction probability distributions may be considered in future work. Methods for estimating α̂
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are discussed in §2.1. The model parameter probability distributions are estimated using the methodology proposed in How-

land (2021b), although it is noted that f(ψ) can be estimated using Bayesian uncertainty quantification in future work. Eq.

2 is approximated using numerical quadrature with the midpoint rule. The yaw set-points are optimized using Eq. 1, solved155

with gradient-based optimization (Howland et al., 2019). While gradient-based optimization of Eq. 1 may be affected by local

extrema, the analytic gradient-based optimization enables real-time set-point optimization on the order of seconds for the eight

turbine case considered here. Future work may consider the combination of gradient-free search algorithms and gradient-based

optimization. In this study, closed-loop control cases with deterministic yaw set-point optimization are also performed. The

deterministic yaw set-point optimization is the method presented in Part 1, with deterministic wind directions and a single set160

of wake model parameters estimated using the ensemble Kalman filter (EnKF) (Evensen, 2003).

2.1 Statistical wind direction forecast

Existing wake steering control methodologies, including in Part 1, implement yaw misalignment angles based on the low-pass

filtered measurements of the wind direction (see e.g. Fleming et al., 2019; Howland et al., 2020c). However, due to turbulent and

large-scale wind variations, the wind direction varies in time. Methods which react to previous low-pass filtered wind direction165

measurements may implement a suboptimal yaw misalignment strategy, depending on the future wind direction trajectory.

A recent study using idealized wake model numerical experiments by Simley et al. (2021) demonstrated that using perfect

preview wind direction measurements improves wake steering but using a preview based on a empirically fit cross-spectrum,

between the wind direction measurements of two neighboring turbines, did not increase power over the standard method. The

empirically fit cross-spectrum model based wind direction prediction requires measurements of the wind direction by a wind170

turbine, MET mast, or LiDAR at an upwind location.

The goal of the optimization (Eq. 1) in closed-loop control is to estimate the optimal yaw set-point angles γs for the time

window of t to t+T , during which the yaw angles will be applied. In this study, we use a steady-state wake model for yaw

set-point optimization which estimates the time averaged power production, based on time averaged wind conditions. With

perfect wind direction information, the yaw set-point optimization is performed at time t with175

α=
1
T

t+T∫

t

α(t′)dt′. (3)

We therefore focus on methods to forecast α. In this study, two methods are used to estimate α, with the estimate given by α̂.

The standard approach (termed the filtered method) is α̂= 1
T

∫ t
t−T α(t′)dt′, which assumes that the low-pass moving average

filtered wind direction is not changing. Note that some previous approaches use a first-order filter (e.g. Simley et al., 2020),

rather than a moving average filter, but we do not anticipate the results of the present study to be substantially different based180

on the particular wind direction filter used.

Here, we develop an alternative approach to estimate the future mean wind direction α based on regression (termed predictive

method). The wind direction forecast first uses wind direction data from t− 2T to t to identify if the low frequency wind

direction is stationary or varying. A linear regression model is fit to wind direction data from t− 2T to t−T . The regression
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model is then used to predict the wind direction from t−T to t. If the coefficient of determination (R2) of the regression is185

above a set threshold value of Rmin = 0.2 and the regression model has lower mean square error (MSE) than predicting the

wind direction from t−T to t as 1
T

∫ t−T
t−2T

α(t′)dt′, then the wind direction is considered to be varying, otherwise it is considered

stationary. With the low-frequency wind direction determined to be varying, a second regression model is fit to wind direction

data from t−T to t. The future wind direction α̂ is then predicted using the second regression model at time t+T/2. If the

wind direction is considered stationary, it is estimated as α̂= 1
T

∫ t
t−T α(t′)dt′, the default filtered method. The full algorithm190

is presented in Appendix A in Figure A1 and Algorithm 1. While this method does not require external upwind wind direction

measurements, it could be improved with additional upwind sensors. Closed-loop wake steering cases are performed in LES

with both the filtered and predictive wind direction estimates.

3 Setup of large eddy simulations of the diurnal cycle

Large eddy simulations are performed using the open-source pseudo-spectral code PadéOps1 (Ghate and Lele, 2017). The195

solver is introduced in detail in Part 1 (Howland et al., 2020c). The LES code has been previously used for simulations of

the stable ABL (Ghate, 2018; Howland et al., 2020b). The code is validated for the simulation of the diurnal cycle through a

comparison to the LES data of Kumar et al. (2006) in Appendix B. The equation for the transport of the filtered nondimensional

potential temperature θ is given by

∂θ

∂t
+uj

∂θ

∂xj
=

∂

∂xj

(
νT
Pr

∂θ

∂xj

)
, (4)200

with velocity u, SGS heat flux with eddy viscosity νT and turbulent Prandtl number Pr. The wall model is constructed using

the SURFFLUX1 algorithm (Basu et al., 2008a) to estimate friction velocity based on a prescribed surface heat flux. The

computational domain size is 12×4×2 kilometers with 480×320×320 grid points in the x, y, and z directions, respectively,

with z representing the wall-normal coordinate. We use the concurrent precursor methodology to simulate a finite wind farm

(see e.g. Munters et al., 2016; Howland et al., 2020a) with fringe regions (Nordström et al., 1999) in the last 25% of the domain205

in the x and y horizontal directions.

A representative diurnal cycle ABL is designed based on the study of Kumar et al. (2006). The geostrophic wind speed is

fixed at G= 8 m/s and is in the positive x direction. The wind speed is initialized with u=G and v = w = 0 throughout the

domain. The surface heat flux is prescribed following the time-varying profile shown in Figure 1(a). The full 24 hour diurnal

cycle is not simulated since the 12 period (Figure 1(a)) captures the stability transition of interest and for computational limita-210

tions. The domain is initialized with the potential temperature profile shown in Figure 1(b). The surface heat flux is initialized

at w′θ′s = 0.05 K ·m/s, with positive and negative heat flux corresponding to surface heating and cooling, respectively. The

convective ABL is run for one hour to remove startup transience before the wind farm control is initiated. A note on LES

initialization for reproducible wind farm control numerical experiments is given in Appendix C.

1https://github.com/FPAL-Stanford-University/PadeOps
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(a) (b)

Figure 1. (a) Time-varying surface heat flux w′θ′s. The simulation is initialized at time t= 0 corresponding to 18:00. Positive heat flux

corresponds to surface heating and negative flux is cooling. (b) Initial potential temperature θ profile.

Figure 2. The wind farm layout considered in this study within the domain of interest (excluding the sections influenced by the fringe region).

The reference turbine (shown in red) is used for power normalization and uses yaw alignment control for each case.

A nine turbine wind farm is located in the computational domain. The wind turbines are modeled using the ADM. The hub215

height is 100 meters and the rotor diameter is 126 meters. The coefficient of thrust is CT = 0.75. The wind farm geometry is

shown in Figure 2. Eight wind turbines are considered for wake steering control with one turbine used for reference. Given

the initialization in the convective ABL, the wind direction in the ABL will initially be oriented in the positive x direction

(Figure 3(a)). As the surface heat flux becomes negative, the convective ABL will transition to a stable boundary layer. During

the transition, the reduced vertical mixing and inertial oscillations will result in an Ekman spiral, which is characterized by220

counter-clockwise turning of the wind from the geostrophic wind direction (parallel to isobars) to the surface wind direction

(cross-isobaric). As a result, the mean wind direction at the wind turbine hub height will become positive (with the angle

measured between the wind direction and the x axis), as shown in Figure 3(a). A zoomed wind direction profile between

hours 2 and 3 is shown in Figure 3(b) to show the turbulent variations. In summary, in the convective ABL, the flow will be

approximately in the positive x direction, resulting in wake interactions along the columns of turbines. During the transition225

and stable regimes, the flow will be oriented with a positive angle, measured from the x axis, and wake interactions will be

along the farm diagonals (e.g. turbine 4 in the wake of turbine 1).

The streamwise hub-height turbulence intensity in the inflow to the wind farm, computed from the concurrent precursor,

is shown in Figure 3(c). The convective ABL is characterized by approximately 10% streamwise turbulence intensity. The

8
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(a) (b) (c)

Figure 3. Diurnal cycle flow (a) hub height wind direction, (b) hub height wind direction zoomed to show variations between hours two and

three, and (c) hub height turbulence intensity.

(a) (b)

Figure 4. Diurnal cycle flow (a) wind speed and (b) wind direction, α(z)−α(zh), as a function of height z, where zh is the wind turbine hub

height. The profiles are 30 minute averages at hourly intervals throughout the 12 hour simulation, with lighter colors near the initialization

(unstable ABL) and darker colors corresponding to later times of the simulation (stable ABL). The horizontal dashed line corresponds to hub

height and the horizontal dashed dotted lines are the rotor extents.

turbulence intensity decreases below 5% during stable conditions. The incident wind speed profiles over the diurnal cycle are230

shown in Figure 4(a). The unstable wind speed has low shear above the near-wall region. As the flow transitions to nocturnal

conditions, the shear across the rotor area is enhanced and a subgeostrophic jet emerges. Given the setup of the representative

ABL used in this study, the maximum wind speed is above the rotor area. The wind direction as a function of height α(z)−
α(zh) is shown in Figure 4(b). The wind direction change over the rotor area is minimal during the convective conditions and

is enhanced during stable conditions. The peak veer across the rotor area is approximately 15◦. The stable boundary layer wind235

direction variation as a function of height z is consistent with Ekman turning (see e.g. Wyngaard, 2010).

As the boundary layer transitions during the diurnal cycle, the structure of the turbulence will be modified, in addition to the

mean wind profile changes. An instantaneous hub-height wind speed snapshot during convective conditions is shown in Figure

5(a) for wind turbines operating in baseline yaw aligned control. There are large-scale structures of high and low wind speed.

The wake meandering is qualitatively seen in the variations of the y position of the wake velocity deficits as a function of x.240

The mean wind direction at hub height is in the positive x direction during convective conditions. An instantaneous snapshot
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(a) (b)

(c) (d)

Figure 5. Hub height velocity during (a,c) unstable and (b,d) stable ABL conditions for the baseline yaw aligned control case. Instantaneous

snapshots are shown in (a,b) and 10 minute moving averaged flow fields are shown in (c,d).

during stable conditions is shown in Figure 5(b). Compared to the convective conditions (Figure 5(a)), the stable flow field has

diminished length scales and the wake meandering is reduced. The wind direction has also shifted, to approximately 20-30◦,

with respect to the x-axis (see Figure 3(a)). A 10-minute moving average of the instantaneous flow fields, sampled at a rate

of approximately 15 seconds, is taken for the convective and stable conditions, shown in Figure 5(c,d), respectively. The same245

timestep as the instantaneous snapshots is shown. The 10-minute moving average does not eliminate the heterogeneity from the

convective ABL flow field. Longer time averages reduce flow field heterogeneity but also average over mean state transitions.

Flow field heterogeneity can be physically modeled in future work (e.g. Starke et al., 2021; Martínez-Tossas et al., 2021).

Conversely, the 10-minute moving average used for the stable conditions removed nearly all inflow heterogeneity. The time

averaged wake regions trailing the individual turbines are qualitatively different in the two atmospheric stability regimes. The250

effective wake diameters in the time averaged convective ABL are significantly larger than in stable conditions.

4 Wake steering results

In this section, wake steering control cases are run in the representative diurnal cycle simulation environment discussed in §3.

The wake steering and yaw aligned control cases are run with a prescribed, fixed yaw update period of T . A baseline, yaw

aligned control case (Case A) is run for reference. As in Part 1, a basic yaw controller is used, such that the nacelle position of255

each turbine is updated to orient towards the mean wind direction measured at each local turbine, averaged over time T . We

compare four wake steering control strategies. We consider one open-loop wake steering case and three closed-loop control

cases, which differ only through their yaw set-point optimization methods.
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Case D (D for deterministic) is closed-loop wake steering with deterministic yaw set-point optimization. The yaw set-points

are optimized with estimated wake model parameters using the EnKF and mean wind conditions prescribed as the average260

conditions observed over previous time T . Case D-F (D for deterministic, F for wind direction forecasting) is closed-loop wake

steering with deterministic yaw set-point optimization which uses the wind direction forecast methodology. Comparing Cases

D and DF, differences will arise only from the wind direction used in the yaw set-point optimization. Case D uses the mean

wind direction measured over the previous time T while Case D-F uses DirectionEstimation (Algorithm 1) to forecast the

wind direction over future time T . Case OUU-F uses optimization under uncertainty (OUU, see §2) and the wind direction265

forecast methodology. For brevity, we do not include a case with OUU without the wind direction forecast. Case L uses

open-loop lookup table control. The lookup table synthesis is described in Appendix D. In §4.1, the power-yaw relationship

for the freestream turbines are presented. The performance of the various control strategies are compared in §4.2. The wake

model predictions are compared for closed- and open-loop control methodologies. The influence of the yaw update period is

considered in §4.3.270

For the purpose of parsing the diurnal cycle results by atmospheric stability, we define the stable regime as 0< L< 200

(Van Wijk et al., 1990), where L is the Obukhov length

L=− u∗3θ0
κgθ′w′s

, (5)

with friction velocity u∗, reference potential temperature θ0, von Karman constant κ, and gravitational acceleration g. For

L < 0, the flow is unstable or near neutral, while for L > 200 the flow is near neutral. Conditions of L < 0 and L > 200275

are combined into unstable and stability transition periods. This stability characterization is qualitative and is used for the

interpretation of the results in the following sections.

4.1 Power-yaw relationship

The power productions of the leading two wind turbines in the array, turbines 1 and 2 (see layout in Figure 2), as a function

of their yaw misalignment with respect to the turbine-specific hub height wind direction, are shown in Figure 6. The results280

are shown for a yaw update period of T = 30 minutes, and therefore, each data sample shown is a 30 minute average. Since

the wind direction changes as a function of time, the magnitude and sign of the model-optimal yaw misalignment set-points

will also change. Given the incident wind direction and wind farm geometry, turbine 2 will initially yaw misalign to benefit

turbine 4. With the wind direction shifting away from 0◦ with respect to the x-axis, there are no turbines downwind of turbine

2 (see Figure 5(b)) and its yaw misalignment set-point will become zero. Turbine 1 will continue to yaw misalign to benefit285

either turbine 3 or turbine 4. The power ratios for the convective ABL are shown with open markers. Given the highly turbulent

convective ABL, the finite time averaged inflow wind to a given turbine may differ from the winds incident to the reference

turbine (see Figure 5). This effect is not accounted for in the cosine models, and is the primary cause for the significant spread

in the power ratios in convective conditions.

While there are a limited number of data samples for γ > 0◦, the power ratio shown in Figure 6 appears asymmetric about290

γ = 0◦ during stable conditions (filled markers). Given the nocturnal wind speed and direction profiles shown in Figure 4,
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(a) (b)

Figure 6. Power ratio Pr = Pi/Pref for turbines 1 and 2 (see layout in Figure 2) for (a) open-loop lookup table control and (b) Case D

closed-loop control shown as a function of the realized yaw misalignment with respect to the hub height wind direction. Power ratios for

stable atmospheric stability (Obukhov length L < 200) are shown with filled markers and hollow markers are unstable and stability transition

periods. The power ratio is averaged for 30 minutes for each sample.

the power production for the yawed wind turbines will be asymmetric as a function of the sign of the yaw misalignment

angle (Howland et al., 2020d). Considering a non-rotational actuator disk model representation of a wind turbine, the power

production P ∝ (u · n̂)3, where u is the incident wind velocity vector and n̂ is the unit vector normal to the rotor area. Given

the Ekman spiral, negative yaw misalignment, a clockwise rotation of the wind turbine viewed from above, will locally align295

the turbine above hub-height where the wind speed is larger than the hub-height speed (Figure 4(a)). Conversely, positive yaw

misalignment will locally align the turbine below hub-height, where the wind speed is lower than hub-height speed.

The power ratio of turbine 1 for negative yaw misalignment is near the cos1.5(γ) curve. Conversely, the data samples for

positive yaw are generally between cos1.5(γ) and cos3(γ). In this study, the Pp parameter for the simplified cosine power ratio

model Pr = cosPp(γ) was set to Pp = 2.5 based on previous tuning in conventionally neutral ABL conditions (see §2). Since300

the simplified cosine model is not the focus of the present study, and since the most accurate Pp factor depends on the incident

wind profiles and on the sign of γ, the value is not further tuned and is fixed at Pp = 2.5 for closed- and open-loop control

cases. The results of Part 1 (Howland et al., 2020c) indicate that overestimating the power degradation as a function of the yaw

misalignment angle is preferred for wake steering, compared to underestimation.

4.2 Comparison of control strategies305

In this section, the various control strategies introduced in §4 are implemented in the diurnal cycle ABL flow with a fixed

control update period of T = 30 minutes. We first investigate the influence of the wind direction estimation methodologies.

The statistical wind direction forecast (§2.1) is compared to a wind direction estimate using a moving average filter with

timescale T . The instantaneous α and mean αT wind direction as a function of time, as measured by the reference wind

turbine, is shown in Figure 7. The mean wind direction estimates using a moving average and using the wind direction forecast310
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Figure 7. Comparison of the mean wind direction estimation methods to the measured instantaneous (α) and mean (αT ) wind direction

data. A standard approach is shown where the low-pass filtered wind direction αT is estimated through a moving average. The predictive

method is shown where αT is estimated using the proposed DirectionEstimation algorithm, described in Figure A1 and Algorithm 1. The

horizontal black line corresponds to the wind direction of alignment between turbines 1 and 4.

methodology are shown, termed filtered αT and predictive αT , respectively. The mean wind direction prediction methods have

access to α(0 : t), where t is the current time, and predict αT (t+T/2). In the limiting cases of high wind direction variability

about a mean value (hours 0-3) or low mean wind direction changes in time (hours 6-10), the predictive methodology defaults

to the same estimate as the filtered value. However, for periods of transitioning mean wind directions (hours 3-6), the predictive

wind direction forecast more accurately estimates the mean wind direction for the future time horizon of length T . The mean315

absolute error (MAE) for the filtered and predictive methods for estimating αT are 1.9◦ and 1.3◦, respectively. The mean

square error (MSE) for the filtered and predictive methods for estimating αT are 6.0 and 3.7 (degrees squared), respectively.

Closed-loop wake steering control is implemented in the diurnal cycle ABL with deterministic yaw set-point optimization

with the filtered (Case D) and predictive forecast (Case D-F) methodologies for the estimation of αT . Two separate LES cases

are run with the only difference as the estimated mean wind direction (αT ) provided to the yaw set-point optimizer. The yaw320

set-points for turbine 1 are shown in Figure 8(a) for the two cases. The realized yaw misalignment angles are shown in Figure

8(b). Since the initial conditions are fixed (the processor topology is also fixed, see Appendix C), during the initial four control

update steps in which the filtered and predictive mean wind directions are the same (see Figure 7), the yaw misalignment values

are identical. For step five and beyond, the estimates for the mean wind direction differ, resulting in a divergence of the yaw

control approaches. The primary differences between the cases arise between hours 3.5 and 6, during which the mean wind325

direction transitions over the inflow angle of alignment between turbines 1 and 4. At this inflection point, the optimal yaw

set-point angle will transition from positive to negative yaw. The predictive methodology estimates that the wind direction will

transition to an angle greater than the inflection point, resulting in a negative yaw set-point, while the filtered methodology

results in a positive yaw set-point. The positive yaw set-point, given the resulting trajectory of α, results in wrong way steering

that increases the wake losses at turbine 4.330
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(a) (b)

Figure 8. Yaw misalignment for turbine 1 (a) applied and (b) realized for the deterministic optimization methodology with filtered (Case D)

and predictive forecast (Case D-F) wind direction-based yaw optimization.

The performance of each case is characterized using an energy ratio

Er =

∫ t2
t1

∑Nt

i=1Pi(t)dt∫ t2
t1

∑Nt

i=1P
γ0
i (t)dt

, (6)

which quantifies the wind farm performance compared to baseline yaw aligned control, indicated with γ0, over time interval

t1 to t2. The percent gain in energy through wake steering is G= 100 · (Er − 1). We first focus on the time periods in which

the filtered and predictive wind direction methodologies differ (control update periods 6 through 9, approximately hours 3.5 to335

6). The gain for this time period is −0.1% and 1.1% for the filtered (Case D) and predictive (Case D-F) cases, respectively.

As a result of the transitioning mean wind direction, reacting to the filtered history of wind direction results in the incorrect

yaw misalignment direction, and therefore reduced energy production compared to baseline yaw aligned control. Conversely,

the predictive wind direction methodology results in the appropriate yaw misalignment set-point direction and increases power

compared to baseline control. The energy gain G for Cases D and DF for the full simulation are shown in Table 1. Overall,340

the wind direction forecast method increases the energy production using wake steering control in both atmospheric stability

regimes, with the predominant energy improvements occurring during the time periods of hours 3.5 to 6, described above.

The energy gain resulting from the use of a wind direction forecast methodology in wake steering control is case specific

and depends on several factors. First, the performance gain depends on the fidelity of the predictive methodology. In this study,

we have proposed a linear regression-based wind direction forecast which demonstrates empirical success in this application345

(Figure 7). For different ABL forcing, site-specific characteristics, or different update periods T , linear regression may not be

sufficient, and other data-driven prediction approaches can be implemented in the framework outlined here (see Appendix A).

Future work should consider nonlinear regression or more complex machine learning timeseries prediction methods. Further,

the improvements herein predominantly stem from the occurrence of wind direction changes across the turbine alignment

inflow angle. The degree to which a wind direction forecast methodology improves overall wake steering performance will350

depend on the frequency of such occasions.
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(a) (b)

Figure 9. Power production results from the closed-loop control Case D and baseline yaw aligned control cases. The LES power data is

given by P and the wake model estimates are given by P̂ . The subscripts on the power denote the turbine number. The yaw misaligned and

aligned cases are denoted by γ and γ0, respectively.

(a) (b)

Figure 10. Estimated wake model parameters averaged over turbines 1, 3, and 5 as a function of the control update step. (a) Wake spreading

coefficient kw. (b) Gaussian wake proportionality constant σ0.

In the closed-loop wake steering control approach proposed in Part 1 (Howland et al., 2020c), the wake model parameters ψ

are estimated at each control update step, with time increment T . The LES power production P, γ as a function of the control

update step for Case D is shown in Figure 9. In addition, the wake model power estimates P̂, γ for wake steering control and

the LES power production for yaw aligned control P, γ0, are shown. The power productions for the pair of turbines 1 and 4 are355

shown in Figure 9(a) and for turbines 5 and 8 in Figure 9(b). The wake model estimates for the power production of turbines

4 and 8 exhibit low error. Larger error arises in the prediction of upwind, freestream power production for turbines 1 and 5,

given the simple cosine model (see discussion in §4.1). The power increase for the downwind turbines is more substantial in

the stable regime (control update 9 and after). The estimated wake model parameters are shown in Figure 10. The parameters

are averaged over the upwind turbines 1, 3, and 5. Both the wake spreading rate and the proportionality constant are reduced in360

stable atmospheric stability, compared to unstable conditions, as anticipated from the time averaged velocity fields (Figure 5).

Closed-loop wake steering control is implemented with optimization under uncertainty (see §2) and the wind direction

forecast methodology in Case OUU-F. The energy gain results for Case OUU-F are shown in Table 1. Generally, set-point

optimization under uncertainty (OUU) will reduce the magnitude of the peak yaw misalignment angles, especially near the

inflow angle of alignment (see e.g. Quick et al., 2020). Given the high turbulence in the convective ABL, the wind direction365
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Case Deterministic Deterministic, α forecast OUU, α forecast Lookup table (open-loop)

Label Case D Case D-F Case OUU-F Case L

Unstable & transition −0.18% 0.08% 1.00% −0.74%

Stable 4.61% 4.87% 4.80% 4.70%

Full simulation 3.50% 3.86% 4.00% 3.43%

Table 1. Wind farm energy production increase compared to baseline yaw aligned control, G= 100 · (Er − 1) with Er in Eq. 6. Cases

with α forecast use the DirectionEstimation algorithm. Case OUU-F uses stochastic programming for yaw set-point optimization under

uncertainty (OUU). The case with the highest overall wind farm energy production for a given time period is shown in green. The stable

periods correspond to 0< L< 200 with unstable and transition times otherwise.

(a) (b)

Figure 11. Diurnal cycle flow turbine-specific energy ratio Er,i (Eq. 7) for (a) the odd and (b) even rows. The odd row consists of turbines

1, 3, 5, and 7. The even row consists of turbines 2, 4, 6, and 8. The turbine layout is provided in Figure 2. Wake steering results from Case

OUU-F are shown.

standard deviations are large (see Figure 7) and the yaw set-points will be reduced, compared to deterministic optimization.

Case OUU-F has improved performance compared to Case D-F. The OUU (Case OUU-F) has improved performance as a

result of increases in energy production during unstable and transition regimes. The energy production is slightly less for OUU

in the stable regime. The energy ratio between times t1 and t2 for a given turbine is

Er,i =

∫ t2
t1
Pi(t)dt∫ t2

t1
P ref(t)dt

, (7)370

with the power production of the reference turbine given by P ref (see Figure 2 for the layout). The reference turbine is used for

normalization rather than P γ0i to maintain information in the turbine energy ratio metric Er,i about wake losses. The turbine

energy ratios for Case OUU-F are shown in Figure 11. Small reductions in Er,i for yaw misaligned turbines (1, 3, and 5) result

in large increases in energy ratios for the waked turbines (4, 6, and 8). Turbine 7 is not yaw misaligned during the simulation

and slightly outperforms the reference turbine, likely due to mean flow effects such as induction and blockage in the stable375

ABL (Segalini and Dahlberg, 2020).

Open-loop wake steering is implemented in the diurnal cycle ABL LES (Case L). The open-loop yaw misalignment lookup

table synthesis is described in Appendix D. The yaw misalignment set-points and realized yaw values for turbines 1, 2, and 3
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(a) (b) (c)

(d) (e) (f)

Figure 12. Comparison of the yaw misalignment set-point values as a function of time from the OUU closed-loop control (Case OUU-F)

and from open-loop lookup table control (Case L) for turbines (a) 1, (b) 2, and (c) 3. (d-f) Same as (a-c) with realized yaw.

for closed-loop Case OUU-F and open-loop Case L are shown in Figure 12. The yaw misalignment set-points are qualitatively

similar in their approach but quantitatively differ. The differences between the closed- and open-loop yaw set-points are larger380

in the unstable and transition regimes of the simulation than the stable regime. The energy gains for the open-loop wake steering

case are shown in Table 1. The lookup table control performance is similar to closed-loop control with deterministic set-point

optimization but without the wind direction forecast method (Case D). Lookup table control has less energy production than

baseline yaw aligned control for unstable and transition regimes, with a 0.74% energy loss. For stable conditions, the open-

loop lookup table control has 4.70% energy increase over baseline control. Overall, the open-loop control case has diminished385

performance compared to all closed-loop control cases.

The predictive performances of the open- and closed-loop control methodologies are assessed by comparing the power

production predictions from the wake model to the LES power for stable atmospheric conditions. The row averaged power

production is shown for upwind turbines, averaged over turbines 1, 3, and 5, and for downwind turbines, averaged over turbines

4, 6, and 8. The wake model power predictions from open-loop control, using the predefined wake model parameters depending390

on turbulence intensity in the inflow, are shown in Figure 13(a). The LES power production from the open-loop wake steering

case (denoted with γ) is shown, in addition to the baseline yaw aligned control case (denoted with γ0). The predefined wake

model parameters result in significant predictive bias for the downwind waked turbines for both yaw aligned and wake steering

control. The absolute errors are 0.146 and 0.165 for the yaw misaligned and yaw aligned wake model estimates, respectively.

The LES power production is compared to the closed-loop wake model estimates, where the wake model parameters are395

estimated using the ensemble Kalman filter, in Figure 13(b). The ensemble Kalman filter adapts the wake model parameters
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(a) (b)

Figure 13. Comparison of LES row averaged power data and wake model predictions for the closed-loop (Case OUU-F) and lookup table

(Case L) wind farm control methodologies for the stable stratification regime. (a) Lookup table control data and predictions. (b) Closed-loop

control data and predictions. Baseline yaw aligned control results are indicated with γ0 and wake steering results are indicated with γ. The

upwind row is an average of turbines 1, 3, and 5. The downwind row is an average of turbines 4, 6, and 8.

to accurately estimate the wake steering power production. Since the closed-loop control LES power is used in the Kalman

filter, this result is a wake model estimate (training data). Conversely, the wake model estimates for the power production in

baseline yaw aligned control (γ0) are predictions, since the Kalman filter does not use the power production from the separate

yaw aligned LES case to estimate wake model parameters. The absolute errors are 0.0004 and 0.039 for the yaw misaligned400

and yaw aligned wake model estimates, respectively.

4.3 Comparison of yaw update periods

In this section, the sensitivity of the wind farm energy production for the various control cases to the yaw set-point update

period T is investigated. Baseline yaw aligned control and three wake steering cases previously described are implemented in

LES of the diurnal cycle of the ABL with control update periods of T = 30 and T = 15 minutes. Case D is not repeated with405

T = 15 minutes in this section for brevity. Each case with a specified control update period represents an independent LES

simulation. Again, all simulations are initialized from the same initial conditions. The energy gain, G= 100 · (Er − 1) with

Er in Eq. 6, with respect to baseline yaw aligned control Case A for T = 30 minutes is shown in Table 2. For yaw aligned

control, decreasing T will increase the frequency of updates wherein the nacelle position is updated according to the measured

wind direction. It is therefore anticipated that reducing T will increase the energy production in yaw aligned control (see e.g.410

Fleming et al., 2014), at the compromise of increased yaw duty (we do not account for the yaw motor energy consumption

in this study). Table 2 demonstrates a 0.43% increase in energy production for the baseline yaw aligned control with T = 15

minutes, compared to T = 30 minutes.

The wake steering control cases are implemented with T = 15 minutes. The yaw misalignment set-points and realized yaw

for T = 30 and 15 minutes for open-loop lookup table control (Case L), closed-loop control with deterministic optimization415

(Case D-F), and closed-loop control with OUU (Case OUU-F) are shown in Figure 14. A lower control update period increases

the variability in the yaw set-point values as the yaw control reacts to higher frequency timescales. Notably, the T = 30 minutes

closed-loop control cases transition to negative yaw misalignment in the stable regime (around 5 hours) sooner than the faster
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(a) (b) (c)

(d) (e) (f)

Figure 14. Comparison of the yaw misalignment set-point values as a function of time for turbine 1 from the (a) lookup table (Case L), (b)

deterministic optimization (Case D-F), and (c) closed-loop control with optimization under uncertainty (Case OUU-F). (d-f) Same as (a-c)

with realized yaw.

Case Baseline, γ0 Deterministic, α forecast OUU, α forecast Lookup table (open-loop)

Label Case A Case D-F Case OUU-F Case L

T = 30 min − 3.86% 4.00% 3.43%

T = 15 min 0.43% 3.82% 4.14% 3.83%

Table 2. Wind farm energy production increase compared to baseline yaw aligned control with T = 30 min, G= 100 · (Er − 1) with Er

in Eq. 6. Cases with α forecast use the DirectionEstimation algorithm. The case with the highest overall wind farm energy production is

shown in green. The full simulation period is considered, with stable, unstable, and transition regimes.

update frequency cases (T = 15 minutes). For T = 15 minutes, the wind direction forecast method defaults to the moving

average filter for most time steps. For T = 30 minutes, the wind direction forecast results in negative yaw misalignment angles420

as the flow is transitioning across the inflow angle of turbine alignment (proactive), rather than after the transition has occurred

(reactive).

The energy gain for each case with respect to the energy production in baseline yaw aligned control with T = 30 minutes

is shown in Table 2. The highest energy production among all cases considered is optimization under uncertainty (Case OUU-

F) with the wind direction forecast methodology and T = 15 minutes. The reduced yaw update period increases the energy425

production of closed-loop wake steering performed with OUU (Case OUU-F) while it slightly decreases the energy production
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of closed-loop wake steering with deterministic set-point optimization (Case D-F). There are several factors which contribute

to this result. The closed-loop control method estimates wake model parameters based on the average power measurements. For

the closed-loop control methodology used here, the moving average for wind turbine power production uses the same timescale

T used by the control updates. Therefore, reductions in T also reduce the time averaging length of the power production,430

which is used for parameter estimation. The reduction in T increases the variability of the mean power data, by the central

limit theorem. Reductions in T may therefore lead to higher variability in the estimated wake model parameters. However, the

averaging and control update timescale T must be sufficiently small to adapt the wind farm control to the time-varying mean

wind conditions. The selection of T is a trade-off between these competing effects and may be site and ABL condition specific.

While the optimal selection of T is not the focus of this study, T = 15 minutes empirically demonstrates the highest overall435

energy production in these LES cases. The optimal update period should be investigated jointly with wind condition forecast

methodologies. Future work should consider de-coupling the parameter estimate and control updates.

Contrary to deterministic set-point optimization, Case OUU-F, which utilizes set-point optimization under model parameter

uncertainty, has improved performance with decreasing update periods T . This empirical result is also reproduced for unsta-

ble ABL conditions in Howland (2021b). Optimizing yaw misalignment set-points under a distribution of model parameters440

reduces the sensitivity to noise in the wind farm power production data. The effect of reducing the yaw update period for

open-loop control is anticipated to be similar to baseline yaw aligned control, since the yaw set-points have been pre-defined

in the lookup table. The energy production from open-loop control is increased by 0.4% by reducing T to 15 minutes. For

T = 15 minutes, open-loop lookup table control (case L) has a similar performance to closed-loop control with deterministic

optimization (Case D-F). Closed-loop control with yaw set-point OUU (Case OUU-F) has the highest energy production for445

both yaw update periods and the highest overall energy production occurs with T = 15 minutes.

5 Conclusions

Closed-loop wake steering methodologies are investigated in a representative ABL with time-varying surface heat flux. The

surface heat flux approximates the transitions which occur in the terrestrial diurnal cycle. Due to the variations in the surface

heat flux, the character of the turbulence in the ABL is modified with a time-varying atmospheric stability. Convective ABL450

conditions, which are characterized by large-scale motions and high turbulence, result in enhanced wake mixing and reduced

wake losses. Conversely, stable ABL conditions reduce the length-scales and intensity of the turbulence in the ABL and

generally result in more substantial wake losses due to diminished wake diffusion. Existing methodologies for wake steering

are open-loop, wherein a wake model with tuned wake spreading rates, which parameterize turbulence, is used to optimize the

yaw misalignment set-points. The set-points are tabulated in a lookup table and applied based on measured wind conditions.455

In the closed-loop wake steering control methodology introduced in Part 1 (Howland et al., 2020c), and extended in this study,

wind farm power production data is used to estimate wake model parameters, which vary in time, and the yaw misalignment

set-points are optimized online.
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The optimal yaw misalignment set-points depend on the incident wind direction. Rather than assuming that the future wind

direction will be equal to the low-pass filtered recorded wind direction data, in this study, we develop a regression-based wind460

direction forecast. The wind direction forecast uses two previous time windows to identify if the wind direction is stationary

or varying in time. If the wind direction is stationary, the standard filtered wind direction is used. If the wind direction is

identified to be varying in time, a linear regression is used to forecast the future wind direction. The proposed framework can

be used with arbitrary wind direction timeseries estimation methods. Future work should consider nonlinear regression or more

complex timeseries machine learning methodologies, such as recurrent neural networks.465

Closed-loop wake steering control is compared to baseline yaw aligned control and open-loop lookup table control for

yaw set-point update periods of T = 15 and 30 minutes. Wake steering has a larger increase in energy production for stable

ABL conditions than for convective. Open-loop lookup table control and closed-loop wake steering control with deterministic

set-point optimization have reduced energy production in convective conditions compared to baseline yaw aligned control.

Closed-loop wake steering with set-point optimization under uncertainty increases energy in convective conditions, compared470

to baseline control. The highest overall energy production is achieved with closed-loop wake steering with yaw misalignment

set-point optimization under wind direction and model parameter uncertainty for T = 15 minutes. Reducing the yaw set-point

update period increases the energy production for all cases except for closed-loop wake steering control with deterministic set-

point optimization, where the yaw set-points are influenced by data measurement noise. The influence of the data measurement

noise is alleviated with set-point optimization under uncertainty.475

The results of Part 1 and 2 of this study suggest several directions of future work. Future work should investigate the optimal

yaw set-point update period in tandem with wind condition prediction methodologies. Realistic utility-scale turbine yaw duty

penalties, based on yaw motor energy usage and increased maintenance costs, should also be considered in the set-point

optimization. Improved estimates for the wake model parameter probability distributions with physical constraints should be

considered. Additionally, future work should consider model form uncertainty and modeling error in connection with model480

parameter estimation. Future studies should compare various model-based closed-loop wake steering approaches which use

steady-state and dynamic wind farm models to model-free closed-loop wake steering control.

We note that the simulations presented in this study are an idealization of the diurnal ABL with fixed geostrophic wind

speed and direction (Beare et al., 2006; Svensson et al., 2011; Fitch et al., 2013). While observations occasionally demonstrate

approximately steady geostrophic winds over timescales up to a day (Bosveld et al., 2014), variations in the large-scale forcings485

in the atmosphere influence the ABL (Muñoz-Esparza et al., 2017) and wind farm flows (Sanz Rodrigo et al., 2017a, b).

Methodologies to investigate wake steering control in more realistic ABL wind conditions through meso-microscale coupling

should be considered in future work. Finally, future work should consider wake steering in complex terrain.

Appendix A: Statistical wind direction forecast algorithm

The regression-based statistical wind direction forecast discussed in §2.1 is described in this section. A schematic of the490

algorithm is shown in Figure A1. The algorithm is presented in Algorithm 1. The inputs are the measurement time series t, the
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Record wind direction
[α(t− 2T ), ...,α(t)]

Fit β1, β2 to α(t1)

α̂fit = β1t2 + β2

α̂mean = α(t1)

MSEfit = (α̂fit(t2)− α(t2))2

Parse data into
t1 = [t− 2T, ..., t− T ]
t2 = [t− T, ..., t]
t3 = [t, ..., t+ T ]

Mean α̂mean = α(t1)

MSEmean = (α̂mean(t2)− α(t2))2

Model

Error

If MSEfit < MSEmean

Fit Υ1, Υ2 to α(t2)
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Figure A1. Wind direction estimation algorithm DirectionEstimation. Dashed lines are wind direction predictions using regression and

dotted lines are predictions using the mean values.

measured wind direction time series α, the current time ts, the yaw set-point update period T , and the minimum coefficient of

determination value Rmin. The algorithm Regression() is provided time and wind direction vectors and uses linear regression

to estimate the wind direction over the next time period of length T (αF ). Averaging is denoted by 〈·〉.

Appendix B: Diurnal cycle validation495

The diurnal cycle implementation in PadéOps1 (Ghate, 2018) is validated in this section. The diurnal cycle LES case of Kumar

et al. (2006) is used as a reference. The boundary conditions constructed in Kumar et al. (2006) correspond to the HATS field

campaign (Horst et al., 2004). The full details of the diurnal cycle initialization are provided in Kumar et al. (2006). The free

atmosphere is in geostrophic balance. Only the vertical component of Earth’s rotation is included (traditional approximation is

enforced (Howland et al., 2020b)). The prescribed geostrophic wind speed and surface heat flux are shown in Figure B1.500
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Algorithm 1 Regression-based wind direction forecast with uncertainty

DirectionEstimation(t, α, ts, T , Rmin):

αF1, R
2
1← Regression(t(ts− 2T : ts−T )), α(ts− 2T : ts−T ), T )

αF2, R
2
2← Regression(t(ts−T : ts), α(ts−T : ts), T )

εf ←
〈
(α(ts−T : ts)−αF1(ts−T : ts))

2
〉

εm←
〈
(α(ts−T : ts)−〈α(ts− 2T : ts−T )〉)2

〉
if εf < εm and R2

1 ≥Rmin and R2
2 ≥Rmin then

αSTD = STD(α(ts−T : ts)−αF1(ts−T : ts))

α̂=αF2(ts +T/2)

else

αSTD = STD(α(ts−T : ts))

α̂= 〈α(ts−T : ts)〉
end if

return α̂, αSTD
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Figure B1. Diurnal cycle validation case (Kumar et al., 2006). (a) Diurnal cycle geostrophic wind speed. (b) Diurnal cycle surface heat flux

w′θ′s.

The validation focuses on two integrated quantities in the ABL. The friction velocity is shown in Figure B2(a). There is

sufficient agreement between the present LES and the reference case. The boundary layer height zi, normalized by the Obukhov

length, is shown in Figure B2(b). There is qualitative agreement between the cases with some quantitative discrepancy in the

stability transition regions of the profile. The quantitative discrepancies in the normalized boundary layer height are primarily

the result of the differing numerics and subgrid scale models used in the two simulations. Primary discrepancies arise in the505

stable ABL since the Ozmidov scale is of the same order as the grid spacing (Sullivan et al., 2016). The present LES uses a

6th order compact finite difference scheme (Lele, 1992) in the vertical direction, whereas Kumar et al. (2006) implemented

a 2nd order finite difference scheme. Overall, the results suggest that the diurnal cycle boundary condition implementation is

sufficient for the simulation of a representative diurnal cycle of the ABL.
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Figure B2. Diurnal cycle validation case (Kumar et al., 2006). (a) Diurnal cycle friction velocity u∗. (b) Diurnal cycle boundary layer height

normalized by the Obukhov length zi/L. Details for boundary layer height estimation provided in Kumar et al. (2006).

Appendix C: Note on wake steering LES initialization510

Since turbulent flows exhibit a chaotic dependence on initial conditions (e.g. Pope, 2001), the initial conditions for all LES

cases presented in this study are executed from the same initial conditions. Further, differences in parallel processor topology

can result in round-off errors which will exponentially grow toO(1) differences in the instantaneous flow fields. In this section,

we highlight the differences that arise in the comparison of separate wind farm control LES cases due to the chaotic nature

of turbulence. Two simulations of open-loop lookup table control are implemented in the diurnal cycle simulations described515

in §3. The lookup table methodology is described in Appendix D. The simulations are started from identical initial conditions

but with different parallel processor topology, which will result in an initial round-off error difference (10−8) between the

cases. The reference turbine wind directions are shown in Figure C1(a) and the applied yaw misalignments are shown in Figure

C1(b). While the differences between the cases appear minor visually, they differ in their energy ratio results. The energy

gains for the two cases with respect to baseline yaw aligned control are 3.43% and 3.17% for cases 1 and 2, respectively. The520

primary differences arise in convective ABL conditions, where the energy gains are −0.74% and −1.69% for cases 1 and 2,

respectively. Conversely, the differences in stable conditions are minor, with gains of 4.70% and 4.72% for cases 1 and 2,

respectively. Overall, the results suggest that the initialization and parallel processor topology round-off must be identical to

machine precision to ensure accurate comparisons between LES control cases. Primary differences arise in ABL conditions

with high turbulence.525

Appendix D: Lookup table synthesis

The yaw misalignment lookup table synthesis is described in this section. The wake model presented in Part 1 (Howland

et al., 2020c) is used for yaw set-point optimization for the eight wind turbines of interest (Figure 2) for the wind directions

encountered in the LES case, between−10◦ < α < 30◦ (Figure 3(a)). The wake spreading rate is prescribed using the empirical

fit of Niayifar and Porté-Agel (2016), k∗ = 0.3837 ·TI + 0.003678, where TI is the streamwise turbulence intensity. The530

proportionality constant of the presumed Gaussian wake is set to σ0 = 0.25 (Shapiro et al., 2019; Howland et al., 2020c). The

24

https://doi.org/10.5194/wes-2021-85
Preprint. Discussion started: 17 August 2021
c© Author(s) 2021. CC BY 4.0 License.



(a) (b)

Figure C1. (a) Reference turbine wind direction for open-loop wake steering control cases for two differing parallel processor topologies.

The simulations are executed from identical initial conditions. (b) The yaw misalignment set-points implemented in the two open-loop lookup

table control cases.

Figure D1. Yaw misalignment set-point lookup table for open-loop control for turbines 1, 2, and 3 as a function of the incident wind direction.

parameter k∗ in the empirical fit of Niayifar and Porté-Agel (2016) is not identical to the parameter kw used in the lifting line

wake model (Shapiro et al., 2018). An empirical calibration for kw is not available in the literature. Instead, the wake spreading

rate kw is found by equating the Gaussian wake model form used by Niayifar and Porté-Agel (2016) with the form used in this

study. The resulting empirical kw is535

kw =
k∗x+ 0.2

√
1+
√

1−CT

2
√

1−CT
− 1

σ0 log(1 + exp(2(x− 1)))
, (D1)

where x is the streamwise distance between the turbines normalized by the rotor diameter, CT is the coefficient of thrust, and

k∗ is defined in the relationship above.

The yaw set-point lookup table is constructed with a wind direction discretization of ∆α= 2.5◦. The turbulence intensity is

extracted from the baseline yaw aligned control simulation as a function of time. The mean turbulence intensity in each wind540

direction bin (see Figure 3(c)) is used to estimate the wake spreading rate k∗, which is then used to compute kw in Eq. D1.

The yaw set-points are then optimized in each wind direction bin for the prescribed kw and σ0. The resulting yaw set-points

for turbines 1, 2, and 3 are shown in Figure D1. The other yaw misalignments are not shown for brevity, but are provided in the
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dataset accompanying this study. The yaw misalignments are applied to the wind farm by selecting the closest wind direction

bin to the moving average filtered wind direction estimate (see Figure 12).545
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