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Abstract. Floating wind turbines rely on feedback-only control strategies to mitigate the negative effects of wave excitation.

Improved power generation and lower fatigue loads can be achieved by including information about incoming waves into

the turbine controller. In this paper, a wave-feedforward control strategy is developed and implemented in a 10MW floating

wind turbine. A linear model of the floating wind turbine is established and utilized to understand how wave excitation affects

rotor-speed, and so power, as well as to show that collective-pitch is suitable for reducing the effects of wave excitation. A5

feedforward controller is designed based on the inversion of the linear model, and a gain-scheduling algorithm is proposed to

adapt the feedforward action as wind speed changes. The performance of the novel wave-feedforward controller is examined

first by means of linear analysis, and then with non-linear time-domain simulations in FAST. This paper proves that including

some information about incoming waves into the turbine controller can play a crucial role in improving power quality and

the turbine fatigue life. In particular, the proposed wave-feedforward control strategy achieves this goal complementing the10

industry-standard feedback pitch controller. Together with the wave-feedforward control strategy, this paper provides some

insights about the response of floating wind turbines respond to collective pitch control and waves, that can be useful in future

control-design studies.

1 Introduction

Floating offshore wind turbines (FOWTs) are currently operated without any real-time information about ocean conditions.15

Industry-standard controllers are feedback (FB) only: the wind turbine controller reacts to the external disturbance of wind and

waves as this occurs. One possibility to improve the current floating wind technology is to include real-time information about

the marine environment into the turbine controller and to design new control logics based on that.

Concerning wind turbulence, feedforward (FF) control has recently drawn the attention of the research community, as it

can effectively reduce fatigue loads and improve power production. Research has been mainly driven by improvements in the20

LIDAR (light detection and ranging) technology that enables measurement of the wind field upstream the wind turbine. One

of the first studies about LIDAR-assisted control was carried out by Harris et al. (2006), that explored the potentialities of this

new control strategy, and found it can reduce blade fatigue loads approximately of 10% in turbulent wind conditions. Since

then, several control logics were developed based on the inclusion of LIDAR signals in the turbine controller, for example
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by Laks et al.; Dunne et al. (a,b,c); Schlipf et al. (2013), demonstrating positive effects for the blade loads and the turbine25

components. Very few are the studies about LIDAR-assisted wind-FF control in floating wind turbines: in the paper of Schlipf

et al. (2015), a collective-pitch FF controller is designed to reduce rotor speed oscillations caused by inflow turbulence. The

LIDAR moves with the floating turbine and measurements need to be corrected for that. The proposed FB-FF controller, that

keeps into account the above-mentioned movement of the LIDAR, can reduce power and rotor speed fluctuations up to 80%

and tower, rotor-shaft, and blades fatigue loads of 20%, 7% and 9%, respectively.30

Wave disturbance is responsible of a considerable fraction of dynamic excitation experienced by an FOWT. This was first

shown in the work of Jonkman (2007), where the response of NREL 5-MW turbine installed on land is compared to the same

turbine mounted on the floating ITI Energy barge, in the presence of wind and waves. The rotor-speed excursions in the floating

turbine are increased of 60% because of the oscillations in wind speed caused by platform motion. Consequently, fluctuations

in the generator-power are larger as well. Tower shear forces and bending moments are increased. The analysis of Jonkman35

(2007) also shows that offshore-to-onshore ratios decrease with decreasing severity of the wave conditions, suggesting that a

large part of the increments is due to wave excitation. More specifically for the drivetrain, Nejad et al. (2015) assessed the loads

in a 5MW wind turbine mounted on four platform concepts for different wind and wave conditions. The analysis suggests an

increment of the fatigue damage, which is mainly caused by the large wave-induced thrust force.

Applying the same idea behind wind-FF control to wave is therefore an attractive perspective, but the idea is largely un-40

explored. Raach et al. (2014) introduced an NMPC strategy that uses a perfect preview of a reduced wave disturbance to

mitigate the turbine structural loads. Promising improvements over an industry-standard FB controller are shown, at the ex-

pense of a significant increase in the controller complexity. Moreover, most of the performance gain is seen for blade loads,

that are caused by wind turbulence rather than wave, so it appears the NMPC does not effectively counteract waves. Ma et al.

(2018) developed and validated two algorithms for real-time forecasting of wave forces. Based on the predicted wave forces, a45

finite-horizon LQR controller is designed and applied to a TLP-FOWT to minimize the tower-base fore-aft bending moment,

achieving mixed results. Al et al. (2020) introduced an inversion-based feedforward control strategy, showing it is an effective

way of reducing wave-induced rotor speed oscillations.

The present paper further develops the concept of wave-FF exploiting tools of model-based control. The wave-FF control

strategy is enabled by an integrated model of the FOWT that captures its most relevant physics. Hence, this work proves the50

effectiveness of multidisciplinary analysis as a mean to advance the current floating wind technology.

All the reasoning is made with reference to a floating wind turbine, but it is deemed valid for any FOWT. The floating wind

turbine of reference is based on an open-source concept and is defined in Section 2. The idea is to use tools of multivariable

systems control to gain insight about the effects of waves on the FOWT response and assess which is the best control input

(generator torque or collective pitch) to mitigate them. Then, to leverage this knowledge to design a feedforward controller that55

reduces power fluctuations caused by waves. A control-oriented linear model of the FOWT is required first for the multivariable

analysis, and later for the synthesis of the feedforward controller. The control-oriented linear model is briefly introduced in Sec-

tion 3. Section 4 deals with the input-output analysis. The feedforward controller is designed in Section 5. Again, linear analysis

is utilized to assess the controller performance, which is shown to be highly dependent on the wind turbine operating point.
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Hence, a gain-scheduling law is introduced to have the maximum performance in any wind condition. The wave-feedforward60

controller requires as input a preview of the incoming waves, which is obtained based on the algorithm presented in Section

6. In Section 7, the feedforward controller and the wave prediction algorithm are implemented in a nonlinear, medium-fidelity

model of the floating wind turbine, and numerical simulations are carried out in realistic environmental conditions to evaluate

the benefits of the feedforward control strategy. Section 8 draws the conclusion and gives some recommendations for future

work.65

2 Definition of a reference floating wind turbine

This section defines the floating system that is considered in this study. The FOWT is formed by the DTU 10MW (Bak

et al. (2013)) wind turbine and the INNWIND.EU TripleSpar platform (Azcona et al. (2017); Lemmer et al. (2020a)). The

characteristics of this FOWT concept are similar to those of the current commercial projects and are publicly available.

The floating wind turbine is regulated with an industry-standard generator-speed controller. In below-rated winds the con-70

troller maximizes the extracted power by keeping the blade pitch angle θ constant and varying the generator torque QG as a

function of generator speed ωG squared:

QG = kGω
2
G , (1)

with kG = 1
2ρπR

5
(
Cp,max/τ

3λ3
opt

)
, where ρ is the air density, R the rotor radius, and τ the transmission ratio. Cp,max is the

maximum power coefficient, which is achieved for zero pitch angle and the optimal tip-speed-ratio λopt.75

In above-rated winds, the controller regulates the extracted power to its rated value setting the generator torque to a constant

value, equal to rated. Generator speed oscillations are directly reflected by the wind turbine power output. Rotor speed is

regulated to its rated value ωG,r by the collective-pitch controller (CPC), which reacts to the generator speed feedback as:

θ = kP (ωG−ωG,r)+ kI

∫
(ωG−ωG,r)dt , (2)

where kP and kI are the proportional and integral gains, tuned following the model-based approach of Fontanella et al. (2018)80

to achieve the maximum damping for the platform pitch mode and for the drivetrain mode. A gain scheduling factor is intro-

duced to adjust the PI controller gains as wind speed varies. The generator-speed feedback controller constitutes the baseline

configuration against which the benefits of wave-FF are assessed.

3 The control-design model

The wave-FF control strategy we want to develop is model-based, and its development requires a linear model of the floating85

wind turbine. The control-design model is derived based on linear first-principle equations of the most important physics of the

FOWT, rather than from the linearization of a higher-order model. The main features of the model are recalled below, while a

detailed description is reported in the article of Fontanella et al. (2020). The model describes the global dynamics of the FOWT,

3



neglecting the dynamics of single components. It considers the rigid-body platform motions and the rotor dynamics about a

steady-state configuration (operating-point) set by an average wind speed, platform motion, rotor speed, collective-pitch and90

generator torque. The inputs are generator torque and collective blade-pitch angle, which are the main control variables for the

FOWT, in addition to wind turbulence and wave elevation. The model equations are cast in state-space form and are valid only

for small perturbations about the operating-point.

The structural dynamics builds on the theory of multibody systems. The model considers the FOWT components as rigid

bodies: this simplification is deemed acceptable in a control-oriented model, as the bandwidth of an FOWT controller is95

usually lower than the flexible modes of the tower, blades, and drivetrain. Moreover, the focus of the control-oriented model is

the coupled rotor-platform response induced by waves more than the dynamics of the flexible components.

Rotor aerodynamics are introduced in the model with a simplified approach. The aerodynamic model does not consider

the single blade but computes the integral rotor forces. This simplification is valid because the FOWT global dynamics is

determined by the integral rotor loads, rather than the loads of the single blades. This assumption is reasonable for a reduced-100

order model of the FOWT, as noticed by Lemmer et al. (2020b). Only the rotor torque and thrust force are considered because

they drive the global dynamics of the floating turbine: aerodynamic torque sets the wind turbine power production and thrust

force the motion of the floating platform. Torque and thrust are modeled by means of the quasi-steady approach, based on

the derivatives of the torque and thrust curves of the wind turbine. The formulation of the control-oriented model enables the

inclusion of unsteady aerodynamic effects associated with the FOWT motion, which may have an influence on the platform105

response. In this respect, a similar approach to the one presented by Bayati et al. (2017) could be used.

3.1 Frequency-dependent hydrodynamic loads

Hydrodynamic radiation and first-order-wave forces are modeled by means of linear-time-invariant parametric models.

Frequency-dependent radiation forces are approximated by a parametric model in state-space form, from the added mass and

damping matrices of panel code pre-calculations. In this work, the frequency domain identification method of the MATLAB110

toolbox developed by Perez and Fossen (2009) is used, but other methods are available in literature, for example the one by

Janssen et al. (2014).

Also the first-order-wave excitation is introduced in the model with a parametric model in state-space form, which connects

the wave elevation to the wave forces. This choice allows to have the wave elevation, rather than wave forces, as input to the

model. The wave excitation model is obtained based on the wave-force coefficients, which are usually computed at discrete115

frequencies through a panel code (e.g. WAMIT). In the present case, the parametric model is defined by means of system

identification of the impulse response function of the force coefficients. This approach was firstly applied to floating turbines

by Lemmer et al. (2020c), and it is currently available to model wave excitation in OpenFAST (Jonkman et al. (2018)).

Identification of the parametric model from frequency-domain data (i.e. the force coefficients) is also a possibility, that was for

example used by Al et al. (2020). The wave-force model of panel code data is non-causal, which means a force is developed120

before the wave reaches the center of the platform. The panel code data, in the form of impulse response functions, are

causalized before system identification by introducing a time delay td (with td > 0) to have zero response for negative times.
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The time delay is embedded inside the identified parametric model and, consequently, into the linear model of the FOWT. The

response obtained from the linear model is delayed of a time td with respect to the input wave elevation.

4 FOWT response to controls, wind and waves125

An input-output analysis is carried out to gain insight into the FOWT response to the available controls, generator torque and

collective-pitch, and to the wave disturbance. The analysis answers the question of which is the best combinations of controls

to reject the negative effects of waves. This information is used later to support the synthesis of the wave-FF control strategy.

Moreover, the analysis gives a picture of the FOWT dynamics that may prove to be useful also for other purposes.

The analysis starts from the control-design model in a transfer function representation130

y =Gu+Gdd . (3)

The system has two outputs, rotor speed and tower-top motion, collected in ŷ = [ωr, xtt]
T ; two control inputs, collective-pitch

and generator torque, collected in û= [θ, Qg]
T ; and two disturbance inputs, variation from average of the hub-height wind

speed and wave elevation, d̂= [v, η]T . The model of Eq. (3) is used to compute the outputs deviation from their steady-state

value, due to a change in the control and disturbance inputs.135

To facilitate the interoperation of MIMO analysis results, the model of Eq. (3) needs to be scaled. This ensures that inputs

and outputs are of the same importance. The scaled model is obtained by dividing any variable by its maximum expected

(for disturbances) or allowed (for control inputs) change. The output, input and disturbance scaling matrices (Dy , Du and Dd

respectively) are

Dy =

0.15ω0 0

0 5

 , Du =

5π/180 0

0 0.1Qg,0

 , Dd =

0.1U 0

0 4

 , (4)140

where ω0 is the rated rotor speed, Qg,0 the rated generator torque, and U the mean wind speed. The scaled model is

ŷ = Ĝû+ Ĝdd̂ , (5)

with

Ĝ=D−1
y GDu , Ĝd =D−1

y GdDd . (6)

Given an input between 0 and 1, where 0 is no input and 1 is the maximum expected value, the outputs of the model of Eq.145

(5) take a value between 0 and 1, where 0 is no output and 1 corresponds to the maximum expected or allowed value for the

output.

4.1 Control inputs

The model without disturbances ŷ = Ĝû is considered first. The transfer function matrix Ĝ has two couples of input and

output directions, each with an associated gain. For any selected frequency, the directions and gains of matrix Ĝ are obtained150
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from its singular value decomposition (SVD) (Levine (1996))

Ĝ=UΣV H . (7)

The column vectors of V = [v, v] are the input directions, the column vectors of U = [u, u] the output directions, and the

respective singular values are along the diagonal of Σ= diag(σ, σ). When the input vector û has the same direction of vector

v, the output ŷ is along the direction u, the gain is equal to σ and it is the largest possible for that frequency. The input produces155

the most effect on the output, and the directions of v and u are named the strongest. Conversely, when the input is directed as

v, the gain is σ, and the input has the least effect on the output, which is along u. The directions of v and u are named the

weakest.

The steady-state (i.e. zero frequency) plant model of the FOWT in a 16 m/s wind is

Ĝ(jω = 0) =

−2.736 −0.311
−1.216 0.097

 . (8)160

The (1,1) element of Ĝ is much larger than the (1,2) element, so rotor speed is a lot more sensitive to a steady-state (i.e. very

slow) change in collective-pitch, the first input, than in generator torque, the second input. Collective-pitch has an effect both

rotor speed, the first output, and tower-top motion, the second output, in the same direction. If collective-pitch is increased, the

rotor is slowed because of the decreased aerodynamic torque, and the nacelle moves upwind, because of the lower thrust force.

The plant model is decomposed into its SVD165

U =

−0.916 −0.401
−0.401 0.916

 , Σ=

3.004 0

0 0.214

 , V =

0.997 −0.082
0.082 0.997

 . (9)

The strongest and weakest input directions are obtained by different combinations of collective-pitch and generator torque (e.g.

the strongest is given by 0.997 of collective-pitch and 0.082 of generator torque). The ratio between the gain in the strongest and

weakest direction (i.e. the condition number) is CN= σ/σ = 14.0. The system is said to be ill-conditioned. At steady-state, the

input combinations with prevailing collective-pitch have a much stronger effect on the FOWT than the input combinations with170

prevailing generator torque. The strongest and weakest output directions are given by different combinations of rotor speed

and tower-top motion. From u= [−0.916, −0.401]T , it is seen the effect of the strongest input combination, an increase of

collective-pitch, is to slow down the rotor and to move the nacelle upwind. This is in agreement with the result of the inspection

of Ĝ(jω = 0) and makes sense from a physical point of view.

The SVD of the plant model Ĝ(jω) is computed for several frequencies up to 0.3 Hz, and for seven operating points of wind175

speeds between 12 and 24 m/s. The top plot of Fig. 1 shows the magnitude of the two component of u, that is the fraction

of collective-pitch and generator torque in the strongest input combination; the middle plot, the magnitude of the first and

second component of v, the fraction of rotor speed and tower-top motion in the strongest output direction; the bottom plot

the corresponding singular values, the gain. Collective-pitch is the most effective input, at any frequency and in any above-

rated wind speed. Pitching blades affects both rotor speed and tower top motion, because it modifies at the same time the180
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aerodynamic torque and thrust. At the platform modes frequencies, the response is almost only tower-top motion, and the gain

is increased: it takes a small collective-pitch action to move the nacelle, because the resulting rotor thrust variation excites the

resonant response of the platform. Controlling rotor speed is hard. In the wave frequency range, the gain is decreased so it

becomes more difficult to control the system, and rotor speed is easier to control than tower-top motion.

Figure 1. Singular value decomposition of the floating wind turbine plant for several above-rated operating points (grey, arrows for increasing

wind), and for the 16 m/s wind case (black). Values for the zero-frequency case are displayed by the marks • and ◦. The vertical dashed lines

are the frequency of the platform surge and pitch modes, the frequency range where waves are active is enclosed by the vertical dotted lines.

In summary, collective-pitch is the most effective control in above-rated winds. It has an effect both rotor speed and tower-185

top motion. In the frequency range where wave is active, collective-pitch becomes less effective, so it is harder to control the

wind turbine.

4.2 Disturbances

The wind and waves disturbances are here considered separately. The direction of a disturbance is

yd =
1

‖ĝd‖2
Ĝd , (10)190

where ĝd is the appropriate column of Ĝd (the first for wind, the second for wave). The disturbance condition number is

DCN= σ(Ĝ)σ(Ĝ−1yd) , (11)
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where σ(·) is the maximum singular value. The DCN measures the control effort required to reject a given disturbance, relative

to rejecting a disturbance with the same magnitude but aligned with the strongest output direction (i.e. the direction where

controls are effective the most; Skogestad and Postlethwaite (2005)). The higher the DCN is, the harder it is to reject the195

disturbance with the available controls.

The effect of wind and wave disturbance in the frequency range up to 0.3 Hz is assessed in Fig. 2, considering seven

operating points of wind speed between 12 and 24 m/s. Wind turbulence acts directly on the rotor causing a variation of the

aerodynamic torque, which affects rotor speed. Wind turbulence also acts on the platform, through the rotor thrust, but this

excitation mechanism is less effective than wave forcing. The wind disturbance is aligned to the rotor speed output direction.200

Collective-pitch is very effective for controlling rotor speed, and rejecting the wave disturbance with collective-pitch does not

require a large effort. This is visualized by the DCN. Wave is aligned to tower-top motion, and partially shifts towards rotor

speed for increasing frequency. Waves act on the platform, but also excite the rotor response. The platform motion caused by

waves produces a variation of the apparent wind speed, which affects rotor-torque, and then rotor-speed. This mechanism of

excitation is more effective above the platform pitch frequency. The analysis considers zero-degree waves, that do not excite205

lateral motions (sway, roll, yaw). For non-zero-degree waves, also the response of these DOFs is significant and contributes

to oscillations of the wind inflow. The gain of wave is maximum where wave produces the largest platform motions, so at the

frequencies of platform modes, where wave excites the FOWT in resonance, and above the platform pitch frequency, where

the strength of wave forcing is the maximum. The wave disturbance is not aligned to the rotor speed output direction, and the

DCN shows it is very hard to counteract the wave disturbance by means of wind turbine controls.210

To sum up, waves effect rotor speed, because waves drive the platform motion which result into an apparent wind speed

at rotor. The wave excitation is stronger at the platform frequencies, where the FOWT is excited in resonance, and above the

platform pitch frequency. Moreover, it is quite hard to counteract the wave disturbance by means of controls available in the

wind turbine. Lemmer et al. (2016) carried out a similar MIMO analysis for the same floating turbine system, but based on

a different linear model. They equally found that wave has a significant effect on rotor-speed and tower-top motion, and that215

it is difficult to counteract wave excitation by means of the control inputs available in the wind turbine. All this shows that

new control strategies specific to FOWTs are needed to deal with waves. The wave-feedforward control strategy leverages the

knowledge of the FOWT dynamics to improve the performance of the traditional wind turbine controller with respect to the

mitigation of the wave effects.

5 The wave-feedforward control strategy220

The wave-FF controller cancels the oscillations of rotor speed, and hence of the turbine power output, that are caused by

waves. The additional collective pitch command it produces, is summed to the pitch signal of the existing generator-speed FB

controller, and counteracts the variation of aerodynamic torque caused by the platform motion induced by waves. The FBFF

control strategy is shown in 3.
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Figure 2. The direction with respect to the rotor speed output direction, the singular value (gain) and the disturbance condition number

(DCN) associated with wind and waves. Grey lines correspond to the above-rated operating points (arrows for increasing wind) and the black

line to the one of 16 m/s wind speed. The vertical dashed lines are the frequency of the platform surge and pitch modes, the frequency range

where waves are active is enclosed by the vertical dotted lines.

For wave-disturbance rejection, the reference signal r is zero and the closed-loop rotor speed output ω is225

ω = (I +GsKfb)
−1(GsKff +Gd)η , (12)

where, Gs is the collective-pitch to rotor-speed plant, Gd the wave disturbance model, Kfb the FB controller, Kff the FF

controller, η the wave disturbance. In the model-inverse approach, the FF controller Kff is designed to cancel the effect of η on

ω, thus the controller transfer function is

Kff =−G−1
s Gd . (13)230

Kff is the transfer function between the input wave elevation measurement and the collective-pitch command. In general, Gs,

Gd, and Kff , depend on the wind turbine operating condition and so, on the mean wind speed.

The FF controller transfer function obtained from Eq. (13) is shown in Fig. 4 for different operating conditions. There is

a significant difference between the generic shape assumed by Kff in below-rated and above-rated conditions. The amplitude

is increased in below-rated winds because collective-pitch is not effective for controlling rotor speed. Here, a variation of235

collective-pitch produces a smaller variation of rotor torque than in above-rated winds. For this reason, it is decided to confine
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Figure 3. Block diagram of the feedback-feedforward controller.

the action of the FF controller to the above-rated region: when the mean pitch angle falls below a threshold, the FF action

is switched-off in order to prevent excessive pitch actuators usage. The above-rated controller Kff has a peak at the platform

pitch natural frequency which is not present in below-rated winds. In above-rated winds, the platform pitch mode damping is

decreased and wave excitation leads to a large response at this frequency. This causes significant oscillations of the nacelle,240

with consequently large variations of the apparent wind speed, and of aerodynamic torque. A high control effort is therefore

required to balance the wind fluctuations.

The control-synthesis procedure described above is valid for any platform typology. When a different platform is considered,

the disturbance model changes, because forcing produced by waves depends on the platform geometry and the way waves

interact with it. The FF transfer function Kff , the product between the inverse of the plant model and the disturbance model,245

changes accordingly. The FF controller responds to wave, and acts in the frequency range where most of the wave energy is. In

this frequency range, the amplitude of Kff is increased if the platform is more exposed to wave excitation, that means a larger

control effort is required for wave loads rejection. The platform modes are expected to change. However, these are usually

outside the wave-frequency range, and have little influence on the wave-FF action.

5.1 Disturbance rejection analysis250

Considering the FBFF controller of Fig. 3, and the closed-loop disturbance response of Eq. (12), the FB, the FF and the FBFF

sensitivity function is defined respectively as

Sfb = (1+GsKfb)
−1 ,

Sff = 1+GsKffG
−1
d ,

Sfbff = SfbSff . (14)
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Figure 4. The feedforward controller transfer function Kff for below-rated (left) and above-rated (right) operating conditions. The vertical

dashed lines are the frequency of the platform surge and pitch modes, the frequency range where waves are active is enclosed by the vertical

dotted lines.

The sensitivity function of the FBFF controller is computed for different above-rated wind speedsUi to account for the different

behavior of the wind turbine255

Sfbff(Ui) = Sfb(Ui)Sff(Ui) ,

Sfb(Ui) = (1+Gs(Ui)Kfb(Ui))
−1 ,

Sff(Ui) = 1+Gs(Ui)Kff(U)G−1
d (Ui) , (15)

with Ui = 12,13, . . . ,24 m/s and U = 16 m/s. The sensitivity function tells how the disturbance is propagated to the FOWT

response through the FB, FF and FBFF controllers. The lower the magnitude of the sensitivity function, the lesser the distur-

bance effect on the FOWT response. Figure 5 reports the sensitivity function of the FB and FBFF controllers, and compares is

to the typical PSD of wind and waves (rescaled). Two curves are shown for the FB controller: one is with gains for the onshore260

DTU 10MW Hansen and Henriksen (2013), and one with detuned gains. In case of original gains, wind turbulence is inside

the CPC bandwidth (0.074 Hz): at the controller cut-off frequency the wind spectrum is around 3% of it’s maximum value.

Wave loads are just above the cut-off frequency (how much above depends on the sea state). The FB controller with original

gains rejects the wind disturbance, but is ineffective against wave. In case of detuned FB, the bandwidth is shorter (0.019 Hz):

the wind spectrum is 18.6% of its maximum value at the controller cut-off frequency. Moreover, the disturbance sensitivity in265

the controller bandwidth is increased as the rotor-speed tracking performance is degraded. Hence the controller is less effec-
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tive against the wind disturbance. The effectiveness of CPC with detuned gains is decreased, but detuning is needed to make

the floating system stable without modifying the structure of the FB controller. As it has been shown by Larsen and Hanson

(2007); van der Veen et al. (2012); Lackner (2009) when onshore tuning is utilized CPC may lead to unstable response of the

platform pitch mode. Bandwidth of the FB controller, and hence its effectiveness against wind turbulence, could be increased270

by means of NMPZ-compensation (Fischer (2013)) where pitch control is used in combination with dynamic generator-torque.

Another possibility is to replace the FB controller with a more complex multivariable controller, as done by Lemmer et al.

(2016). Both techniques can be used in synergy with feedforward control to further improve the floating wind turbine response

to environmental loads. Interestingly, the capacity of the FB controller of rejecting wave loads is not influenced much by

detuning. Comparison of the sensitivity function for the FB and FBFF controller (notice that Sfbff is defined with respect to275

wave disturbance, whereas Sfb is valid for any disturbance), shows that sensitivity to waves is greatly reduced by addition of

wave-FF.

Figure 5. The sensitivity function of the feedback (FB) controller for onshore and offshore tuning, and of the feedback-feedforward (FBFF)

in 16 m/s wind is compared to the typical PSD of wind and waves (magnitude has been rescaled to ease the comparison with sensitivity

functions). The vertical dashed lines are the frequency of the platform surge and pitch modes, the dotted lines mark the bandwidth of the FB

controller with onshore and offshore gains.
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The disturbance-rejection function is derived from the sensitivity function and it directly relates the wave disturbance to the

closed-loop rotor speed. For the FB and the FBFF controllers it is defined respectively as

Tfb = SfbGd ,

Tfbff = SfbffGd . (16)280

The disturbance-rejection function of the FB and FBFF controllers at 16 m/s wind speed is shown in Fig. 6 (thick solid line and

thin dotted line). The magnitude of Tfb is increased in correspondence of the platform pitch mode and at higher frequencies.

The disturbance-rejection function of the FBFF controller is computed for different above-rated wind speeds Ui

Tfbff(Ui) = Sfbff(Ui)Gd(Ui) . (17)

with Ui = 12,13, . . . ,24 m/s and Sfbff(Ui) already obtained in Eq. (15). The magnitude of Tfbff(Ui) is shown in Fig. 6. The285

disturbance-rejection function, and so the performance of the FBFF controller, is sensitive to the mean wind speed. This is due

to the rotor aerodynamics which changes for different operating conditions. The benefit of wave-FF is maximum at 16 m/s, the

operating point considered for model inversion, lower elsewhere, and minimum in 12 m/s wind. Tfbff is higher than Tfb around

the platform pitch natural frequency. Combining the FB controller with the FF controller strengthens the coupling between

platform pitch and rotor speed.290

5.2 Gain scheduling

The FOWT dynamics (i.e. the response for a given input) depends on the mean wind speed. The turbine is more sensitive

to variations of blade pitch angle in high winds, and this is visualized in the input-output analysis of Fig. 1. As shown in

Fig. 2, sensitivity to waves remains constant, and does not depend significantly on wind speed. The control effort required to

counteract a given wave is different depending on wind speed, because the wind turbine responds in a different way to blade-295

pitch angle variation. Intuitively, the pitch action required to reject the effects of a given wave is lower in high winds. To have

the maximum possible reduction of the wave disturbance, the FF controller needs to consider how the FOWT dynamics are

modified with operating condition, and a gain-scheduling strategy is introduced for this purpose.

Based on the procedure introduced above, a linear model of the FOWT is computed for several above-rated wind speeds

and, by means of Eq. (13), an FF controller is obtained for each of them. The transfer function of the FF controllers is shown300

in Fig. 7. From visual inspection of the figure, it is evident the effort required to cancel the wave disturbance is maximum

in near-rated winds and decreases in high winds. If the FF controller obtained from the 16 m/s model is used at any wind

speed, the FF action would be less-than-ideal for wind speeds between rated and 16 m/s, and higher-than-ideal for greater wind

speeds, leading to a decreased performance, as highlighted by the disturbance rejection analysis of Fig. 6.

Figure 7 also reveals the shape of the FF controller does not change much with wind speed except for the static gain. Based305

on this consideration, the performance of the FF controller is improved by adjusting the static gain based on the actual turbine

operating condition. In other words, a single FF controller is computed for the 16 m/s condition and the static gain is modified

as wind speed changes, to reflect the changed dynamics of the FOWT. The actual collective-pitch angle is chosen as the
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Figure 6. Disturbance-rejection function of the feedback-feedforward controller in above-rated winds. The feedback controller (FB) in 16

m/s wind is reported for comparison. The vertical dashed lines are the frequency of the platform surge and pitch modes, whereas the frequency

range where waves are active is enclosed by the vertical dotted lines.

scheduling variable. The gain-scheduling law is obtained fitting a quadratic function to the DC-gain of the Kff(jω) computed

for different above-rated winds. The scheduled FF controller is310

Kff(β) = cff(β)Kff(U) ,

cff(β) = p2β
2 + p1β+ p0 , (18)

where p2,p1,p0 are the coefficients of the quadratic best-fit function, β is collective-pitch, and Kff(U) is the FF controller for

16 m/s wind speed.

In Fig. 7, the scheduled FF controllers Kff(β) = cff(β)Kff(U) are compared to the model-inversion FF controllers obtained

from the evaluation of Eq. (13) for different above-rated wind speeds. The scheduled controller is a good approximation of315

the ideal case. The proposed scheduling strategy leaves the phase of Kff(jω) unchanged, but this is acceptable since the phase

does not change much with wind speed.

The disturbance rejection function of the FBFF controller with scheduling is obtained by replacing Kff(U) with Kff(β) in

Eq. (15) and Eq. (17) and it is shown in Fig. 8. The disturbance rejection in the wave frequency range is lower for any wind

speed, as the controller action is adjusted based on the wind turbine operating condition.320
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Figure 7. The scheduled feedforward controllers Kff(β) = cff(β)Kff(U) (black) obtained from the scheduling of the 16 m/s con-

troller Kff(U) (dotted line) are compared to the model inversion controllers Kff(Ui) (grey) for different above-rated wind speeds

Ui = 12,13, . . . ,24 m/s. Magnitude (top) and phase (bottom). Wave range is the frequency range where linear wave is active.

The FF controller for implementation is obtained as in Eq. (18). The order of the transfer function Kff(U) is too high

for practical usage: a reduced-order approximation is utilized in place of the original transfer function. The low-pass filtered

collective-pitch angle measurement is used for scheduling.

6 Wave measurement and prediction

The transfer function of the FF controller has an intrinsic delay of td. A suitable wave elevation measurement is required to325

compensate the intrinsic delay of the FF controller: it is required to know the wave td before it arrives at the platform. The
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Figure 8. Disturbance rejection of the FBFF controller with scheduling (black) and without (grey), for several above-rated operating con-

ditions. The vertical dashed lines are the frequency of the platform surge and pitch modes, the frequency range where waves are active is

enclosed by the vertical dotted lines.

wave prediction is obtained from a measurement of the surface elevation in a point at a distance l upstream the platform. The

measurement is propagated downstream in space and forward in time.

The wave elevation in two points along the wave propagation direction is related by the frequency response function

Hl = e−jkl , (19)330

where k is the wave number, and, for gravity waves on deep-water, k ≈ ω2/g.

The frequency response function that relates the upstream wave measurement to the wave prediction at the FOWT is

H(jω) = ejω
(
td−ωl

g

)
. (20)

For a given distance l and a preview time of td, H(jω) behaves as a pure negative-delay operator only for ω > gtd/l = ωt.

The wave spectral components with a frequency greater than ωt are successfully predicted. Prediction of the wave components335

with a lower frequency is not possible, because the wave arrives at the platform location in a time lower than the preview time

td. It is possible to predict the lower-frequency harmonics by measuring the wave elevation far upstream the FOWT or by

decreasing the preview time.
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For real-time control purposes, the wave prediction model of Eq. (20) is implemented as it is shown in Fig. 9. The wave

elevation η is continuously measured in l meters upstream the floating wind turbine with a sample rate Ts. At any time instant340

tk, the discrete Fourier transform (DFT) of the last n samples is computed to obtain the complex spectrum y. The element-wise

product between y and the transfer function H , evaluated at n discrete frequencies ωi =
(
2πi/nTs

)
, i= 0, . . . ,n−1, gives the

spectrum of the predicted wave elevation at platform location ŷ. The Inverse DFT of ŷ gives η̂, which is the wave elevation that

is going to be experienced by floating wind turbine d= td/Ts time samples ahead in time.

DFT

× IDFT

η(tk, . . . , tk−n+1) y(ω0, . . . , ωn−1)

H(ω0, . . . , ωn−1)

ŷ(ω0, . . . , ωn−1) η̂(tk+d, . . . , tk+d−n+1)

1

Figure 9. Scheme of the wave prediction algorithm. η is the wave elevation measurement upstream the floating wind turbine and η̂ is the

wave elevation at platform location, d= td/Ts time samples ahead in time.

Several technologies are available to measure the surface elevation. Some examples are wave-rider buoy, radar, airborne or345

satellite. The radar technology is particularly attractive because it scans a large area, it detects waves far from its location (up

to 4 km) and it is capable of fully autonomous operation. The X-band radar, commonly used by ships for navigation, received

a lot of attention as a remote wave sensor. Images of the wave field are obtained from the radar as radar beams are reflected and

shadowed by the crests of the wave fronts. An example of this technology is the wave monitoring system WaMoS II introduced

by Ziemer and Dittmer (1994) and at the base of the real-time wave-prediction system developed by Reichert et al. (2010)350

within the On board Wave and Motion Estimator (OWME). A methodology based on 2D-FFT is proposed by Naaijen and

Wijaya (2014) to obtain a directional phase-resolved prediction of the wave elevation from radar data (additional information

about the directional energy spectrum is required, e.g. from a wave buoy). A similar measurement could be used in wave-FF

control.

7 Results355

The wave-FF control strategy is evaluated by means of numerical simulations in the servo-aero-hydro-elastic code FAST

(Jonkman and Marshall (2005)). The FAST model has 7 DOFs: platform motions (surge, sway, heave, roll, pitch and yaw) and

the rotor rotation. The drivetrain is rigid as well as the tower and blades. The hydrodynamic model is based on linear potential

flow theory with viscous effects. The radiation and the first-order wave forces are computed prior to the simulation based on

the same WAMIT data that are used to build the control-design model. The calculation of the frequency-dependent radiation360

loads is based on the convolution integral of the retardation functions matrix. Second-order wave loads are modeled by means

of the approximation technique introduced by Newman (1974).
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The wave-FF control strategy considered for the verification is displayed in Fig. 10. Three cases are considered: a baseline

case with only FB control, the FBFF control without gain scheduling, and the FBFF control with gain scheduling. In the

simulations, an ideal upstream wave measurement is used and the accuracy of the wave measurement system (e.g. radar) is not365

taken into account. Results are therefore indicative of the upper performance limit of wave-FF control.
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Figure 10. Schematics of the wave-feedforward control strategy. Wave excite the floating platform and generate a varying apparent wind

speed for the rotor. The oscillating wind results into rotor speed fluctuations which are only partially rejected by the standard feedback

controller. The feedforward action is based on the wave elevation measured upstream the wind turbine. This measurement is used to obtain

a preview of the wave elevation at the floating platform, which is the input of the controller. The resulting collective-pitch action, which is

summed to the pitch request from the feedback controller, counteracts the wave disturbance, modifying the aerodynamic torque and the rotor

thrust force.

7.1 Environmental conditions

Three realistic turbulent wind and irregular wave combinations (see table 1), representative of an offshore site with moderate-

severity met-ocean conditions, are selected for assessing the performance gains of the wave-FF control strategy. The reference

offshore site is part of the Gulf of Maine (North Atlantic ocean), about 25 km southwest of Monhegan Island 65 km east370

of Portland, and the mean water depth is 130 m. Met-ocean data for the site are reported by Gonzalez et al. (2015). Three

above-rated winds are considered, that are defined by the parameters of Tab. 1. For any condition, wave was defined according

with the Pierson-Moskowitz spectrum. The significant-heigh and peak-period were selected as the most probable combination

of values for the assigned wind speed. Wind and waves are aligned to the zero-degree direction.
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Table 1. Met-ocean conditions considered for the verification of the wave-FF control strategy.

Hub-height Turbulence Significant Wave

mean wind speed intensity wave height peak period

[m/s] [%] [m] [s]

16 12 1.5 10.0

18 11 2.5 10.0

22 10 3.5 8.0

7.2 Wave prediction375

The wave prediction algorithm presented in section 6 is tested in the met-ocean conditions corresponding to the 16 m/s mean

wind speed case of table 1. The wave elevation is sampled every 0.1 s at distance of 200 m upstream the FOWT. The wave

elevation at platform location is computed based on the last 1000 samples and a preview time of 7.5 s is requested. The wave

elevation preview is compared to the wave at platform in Fig. 11. The overall quality of the estimate is good. The PSD of

the two signals reveals that the largest error is introduced in the low-frequency harmonics. The error is due to the intrinsic380

characteristics of the transfer function on which the wave prediction algorithm is based. For the present case, the transfer

functions correctly predicts the wave harmonics above a threshold frequency of 0.058 Hz.

Figure 11. Left: the wave preview obtained by means of the prediction algorithm is compared with the wave at platform location (in the plot,

the preview is delayed of the preview time td = 7.5s to ease the comparison). Right: the wave preview and measurement are compared based

on their PSD.
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7.3 Steady wind

The effect of the FF control strategy is first demonstrated considering a steady wind without shear. With this assumption, the

wave is the only disturbance acting on the FOWT. Sample time series of the rotor speed and blade pitch command for a 22385

m/s wind speed case are shown in Fig. 12. The amplitude of rotor speed oscillations caused by the wave disturbance is reduced

with FBFF control with respect to the FB case, and this is achieved at the expense of an increased pitch activity. The pitch

effort required by the scheduled FBFF is less than without scheduling for a comparable disturbance rejection performance.

Figure 12. Time series of the rotor speed (left) and blade 1 pitch angle command (right) for the 22 m/s steady wind case.

7.4 Turbulent wind

The FBFF control is evaluated in more realistic power production conditions. Turbulent wind fields were generated in turbsim390

(Kelley and Jonkman (2007)) with Kaimal spectrum, a power-law profile with exponent 0.14, and turbulence intensity selected

for each mean wind speed according with the IEC-61400 (class IC turbine). For every condition of Tab. 1, six independent

wind-wave realizations, each 10-minutes long, were considered, as recommended by the IEC 61400 standard (IEC (2005)) to

get statistically-significant data. An initial pre-simulation time of 1000s was included at the beginning of each simulation and

cut-out from results to exclude initial transients.395

Sample time series of rotor speed and blade-pitch angle for the 22 m/s case are shown in Fig. 13. As visible looking at the FB

case, the largest fraction of rotor speed oscillations is due to wind turbulence. This is in agreement with the MIMO disturbance

analysis of section 4. The FF control reduces the part of rotor speed oscillations caused by waves, but it does not compensate

for the effect of wind turbulence. The pitch actuation is increased with any FBFF compared to the FB case.
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Figure 13. Time series of rotor speed (left) and blade 1 pitch-angle-command (right) for the 22 m/s turbulent wind.

Power spectral density (PSD) of rotor speed and pitch-angle-command is computed from the aggregated time series of the400

six seeds relative to the same operating condition. Results for the 22 m/s case are reported in Fig. 14. FBFF clearly reduces the

energy content of rotor speed associated with wave excitation (wave range, 0.05-0.2 Hz), but has a negligible effect at lower

frequency, where rotor speed oscillations are in large part due to wind turbulence. The FF action results into an additional blade-

pitch command which energy content is concentrated in the wave range. Rejection of wave disturbance is slightly improved by

the addition of scheduling (FBFF + Sched.), which requires also a lower blade-pitch effort compared with FBFF.405

Wave-FF is designed to reduce the effects of wave disturbance and improve rotor speed regulation. However, it is expected

to affect also the structural loads for the turbine components. Fatigue loads for each operating condition are evaluated in

terms of damage-equivalent loads (DEL) computed with mLife (Hayman and Buhl (2012)). Wave-FF is also expected to

affect platform motions, and this is quantified by the standard deviation of platform surge, roll and pitch. DEL and standard

deviations are computed for every operating condition based on the aggregated time series of six seeds. Variation of DEL and410

standard deviations with FBFF + Sched. compared with FB is examined in Fig. 15 for the three load cases. The LSS-torque

DEL is reduced up to 16%. The LSS-torque depends on the aerodynamic and generator torque. The wave-FF reduces the

aerodynamic torque oscillations caused by waves and so the fatigue loads for the LSS. The lower dynamics of LSS-torque

is reflected in the platform roll-motion which is reduced as well. The highest LSS-torque DEL reduction is achieved in high

winds when waves are the strongest. Blade pitch is increased because of the additional wave-FF command, and the increment415

is proportional to the strength of waves. As demonstrated in the input-output analysis of §4, aerodynamic torque and rotor

thrust are both affected by blade-pitching. The modification of the thrust force induced by wave-FF impacts the along-wind

platform motions and the tower-FA loads. Platform surge and pitch motions are increased, with consequently higher fatigue

loads for the mooring system, and lower loads for the tower. It is counterintuitive, but larger motions imply lower tower loads.
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Figure 14. Power spectral density of rotor speed (left) and blade 1 pitch angle command (right) aggregated time series of six seeds for the

22 m/s turbulent wind case. Wave range is the frequency range where linear wave is active.

As noticed by Fleming et al. (2016), a smooth motion of the nacelle releases the energy introduced by waves, which therefore420

is not put into tower bending.

8 Conclusions

This paper investigated a model-inversion feedforward control strategy for mitigation of wave excitation in floating offshore

wind turbines. A linear control-design model is utilized to carry out an MIMO analysis of the floating wind turbine. Collective-

pitch is more effective than generator torque for controlling rotor-speed in above-rated winds. Above the platform natural425

frequencies, wave equally affects rotor and platform motions, with the same strength of wind turbulence. Based on linear

analysis, a model-inversion feedforward controller is designed for canceling the wave-induced rotor-speed (and generator-

power) oscillations using collective-pitch. The feedforward controller is added to an industry-standard feedback controller and

the performance improvement is demonstrated by means of linear analysis. A gain-scheduling algorithm is devised to improve

the controller performance by adapting the feedforward action as the wind turbine operating condition changes. The control430

strategy is finally verified by means of time-domain simulations in a non-linear aero-servo-hydro-elastic model. It is found

that feedforward control can reduce the standard deviation of rotor speed up to 2%. It also has a positive side effect on the

fatigue loads of several wind turbine components: the shaft torsion is reduced up to 16%, the tower-base fore-aft bending up to

5%. Platform motions are slightly increased, and this is reflected into the mooring line loads. The blade-pitch actuator usage

is increased. Wave-FF control improves the dynamic response of the floating turbine without requiring the replacement of the435

industry-standard feedback controller. A wave-measurement and forecast system must be implemented, but this is feasible to
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Figure 15. Damage equivalent load (DEL) and standard deviation (σ) with FBFF + Sched. for three above-rated power production conditions.

Statistics for every operating conditions were obtained from aggregated time series of six seeds. A negative ∆ means a reduction with respect

to FB-only control. LSS stands for low-speed shaft, OoP for out-of-plane, TT for tower-top and TB for tower-base.

get with technologies already used in the maritime industry. The extra cost of the wave-measurement system, and fatigue of

the blade-pitch actuators is likely to be offset by the lower cost of the turbine generator and tower, which can be redesigned in

reason of the reduced overspeed and fatigue loads, respectively.

The following suggestions should be considered in future work about wave-based and wave-feedforward control in floating440

wind turbines:

– the wave-feedforward controller is sensitive to accuracy of wave-elevation prediction and to fidelity of the wave distur-

bance model. The focus of this work is about development of the wave-feedforward control strategy and did not addressed

the topic of uncertainties In the present work, uncertainties in the wave measurement are only due to the preview algo-

rithm and, as it is shown, the prediction error is small. Larger errors are expected when using a realistic measurement445

of upstream waves. Model uncertainties are mostly related to identification of the wave-excitation model.The model we

consider here has been assessed against a medium-fidelity model in a previous work (Fontanella et al. (2020)) and was

deemed sufficiently accurate for control-design. In-depth analysis of the controller robustness with respect to model and

measurement uncertainties should be addressed in future works. Implementing the wave-FF control in FOWTs based on

different platform typologies may reduce uncertainty about the benefits of this control strategy;450
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– the proposed feedforward controller is linear and compensates only for first-order wave loads. Recent numerical and

experimental studies, for example the one of Roald et al. (2013), prove that second-order wave loads have a noticeable

effect on a floating turbine response. Thus, a possible research suggestion is to investigate non-linear controllers and to

include second-order hydrodynamics in the controller design;

– in the control-design model, rotor aerodynamics are modeled based on the quasi-steady theory. Thus, the controller455

obtained from the model does not account for unsteady aerodynamic effects, which may be significant for the response

in the upper wave-frequency range (Mancini et al. (2020)). It is therefore suggested to develop a control-oriented model

of the unsteady rotor aerodynamics and to include it in the control-design model, so to investigate how unsteadiness

affects the response of the controlled FOWT;

– in the case at hand, the feedforward controller is designed to regulate rotor speed, and the reduction of tower loads460

is obtained as a positive side effect. A large fraction of tower loads is caused by wave, so it is advisable to use wave

information to reduce tower fatigue loads;

– the wave prediction model may find application in several control-related tasks, which are not envisioned here. Waves

drive the rigid-body motion of the floating turbine, and this is likely to affect the turbine wake (Wise and Bachynski

(2020)). Wave prediction may be included in future floating wind farm control strategies;465

– single-input single-output feedback controllers remain the default choice in floating wind turbines and advanced con-

trollers are still far from reaching commercial projects. Tighter relationships between industry and academia are advis-

able to promote the adoption of advanced control strategies.
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