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Abstract.

Wake meandering studies require knowledge of the instantaneous wake shape and its evolution. Scanning lidar data are used

to identify the wake pattern
::::
wind

::::
flow behind offshore wind turbines but do not immediately reveal the wake shape

::::
edges

::::
and

::::::::
centerline. The precise detection of the wake shape and centerline

::::
wake

:::::::::::
identification

:
helps to build models predicting wake

behavior. The conventional Gaussian fit methods are reliable in the near-wake area but lose precision with the distance from the5

rotor and require good data resolution for an accurate fit. The thresholding methods,
::::
i.e.,

:::::::
selection

::
of

::
a

::::::::
threshold

:::
that

:::::
splits

:::
the

:::
data

::::
into

::::::::::
background

::::
flow

:::
and

::::::
wake, usually imply a fixed value or manual selection of a threshold

::::::::
estimation, which hinders

the wake detection
::::::::::
identification

:
on a large data set. We propose an automatic thresholding method for the wake shape and

centerline detection, which is less dependent on the data resolution and
::::::
quality

:::
and

:
can also be applied to the image data.

We show that the method performs reasonably well on large-eddy simulation data and apply it to the data set containing10

lidar measurements of the two wakes. Along with the wake detection method
:::::::::::
identification, we use image processing statistics,

such as entropy analysis, to filter and classify lidar scans. The image processing method is

:::
The

:::::::::
automatic

::::::::::
thresholding

:::::::
method

:::
and

:::
the

:::::::::
subsequent

:::::::::
centerline

:::::
search

:::::::::
algorithm

:::
are developed to reduce dependency on

the supplementary reference data such as
:::::::
free-flow wind speed and direction. We

::::
focus

:::
on

:::
the

:::::::
technical

::::::
aspect

::
of

:::
the

:::::::
method

:::
and

:
show that the centerline found with the image processing is

::::
wake

:::::
shape

:::
and

:::::::::
centerline

:::::
found

:::::
from

:::
the

::::::::::
thresholded

::::
data15

::
are

:
in a good agreement with the manually detected centerline and the Gaussian fit method. We also

::::::
briefly discuss a potential

application of the method to separate the near and far wakes and to estimate the wake direction.

1 Introduction

A wake is a complex dynamic structure forming behind a wind turbine due to the kinetic energy extraction from the incoming

wind flow. The wake region is characterized by the decreased wind speed and the increased turbulence intensity. The relative20

velocity deficitrapidly decreases to 20% at the downstream distance of five rotordiameters (
:
,
::
or

:::::
wake

::::::
deficit,

::
is

:::::::
strongest

:::::
right

::::
after

:::
the

::::
wind

:::::::
turbine.

:::::::
Strongly

:::::::
affected

:::
by

::::
wind

:::::::
turbine

:::::
rotor,

:::
the

:::::
region

:::::::
extends

::
up

::
to
::::

4− 5 D ). Further downstream,
::::
rotor

::::::::
diameters

::::::::
depending

:::
on

:::
the

:::::
terrain

::::::::::::
characteristics

:::
and

:::::::
stability

:::::::::
conditions

::::::::::::::::::::::::::::::::::::::::::::
(Stevens and Meneveau, 2017; Porté-Agel et al., 2020)
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:
.
:::
The

:::::
wake

:::::::::
transitions

::
to

:::
the

:::
far

:::::
wake,

:::::
where

:
the recovery to the free flow is considerably slowed down; at the same time, the

wake width increases up to 3D according to in situ
::::
three

::::
rotor

:::::::::
diameters

::::::::
according

::
to

:
observations (Aitken et al., 2014). The25

typical turbine spacing in the wind farms is usually 8
:::::::::
operational

::::
wind

:::::
farms

:::::::
usually

::::::
reaches

::::::
7− 10D

::::
(e.g.,

:::::::
London

::::::
Array),

although the optimal spacing is estimated to be
:::
even

:
higher in order to reduce the wake effect on downstream turbines (Meyers

and Meneveau, 2012; Stevens, 2016). Since the generated wind power is proportional to the cube of the wind speed U3, the

power production gradually decreases if the incoming wind speed drops below the rated wind speed. The increased turbu-

lence intensity negatively affects the turbine fatigue loads (Lee et al., 2012). Studying the wake behavior is hence crucial to30

estimating both the actual power production and the overall lifetime of a wind farm.

Not only the wake expands, but it is also subjected to the wake meandering – oscillations along the rotor axis caused by

the movement of large eddies (Larsen et al., 2007, 2008). While the near wake remains primarily stable and follows the wind

direction, the far wake oscillates randomly in the horizontal plane with an amplitude exceeding 0.5D (Howard et al., 2015; Foti

et al., 2016). The far wake also oscillates in the vertical plane, although the velocity fluctuations there are weaker (España et al.,35

2011). As a result, a downstream turbine is exposed to intermittent flow and, consequently, unequal fatigue loads (Muller et al.,

2015; Moens et al., 2019). Additionally, the wake in the Northern hemisphere slightly turns clockwise due to the Coriolis ef-

fect (Abkar and Porté-Agel, 2016; van der Laan and Sørensen, 2017) adding more complexity to the wake evolution over time.

Knowing only the velocity deficit at a certain downstream distance is insufficient,
:
since the wake meandering strength is char-

acterized by the standard deviation of the wake center. Therefore, the wake meandering analysis requires the knowledge of the40

wake centerline to quantify the instantaneous wake effect on the downwind structures. An appropriate detection method should

be able to separate
::::::
perform

:::::
wake

:::::::::::
identification

::
by

:::::::::
separating

:
the wake from the free flow and estimate

::::
wake

::::::::::::::
characterization

::
by

:::::::::
estimating

:
the wake centerline and its statistical characteristics. The method application and their

::::::::::::::::
(Quon et al., 2020)

:
.

::::::::
Methods’

:::::::::
application

:::
and

:
capabilities are highly dependent on the

::::
input

:
data available.

In situ measurements using
:::::::::::
Measurement

:::::::::
campaigns

:::
that

:::
use

:
scanning lidars provide the most relevant data on the wind flow45

in a particular wind farm (Trujillo et al., 2010, 2011; Herges et al., 2017). Due to the technical restrictions and costs
::::
cost of lidar

installation, it is complicated to obtain a three-dimensional scan of the flow around the whole wind farm, although the flow

can be reconstructed for a single turbine (Beck and Kühn, 2019). Still, the measurement campaigns span along several months

and require data pre-processing
:::::::::::
preprocessing to sort out invalid measurements. A controlled experiment can be performed on

a wind tunnel for model validation or reproduction of specific flow conditions (Snel et al., 2007; Chamorro and Porté-Agel,50

2010). The particle image velocimetry (PIV) provides good spatial and temporal resolution of the measured wind field but still

deals with the scaled models and has to account for their limitations. A different approach is running a large-eddy simulation

(LES) of a wind turbine or a wind farm. While LES provides a wide range of possibilities to simulate atmospheric conditions

and wind farm configuration, its representation of a wake strongly depends on the implemented turbulence closure (Moriarty

et al., 2014; Mehta et al., 2014; Martínez-Tossas et al., 2018) and wind turbine model (Porté-Agel et al., 2011; Martínez-Tossas55

et al., 2015). A relatively new development is quantitative study of wind farm wakes from the satellite data (Ahsbahs et al.,

2020). The satellites generally have a lower spatial resolution than scanning lidars and measure wind speed on the horizontal

near-surface plane but still provide general information on the flow around wind farms.
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Several wake detection
:::::::::::
identification

:
methods exist, varying in the complexity and input data requirements (Quon et al.,

2020). Among the variety of wake detection
:::
the methods, we focus on the thresholding and Gaussian fitting because they60

are applicable to a 2D lidar scan in a horizontal or inclined plane. The most common wake detection method is fitting a

:::::::::::
identification

::::::
method

::
is

::
to

::
fit

:
a
::::
one-

:::
or

::::::::::::::
two-dimensional Gaussian distribution to the velocity deficit across the wake at various

downstream positions and get estimations of the wake center and width from the fitted function (Fleming et al., 2014; Vollmer

et al., 2016; Krishnamurthy et al., 2017). The method can be applied both to the averaged and instantaneous wake, although

the irregular wake shape of the latter complicates the detection. For better accuracy, the fitting requires wind speed data in a65

fine spatial resolution. A sufficient spatial resolution is achieved by large-eddy simulation or particle image velocimetry. The

Gaussian fit method can be also
:::
also

:::
be applied to the scanning wind lidar data, provided the wake region is resolved well

enough.
::::::
Overall,

:::
the

::::::
fitting

::::::
method

::::::::
efficiency

:::::::
depends

:::
on

:::
the

::::
data

::::::
quality

:::
and

::::::
spatial

:::::::::
resolution.

::::
The

::::::
method

::::
also

:::::::
requires

:::
the

:::::::
free-flow

:::::
wind

:::::
speed

::
to

:::::::
calculate

:::
the

:::::
wake

::::::
deficit.

:

Alternatively, a threshold value can be definedto
:
.
::
In

:::
the

:::::::
simplest

::::
case,

:::
the

::::::::
threshold

:::::
splits

:::
the

:::::
range

::
of

::::::::
available

:::::
values

::::
into70

::::
two:

::
all

::::::
values

:::::
below

:::
the

::::::::
threshold

::::
fall

:::
into

::::
one

::::::
group,

:::::
while

:::
the

::::::::
remaining

::::::
values

:::::
form

:::
the

::::::
second

::::::
group.

:::::
When

:::::::
applied

::
to

::
the

:::::
wind

::::
field

:::
for

:::
the

:::::
wake

:::::::::::
identification,

:::
the

::::::::
threshold

::::::
would split the data into the wake and free-flow points. Thresholding

methods depend less on the data resolution and mainly rely on the wind speed values. The simplest thresholding method defines

:::
sets

:
a threshold based on the wind speed ratio in the wake and the free flow. The detection is applied up to a

::
As

::::::
shown

:::
by

::::::::::::::::
España et al. (2011),

::::
the

::::::
method

::
is
::::::::
effective

:::
for

:
a
::::::
regular

::::::
flows,

::::
e.g.,

::
in

::
a

::::
wind

:::::::
turbine:

::
a
::::::::
threshold

::
of

::::
95%

:::
of

:::
the

::::::::
free-flow75

::::
wind

:::::
speed

::::::::
identified

:::
the

:::::::::
continuous

::::
part

::
of

:::
the

::::
wake

:::
up

::
to

:::
the

::::::::::
downstream

:::::::
distance

::
of 6−8Ddistance downstream the turbine,

where the wake structure remains primarily continuous. The post-processing may require filtering and smoothing to decrease

the noise (España et al., 2011).
:
.
:::
The

::::::::
resulting

:::::
shape

:::::::
required

:::::::::
smoothing

:::
and

:::::::
filtering

::
to

:::::
reduce

:::
the

::::::
noise.

:::::::::::::::::
Bastine et al. (2015)

::::
used

:
a
::::::
stricter

::::::::
threshold

:::
of

::::
40%

::
of

:::
the

:::::::::
maximum

:::::
wake

:::::
deficit

:::
on

:::
the

::::
LES

::::
data

::
to
::::::

extract
:::

the
:::::

wake
::::
core

::::
and

:::::::
perform

::::::
proper

:::::::::
orthogonal

::::::::::::
decomposition

::
on

:::
the

:::::::::
processed

::::
wind

:::::
field.80

A fixed threshold value
:::
The

:::::::::::
thresholding

::::::
method

::
is
:::
not

::::::
widely

::::
used

::::
due

::
to

::
its

::::::::::
restriction:

:
it
::::::
applies

:::
an

::::::::
empirical

:::::::::
coefficient

:::
that

:
does not account for wind speed distribution and data quality

::
the

::::
data

:::::::
quality

:::
and

:::::
wind

:::::
speed

::::::::::
fluctuations

::
in
::::

the
::::
flow

::::
field,

:
which may be a common issue for a lidar scan. The fitting methods also depend on the data quality and spatial resolution

and may require additional data such as wind direction. We, therefore, refer to image processing techniques that depend less

on the data availability and can be applied both to the image or processed wind speed data. We propose an image processing85

method with an automated threshold estimation, previously developed for the whitecaps detection – Adaptive Thresholding

Segmentation method (ATS) (Bakhoday-Paskyabi et al., 2016). We adapt the method for the wake applications
:::::::::::
identification

and develop new routines to estimate the wake centerline without a priori knowledge of the wind direction.

This study focuses on the technical aspect of the ATS method and discusses its advantages and limitations. The method

is applied to the
:
a scanning lidar data set containing wakes from two wind turbines and various wake-wake or wake-turbine90

interactions. The measurement site and lidar
::::::::::::
measurements

:::
and

::::
LES setup are described in Sect. 2.1, and the data preprocessing

is reviewed
:
2.

:::::
Lidar

::::
data

:::::::
required

:::::::::
additional

::::::::::::
preprocessing,

::::::::
described

:
in Sect. 2

:
3. In the same section, we preview diagnostic

techniques using
::
by

:::::
using

:::::
image

:
entropy to evaluate and classify the data. In addition to the lidar data, we also describe wake
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detection based on LES data as a proof of concept. The application of the image processing method to the wake and centerline

detection
::::::::::
identification

::::
and

:::::::::::::
characterization

:
is detailed in Sect. 4. We

::::::::::
demonstrate

:::
our

::::::::
algorithm

:::
on

:::
the

::::::::
idealized

::::
LES

::::
data

::
as95

:
a
:::::
proof

::
of

:::::::
concept

::
in

:::::
Sect.

::
5.

:::
We

:
then apply the image processing techniques

::::
same

::::::::
algorithm

:
to the lidar data and compare

the result with the manual wake detection,
:::::::::::
deficit-based

::::::::::
thresholding

:
and the Gaussian fit method in Sect. 6. The findings are

summarized in Sect. 7. In the Appendix, we briefly discuss the differences between wake detection
::::::::::
identification

:
from the lidar

scan data and the respective grayscale image.

2 Site
::::
Data descriptionand measurement setup100

2.1
::::

Lidar
::::
and

:::::::::
reference

::::
data

In this study, we use radial wind speed data recorded with a scanning Doppler wind lidar Leosphere WindCube 100S
:::
We

:::
use

::::::::::::
measurements

::
of

:::::
wind

:::::
speed

::::
and

:::::
wind

:::::::
direction

::::::::
recorded

:
during the Offshore Boundary-Layer Experiment at FINO1

(OBLEX-F1) campaign. The FINO1 platform is located in the North Sea at 54◦ 00’ 53.5" N 6◦ 35’ 15.5" E, 45 km to the north

of the German island of Borkum. The installed lidar is oriented towards the alpha ventus wind farm.105

The alpha ventus wind farm
::
is

::::::
located

::
in

:::
the

:::::::
vicinity

::
of

::::::
FINO1

::::
and consists of 12 wind turbines arranged in a rectangular

pattern (Fig. 1). The wind turbines AV1−AV6 are of the type Repower 5M with a hub height of 92 m and a rotor diameter of

126 m; AV7−AV12 are of the type AREVA M5000 with a hub height of 91.5 m and a rotor diameter D of 116 m. The row

and column distances between the turbines vary within 800−850 m, approximately seven rotor diameters, 7D. The distance

between FINO1 and the closest wind turbine, AV4, is 405 m.110

:::
The

::::::
FINO1

:::::::::::::
meteorological

::::
mast

:::
has

:
a
::::
cup

::::::::::
anemometer

:::::::
installed

::
at
:
90 m

:::::
above

:::
sea

::::
level

:::
and

::
a
::::
vane

:::::::
installed

::
at

:
100 m

:::::
above

:::
sea

::::
level.

::::
The

::::
wind

:::::
speed

::::
and

:::::::
direction

:::::::::
measured

::::
with

::::
those

::::::::::
instruments

:::
are

::::
used

::
to

::::::::::
characterize

:::
the

::::
free

::::
flow.

:::
We

::::
will

::::::
further

::::
refer

::
to

::::
them

::
as
:::
the

::::::::
reference

:::::
wind

:::::
speed

:::
and

::::::::
direction,

:::::::::::
respectively.

:::
The

::::::::
scanning

:::::::
Doppler

::::
wind

:::::
lidar

::::::::
Leosphere

::::::::::
WindCube

::::
100S

::::::::
installed

::
at

::::::
FINO1

::
is

:::::::
oriented

::::::
towards

:::
the

::::::
alpha

:::::
ventus

::::
wind

::::
farm.

:
The closest scanned wind turbine, AV7, is located at 919 m or 7.92D from FINO1 .115

A schematic shows (a) the location of FINO1 platform, map made with Natural Earth, (b) wind farms and platforms near

FINO1, status in 2015-2016, and (c) alpha ventus wind farm layout, maximum lidar scan area and scanning height at the

position of each wind turbine.

::::
(Fig.

:::
1c).

:
The lidar is installed at 23.5 m above sea level and operates in a Plan Position Indicator (PPI) scanning mode. In

this mode, the azimuth of the lidar beam changes between 131.5◦ and 179.5◦ at an elevation angle of 4.62◦. The lidar scans the120

south-western sector of the alpha ventus wind farm and captures wake patterns from two wind turbines, AV7 and AV10. The

third wind turbine, AV11, stays outside of the lidar range in most scans, but a part of its wake is visible for the specific wind

directions. The wind turbine AV7 is scanned near the hub height at approximately 97 m. The farther wind turbines AV10 and

AV11 are scanned above the top of the blade tip at 158 m and 188 m, respectively.

In addition to the lidar data, we use the wind speed and wind direction time series from the FINO1 meteorological mast as a125

reference. The wind speed and direction are measured at and , respectively.
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FINO1

(a)
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operational
under construction
planned
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(b)

FINO1

AV1 AV2 AV3

AV4 AV5 AV6

AV7 AV8 AV9

AV10 AV11 AV12

 97 m

158 m

188 m

850 m 7D(c)

Figure 1.
::
A

:::::::
schematic

:::::
shows

:::
(a)

::
the

:::::::
location

::
of

:::::
FINO1

:::::::
platform,

::::
map

::::
made

::::
with

::::::
Natural

:::::
Earth,

::
(b)

::::
wind

:::::
farms

:::
and

:::::::
platforms

::::
near

::::::
FINO1,

::::
status

::
in

:::::::::
2015-2016,

:::
and

:::
(c)

:::::
alpha

:::::
ventus

::::
wind

::::
farm

::::::
layout,

::::::::
maximum

:::
lidar

::::
scan

::::
area

:::
and

:::::::
scanning

:::::
height

::
at
:::
the

::::::
position

:::
of

:::
each

:::::
wind

::::::
turbine.

3 Data description

2.1 Lidar measurements at alpha ventus

The lidar measurements partially cover the day of September 24, 2016 and capture a variety of wake-wake interactions. The

data set used in this study contains the first of each hour. The consecutive lidar scans are separated by approximately 45 s – the130

time required for the lidar to finish one scan. Overall, the
:::
The

:
data set contains 600 lidar scans, which are split into 24 subsets

of 25 scanseach.
:::::
Each

:::::
subset

::::::::
contains

:::
the

:::
first

:
20− 22 minutes

::
of

::::
each

::::
hour. For the simplicity of presentation and referring,

we number the lidar scans from 1 to 600 (Table 1).
::::
600.

The image processing
::::
ATS algorithm accepts the input data as a grayscale image. The wind speed data is adjusted

:
of
:::::

each

::::
lidar

::::
scan

:::
are

:::::::::
normalized

:::
by

::::::
scaling to the range of [0, 1] to imitate the grayscale intensity as135

I =
Umax−U
Umax−Umin

, (1)

where U is the wind speed value measured at a point, Umin and Umax are minimum and maximum wind speed
::::::
speeds

registered in a particular lidar scan. For the lowest wind speed U = Umin (potential wake points), I = 1 denotes the points

with the highest intensity. Similarly, the highest wind speed for U = Umax (free-flow points), I = 0 indicates the points with

the lowest intensity. Figure 2presents an example lidar scan plotted in polar coordinates and then transformed into Cartesian140

coordinates

:::
The

:::::
wake

:::::::::::
identification

::
is

:::::::::
performed

::
on

:::
the

::::
data

:::::
stored

::
in
::
a
:::::
polar

::::::::
coordinate

::::::
matrix

:::::
(Fig.

:::
2a).

:::
For

::
a
:::::
better

:::::::::::
presentation,

:::
the

:::::::
resulting

::::
data

:::
are

::::::
plotted

::
in

:::
the

::::::::
Cartesian

::::::::::
coordinates

::
as

:
a
:::::::
scanned

:::::
sector

:::::
(Fig.

:::
2b).
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Figure 2.
::
An

:::::::
example

::::
lidar

:::
scan

::::
#497

::::
taken

:::
on

::::::::
September

:::
24th

::::
2016

:::::::
19:18:20

::::::
UTC+0

::
at

:::::::
reference

::::
wind

::::
speed

:
7.4 ms−1

:::
and

:::::::
reference

::::
wind

::::::
direction

::::::
151.14◦.

:::
The

::::::
original

::::
data

:::
are

:::::::
presented

::
in

::
(a)

:::
the

::::
polar

:::::::::
coordinates

::::::
R,ϕ as

:::::
stored

::
in

::
the

:::::
matrix

:::
and

:::
(b)

:::
the

:::::::
Cartesian

:::::::::
coordinates

:::::
X,Y .

An example lidar scan #221 taken on September 24th 2016 08:17 UTC+1 at reference wind speed and reference wind

direction 171.2. The original data is stored in (a) the polar coordinates R,ϕ and converted to (b) the Cartesian coordinates145

X,Y .

2.1
:::::::::

Large-eddy
::::::::::
simulation

The wake detection is performed on the data stored in the polar coordinates. The resulting data are converted to the Cartesian

coordinates for a better presentation
::
We

::::
also

:::::::
perform

:
a
:::::::::
large-eddy

:::::::::
simulation

::
to

:::::::::::
demonstrate

:::
and

:::::
verify

:::
the

:::::::::::
performance

::
of

:::
the

::::
ATS

::::::
method

:::
and

::::::::
compare

:
it
::::::
against

:::
the

::::::::
Gaussian

::::
wake

:::::::::::
identification

::::
and

:::::::::::::
characterization

::::::
method

::::::::
described

::::::
further

::
in

::::
Sect.

::::
4.3.150

:::
We

:::
use

:::
the

::::::
PALM

::::
LES

::::
code

::::
with

:
a
:::::::
built-in

:::::::
actuator

:::
disc

::::
with

:::::::
rotation

::::::
(ADR)

:::::
wind

::::::
turbine

:::::
model

:::::::::::::::::::
(Maronga et al., 2020).

::::
The

:::::
results

::::::::
produced

::::
with

:::
the

::::::
model

::::
were

::::::
shown

::
to

:::::::
capture

:::
the

::::::::
reduction

::
of

:::
the

:::::
wake

:::::
deficit

::::
with

:::
the

:::::::::::
downstream

:::::::
distance

::
at

:::
the

:::
rate

::::::
similar

::
to

:::
the

::::::::::
encountered

:::
for

::::
wind

:::::::
turbines

:::::::::::::::::::::::::::::::::::::::::
(Vollmer et al., 2015, 2017; Doubrawa et al., 2020)

:
.
:::
The

:::::
wake

:::::::
recovery

::::::
aspect

:
is
::::::::::
particularly

::::::::
important

::
to

:::
test

:::
the

::::
ATS

:::::::
method

::::::::::
performance

::
in
:::
the

:::
far

:::::
wake.

::::
The

:::::::
currently

::::
used

::::::::::
polynomial

:::::
kernel

::::
also

::::::
allows

:::::
fitting

:::
the

::::::::
Gaussian

:::::::
function

::
to

:::::::
compare

::
it

::::
with

:::
the

::::
ATS

:::::::
method.155

:::
The

:::::::
domain

:::::::
contains

::::::::::::::
2304× 576× 192

::::::
points

:::
and

:::
has

:::
the

:::::::::
horizontal

::::
grid

::::::
spacing

::
of

:
4 m.

::::
The

::::::
vertical

:::::::
spacing

:::::
below

:
600 m

:
is
::::
also

:
4 m

:
.
::::::
Above 600 m

:
,
:::
the

::::::
vertical

:::::::
spacing

::
is

:::::::
stretched

::::
with

::
a
:::::
factor

::
of

:::::
1.08,

::::::
capped

::
at

:::::::::
maximum 8 m

::::
grid

:::
cell

::::::
height.

::::
The

::::::::
roughness

::::::
length

::
of

:::::::::::::::::::::::
z0 = 0.0005m corresponds

::
to

:::
the

:::::
calm

:::
sea

:::::::
surface.

::::
The

:::::::
Coriolis

::::::
forcing

::
is

:::::::
enabled

:::
for

:::
the

:::::::
latitutde

:::
of

:::
54°,

::::
and

:::
the

::::
wind

:::::
speed

::::::::::
components

:::
are

:::
set

::
to

::::::::::::::::
u= 10.5ms−1 and

::::::::::::::
v =−2.6m−1 so

::::
that

:::
the

::::
flow

:::::::
rotation

:
is
:::::::::::
compensated

::::
and

::
the

:::::
flow

:
is
:::::::
aligned

::::
with

:::
the

::::::
x -axis

::::::::
resulting

::
in

:::
the

::::::::
horizontal

::::::
speed

::
of

:::::::::
10ms−1 at

:::
the

::::
hub

::::::
height.

:::
The

:::::::
surface

::::::::::
temperature

::
is160

277 K
:::
and

::::::::
increases

::
by

:
1 K

:::
per 100 m.

:::::::
Neither

::::
heat

:::
flux

:::
nor

:::::::
surface

::::::
heating

:::
are

::::::::
activated.

::::::
During

:::
the

:::::::::
simulation

:::
the

:::::::::
turbulence

:::::::
intensity

::::::
reaches

::::::
6.6%.
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:::
The

::::::::
reference

::::::
NREL

:::::
5MW

::::
wind

::::::
turbine

:::
has

::
a
:::
hub

::::::
height

::
of 102 m

::
and

::
a
:::::::
diameter

::
of

::::::
Dr = 126 m

:::
and

::
is

:::::
placed

:::
in

::
the

::::::
center

::
of

:::
the

::::::
domain

::
so

::::
that

:::
the

:::::
wake

:::::
length

:::
can

:::::
reach

:::
up

::
to

::::::
20Dr .

:::
The

::::
LES

::
is

:::::
used

:::::
solely

::
to
::::::::

generate
:::::::
idealized

:::::
wake

:::::
data.

::
No

::::::
direct

:::::::::
comparison

::
to
:::
the

:::::
lidar

:::
data

::
is
:::::::::
performed.165

3
:::::
Lidar

::::
data

:::::::::::::
pre-processing

::::
and

:::::::::::
classification

3.1 Data quality

Working with lidar scans, we encounter
:::::::
Working

::::
with

:::
the

::::::
current

::::
data

::::
set,

::
we

:::::::::::
encountered two types of noise :

:::::::
affecting

:::
the

::::::
quality

::
of

:::
the

::::
wake

:::::::::::
identification

:::::::
through

:::::::::::
thresholding:

:::::
small wind speed fluctuations not

::::::
directly

:
caused by the wake and high

wind speed due to the
:::::
values

::::::::
appearing

::::
due

::
to

:
a
:
measurement error.170

:::
The

::::::::::::
measurement

:::::
errors

:::
are

::::::::
primarily

:::::::
caused

::
by

::::
the

::::::::
difference

::::::::
between

:::::
wind

:::::::
direction

::::
and

::::
lidar

::::::::::
orientation.

:
The lidar

measures radial velocity, which can be represented through three directional wind speed components u, v, and w, and the

information on the line of sight of the lidar beam, given by the azimuth φ and elevation angle θ:

U = usinφcosθ+ v cosφcosθ+w sinθ (2)

When the wind blows along the lidar’s line of sight, the measured radial velocity is essentially the horizontal wind speed.175

::::
With

:::
the

::::
wind

::::::::
direction

::::::::
differing

::::
from

:::
the

::::
line

::
of

:::::
sight,

:::
the

:::::
radial

:::::::
velocity

:::::::
deviates

::::
from

:::
the

:::::
actual

:::::
wind

:::::
speed

::::::::::
magnitude. In

the case of crosswind – the wind direction is close to
:
a perpendicular to the line of sight – the radial velocity tends to zero .

The lidar cannot measure the crosswind, and
:::
and

::::
does

:::
not

::::::::
represent

:::
the

:::::
actual

::::
wind

::::::
speed.

:::
The

:
measurements taken during the

crosswind event are
::::
more

:
prone to errors compared to other wind directions.

When plotted against the reference wind direction, the reference wind speed and mean
::::
radial

:
wind speed of a lidar scan show180

strong discrepancy for a range of wind directions (Fig. 3). With the lidar scanning in the range of 131.5−179.5◦, the crosswind

effects can be expected for the wind directions of 221.5−269.5◦. As shown in Fig. 3, the crosswind effects already appear for

the wind direction above 210◦. The scans taken at
:::
near

:
crosswind direction show a large number of non-physical wind speed

values reaching 100− 1000 ms−1
:
.
:::
We

::::
refer

::::::
further

::
to

:::::
these

:::::
scans

::
as

:::::::::
’corrupted’.

Occasionally, we also observe weaker spikes in the wind speed value
::::
radial

:::::
wind

:::::
speed, most of which are localized at the185

position of a wind turbine AV10, implying a measurement error due to the lidar beam reflection from rotating blades. The

reference and mean radial wind speeds remain in the good agreement for the wind directions below 210◦ despite containing

spikes in the wind speed data. Nevertheless, the outliers cause an intensity skew when the wind speed data are normalized to

the range of [0, 1] (Fig. 4). The intensity distribution peak moves to the right, with the far left tail
::
left

::::
side containing occasional

low bumps caused by the spikes (Fig. 4d).190

In the example, the middle scan (Fig. 4b) has a wind speed spike of 15 ms−1 , while the reference wind speed reaches . The

wind speed 5.8 ms−1 .
::::
The

:::::
radial

:::::
wind

:::::
speed

:::::::::
magnitude measured in the spike region stays below . The resulting lidar scan

image 7 ms−1 .
::::
The

::::
lidar

::::
scan

::::
after

::::::::::::
normalization is less contrast compared to the adjacent lidar scans.
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Figure 3. Comparison of the mean radial wind speed and
::
the reference wind direction in the data set.
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Figure 4. Consecutive lidar scans from the bimodal subset. Scans (a)
::

No
::::::
outliers

::
are

::::::
present

::
in

::::
scans

::::
#442

:
and (c) have a valid wind speed

range
::::
#444, while scan (b)

:::
#443

:
has wind speed spikes near the wind turbine position and in the far range; subplot (d) shows the intensity

distribution for the same scans.
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To preserve the uniformity between consequent lidar scans of the same subset, we perform despiking – detection and removal

of the spikes. The spikes are detected based on the wind speed value and the difference with the adjacent points. We delete all195

values higher than 30 ms−1 and check the remaining data for the local maximums. We consider a wind speed of
::
An

::::::::::
empirically

::::::
chosen

::::
wind

:::::
speed

:::::::::
difference

::
of 7 ms−1

::::::
proved

::
to

::
be enough to designate a local maximum as a spike. When a spike consists

of a single or double point, it is replaced by a NaN value and the resulting gap is filled by interpolation to retain the continuous

wind field. Larger clusters of high wind speed values are considered noise
:::::
Three

::
or

:::::
more

:::::::
adjacent

::::::
points

:::::::::
designated

::
as

:::::
spike

::
are

::::::::::
considered

:
a
:::::
noise

::::::
cluster;

::
in

::::
such

:::::
cases, gap filling after removal is not performed.200

Since the lidar is oriented towards the closest wind turbine, a string of missing values – a wind turbine ’shadow’ – is always

present in the lidar scans regardless of the wind direction. The shadow rarely crosses wind turbine wakes and did
::::
does not

noticeably affect the performance of the wake detection methods. Hence we do not perform a gap filling to remove the shadow

in addition to the despiking.

3.2 Information entropy and data classification205

We introduce entropy criteria as an alternative to using reference data
::::
wind

:::::
speed

::::
and

:::::::
direction

:
for quality control. The entropy

application ranges from finding a threshold (Pun, 1981) to object classification in an image (e.g., satellite map segmentation

by Long and Singh (2013)). Here, we calculate it primarily for the diagnostic purposes and data classification into subsets.

The information entropy is a measure of noise in the data. It can be calculated for the whole data set as well as across the

rows or columns of a rectangular matrix containing 2D data. We apply Shannon entropy S (Shannon, 1948) as follows:210

S =−
n∑
i=1

P (xi)log2P (xi), (3)

where P (xi) is the probability density function (PDF) of the variable xi (here – intensity) to occur in the data. If the entropy

tends to zero, it indicates uniform data. High
:
A
::::
high

:
entropy value implies disturbances in the lidar scan due to wakes or noise.

However, too strong disturbances caused by measurement errors are reflected as entropy decrease due to the approach we use.

As shown earlier, the outliers cause intensity skew after normalization to the range of 0, 1(Fig. 4b). With the maximum values of215

, the intensity skew after normalization becomes even stronger. The valid wind speed measurements become indistinguishable

and the lidar scan in question is perceived to be uniform, hence its entropy is lower than for the scans containing mostly valid

measurements.

For the directional entropy, we select either

::
To

:::::::
analyze

::::
lidar

::::
scan

::::::::
features,

:::
we

::::::::
calculate

::::::
entropy

:::
for

::::
the

:::::
partial

::::
data

:::::::
instead

::
of

:::
the

::::::
whole

::::
scan.

::::
We

:::::
select

:
wind speed220

values across the beam range or across the azimuth
:::::
either

::
in

:::
the

:::::
radial

::
or

:::::::::
azimuthal

:::::::
direction

:
and calculate a PDF for

:
of

:
this

sample to pass it to the entropy function. An example directional entropy is presented in Fig. 5. The top and the left parts of

the
:::::::
example scan in polar coordinates do not contain wakes, hence the entropy calculated for the respective rows and columns

is lower than for the wake regions. The entropy calculated across the azimuth
:
in

:::
the

:::::
radial

::::::::
direction

:
(Fig. 5a) is higher for

columns containing
:::::::
crossing both wakes instead of one due to higher disturbance rate. An additional entropy increase near the225

azimuth of 130−140◦ can be explained by high noise at the lidar scan border. The entropy calculated across the beam range
::
in

9
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Figure 5.
:::
The

::::::
entropy

::::::::
calculated

::
in

::
the

:::
(a)

::::
radial

:::
and

:::
(c)

:::::::
azimuthal

::::::::
directions

::
of

:::
(b)

::
the

::::
lidar

::::
scan

:::
#61.

::::::::
Reference

::::
wind

:::::
speed

:
is
:
7.19 ms−1

:::
and

:::::::
reference

::::
wind

:::::::
direction

:
is
::::::
203.68◦

::
the

:::::::::
azimuthal

:::::::
direction

:
(Fig. 5c) has a prominent

:::::
shows

:
a
:
peak for the AV7 wake. The AV10 wake produces two less prominent

peaks indicating thinner
::
far

::::
wake

::::::::
produces

::::
less

::::::::
prominent

::::
peak

:::::::::
indicating

:
a
:
wake spread along longer distance . We can utilize

changes in the entropy to detect common features in the lidar scans
:::
and

:::
not

::::::
aligned

::::
with

:::
the

::::::::
azimuthal

::::::::
direction.

We calculate the entropy across the azimuth and beam range
::
in

:::::
radial

::::
and

::::::::
azimuthal

:::::::::
directions

:
for all lidar scans before230

preprocessingand combine them .
:::::::::

Combined
:

into two plots
:
,
:::
the

::::::::
entropies

:::::::
present

::
an

::::::::
overview

:::
of

:::
the

::::
data

:::
set (Fig. 6). The

respective wind turbine positions are marked on the right axis. The lower color bar limit is adjusted for better presentation, while

the actual entropy values reach zero for certain lidar scans
::
the

:::::
better

:::::::::::
presentation

::
of

:::
the

:::::::
features

:::::::::
contained

::
in

::::::::::::
non-corrupted

:::::
scans.

:::
For

:::
the

:::::
scans

::::
with

::::
low

:::::
noise,

:::
the

:::::::
entropy

:::::
values

::::
fall

:::
into

:::
the

:::::
range

:::
of

::::
4− 5

::::
both

::
in
:::

the
:::::::::

azimuthal
:::
and

::::::
radial

:::::::
direction.

The entropy calculated across the beam range
:
in

:::
the

::::::::
azimuthal

::::::::
direction highlights several lidar scans with a significant entropy235

decrease compared to other cases
:::::::::
substantial

::::::
entropy

::::::::
decrease (Fig. 6a) . Those

:
–
:::
the

:::::
value

:::::
drops

:::::
below

::::
two

:::
and

::::
tend

::
to

:::::
zero.
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Figure 6. The directional entropy calculated across
::::::
Entropy

::
of

:
the

:::
raw

::::
lidar

::::
data,

::
all

:::
600

::::
lidar

::::
scans

::::::::
combined:

:
(a) azimuth ϕ and (c) beam

range R of
:::::::
azimuthal

:::::::
entropy, (b) the lidar scan #61.

::::
radial

::::::
entropy.

:::
The

:::::
same scans are also characterized by the measurements corrupted due to the crosswind effect. The spiked data also leads

to entropy decrease although not as gradual. The corresponding scans can be
:
in
::::::::::::

non-corrupted
:::::
scans

:::::
leads

::
to

::
a

::::
local

:::::::
entropy

:::::::
decrease,

:
seen as occasional vertical stripes in (Fig. 6), e.g. , series of scans after

:::
blue

::::
dots

::::::
mostly

:::
at

:::
the

:::::::
location

::
of

::::::
AV10.

:::::
Series

::
of

::::
such

::::::
points

:::
can

::
be

::::
seen

:::
for

:::::
scans #400.

:::::::
176-200

::::
and

::::::::
#401-410.

:
240

The remaining subsets have a
:::::::::::
Non-corrupted

:::::::
subsets

::::
show

:
similar entropy distribution across the beam range

::
in

::
the

:::::::::
azimuthal

:::::::
direction

::::
(Fig.

:::
6a). A wake from the wind turbine AV7 can be seen as an increase of entropy near the turbine’s position

::::::
location.

A weaker increase of entropy can be also seen for AV10, for example, in scans #51−175.

The entropy calculated across the azimuth
::
in

:::
the

:::::
radial

:::::::
direction

::
is

:::::::::
distributed

::::::::
uniformly

:::
for

:::
the

::::::::
corrupted

::::::
subsets (Fig. 6b)also

shows consistent features for the corrupted lidar scans: the subset containing scans #1− 25 and #301− 350 shows asubstantial245

decrease of entropy. Among the remaining scans , ,
:::
but

::::::::
otherwise

:::::
does

:::
not

::::
have

::
as

::::::
strong

::::::::
difference

::
to

::::::::::::
non-corrupted

:::::
data,

::
as

::
the

:::::::
entropy

::
in

:::
the

:::::::::
azimuthal

::::::::
direction

::::
(Fig.

::::
6a).

:::
Part

:::
of

::::::::::::
non-corrupted

:::::
scans

:
(#51−300 and #376−425

:
) show a gradient-like

pattern caused by the absence of wakes in 170−180◦ sector (low entropy) and wakes and border noise in 130−140◦ sector

(high entropy). The pattern is weaker for scans #176−250, where the border noise is absent and wakes are aligned along the

line connecting wind turbines, thus disturbing a smaller area of a lidar scan. The scans #426−600
:::::::
combined

:
demonstrate a hor-250

izontal stripe pattern, caused by the wind blowing towards the lidarand wakes forming in the near scanning range. The entropy

increase matches
:
.
:::::
Wakes

:::::::
forming

::::::
across

:::
the

:::::::
scanned

::::::::
azimuths

::::
cause

:::
the

:::::::
entropy

:::::::
increase

::
in

:::
the

:::::
radial

::::::::
direction

::::::::
matching the

positions of AV7 and AV10, as marked in
::
on the graphs.

11



150

200

250

W
in

d 
di

re
ct

io
n,

 ° Subset type
parallel
transitional
aligned
bimodal
corrupted

00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

Time

4

6

8

W
in

d 
sp

ee
d,

 m
 s

1

50 150 250 350 450 550
Lidar scan index

(a)

(b)

Figure 7.
::::::::::
Classification

::
of

:::
the

:::::
subsets

:::
and

:::::::
overview

::
of
:::
the

:::::::
reference

::::
wind

:::::::
direction

:::
(a),

:::
and

::::
wind

:::::
speed

:::
(b).

Directional entropy of the raw lidar data, all 600 lidar scans combined: (a) entropy calculated across the beam range R , and

(b) entropy calculated across the azimuth ϕ .255

The low entropy criteria agree
::::::
criterion

::::::
agrees well with the crosswind criteria

:::::::
criterion on which scans are likely to contain

a high amount of corrupted data. In general, the scans with a high data corruption rate can be easily identified based on the

percentage of the data points exceeding a specific wind speed limit. The total
:::::
Since

:::
the

::::::::
reference

::::
wind

:::::
speed

:::::
does

:::
not

::::::
exceed

10 ms−1
:
,
:::
we

:::::::
consider

:::
the

:::::
wind

::::::
speeds

:::::
above

:
30 ms−1

::
to

::
be

::
a
:::::
likely

:::::::::::
measurement

:::::
error.

::::
The

::::::::
corrupted

:::::
scans

:::::::::::
consistently

::::
have

::
at

::::
least

:::
1%

:::
of

:::::
points

:::::::::
exceeding

:::
this

:::::
limit.

::::
The

:::::::::
percentage

:::::
drops

::
to
:::::::::

0− 0.05%
:::
for

:::
the

::::
rest

:::::
scans

:::
and

::::::::::
corresponds

:::
to

:::
the260

::::::::
occasional

::::::
spikes.

:

:::
The

:
number of corrupted scans is five subsets, each containing 25 scans

:::
125, i.e., about 1/5 of the total number of scans.

Classification of the remaining valid scans requires either prior
:
a

::::
priori

:
knowledge of the reference wind direction (which may

be unavailable if we work with the image data) or visual evaluation of the wake features (which may be complicated for a large

data set). Entropy criteria can potentially simplify the classification
::
by

:::::::::
presenting

:
a
:::::::::
condensed

::::::::
overview

::
of

:::
the

::::
data

:::
set. Using265

the entropy and intensity histograms, we classify the subsets into the following groups:

1. Parallel wakes subset, Fig. 8a: The wakes do not interact with each other. Some noise may occur at the lidar scan’s

border due to the wind direction approaching the value where the crosswind effects start. Since the wakes propagate

towards this border and add to the disturbance, the entropy calculated in the radial direction shows a consistent increase

near the azimuth of 131◦. The entropy calculated in the azimuthal direction shows a strong increase near the location of270

AV7 due to the wake and a weaker disturbance caused by AV10. The intensity histogram of an averaged subset tends

to be more symmetrical than in other subsets and has a peak close to the intensity of 0.5. The intensity histogram of a

single scan has a peak deviating from the center depending on the amount of noise. Parallel wakes are the most common

case for this data set.
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Figure 8.
::::::
Sample

:::::::
averaged

::::::
subsets

:::
and

::::::
intensity

:::::::::
histograms

:::::::::::
corresponding

:
to
:::

the
:::::::
averaged

:::::
subset

:::
and

::
a

::::
single

::::
scan

:::::
within

:::
the

:::::
subset.

::::
The

::::
wind

::::
speed

::::
data

::
are

:::::::::
normalized

::
to

:::::
imitate

:::
the

:::::::
grayscale

:::::::
intensity.

::::::::
Despiking

:::
and

::::::
removal

::
of
::::::::::
non-physical

::::
wind

:::::
speeds

:::
are

:::
not

::::::::
performed

::
to

::::::
preserve

:::
the

::::::::::
characteristics

::::::
before

::::::::::
preprocessing.

2. Aligned wakes subset, Fig. 8b: The wind blows along the line connecting wind turbines AV7 and AV10 so that the275

former is subjected to a wake. The entropy patterns are generally similar to the parallel wakes subset, except that a

footprint of the AV10 wake is no longer visible for the entropy calculated in the azimuthal direction. The wind direction

is closer to the scanned azimuths range and measurements have less noise compared to the parallel subset, hence the

scans show slightly lower entropy. Compared to the parallel wakes subset, the histogram peak is shifted to the left. The

histogram peak may split into two small peaks located close to each other when the wakes are not perfectly aligned.280

3. Transitional subset. The wind direction changes, so both parallel and aligned wakes can be observed in the subset. This

behavior is observed for a single subset containing scans #401− 425. The transition to slightly lower entropy can be seen

for the entropy calculated in the radial direction at azimuths 130-150◦ (Fig. 6b).

4. Bimodal subset, Fig. 8c: The wind blows along the lidar beam. Two long wakes are formed behind the wind turbines and

merge in the lidar near range. Since the near range is scanned at a high resolution (Fig. 2), the far wake is represented by285

a larger percentage of points compared to the other subsets. Consequently, the intensity histogram approaches a bimodal

distribution, which is especially prominent for the averaged subset. The larger peak represents the free flow, while the
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smaller peak corresponds to the far wakes of AV7 and AV10. The two peaks may merge resulting in one flat peak. The

scans have little noise; the increase of entropy, especially in the radial direction, highlights the presence of the wakes.

5. Corrupted subset, Fig. 8d: The lidar scan is characterized by the amount of non-physical measurements (wind speed290

higher than 30m/s ) exceeding 1% of the lidar scan points. While the valid measurements still take the largest share of a

single scan, they are now considered ’low’ wind speeds in a comparison to the maximum value. Due to the normalization

(Eq. 1) that converts low values into light pixels, the histogram tends to the far right side, forming a sharp peak in intensity

values between 0.9 and 1.0. The entropy in the azimuthal direction is lower than in other subsets and approaches zero,

while the entropy in the radial direction tends to be more uniform than in non-corrupted scans and does not react to the295

presence of a wake.

The overview of the subsets and reference values is presented in Fig. 7 and Table 1 containing wind speed, wind direction

and entropy averaged over each subset. A sample histogram averaged for a typical subset from each group is shown in Fig. 8

:::::::
together

::::
with

:
a
:::::
single

::::
scan

:::::::::
histogram

::::
from

:::
the

:::::
same

:::::
subset.

Classification of the subsets and overview of the reference wind direction (a), and wind speed (b).300

Sample averaged subsets and corresponding intensity histograms. The wind speed data are normalized to imitate the grayscale

intensity.

3.3 LES setup

We have also performed a large-eddy simulation to verify the performance of the image processing algorithm and compare

it against the Gaussian method described further in Sect. 4.3. For that purpose, we use the PALM LES code with a built-in305

actuator disc with rotation (ADR)wind turbine model (Maronga et al., 2020). The results produced with the model were shown

to reproduce the wake shape rather accurately (Vollmer et al., 2015). Particularly, the model resolves the double peak in the

wake deficit distribution near the rotor.

The domain contains 2304× 576× 192 points and has the horizontal grid spacing of . The vertical spacing below is also ,

above the vertical spacing is stretched with a factor of 1.08, capped at maximum grid cell height. The reference NREL 5MW310

wind turbine has a hub height of and a diameter of Dr = and is placed in the center of the domain so that the wakelength can

reach up to 20Dr . The surface temperature is and increases by per . Neither heat flux nor surface heating are activated. During

the simulation the turbulence intensity reaches 6.6%.

The LES is used solely to generate idealized wake data. No direct comparison to the lidar datais performed.
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Table 1. Overview of the lidar data subsets.

Data type Subset Scans WSPD, m s−1 WDIR, ◦ Entropy % of data

Parallel wakes 3 51−75 6.99 205.3 5.11

33.3

4 76−100 7.71 202.7 5.29

5 101−125 7.48 196.0 5.38

6 126−150 6.05 191.4 5.35

7 151−175 6.58 184.0 5.01

11 251−275 7.10 187.8 5.12

12 276−300 7.41 200.2 5.37

16 376−400 5.45 200.9 5.02

Transitional 17 401−425 4.38 184.5 4.76 4.2

Aligned wakes 8 176−200 6.32 176.2 4.69

12.59 201−225 8.30 172.2 5.28

10 226−250 9.19 171.3 5.30

Bimodal 17 426−450 4.11 151.5 5.44

29.2

18 451−475 5.71 147.3 5.31

19 476−500 7.22 150.9 5.72

20 501−525 7.83 154.2 5.67

21 526−550 7.52 159.4 5.64

22 551−575 8.46 160.1 5.72

23 576−600 8.16 157.7 5.70

Corrupted 1 1−25 5.80 243.3 1.54

20.8

2 26−50 6.85 212.1 2.31

13 301−325 7.27 213.4 1.53

14 326−350 7.06 222.2 2.64

15 351−375 6.41 222.0 2.52

4 Methodology315

::::
Wake

::::::::
detection

::::::::
includes

:::
two

::::::
stages

::::::::::::::::
(Quon et al. (2020)

:
):
:::::
wake

:::::::::::
identification

::
–
::
a

::::::::
separation

:::
of

:::
the

:::::
wake

::::
from

:::
the

::::
free

:::::
flow,

:::
and

:::::
wake

:::::::::::::
characterization

:
–
::::::
further

:::::::
analysis

::
of

:::
the

::::::::
identified

::::::
wake.

:::
We

:::::
focus

::
on

:::
the

:::::
wake

:::::::::::
identification

::::::::
methods,

::::::::::
particularly,

::
an

:::::::::::
identification

:::::::
method

:::::
using

:::::::::::
thresholding

:::
and

::::
also

:::::::
provide

::
an

:::::::::
algorithm

:::
for

:::
the

:::::
wake

:::::::::::::
characterization

:::::::
through

:::::::::
centerline

:::::::
detection

:::::
from

:::
the

:::::::::
thresholded

:::::
data.
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Figure 9.
::::::
Sample

:::
LES

::::
wake

::::
and

:::::::
threshold

:::::::
detection.

:::
(a)

::::::
Original

::::::::::
instantaneous

::::
flow;

:::
(b)

::::
same

::::
flow

::::::::
normalized

::
to

:::
the

::::
range

::
of [

:
0,
::
1]

:
;
::
(c)

:::
the

::::::
intensity

::::::::
histogram

::
of

:::
the

::::::::
normalized

::::
data;

:::
(d)

::::
CDF

::
of

:::
the

::::::::
normalized

::::
data

:::
and

::::
CDF

:::
plot

::::::::
curvature;

:::
and

:::
(e)

:::
first

:::
and

:::::
second

:::::::::
derivatives

::
of

::
the

::::
CDF

:::
and

:::
the

:::::::
estimated

::::::::
thresholds.

4.1 Automatic
:::::
Wake

:::::::::::
identification

::::::
using

:::::::::
automatic threshold detection320

The automatic thresholding methods aim to
::::::::::
thresholding

::::::::
methods

:
split an image into background (in our case – free flow)

and foreground (wake). Despite lidar data having large
:
a
:::::::::::
considerable amount of disturbances in the free flow, the wind speed

distribution in a single
::::
lidar

:
scan tends to have one peak. ,

::::::
either

:::::
sharp

::
or

::::::::
flattened

::::
(Fig.

:::
8).

::::
The

:::::
wake

:::::
points

::::
take

::
a
:::::
small

::::
share

:::
of

:::
the

::::
lidar

::::
scan

::::::
stored

::
in

:::::
polar

:::::::::
coordinate

::::::
matrix,

:::::
while

:::
the

:::::::::
remaining

::::::
points

::::::
belong

::
to

:::
the

::::::::
free-flow

::
–

:::
i.e.,

:::
the

:::::
most

::::::::
prominent

:::::
peak

:::::::
contains

::::::::
free-flow

::::::
points.

::::
The

::::::::
exception

::
is
::::

the
:::::::
bimodal

::::::
subset,

::::::
where

:::
the

:::
far

:::::
wakes

::::::::::::
characterized

::
by

:::::
high325

::::::
number

::
of

::::::
points

::::
(Fig.

:::
2).

:::
As

:::
the

:::::
result,

:::
the

:::::::::
histogram

::
of

::
a
::::
scan

::::
from

:::
the

::::::::
bimodal

:::::
subset

::::
may

::::
have

::::
two

:::::
peaks

:::::::::
depending

:::
on

::
the

::::::::
intensity

::
of

:::
the

:::
far

::::::
wakes.

::
To

:::::
make

::::
our

::::
wake

:::::::::::
identification

:::::::
method

::::::::
universal,

:::
we

:::::
build

:
it
:::::
upon

::::::::
threshold

::::::::
detection

::::
from

::
a

:::::
single

::::::::
histogram

:::::
peak.

::::
The

:::::::
specifics

::
of

:::
the

:::::
wake

:::::::::::
identification

::
in

:::
the

:::::::
bimodal

::::
case

:::
are

::::::
further

:::::::::
described

::
in

::::::
Section

:::
6.4

::::
and

::
in

::
the

:::::::::
Appendix.

:

A single peak limits the applicability of the common thresholding methods that search for the local minimum of a bimodal330

histogram (Otsu, 1979). The lidar scan structure has similarities with the ocean surface images: a background with small

disturbances and bright whitecaps. Bakhoday-Paskyabi et al. (2016) described three methods of the
::
an automated threshold

detection for the whitecaps. We choose an Adaptive Thresholding Segmentation (ATS) method identified to be fast and reliable

by the original study. The basic principles of the ATS method are introduced here on a test example of an averaged
:::::::::::
instantaneous

LES wake.335

Figures 9a and 9b show the wind speed field of a 10-minute averaged
::
an

:::::::::::
instantaneous

:
LES wake and the same data

normalized to the range of [0, 1]. A threshold T is a
::
an

::::::::
intensity value in the range [0, 1] that separates the free flow and
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wake points. After the threshold is applied to the normalized wind field, a binary matrix WP is constructed from I as follows:

WP (i, j) =

0 : I(i, j)≤ T – free-flow point,

1 : I(i, j)> T – wake point.
(4)

The intensity threshold can be converted back to the wind speed
::::
radial

:::::::
velocity

:
threshold Uth by :

:::::::
reverting

:::
the

::::::::::::
normalization340

:::::::::
expression

:::
Eq.

:
1
::
as

:

Uth = Umax(1−T ) +UminT. (5)

The normalized wind speed data can be
::
are

:
represented as an intensity histogram (Fig. 9c). Let H(x) for x ∈ [0,1] be

the cumulative distribution function (CDF) of the intensity data. Then H ′(x) and H ′′(x) are its first and second derivatives,

respectively. With respect to the definition of intensity I in Eq. (1), the wake points are located in the histogram’s tail, while345

the free-flow points form a peak on the left side. The transition region where the peak tends to the tail is a good choice to look

for a
:::::
search

:::
for

:
a
:::::::
suitable

:
threshold. We detect the threshold at the point where the CDF slope is close to constant, i.e., the

curvature C(x) approaches zero.

C(x) =H ′′(x)[1 +H ′(x)2]−3/2. (6)

The curvature graph tail (Fig. 9d) may fluctuate and complicate the detection of the zero curvature. Instead, we look at the350

first and second derivatives
:::::::::
H ′(x) and

::::::
H ′′(x) separately. The threshold value

:::
T2 is selected as an inflection point at the right

side of the second derivative graph (Fig. 9e). A similar point in the first derivative graph can be
::::
T1 is

:
used as a complementary

valueto improve accuracy.
::::::
control

:::::
value.

::::
We

:::::
select

:::
the

:::::::::
threshold

::
as

:::
an

:::::::
average

:::::
value

:::::::
between

::::
first

::::
and

::::::
second

:::::::::
derivative

::::::::
inflection

:::::
points

::
to

::::::
smooth

:::
the

::::::::
threshold

:::::::
detection

::::::::
outcome.

::
If

:::
the

:::::
points

:::::::
initially

:::
laid

:::::
close

::
to

::::
each

:::::
other,

::
the

::::::::
averaged

::::::::
threshold

:::::::::::::::::::
T = (T1 +T2)/2 would

:::
not

:::::::
deviate

:::
too

:::
far

::::
from

::::
T2 .

::
If

:::
the

::::::::
difference

:::::::
between

::::::
T1 and

:::::
T2 is

::::
high,

:::
the

:::::::::
smoothing

::::::::
prevents

:::
the355

:::::::
threshold

:::::
from

:::::
being

:::
too

::::
strict

::::
and

::::::
leaving

:::::
weak

:::::
wakes

::::::::::
undetected.

In the case of the lidar data, the derivative plots may have strong oscillations. Therefore, we fit a polynomial function on the

range between intensity Ik,
:
corresponding to the most prominent local extremum and maximum intensity Imax = 1. We fit a

polynomial function with the order of five
:::::::
function

:::::::::::::::::
F (k) = a1 + a2/k

5 , since the corresponding fit returned low root-mean-

square error (RMSE) while not altering the inflection point location significantly.360

The estimated inflection points should lie close to each other. We select the threshold as an average value between first

and second derivative inflection points to smooth the detection outcome. Alternatively, for example in the case of a smooth

one-peak histogram, only a second derivative inflection point can be used.

::::
After

:::
the

::::::::
threshold

::
is
::::::
found,

:::
we

:::::
apply

:
it
:::

to
:::
the

::::
data

::
as

::::::::
described

::
in

:::
Eq.

:
(4)

:::
and

:::::
obtain

::
a
:::::
binary

::::::
matrix

::::::::
WP that

:::::::::
represents

:::::::::
thresholded

:::::
data.

::::
Each

::::::
matrix

:::::
point

::::::::::
corresponds

:::
to

::
an

::::::
image

:::::
pixel.

:::::::
Because

:::
of

:::
the

::::
wake

::::::::::
irregularity,

:::::::::
especially

::
in

:::
the

:::::
lidar365

::::
scan,

:::
the

::::::
method

:::::::
usually

::::::
detects

::::::
several

::::::
clusters

::
of

::::::::::::
high-intensity

::::::
points.

::::
Any

::::::
cluster

:::
may

:::
be

:
a
::::
part

::
of

:
a
:::::
wake

::
as

::::
well

::
as

::::::
falsely

:::::::
detected

:::::
noise.

:::
We

:::
do

:::
not

:::
yet

:::::::::
distinguish

:::::::
between

:::::
wake

::::
and

::::
noise

::::
and

::::
refer

::
to
:::

all
:::::::
detected

:::::::
clusters

::
as

::::::
’wake

:::::::
shapes’.

::::
Due

::
to

::
the

:::::
code

:::::::::::::
implementation,

:
the centerline can be also estimated without the prior knowledge of wind direction.

::::::
detected

::::::
points

17



Procedure 1
::::::::
Automatic

::::::::
threshold

::::::::
detection

Input:
:::
U(r,

::
φ )

:
{raw lidar data}

:::::
despike

::::
U(r,

::
φ )

:

Input:
::::::::::
k ∈ [0,1] step

::::
0.01

:::::::::::::::::::::::::
I← (Umax−U)/(Umax−Umin)

::::::::::
H← f(I,k) {get the intensity histogram}

:::::::::::
H1← ∂H/∂k

:::::
smooth

:::::::
H1 with

::::::
moving

::::::
average

:::::
n= 4

:::::::::::::
H2← ∂2H/∂k2

:::::
smooth

:::::::
H2 with

::::::
moving

::::::
average

:::::
n= 4

:::::::
normalize

::::::
H1 and

:::
H2

::::::
P1← fit

::::::::::::::::::
F (k) = a1 + a2/k

5 on
::::::::::::
[k(maxH1),1]

::::::
P2← fit

::::::::::::::::::
F (k) = a1 + a2/k

5 on
:::::::::::
[k(minH2),1]

::::::::::::::
T1← P1 inflection

::::::::::::::
T2← P2 inflection

Output:
::::::::::::::
T ← (T1 +T2)/2

Sample LES wake and threshold detection. (a) Original flow averaged over 10 minutes; (b) same flow normalized to the range of 0, 1; (c)

the intensity histogram of the normalized data; (d) CDF of the normalized data and CDF curvature; and (e) first and second derivatives of

the CDF and the estimated thresholds.

{threshold data as WP (r,φ) }

4.2 Wake detection using image processing techniques

In the thresholded image, it can be expected that the near wake will be the largest continuous structure of all detected shapes due to the

highest wake deficit. The presumed wake shape is also most likely to contain a wind turbine within it. Points identified as a wake can be

extracted for further analysis, either as a shape or a borderline contour. The wake centerline is then defined as a middle line of the wake

shape. To fully automate the centerline detection, we require the wind turbine coordinates, and preferably, the wind direction. The wind

direction is particularly useful to distinguish wake shapes from noise, as it allows to exclude shapesdetected in the upwind direction as

false positives. Nevertheless,

if I(r,φ)< T then

::::::::::::
WP (r,φ)← 0 {free-flow point}

else

::::::::::::
WP (r,φ)← 1 {wake point}

end if
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:::::
belong

:::
to

:::
the

::::
same

:::::
shape

:::
as

::::
long

::
as

:::
the

::::::::::
constituting

:::::
points

:::
are

::::::::
adjacent

::
in

:::
the

::::::
matrix

:::::
WP .

::::
The

:::::
shapes

::::::::
touching

::::
only

:::
by

:::
the

::::::
corners

:::
are

:::::::::
considered

::
to

::
be

:::::::
separate

:::::::
shapes.370

We demonstrate the centerline detection on a simple case of 10-minute averaged LES wake (Fig. 12a ). After the threshold

is applied, the wake is presented as a continuous structure (Fig. 12b). In the example, the wakeexpansion is not detected for

x/D > 10 due to the wind speed recovery to the free flow near y/D ≈ 2 . Nevertheless,

4.2
::::

Wake
:::::::::::::::
characterization

:::::
from

:::
the

::::
data

:::::::::::
thresholded

::
by

:::
the

:::::
ATS

::::::
method

:::
For

:::
the

::::
wake

::::::::::::::
characterization,

:::
we

:::::
detect

:::
the

:::::::::
centerline

::
of

:
a
:::::
wake

::::::
shape.

:::
The

:::::::::
centerline

:::::
search

:::::::
method

:::::
starts

::::
with

::::::::
extracting

::
a375

::::::
contour

::
of

::
a
::::
wake

::::::
shape;

:::
the

::::::
further

::::::::
algorithm

::
is
:::::
based

:::::
upon

:::
the

::::::::::
geometrical

:::::::::
properties.

::
It

:::::
should

:::
be

:::::
noted

:::
that

:::
the

:::::::::
centerline

:::::
search

:::::::::
algorithm

::::
does

::::
not

::::::
strictly

:::::::
depend

:::
on

:::
the

::::
ATS

:::::::
method

::::
and

:::
can

:::
be

:::::
used

::
as

::
a
::::::::::
stand-alone

:::::::::
algorithm

:::
that

::::::::
requires

:::::::::
thresholded

::::
data

::
as

:::
an

:::::
input.

::
To

::::
start

:::
the

::::::::
centerline

::::::
search

:::::::
method,

:::
we

::::::
require

:
a
:::::::::
procedure

::
to

::::::::
determine

:::::
which

::::::
shapes

::::
were

::::::::
correctly

::::::::
identified

::
as

::
a

:::::
wake.

:::
The

::::
ATS

:::::::
method

:::::::
searches

:::
for the detected shape is suitable for the centerline detection.

:::::::::::
high-intensity

::::::
points

::::::::::::
corresponding

::
to380

::
the

:::::::
highest

:::::
wake

::::::
deficit.

:::::::::
Containing

:::
the

:::::::
highest

::::
wind

:::::
speed

::::::::
decrease,

:::
the

:::::::::
near-wake

::::::
region

::::::::
perfectly

:::::::
satisfies

:::
this

:::::::::
condition.

::::::::
Therefore,

::
it
::::
can

::
be

::::::::
expected

::::
that

:::
the

::::
near

:::::
wake

::::
will

::
be

::::
one

::
of

:::
the

::::::
largest

::::::::::
continuous

::::::
shapes

::::::
among

:::
the

:::::::
detected

::::
and

::::
will

::::::
contain

::
a

::::
wind

:::::::
turbine

:::::
within

:::
or

::::
near

::
it.

::::
The

:::::::::
borderline

:::::::
contour

::
of

:::::
such

:::::
shape

::
is

::::::::
extracted

:::
for

::::::
further

::::::::
analysis.

::::
The

:::::
wake

::::::::
centerline

::
is

::::
then

::::::
defined

::
as

::
a

::::::::
centerline

::
of

:::
the

::::::::
extracted

:::::::
contour.

Assuming the outline of the shape as wake boundaries, we estimate the wake centerline using the following algorithm:385

1. We start
:::
The

::::::::
algorithm

:::::
starts by drawing a circle of radius 1D around the wind turbine and mark

:::::
marks

:
points where the

circle crosses the borders of the wake shape. If the circle happens
::::::
appears to lie within the wake shape completely, the

initial radius should be increased
:
is
::::::::
increased

::::
until

:::::::::::
intersections

:::
are

:::::
found.

2. The midpoint of the arc inside the wake presumably
::::::
contour

:
indicates the wake direction and is stored as the centerline

midpoint.390

3. We increase the circle diameter and repeat
:::
The

:::::
circle

::::::::
diameter

::
is

::::::::
increased

:::
by

:
a
::::::::::
pre-defined

::::
step,

::::
e.g.,

::::::
0.1D ,

::::
and

:::
the

steps 1−2
::
are

:::::::
repeated

:
until the end of the wake shape is reached(Fig. 12c).

Wake and centerline detection for a sample 10-minute averaged LES wake: (a) normalized flow field, same as Fig. 9b; (b)

wake shape after threshold is applied; and (c) shape contour and centerline detection.

In an irregular wake shape
::::
This

:::::
short

::::::::
algorithm

:::::
works

:::
as

:
it
::
is
:::
for

:::
an

::::
ideal

::::
case

::
of

::
a
::::::
smooth

:::::
wake

:::::::
contour

:::
and

::::::
known

:::::
wind395

:::::::
direction

::::::::
matching

:::
the

:::::
wake

:::::::::
direction.

::::::::
However, the circular lines may cross the wake boundaries

:::::::
irregular

:::::
wake

:::::::
contour

several times. For the initial step, it may be difficult to resolve the ambiguity, if the wind direction is unknown. Considering the

near wake to be wide and continuous, we assign the midpoint of the longest arc inside
::::::
expect

:::
the

::::::::
centerline

:::::
point

::
to

::
lie

::::::
within

the wake shapeas the centerline point. We also assume that the wake does not turn gradually further downstream. Therefore,

the segment between the last known and unknown midpoint should turn by a relatively small angle compared to the previous400
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segment. The new midpoint also has to lie within the wake shape
::::
wind

::
or

:::::
wake

:::::::
direction

::
is
::::::::::::
advantageous

::
to

:::::::::
distinguish

:::::
wake

:::::
shapes

:::::
from

:::::
noise,

::
as

::
it

:::::
allows

:::::::::
narrowing

:::
the

:::::
search

:::
by

::::::::::
disregarding

::::::
shapes

:::::::
detected

::
in

:::
the

:::::::
upwind

:::::::
direction

::
as

::::
false

:::::::::
detection.

:::
The

::::::::
currently

::::
used

:::::::::
centerline

:::::
search

:::::::::
algorithm

:
2
::::::::

provided
::::::
further

::::::::
includes

::::
these

::::
and

::::::
several

:::::
other

::::
rules

:::
for

::::::::
selection

::
of

::
a

::::
wake

:::::
point

:::::
when

::
an

:::::::::
ambiguity

::
is

::::::
present.

::::
Fig.

:::
10

:::::
shows

::
an

::::::::
example

::
of

:::::::
resolved

:::::::::
ambiguity

:::::
based

::
on

:::
the

:::::
wind

::::::::
direction.

::
If

:::
the405

::::
wind

:::::::::
direction

:::
was

:::
not

::::::::
available,

:::
an

::::::::
estimated

:::::
wake

:::::::
direction

:::::
could

:::
be

::::
used

::::::
instead

::::
with

:::
the

:::::
same

:::::::
outcome.

Procedure 2
::::
Wake

:::::::::
centerline

::::::::
detection

::::::::::::
N(r,φ)← label

::::::::
WP (r,φ) {enumerate detected shapes}

Input:
::::::::
(xw,yw) or

::::::::
(rw,φw) {wind turbine coordinates}

if WP (rw,φw) = 1 then

::::::::::::::
n←WP (rw,φw) {select a wake shape containing the wind turbine}

else

:::
find

::::::::
n ∈N and

::
R {select the largest detected shape near the wind turbine location}

end if

:::::::::::
L← boundary

::::::
contour

::
of

::
the

:::::
wake

::::
shape

::
n

for d= 1 to 15D step 0.1D do

::::::::::
C← contour

::
of

:
a
::::
circle

::::
with

:::::
radius

::::::::
r centered

:
at
::::::::
(xw,yw)

::::::::::
pi← intersect

:::::
L and

::
C

::::::
calculate

::::::::
midpoints

::
on

:::
the

:::
arc

::::::
between

::::::::
(pi,pi−1)

:::::::::::
Np← number

::
of

:::::::
midpoints

:::::
inside

:::
the

::::
wake

::::
shape

::
n

if Np == 0 then

::::::::::::
(xrc ,y

r
c )← NaN {the circle does not cross the wake contour}

else if Np == 1 then

:::::::::::::::
(xrc ,y

r
c )← midpoint

:::::
p1,p2 {centerline point is the only midpoint inside a wake}

else

{ambiguous centerline point, limit the search}

:::::::::::
α← deviation

::::
from

::
the

:::::
know

::::
wind

::
or

::::
wake

:::::::
direction

::
for

::::
each

::::
valid

:::::::
midpoint

::::::::::::::::::::
(xrc ,y

r
c )←min(α(xr

c ,y
r
c ))

end if

end for

Output:
::::::
Xc,Yc

Generally, this centerline-search method does not require
:
a

:::::
priori knowledge of the wind direction. However,

:
it
::::
may

:::
be

::::::
difficult

::
to
:::::::

resolve
:::
the

:::::::::
ambiguity

::
on

:::
the

::::
first

:::::
step,

:
if
::::

the
::::
wind

::::::::
direction

::
is

:::::::::
unknown.

:::
For

::::::::
example, the aligned wakes subset

(Fig. 8b) and, to a certain extent,
::::
also

:::
the bimodal subset (Fig. 8c) introduce ambiguity in a wake direction for the downstream

wind turbine AV7. The
::
A

:::::
circle

::::::
drawn

::::::
around

::::
AV7

::::
may

:::::
cross

:::
the

:::::::
detected

:::::
wake

::
in
::

at
:::::

least
::::
four

::::::
points.

::::
The

::::::::
algorithm

::::
will410
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Figure 10.
::
An

:::::::
example

::::
wake

::::::::
centerline

:::::::
detection

::
in

::
an

::::::::
ambiguous

::::
case.

::
in

:::
turn

:::::::
identify

:::::::::::
downstream

:::
and

::::::::
upstream

::::::
points

::
as

::::::::
potential

::::::::
centerline

::::::
points.

:::
To

:::::::
continue

:::
the

:::::::
search,

:::
the

::::::::
algorithm

::::
has

::
to

:::::
select

::::
only

:::
one

::::::::
direction.

::
In

:::
the

:::::::
absence

::
of

:::
the

::::::::
reference

:::::
wind

::::::::
direction,

:::
the

:
ambiguity can be resolved either by applying the

reference wind direction or starting the detection from the upstream wind turbineAV10.

The estimated centerline is further used to calculate the
::
by

::::::::::::
approximating

:::
the wake direction

:::
first.

:

:::
The

:::::::::
procedure

::
to

::::::::::
approximate

:::
the

:::::
wake

:::::::
direction

::::
runs

::::::::
similarly

::
to

:::
the

::::::::
centerline

:::::::
search,

::::
with

:::
few

:::::::::
alterations.

:::::
First,

:::
the

::::
step415

:
is
:::::::::
increased,

:::
but

:::
the

::::::::
algorithm

::
is

:::
run

::
for

::
a
::::::
shorter

:::::
length

::::
until

::::::::::::::
4D downstream,

::
so

::::
only

:::
the

:::::
most

:::
well

::::::::
resolved

:::
part

::
is

:::::::::
processed.

:::
All

::::::::
midpoints

::::::
laying

:::::
inside

:::
the

:::::
wake

:::::::
contour

:::
are

::::::::
accepted,

:::::
since

::::
there

::
is

:::
yet

:::
no

::::
way

::
to

:::::
make

:
a
:::::::::
distinction

::::::::
between

:::::
them.

::
A

:::::
linear

:::::::
function

::::::::::
y(x) = ax is

::::
then

:::
fit

::
to

:::
the

::::::::
identified

:::::::::
midpoints.

:
If
:::
the

:::::::::
coefficient

::
of

::::::::::::
determination

::
is

:::::::
negative

:::::::::
(R2 < 0 ),

:::
the

::
fit

:
is
:::
too

::::::::::
inaccurate,

:::
and

:::
the

::::::::
procedure

::
is
::::::::
repeated

::
for

:::::::
another

::::
wind

:::::::
turbine. The wake from

:::
The

::::::::
intercept

::::
value

::::
a of

:::
the

::::
best

::
fit

::
is the wind turbine AV11 is usually weak and easily confused with the noise; we do not420

consider this wake in our analysis
:::::::::
arctangent

::
of

:::
the

:::::::::::
mathematical

:::::
wind

::::::::
direction

::::
(Fig.

::::
11).

::::
The

:::::::::::
approximated

:::::::::::::
meteorological

::::
wind

:::::::::
direction

:
is
::::
then

:

ΦMET =
3

2
π−ΦMATH =

3

2
π− arctana

::::::::::::::::::::::::::::::::::

(7)

:::
The

::::::::::::
approximated

::::
wake

::::::::
direction

:::
may

:::::::
strongly

::::::
deviate

:::::
from

:::
the

:::::
actual

::::
wake

::::::::
direction,

:::
so

:
it
::
is

::::
only

::::
used

::
to

::::::
resolve

:::::::::
ambiguity.

:::
The

:::::
actual

:::::
wind

:::::::
direction

::
is
::::::::
estimated

:::::
from

:::
the

:::
full

::::::::
centerline. We convert the coordinates of the centerline points for

:::
the AV7425

and AV10 wakes to the Cartesian system and subtract the respective wind turbine positions to get a set of the relative centerline

coordinates. We assume a centered data set and add a point (0, 0) corresponding to the relative wind turbine position. The
::::
wake

::::
from

:::
the

::::
wind

::::::
turbine

::::::
AV11

:
is
:::::::::
prominent

::::
only

:::
for

:::
the

:::::::
bimodal

:::::
subset

::::
and

:
is
:::
too

:::::
short

:::
and

:::::
easily

::::::::
confused

::::
with

:::
the

:::::
noise

::
in

:::
the

::::
other

:::::::
subsets.

:::
We

:::
do

:::
not

:::::::
consider

::::
this

::::
wake

:::
in

:::
our

:::::::
analysis

:::
due

::
to
:::

the
:::::

little
::::::::::
information

:
it
::::
can

::::::
provide

:::::::::
compared

::
to

:::
the

:::::
other

:::
two

::::::
wakes.

:::
The

:
composed data set is fitted with the linear regression, and the fitted line indicates the estimated wake direction.430
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Figure 11.
:::
The

::::::
relation

:::::::
between

::::
radial

::::
wind

:::::
speed

:::
U ,

:::::
actual

::::
wind

::::
speed

::::
U ′ ,

::::::
azimuth

::::
angle

:::::
φ and

:::::::::::
meteorological

:::
and

:::::::::::
mathematical

::::
wind

:::::::
directions

:::::::::
ΘMET and

::::::::
ΘMATH .

4.3 Wake detection
:::::::::::
identification

::::
and

:::::::::::::::
characterization using the Gaussian method

The wake deficit distribution is similar to the Gaussian distribution in the far wake (Ainslie, 1988) and often shows a double

Gaussian peak in the near wake (Magnusson, 1999). This feature
:::
The

::::::::
similarity

::
to

:::
the

::::::::
Gaussian

::::::::::
distribution makes a base for

a widely used method to detect wake boundaries and centerline (Vollmer et al., 2016; Krishnamurthy et al., 2017). The method

requires the data in a two-dimensional horizontal plane, which makes it versatile and practical to use for the wake detection. A435

small plane inclination can be allowed as long as the wake profile is not subjected to the wind shear effects.
::::::::::
identification

::::
and

:::::::::::::
characterization.

:

A normalized
::::
Due

::
to

:::
the

::::
lidar

::::::::
elevation

:::::
angle,

:::::
AV10

::
is

:::::::
scanned

::::
near

:::
the

:::
top

::
tip

::::
and

::::
does

:::
not

:::::
show

:
a
::::::
double

:::::
wake.

::::
The

::::
scan

::::::::
resolution

::::
near

::::
AV7

::
is

:::
not

::::::
always

:::::::
sufficient

::
to

::::::
resolve

::
a
::::::::::
pronounced

::::::
double

:::::
wake.

::::::::
Therefore,

:::
we

::
fit

:::
the

:
wake deficit distribution

is fitted with the
::::
with

:
a
::::::
single Gaussian function:440

F (y) =Aexp

(
− (y−µ)2

2σ2

)
, (8)

where the amplitudeA, mean value µ, and standard deviation σ are the parameters to fit;
:::
the variable y is a coordinate across

the rotor axis
::
on

:
a
::::
line

:::::::::::
perpendicular

::
to

:::
the

:::::
wind

::::::::
direction.

::::
The

:::::
fitting

:::::
starts

::::
from

:::::
1D to

:::::
avoid

:::::::::::
uncertainties

::::::
caused

:::
by

:
a
:::::
weak

:::::
double

:::::
wake

::::::::
observed

:::
for

:::::
AV7.

:::
We

::::::
attempt

::::::
fitting

:::
for

:::
the

:::::
wake

:::::
deficit

:::::::
profiles

::
up

::
to
:::::::::::::::

15D downstream
:::::::
distance

::::::::
covering

:::
the

:::::
length

:::
of

:::::
most

:::::
wakes

::
in

:::
the

::::
lidar

::::
data

:::
set.445

For a wake deficit distribution, the fitted single Gaussian function F (y) reaches
::
its

:
maximum at y = µ, i.e., the estimated

mean µ gives the wake center positionacross the rotor axis. The wake boundaries are defined through the mean value µ and
:::
the
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standard deviation σ as µ± 2ln2σ so that the velocity deficit at
::
the

:
wake boundaries is 5% of the velocity deficit at the wake

center (Aitken et al., 2014).

Unlike the centerline detection using image processing, the Gaussian method should be applied to the data extracted along450

the straight-line. We attempt fitting for the wake deficit distributions up to 15D downstream distance covering the length of

most wakes
:::
The

::::::::
Gaussian

:::::::
function

::
is

::::
fitted

::
to

:::
the

:::::
wake

:::::
deficit

::
of

::::::::::::::::::
∆U(y) = 1−U/U0 ,

::::
thus

:
a
:::::::::
knowledge

:::
of

:::
the

:::::::
free-flow

:::::
wind

:::::
speed

::::
U0 is

::::
also

::::::::
required.

:::::
Since

:::
the

::::::::::
background

::::
flow

:
is
::::::
rather

::::::::::
non-uniform

:
in the lidar data set

:::::
scans,

:::
we

:::::
probe

:::
the

:::::::
velocity

::
at

::::
each

:::::::::::
cross-section

:
at
::::::::::
1.6D from

::
the

:::::
rotor

:::
axis

::::::::::::::::::::::::
(Krishnamurthy et al., 2017).

::::
The

::::
LES

::::
data

:::
use

:::
the

::::
wind

:::::
speed

::
at

:::
the

:::
hub

::::::
height

::
as

:::
the

:::::::
free-flow

:::::
wind

:::::
speed.455

We run the Gaussian fit method in an automatic mode. The wake deficit distribution is extracted for a straight line
::::::
method

:::::
should

:::
be

:::::::
applied

::
to

:::
the

::::
data

::::::::
extracted

::::::
along

:::
the

::::::::::
straight-line

:
perpendicular to a pre-defined search direction, usually the

reference wind direction. The Gaussian fit
:
.
:::
The

:
algorithm thus requires knowledge of the wind direction before the fitting.

The algorithm is also dependent on the accuracy of the wind direction measurements and the similarity between reference

wind and actual wake direction.
::::::
During

:::
our

:::::::
analysis,

:::
we

::::::::
observed

:::
an

:::::
offset

::
of

:::::
about

:
5◦

:::::::
between

:::
the

:::::::::
directions,

::::::
which

::::::
caused460

:::::
fitting

:::::
errors

:::
for

::::::::
otherwise

::::
clear

::::::
wake. To reduce the influence of a possible discrepancy between wind and wake direction, we

recalculate the search direction after enough points are accumulated. For example, the fitting starts from at 0.5D with a step of

0.1
::::

every
:::
five

::::::
points

::
by

:::::
fitting

:::
the

:::::
linear

::::::::
function

::
to

:::
the

:::::::::
previously

:::::
found

:::::
center

::::::
points.

:::
The

:::::
wake

::::::
deficit

::::::
profiles

::::::::
extracted

:::
for

:::::
fitting

:::::
have

:
a
::::::
width

::
of

:::
2.5Dalong the search direction. After the wake deficit at 2

:
,

:::::
except

:::
for

:::
the

::::::::
bimodal

::::::
subset.

::::::
There,

:::
the

::::::
profile

:::::
width

::
is
:::::::::
decreased

::
to

::::
1.75D is fitted, we fit the linear regression to

::::
after465

:::::::
reaching

:::
the

::::::::::
downstream

:::::::
distance

::
of

:::::
6D .

:::
The

:::::::::
correction

::
is

:::::
active

::::
only

:::
for

:
the previously found center points and recalculate

the search direction. The process is then repeated for each step along the wake.

It should be noted that a wake usually expands beyond rotor diameter size. Hence, it is important to have more data points

in the wake deficit distribution to improve fitting results. At the same time, the extracted line should not be too long to exclude

disturbance from the other wakes, if present, or low wind-speed streaks
::::
scans

::::
after

:::::
#500

:::::
where

:::
the

:::::
AV10

:::
far

::::
wake

::::
and

:::
the

::::
AV7470

::::
wake

:::::
come

::::
close

:::::::
enough,

:::
but

:::
do

:::
not

:::
yet

:::::
merge

:::::::::
completely

::::
and

::::
allow

:::::::::
separation.

::
If
:::
the

::::::::
Gaussian

:::::::
function

::
is

::
fit

::
to

:
a
:::::
wider

::::::
profile

::::
there,

::::
the

:::::
fitting

:::::
would

:::::::
mistake

::::::
higher

:::::
deficit

:::
in

:::
the

::::
AV7

::::
near

:::::
wake

::
for

:::
the

::::::
center

::
of

:::
the

:::::
AV10

::::::
wake.

::::::::
Reducing

:::
the

::::::::
extracted

::::
wake

::::::
profile

:::::
width

::::::::
improves

::
the

:::::::::
centerline

::::::::
detection

::
in

::
the

:::::
AV10

:::
far

:::::
wake

:::
and

::::::
delays

::
the

::::
first

:::::::::
occurrence

::
of

::::
this

::::
error,

::::::::
although

::::
does

:::
not

::::::
always

::::::
prevent

::
it.

4.4 Wake deficit threshold
:::::::::::
Deficit-based

:::::
wake

:::::::::::
identification475

In addition to the Gaussian fit, we apply a threshold based on the wake deficit criteria
:::::::
criterion. The method assumes that the

:
a

point belongs to the wake if the wind speed at it
::::
there is less or equal to 95% of the free-flow wind speed (España et al., 2011).

Here we assign ;
::::
here

::
–

:::
the

::::::::
reference

::::
wind

::::::
speed.

:::
The

::::
lidar

::::::::
measures

:::::
radial

:::::::
velocity

::::::
U (Eq.

:
(2)

::
).

:
If
:::
the

:::::
wind

::::::::
direction

:::::
differs

:::::
from

:::
the

:::::::
scanned

::::::::
azimuths,

:
the reference wind

speed as the free flow speed.
::::::::
measured

::
by

:
a
::::
cup

::::::::::
anemometer

:::::::::
noticeably

:::::::
deviates

::::
from

:::
the

::::::::
free-flow

:::::
radial

:::::::
velocity.

::::::::
Normally,

::
a480

::::
lidar

:::::::
retrieval

::::::::
procedure

::::::
should

::
be

:::::::::
performed

::
to

:::::::::
reconstruct

:::
the

:::::
actual

:::::
wind

::::
field.

:::::
Since

:::
we

::
are

::::
only

:::::::::
interested

::
in

::
the

:::::
wind

:::::
speed
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::::::
values,

:::
but

:::
not

:::
the

::::
local

::::
flow

::::::::
direction,

:::
we

:::::
apply

::
a
::::::
simple

:::::::::
expression

::
to

::::::::
re-project

:::
the

:::::
radial

:::::::
velocity

::::
and

::::
take

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::
calculated

:::::
wind

:::::
speed.

:

U ′r,φ =
Ur,φ
cosα

::::::::::

(9)

:::::
where

::::::
Ur,φ is

:::
the

::::::::
measured

::::::
radial

:::::::
velocity

::
at

:::
the

:::::
beam

:::::
range

:::::
r and

:::::::
azimuth

:::
φ ;

::::::
U ′r,φ is

:::
the

:::::::::
estimated

:::::::::
magnitude

::
of

:::
the

::::
real485

:::::::
velocity,

:::
and

::::
α is

:::
the

:::::
angle

::::::::
between

:::
the

:::::
radial

:::
and

::::::
actual

:::::
wind

:::::
speed

::::::
vectors

:::::
(Fig.

::::
11).

:::::::
Equation

:
(9)

:::::::
assumes

:::
that

::::
the

::::
flow

:::::
moves

::
in

:::
the

::::::::
reference

:::::
wind

:::::::
direction

::
at

::::
each

:::::::
scanned

:::::
point

::::::::
regardless

:::
of

:::
the

::::
wake

::::::::
influence

:::
and

:::::
other

::::
flow

:::::::::::
disturbances.

:

:::
The

:::::
angle

::::
α is

::::::::
calculated

::
as

:::
the

:::::::::
difference

:::::::
between

::::::::
reference

::::
wind

::::::::
direction

:::::::
ΘMET ,

:::::
given

::::::::
according

::
to

:::
the

:::::::::::::
meteorological

:::::::::
convention,

::::
and

:::
the

:::::::
azimuth

::::::
φ (Fig.

:::
11).

::::
I.e.,

:::
Eq.

:
(9)

:::::::
changes

::
to

U ′r,φ =
Ur,φ
cosα

=
Ur,φ

cos(ΘMET −φ)
:::::::::::::::::::::::::::

(10)490

4.5 Manual wake detection

::::
Since

::::
the

::::::::::::
normalization

::::
(Eq.

:
(1)

:
)
::
is

:::
not

::::::::::
performed,

:::
the

:::::::::::
deficit-based

:::::::
method

::::
does

:::
not

::::::::::
necessarily

:::::::
require

::::::::
despiking

::
–
:::
all

:::::::::
high-value

::::::
outliers

::::::
would

:::
be

::::::::
assigned

::
to

:::
the

::::::::::
background

:::::
flow

:::
by

:::
the

::::::::
threshold

:::::::::
condition.

::::::::
However,

::::
the

::::::
method

::::::::
requires

::::::::
additional

::::::::::
information

::
on

:::
the

:::::::::
free-flow,

::::
such

::
as

:::
the

::::
wind

:::::
speed

::::
and

::::::::
direction,

::
to

:::::::
perform

:::
the

::::::
simple

:::::::
retrieval.

:

To evaluate the performance of the ATS method, we
:::
The

:::::::::
threshold

::
is

::::::
applied

:::
to

:::
the

::::
wind

::::::
speed

::::
field

::::::::::
recalculated

:::::
with495

:::
Eq. (10)

::::::
instead

::
of

:::
the

::::::
original

:::::
radial

:::::::
velocity

::::
field

::::
used

:::
for

:::
the

::::
ATS

:::::::
method.

::::::::
Therefore

:::
the

:::::
direct

::::::::::
comparison

::
of

:::
the

:::::::::
thresholds

:
is
:::::::::::

complicated.
:::::::

Instead,
:::

we
::::::::

compare
:::
the

::::::::::
thresholded

:::::::
images

:::
and

::::::::
evaluate

:::
the

::::::::
detection

::::::::
accuracy

::::::
against

:::
the

:::::::
manual

:::::
wake

:::::::::::
identification.

:

4.5
::::::

Manual
:::::
wake

::::::::::::
identification

::::
and

::::::::::::::
characterization

:::
We perform a manual segmentation to select an optimal threshold for each lidar scan and use it as a reference.

::::
’true’

::::::::::::
identification.500

:::
The

:::::::
manual

::::::::
threshold

::
is

::::::
defined

::
in

::
a
::::
way

::
to

::::::::
represent

:::
the

::::::::
minimum

::::::::
threshold

::::::::
required

::
to

:::::::
identify

:
a
:::::
wake

:::::
shape

:::::::
suitable

:::
for

::
the

:::::::::
automatic

::::::::
centerline

::::::::
detection

:::
as

::::::::
described

::
in

:::::
Sect.

:::
4.2.

::::
The

::::::::::
comparison

::::::
against

:::::::
manual

:::::
wake

:::::::::::
identification

::::
then

::::::
would

:::::
show,

:::::::
whether

:::
the

::::
ATS

:::::::
method

::
is

::::::
capable

:::
to

:::::::::
automatize

:::
the

::::::::
threshold

::::::::
selection

::::
and

:::::::
improve

::
its

:::::::::
flexibility

::::::::
compared

:::
to

:::
the

::::::::::
deficit-based

:::::::::::
thresholding.

:

Since the available scans represent different wake-wake and wake-turbine interactions, the criteria for a reasonable threshold505

varies
::::
vary over the subsets. In order to reduce human error, we use the following qualitative criteria:

1. The shape of the wake should be distinguishable well enough not to be mistaken with
:::::::::::
misinterpreted

:::
as noise.

2. The noise should be reduced near wind turbines AV7 and AV10 but is allowed near AV11 since its wake has low

importance in this study.

3. The shapes of
:::::::
identified

:
wakes from AV7 and AV10 should not merge to ease the centerline detection.510
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We also perform a manual centerline detection. A presumed centerline is drawn over the lidar scan as a line or series of points.

For further comparison with wake detection
::::
other

:::::
wake

:::::::::::::
characterization

:
methods, it is converted to the Cartesian coordinates

using a plot digitizer. Unlike the manual detection of the wake shape
:::::::
threshold

::::::::
detection, the manual centerline detection

::::
wake

:::::::::::::
characterization is more prone to errors, especially in the far-wake region, where the wake becomes less distinguishable from

the free flow. Due to ambiguity and complexity of the manual
::::::::
centerline detection, we select only few lidar scans to demonstrate515

the methods’ performance
::
in

:::
the

:::::::
parallel,

::::::
aligned

::::
and

:::::::
bimodal

:::::
subset.

5 Results

:::
For

::::::
brevity,

:::
the

:::::
wake

:::::::::::
identification

:::
and

::::::::::::::
characterization

:::::::
methods

:::
are

::::::
further

:::::::
referred

::
to

::
as

:::::
listed

::
in

:::::
Table

::
2.

In this section, we first present a proof of concept ATS detection on less noisy LES data and compare it to the Gaussian

method. For the lidar data, we perform an extensive comparison to the manual wake detection and evaluate the accuracy of the520

ATS method.We further compare the performance of the ATS and Gaussian methods and discuss the application
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Table 2.
:::::::
Summary

::
of
:::
the

::::
wake

:::::::
detection

:::::::
methods

::::
Name

:

::::
Main

:::::::::::
characteristics

::::::
Manual

::::
Input

::::
data

:
:
:::::
Radial

::::::
velocity

::::
field.

::::::::::
Identification

:
:
::::::::
Threshold

::::
value

:::::
based

:::
on

:::
the

::::
visual

:::::::::
evaluation.

:::::::::::::
Characterization

:
:
:::::::
Digitized

::::::::
centerline

:::::
drawn

:::
over

:::
the

::::
lidar

::::
scan.

:::::::::
Automation

:
:
:::
No.

::::::::
Flexibility:

::::
Yes.

::::::::::
Deficit-based

::::
Input

::::
data

:
:
:::::::
Retrieved

:::::::
velocity

::::
field,

:::
Eq.

:
(9)

:
,

:::::::
reference

::::
wind

:::::
speed.

::::::::::
Identification

:
:
::::::::
Threshold

::::
value

:::::
based

:::
on

:::
the

::::
wake

:::::
deficit

:::::::
compared

::
to

:::
the

:::
free

::::
flow.

:::::::::::::
Characterization

:
:
:::
Not

::::::::
performed.

:

:::::::::
Automation

:
:
:::
Yes.

::::::::
Flexibility:

:::
No.

:

:::::::
Gaussian

::::
Input

:::::
data

:
:
::::::

Radial
:::::::

velocity
:::::

field,
::::::

wind

:::::::
direction,

::::
wind

:::::
turbine

::::::::
locations.

::::::::::
Identification

:
:
:::::::
Gaussian

:::::::
function

::::
fitted

::
to

:::
the

::::
wake

:::::
profile.

:

:::::::::::::
Characterization

:
:
::::::::
Performed

::::::::::::
simultaneously

:::
with

:::
the

::::
wake

::::::::::
identification.

:

:::::::::
Automation

:
:
:::
Yes.

::::::::
Flexibility:

::::::
Partial.

:::
ATS

: ::::
Input

:::::
data

:
:
::::::

Radial
:::::::

velocity
:::::

field,
::::::

wind

::::::
direction

::::::::
(optional),

::::
wind

::::::
turbine

:::::::
locations.

::::::::::
Identification

:
:
:::::::::

Threshold
:::::

value
:::::

from
::::

the

::::::
intensity

::::::::
histogram.

:::::::::::::
Characterization

:
:
:::::::
Midpoints

::
of

:::
the

::::::::
concentric

:::
arcs

::::::
crossing

:::
the

::::
wake

:::::::
contour.

:::::::::
Automation

:
:
:::
Yes.

::::::::
Flexibility:

::::::
Partial.
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5
:::::
Proof

::
of

::::::::
concept:

:::::
Wake

::::::::::::
identification

:::
and

:::::::::::::::
characterization

:::::
from

:::
the

::::
LES

::::
data

::
In

:::
this

:::::::
section,

:::
we

::::::::::
demonstrate

:::
the

::::::::::
performance

:
of the ATS method in the centerline detection

:::::::::
application

::
to
:::
the

::::
LES

::::
data

::::
and

:::::::
compare

:::
the

:::::
result

::
to

:::
the

::::::::
Gaussian

::::::
method.

5.1 LES wake detection525

Unlike a 10-minute averaged LES wake, the instantaneous wake reveals more
:::
An

:::::::::::
instantaneous

::::
LES

:::::
wake

::::::
reveals

:
complex

spatial features to be detected, although its intensity histogram remains rather smooth (Fig.
:::
9b).

::::
The

::::
ATS

:::::::
method

::::::
detects

::
a

:::::::::
continuous

:::::::
structure

::
in
:::
the

::::
near

:::::
wake

::::
and

:::
the

::::::::
beginning

::
of

:::
the

:::
far

:::::
wake,

:::::
while

:::
the

:::::
wake

::
at

:::::::::::
x/D > 10 is

:::::::::
represented

:::
as

:::::
series

::
of

::::
small

:::::::::::
disconnected

:::::::::
structures

::::
(Fig.

::::::
12b-c).

::::
The

::::
ATS

::::::
method

::::
does

:::
not

:::::::
capture

:::
the

::::
wake

:::::::::
expansion,

:::
but

::::
only

::
a

:::
trail

::
of

:::
the

::::
low

::::
wind

::::::
speed

:::::
areas.

:
530

::::
Since

::::
the

::::
ATS

::::::
method

:::::::
extracts

:::
the

:::::
outer

:::::::
contour

::
of

:
a
::::::

shape,
:::::
small

:::::
holes

:::::
inside

:::
the

::::::::
detected

::::
wake

:::
are

::::::::::::
automatically

:::::
filled

:::
and

::
do

:::
not

:::::
affect

:::
the

::::::::::::::::
intersection-based

::::::::
centerline

::::::
search

::::
(Fig. 13a).

:::
The

::::::
current

:::::::::
algorithm

::::::::
processes

::::
only

:::
the

:::
first

::::::::::
continuous

::::
wake

::::::
shape.

::::::::
Extending

:::
the

:::::::::
centerline

::::::::::
downstream

:::::::
requires

:
a
:::::::::
procedure

::
to

:::::::
identify

:::::
which

::
of

:::
the

:::::
small

:::::::
detected

::::::
shapes

:::::::
actually

:::::
belong

:::
to

::
the

:::
far

:::::
wake

:::
and

:::
the

::::::::::
connection

:::::
order.

:::
The

::::::
former

:::::::
problem

::
is
:::::
more

:::::::
relevant

:::
for

:
a
::::
lidar

:::::
scan,

:::::
which

:::
has

::::
less

:::::::
uniform

:::::::::
background

::::
flow

:::::::::
compared

::
to

:::
the

::::
LES

::::
data.

:
535

Figure 13b compares the centerline and wake shape
:
c

::::::::
compares

:::
the

::::
wake

:::::::::
centerline

:::
and

:::::
edges detected by the Gaussian and

ATS methods. Overall, the Gaussian method performs
::::
Both

:::::::
methods

:::::::
perform

:
well in the range of 2< x/D < 10 . Additional

errors may occur in the far wake
:::::::::::::::
1< x/D < 10 and

:::::
show

:::::
good

:::::::::
agreement

:::
on

:::
the

:::::
same

:::::::
distance

:::::
(Fig.

:::::
13c).

:::::::::::
Downstream

(x/D > 10), where the wake
:::
the

:::::
wake

:::::::
becomes

::::::
weaker

::
as

::
it recovers to the free flowand .

::
If
:
the wake deficit function becomes

too weak
::
flat

:
to fit accurately.540

:
,
::
the

::::::
fitting

:::::
result

::::
may

::::
place

:::
the

:::::
wake

:::::
center

::::::::::
incorrectly

::
or

:::::::::::
overestimate

:::
the

:::::::
standard

::::::::
deviation

::::
and,

:::::::::::
consequently,

:::
the

:::::
wake

:::::
width.

:
The ATS method detects a continuous structure in the near wake, while the far wakeis represented as series of small

disconnected structures (Fig. 13c)
:::
only

::::::::::::
disconnected

::::::::
structures

::
in

::::
the

::
far

:::::
wake. Nevertheless, those structures primarily lie

within the wake
:::::
edges detected by the Gaussian method. The Gaussian centerline

:::
also

:
passes through the centers of the ATS-

detected structures. A good agreement between methods can be explained by the fact that the ATS method searches for regions545

of high intensity, i.e., low wind speed. At the same time, the Gaussian method approximates a wake center at the point of high

wake deficit, which also corresponds to low wind speed.

Sample wake detection using idealized LES data. (a) Intensity histogram of an instantaneous flow field; (b) original data

normalized to the range of 0, 1, (c) a thresholded image overlaid with the wake boundaries and centerline detected by the

Gaussian method, and (d) color-coded wake shapes detected by the ATS method.550

While the centerline extraction using image processing works well with the continuous shapes, correct identification of the

downstream disconnected shapes as a part
::::::
Overall,

:::
the

::::::::
Gaussian

:::
and

::::
ATS

::::::::
centerline

::::::
search

::::::
method

:::::
show

:::::::::::::
complimentary

:::::
flaws.

:::
The

::::::::
Gaussian

:::::::
method

::::
may

:::::::
estimate

:::
the

:::::
wake

::::::
center

:::::::
correctly

:::
on

:
a
:::::

weak
:::::

wake
:::::::
profile,

:::
but

:::::
return

::
a

::::
large

::::::::
standard

::::::::
deviation

::::::
leading

::
to

::
an

:::::::::::::
overestimation of the wake requires further modification of the algorithm, that is not discussed in this study

:::::
width.
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Figure 12.
::::
Wake

:::
and

::::::::
centerline

::::::::::
identification

:::
for

::
a
::::::
sample

::::::::::
instantaneous

::::
LES

:::::
wake:

:::
(a)

:::::::::
normalized

::::
flow

::::
field,

:::::
same

::
as

::::
Fig.

:::
9b;

:::
(b)

::::::::
thresholded

::::
flow

::::
field;

:::
and

:::
(c)

::::
wake

:::::
shapes

:::::::::
color-coded

::
to

::::
show

::::::::::
connectivity.

2

0

2

Y/
D

(a)

2

0

2

Y/
D

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
X/D

2

0

2

Y/
D

(c)

Wake shape contour
ATS centerline

helper lines
intersections

Gaussian edges
Gaussian centerline

Figure 13.
::::::
Sample

::::
wake

::::::::::
identification

:::
and

::::::::::::
characterization

::::
using

:::::::
idealized

::::
LES

::::
data.

::
(a)

::::::::::
Thresholded

:::
data

:::::::
overlaid

:::
with

:::
the

::::::
contour

::
of

:::
the

::::
wake

:::::
shape;

::
(b)

:::::::::
thresholded

::::
data

::::::
overlaid

::::
with

::
the

:::::
wake

::::::::
boundaries

:::
and

::::::::
centerline

::::::
detected

::
by

:::
the

:::::::
Gaussian

::::::
method;

:::
(c)

::::
ATS

:::
and

:::::::
Gaussian

::::
wake

:::::::
detection

:::::
results,

:::::::
overlaid.

:::
The

::::::::
Gaussian

:::::::
method

::::
does

:::
not

::::::
always

:::::::
interpret

::::::
strong

::::
wake

::::::::::
meandering

::::::::
correctly

:::
and

::::::::
mistakes

:
a
:::::
wake

::::
turn

:::
for

:
a
:::::
wide

:::::
wake.555

::
On

:::
the

::::::::
contrary,

:::
the

::::
ATS

::::::
method

::
is

:::::::
capable

::
to

::::::
discern

:
a
::::::::
complex

::::
wake

::::::
shape,

:::
but

:::
has

::::::::
problems

::::
with

:::
the

::::::::
centerline

::::::::
detection

::
if

::
the

:::::
wake

:::::
shape

::
is

:::
too

:::::::
irregular

::::
due

::
to

:::::
wake

:::::::
merging

::
or

::::::
mixing

::::
with

:::::
noise.

We have used the LES dataas a proof-of-concept to show the capability
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6
::::::
Results

:::
For

:::
the

::::
lidar

::::
data,

:::
we

:::::::
perform

::
an

::::::::
extensive

::::::::::
comparison

::
to

:::
the

::::::
manual

:::::
wake

:::::::::::
identification

:::
and

:::::::::::::
characterization

::::
and

:::::::
evaluate

:::
the560

:::::::
accuracy

:
of the ATS methodto detect wakes from idealized data. The further sections focus on the wake detectionfrom the lidar

data and challenges caused by less uniform free flow.
:::
We

::::::
further

:::::::
compare

:::
the

:::::::::::
performance

::
of

:::
the

::::
ATS

::::
and

:::::::
Gaussian

::::::::
methods

:::
and

::::::
discuss

:::
the

::::::::::
application

::
of

:::
the

::::
ATS

:::::::
method

::
in

:::
the

::::::::
centerline

::::::::
detection.

::::
We

::::
show

::::
both

:::::::::
ensemble

:::::::
statistics

:::
and

:::::::::::
demonstrate

::
the

::::::::
methods

::::::::::
performance

:::
on

::::::
sample

::::
scans

::::::::
showing

::::
each

::
of

:::
the

::::
most

::::::::::
represented

:::::::::::
non-corrupted

:::::::
subsets:

:::::::
parallel,

::::::
aligned

::::::
wakes

:::
and

:::::::
bimodal.

:
565

6.1 Comparison of the ATS detection
:::::
wake

:::::::::::
identification

:
against the manual detection on lidar data

:::::::::::
identification

::::
and

:::::::::::
deficit-based

:::::::::::
thresholding

We construct a confusion matrix to assess the performance of the methods for a single lidar scan. The confusion matrix 2×2

::::::::
confusion

::::::
matrix describes the comparison of the automatic thresholding methods (wake deficit or ATS

::::::::::
deficit-based

::
or

:::::
ATS,

:::
see

::::
Table

::
2) against the manual method and contains the following outcomes:570

– True Positive (TP) – the point is detected as a wake point by both methods
::::::
manual

::::
and

::::::::
automatic

:::::::::::
identification.

– True Negative (TN) – the point is detected as a free-flow point by both methods
::::::
manual

:::
and

::::::::
automatic

:::::::::::
identification.

– False Positive (FP) – the point is detected as a wake point by the automatic method but is a free-flow point in the manual

detection
:::::::::::
identification.

– False Negative (FN) – the point is detected as a free-flow point by the automatic method but is a wake point in the manual575

detection
:::::::::::
identification.

If the detection
:::::::
automatic

::::::::::::
identification is accurate with the respect to the manual detection

::::::::::
identification, TP and TN values

tend to 100%, while FP and FN are close to zero.

The bimodal subset can be considered the most convenient for the manual threshold segmentation. It utilizes strict criteria
:::
the

::::
strict

:::::::
criterion

:
for the manual threshold that the wake shapes should not merge (Fig. 10d). In the example, the ATS method sets580

the threshold higher compared to the manual detection
::::::::::
identification

:
(Fig. 10e). Hence the far-wake area is slightly reduced.

The wake deficit
:::::::::::
deficit-based method (Fig. 10f) produces a similar result. The bimodal subset is the only one, where the

performance of the deficit-based method is comparable with the manual detection and ATS method and all methods produce

similar results.

The aligned wakes subset utilizes the same manual threshold criteria for the wake splitting as
::
the

:
bimodal subset (Fig. 14

::
15),585

although it
:::
the

::::::::
condition may be harder to fulfill. For some lidar scans, the far wake from the turbine AV10 and the near wake

from AV7 cannot be separated, unless the threshold is increased so
:::
that the far wake is not detected

::::::::
identified (Fig. 14

::
15d). In

this case, detecting a general shape of the wakes is
::::
wake

:::::
takes the priority. The manual threshold is then more subjective than
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(a) Original data

TP
  76.77%

FN
  23.23%

FP
   0.00%

TN
 100.00%

(b) Confusion matrix:
ATS method

TP
  60.03%

FN
  39.97%

FP
   0.00%

TN
 100.00%

(c) Confusion matrix:
Deficit-based method

(d) Manual detection
Threshold: 0.40

(e) ATS method
Threshold: 0.43

(f) Deficit-based method

Figure 14. Scan #599 (bimodal subset), wake detection
::::::::::
identification. (a) The original data in the Cartesian coordinates; (b-c) confusion

matrices for the ATS and deficit-based methods; (d) manual threshold selected in a way to separate
::

the two wakes; and (e-f) thresholds

estimated by the ATS and deficit-based methods.

that of the bimodal subset. The deficit-based method underestimates the threshold more significantly than in the bimodal case

and produces a large
:::::
larger percentage of false positive detections

:::::::
positives

::::
than

:::
the

::::
ATS

:::::::
method (Fig. 14

::
15f).590

The parallel wakes subset is the most challenging,
:
both for the manual detection and

::::::::::
identification

:::
and

:::
the

:
automatic methods

(Fig. 15
::
16). The wind direction in the subset is close to

::::::::::
approaching

:
210◦, at which

:::::
where the crosswind effects start (Fig. 3)

and noise appears at the border of a lidar scan. Unlike the corrupted scans with a high amount of non-physical wind speed

values, the region near
::::::
around

:
the wind turbines AV7 and AV10 contains valid measurements and allows to perform wake

detection
:::
still

:::::
allows

::::::::::
performing

::::
wake

:::::::::::
identification

:
with relative success. However, the detection

::::
wake

:::::::::::
identification

:
accuracy595

declines due to the border noise; ,
::::
and only one wake can be extracted well enough to perform

:::
the analysis on the wake direction

::::::::
centerline and shape evolution. If the threshold is increased to distinguish wakes and noise, the wake from AV10 remains nearly

undetected as can be seen from Fig. 15
::
16d. The ATS method returns a lower threshold that improves distinguishing the shape

of the AV10 wake but falsely detects noise near as a part of the AV7 wake (Fig. 15
::
16e). The deficit-based method significantly

underestimates the threshold and generates too many false positives
::::::::
estimates

:::
the

::::::::
threshold

:::::
rather

:::::::::
accurately,

:::
but

::::
may

::::::
detect600

::::::::
additional

::::
false

::::::::
positives

::::
near

::::
wind

:::::::
turbines

:
(Fig. 15

::
16f).

We plot the thresholds predicted by the wake deficit and ATS methods against the manual segmentation
:::::::::
summarize

:::
the

:::::::::
comparison

::
of

::::
true

:::::::
negative

:::
and

::::
true

:::::::
positive

::::::::
detections

::
in

:::
the

:::
box

:::::
plots (Fig. 16) . The deficit-based threshold is primarily used

to detect wakes from LES or PIV data (España et al., 2011). The lidar data has less uniform free flow and lower resolution. This

results in a relatively poor correlation with the manual segmentation – the deficit-based threshold is always underestimated.605

Therefore, more points, including noise points, might be falsely detected as wake points.
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(a) Original data

TP
 100.00%

FN
   0.00%

FP
   4.02%

TN
  95.98%

(b) Confusion matrix:
ATS method

TP
 100.00%

FN
   0.00%

FP
  15.31%

TN
  84.69%

(c) Confusion matrix:
Deficit-based method

(d) Manual detection
Threshold: 0.44

(e) ATS method
Threshold: 0.36

(f) Deficit-based method

Figure 15. Scan #221 (aligned wakes subset), wake detection
:::::::::
identification. (a) The original data in the Cartesian coordinates; (b-c) confusion

matrices for the ATS and deficit-based methods; (d) manual threshold selected in a way to separate
:::
the two wakesas much as possible; and

(e-f) thresholds estimated by the ATS and deficit-based methods.

(a) Original data

TP
 100.00%

FN
   0.00%

FP
   3.81%

TN
  96.19%

(b) Confusion matrix:
ATS method

TP
  94.06%

FN
   5.94%

FP
  10.06%

TN
  89.94%

(c) Confusion matrix:
Deficit-based method

(d) Manual detection
Threshold: 0.84

(e) ATS method
Threshold: 0.78

(f) Deficit-based method

Figure 16. Scan #60 (parallel wakes subset), wake detection
::::::::::
identification. (a) The original data in the Cartesian coordinates; (b-c) confusion

matrices for the ATS and deficit-based methods; (d) manual threshold selected in a way to reduce noise but keep a general shape of the

wakes; and (e-f) thresholds estimated by the ATS and deficit-based methods.
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Comparison of the manual-detected threshold with (a) the deficit-based threshold, and (b) ATS-based threshold through the whole data set.
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Figure 17.
:::::::
Ensemble

:::::::
statistics

::
of

:::
true

:::::::
negative

:::
and

:::
true

::::::
positive

::::::::
detections

:::::
within

::
the

:::::::
subsets.

:::
17)

::
for

:::
the

::::::::
different

:::::::
subsets.

The
:::
Due

::
to

:::
the

:::::::
amount

::
of

:::::
noise,

:::
the

:::::::
parallel

:::::
wakes

::::::
subset

::
is

::::::::::
challenging

:::
for

::::
both

::::::::
methods.

:::::::::::
Nevertheless,

:::
the

::::
ATS

:::::::
method

:::::::::
approaches

::::::
manual

::::::::::::
identification

:::::
rather

:::::::::
effectively,

:::::
while

:::
the

:
deficit-based thresholds form two clusters in the threshold plot

::::::
method

::::::
leaves

::
a
::::::
decent

::::::
amount

::
of

:::::
noise

:::::
which

::::
may

::::
alter

:::
the

::::::::
identified

:::::
wake

:::::
shape

::::
(Fig.

:::::
16f).610

::::
Both

:::::::
methods

:::::
score

:::::
nearly

:::::
100%

:::
for

:::
the

:::
true

:::::::
positive

:::::::::
detections

::
in

:::
the

::::::
aligned

:::::
subset

:
(Fig. 16a

:::
17b). The parallel and aligned

wake subsets share similar behavior and return a threshold significantly lower than manual-detected threshold. In the bimodal

case, the deficit-based threshold shows better agreement with the manual-detected thresholdbut not as good as the ATS-based

threshold(Fig. 16b). Overall, the deficit-based method consistently underestimates the
::::
result

::
is

::::::
caused

:::
by

:::
the

:::::::
criterion

:::
for

:::
the

::::::
manual

:::::::::
threshold:

:::::::
separate

:::
two

::::::::
different

::::::
wakes.

::::
The

:::::::
criterion

::
is

:::
too

:::::
strict

:::
for

::::
both

:::::::::
automatic

:::::::
methods

::
to

:::::::
achieve,

:::::::::
therefore,615

:::
they

::::::
always

::::::::::::
underestimate

:::
the

:
threshold, implying that the 5% criteria should be changed to improve the detection result. The

ATS method performs on par with the manual detection. The strongest discrepancy between the manual and ATS methods can

be seen for the aligned wakes subset, in which the outliers might be partially caused by the ambiguity of .
::::
Still,

:::
the

::::
ATS

:::::::
method

:::
gets

::::::
closer

::
to

:::
the

::::::
manual

:::::::::
threshold,

:::::
which

::
is
::::::::
reflected

::
in

:::::
lower

::::::::
variation

::
of

::::
true

:::::::
negative

:::::::::
detections

::::::::
compared

::
to

:
the manual

detection criteria
:::::::::::
deficit-based

::::::::
threshold.

:
620

:::
The

:::::::::::
deficit-based

:::
and

:::::
ATS

::::
wake

::::::::::::
identifications

::::::
behave

::::::
rather

::::::
similar

:::
for

:::
the

:::::::
bimodal

::::::
subset

::::
(Fig.

::::
17c)

::::
with

:::::::
respect

::
to

:::
the

::::::
manual

:::::
wake

:::::::::::
identification.

::::
The

::::::::
variations

::
in

:::
the

:::::::
bimodal

:::::
subset

:::
are

::::::::
primarily

::::::
caused

::
by

:::
the

:::::
wakes

:::::::
forming

::
in
::::
lidar

::::
near

::::::
range,

:::::
which

::
is

:::::::
scanned

::
at

:::::
higher

:::::::::
resolution

::::
than

:::
the

::::
rest

::
of

:
a
:::::
scan.

:::
I.e.,

::::
any

:::::
small

::::::::
threshold

::::::
change

::::::
affects

:::::
more

:::::
points

::
at

:::
the

:::::
wake

:::::
edges

:::
than

::
it
::::::
would

::
for

:::
the

:::::::
parallel

::
or

::::::
aligned

:::::::
subsets

:::
and

::::::
results

::
in

:::::::
stronger

::::::::::
fluctuations

::
in

::::::
TP-FN

:::::
values.

To reduce the influence of ambiguity of the manual detection, we construct a confusion matrix for each subset of 25 con-625

secutive lidar scans instead of single scans. The corrupted scans are excluded from the comparison, since high noise prevented
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Table 3. Comparison of the thresholding methods’ performance against the manual wake identification

Manual-deficit, % Manual-ATS, %

Data type Subset Scans TP FN FP TN TP FN FP TN

Parallel wakes 3 51−75 55 45 5 95 80 20 2 98

4 76−100 69 31 4 96 97 3 4 96

5 101−125 76 24 9 91 91 9 4 96

6 126−150 85 15 9 91 95 5 4 96

7 151−175 96 4 23 77 98 2 3 97

11 251−275 95 5 22 78 99 1 4 96

12 276−300 71 29 7 93 93 7 2 98

16 376−400 80 20 6 94 96 4 3 97

Transitional 17 401−425 93 7 19 81 87 13 0 100

Aligned wakes 8 176−200 99 1 28 72 98 2 1 99

9 201−225 100 0 13 87 100 0 10 90

10 226−250 100 0 23 77 98 2 3 97

Bimodal 17 426−450 88 12 2 98 82 18 0 100

18 451−475 83 17 1 99 89 11 0 100

19 476−500 97 3 5 95 96 4 4 96

20 501−525 97 3 7 93 85 15 2 98

21 526−550 99 1 15 85 90 10 5 95

22 551−575 100 0 20 80 90 10 8 92

23 576−600 85 15 2 98 94 6 4 96

the manual detection for most of the scans. Table 2
:
3 summarizes the detection outcomes for each subset. The

:::
ATS

::::
and deficit-

based method often underestimates the threshold, therefore the share of true positive detections is nearly always 100%
:::::::
perform

:::::::::
comparably

::
in
:::::
terms

::
of
::::
true

::::::::
positives

::
in

::
the

:::::::
aligned

:::
and

:::::::
bimodal

::::::
subsets. However, the amount of true negatives

::::
false

::::::::
positives

::
for

:::
the

:::::::::::
deficit-based

:::::::
method indicates a high probability of identifying noise as a wake. Additionally, the percentage of true630

negative detections
::::
false

:::::::
positives

:
strongly fluctuates within the same type of the subset making the fixed threshold method

unreliable.

While the amount of true positives for the ATS method may drop to 80% for a complex subset, the amount of true negatives

consistently stays near 95% – the background flow is mostly detected correctly
::::::::
regardless

:::
of

:::
the

::::::
subset

::::
type, which is a

significant
::
an improvement compared to the deficit-based method. Compared to the manual detection, the ATS method does635

not always separate wake and noise correctly, particularly for the parallel wakes subset (Fig. 15
::
16) and thus requires additional
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filtering. For the aligned and bimodal subsets, the ATS method is capable to detect the general wake shape rather similar to the

manual detection.

:
It
::::::
should

:::
be

:::::
noted

:::
that

:::
the

:::::::::::
deficit-based

:::::
wake

:::::::::::
identification

:::::::
requires

:
a
::::::::

free-flow
:::::
wind

:::::
speed

::
to

::::::
define

:::
the

::::::::
threshold

:::
and

:::
an

::::::::
additional

::::::::::::
preprocessing

::
of

:
a
:::::
lidar

::::
scan

:
–
::
a
::::::::
correction

::::::
based

::
on

:::
the

:::::
wind

:::::::
direction

:::
or

:
a
:::::
more

:::::::
complex

:::::
lidar

:::::::
retrieval

:::::::
method.640

:::
The

::::
ATS

:::::::
method

::::
runs

:::::
solely

:::
on

:::
the

::::
lidar

::::
data

::::
and

::::
does

:::
not

:::::::
require

::::::::::
information

::::::
besides

:::::
what

::
is

::::::
already

:::::::::
contained

::
in

:
a
:::::

lidar

::::
scan.

:

6.2 Centerline detection
::::::::::
Comparison

::
of
::::
the

:::::
wake

::::::::::::::
characterization

:::::
using

:::::::::
Gaussian

:::
and

::::
ATS

::::::::
methods

We perform centerline detection using
::
the

:::::
wake

::::::::::::::
characterization

::
by

:::::::::
searching

:::
for

:::
the

:::::
wake

::::::::
centerline

:::::
from

:::
the

::::::::::
thresholded

:::::
image

::::::::
produced

::::
with

:
the ATS method as described in Sect. 4.2 and

::
or

:::
by

:::::::
applying

:
the Gaussian method as described in645

Sect. 4.3. Both methods are compared
::::
First,

:::
we

:::::::
provide

:
a
::::::::::

comparison
:::

of
:::::::
selected

:::::
scans

:
against the manual wake detection

:::::::::::::
characterization from the lidar scan image as described in Sect. 4.5. We compare the found centerlines

:::
The

::::::
found

:::::::::
centerlines

::
are

:::::::::
compared

:
by fitting the regression lines to the relative coordinates, so that each local coordinate system is centered at a

selected wind turbine.

The parallel wakes subset (Fig. 17
::
18) contains a short but contrast

:::::::::
pronounced

:
wake from the wind turbine AV7 and a650

longer
:::
long

:::::::
weaker wake from the wind turbine AV10. Due to the fact that

:::::
Since

:
the AV10 wake is

::::::::
frequently

:
detected as

series of small disconnected structures, the current ATS method detects the centerline only in
::
for

:::
the

::::
first

:::::::::
continuous

::::::
shape,

:::::
which

:::::
rarely

:::::::
extends

::::::
beyond

:
the near-wake region. The manual and Gaussian detection

::::
wake

::::::::::::::
characterization can be carried

further into the far-wake region, but become rather uncertain as the far wake recovers to the free flow or mixes with the

border noise.
::::::::::
Considering

:::
the

::::::::
problems

:::
that

:::
the

::::::
border

::::
noise

:::::
poses

:::
for

:::
the

:::::
wake

:::::::::::
identification

::
in

:::
less

:::::
clean

:::::
scans

::::
(Fig.

::::
16),

:::
the655

:::::::::::::
characterization

:::::::
outcome

:::
can

:::
be

::::::::
improved

::
by

:::::::::
excluding

::
the

::::::::::
near-border

:::::
sector

:::
of

::::
1− 2◦

:::::
width

::::
from

:::
the

:::::::::::
identification

:::::::
process.

:

The aligned wakes subset (Fig. 18) possesses
:::
19)

:::::
shows

:
a distinctive feature: the wakes are aligned along the line connecting

two wind turbines resulting into the merge of the AV10 far wake and the AV7 near wake. Additionally, the connecting line is

parallel to
::
the

:
Y -axis in the Cartesian coordinates(Fig. 2)

:::::::
Cartesian

::::::::::
coordinates, so the centerline tends to X = const when the

wakes are perfectly aligned. Hence, the coefficient of determination R2 either approaches zero or
:::::::
becomes negative and does660

not indicate the quality of the regression fit.

The bimodal subset (Fig. 19
::
20) has the longest wakes in the data set. The wake detection

:::::::::::
identification in the far wake (i.e.

lidar near range) is hindered by wake merging and the narrowness of the scanned area. For example, the ATS method may

underestimate the threshold and detect merging wakes as a single shape. The ATS-based threshold can be adjusted to guarantee

the wake splitting. The adjustment is performed automatically by increasing the threshold with an increment of 0.05 until the665

stopping criteria
::::::
criterion

:
– the wind turbines belong (or are located near) to different wake shapes – is reached.

The
::::::
merging

::::::
wakes

::::
also

:::::
affect

:::
the

::::::::
accuracy

::
of
::::

the Gaussian method, in turn,
::
as

::
it may detect a wake center incorrectly

because of high wake deficit in the neighboring wake. The detection
:::::::::::::
characterization

:
inaccuracy in the lidar near range is

compensated by higher overall number of data points available for fitting, compared to
::
the

:
other subsets.
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Figure 18. Scan #59 (parallel wakes subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.
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Figure 19. Scan #221 (aligned wakes subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.

Both methods perform best for the long wakes in a lidar scan with low noise and show a good agreement on the detected670

centerlines. When the far-wake region cannot be detected properly, the methods still agree in the near wake. For noisy subsets,

such as parallel wakes, the performance of all methods strongly relies on the data quality. The longer the near wake can be

detected, the higher is the accuracy of the centerline detection. The ATS method requires additional algorithm to identify

downstream disconnected structures as a part of the wake.
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Figure 20. Scan #599 (bimodal subset). (a) An overview of the detected centerlines and regression fits for (b) AV7 and (c) AV10.
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Figure 21. Scan #222 (aligned wakes subset) sample wake detection
::::::::::
identification

:::
and

::::::::::::
characterization showing (a) comparison of the ATS

and Gaussian methods, (b) shapes detected
:::::
wakes

:::::::
identified

:
by the ATS method after the threshold is applied, and wind and wake direction.

6.3 Comparison of the Gaussian and ATS methods675

Figure 20
:::::
Figure

:::
21 shows an example of wake detection

:::::::::::
identification performed on a lidar scan from the aligned wakes

subset. The subset is characterized by the wake merging near AV7. The formed structure proves to be challenging for a

Gaussian method, as the centerline point and far-wake width for AV10 are estimated incorrectly.

The ATS method detects wakes as a single shape. Unlike the bimodal subset, the merging wakes in the aligned wake subset

do not necessarily worsen the performance of the centerline detection method. The centerline is first detected for
::
the

:
AV10680
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Table 4.
:::::
Rules

::
for

::::::
scoring

:::::::
Gaussian

:::
and

::::
ATS

:::::::
centerline

:::::
search

:::::::
methods

::::::::::
performance.

::::
Score

:

:::::::
Gaussian

:::::
method

: :::
ATS

::::::::
centerline

:::::
search

:
0 The method failed to find the wake at all or less than

10% of the visible wake was identified.

::
0.5

:

:::
The

:::::::::
centerline

::::::
loosely

::::::
matches

:::::
the

:::::::
wake

::::::::
centerline,

:::
but

:::
the

::::
wake

::::
width

::
is

::::::::::
overestimated

::
or

::::::::
undefined.

:::
The

::::::
wake

::::::
shape

:::
is

::::::
readable

:::::::
from

:::::
the

::::::::
thresholded

::::::::::
image,

::
but

::::
the

:::::::::
centerline

:::
is

::::::::
incomplete

::
or

::::::::
erroneous.

:
1 The method had correctly identified at least 75% of

the visible wake and its centerline.

wake, from which the wake direction can be estimated. Since the wakes are merged, the centerline detection for AV10 continues

in the AV7 wake. The centerline search for AV7 starts at the corresponding turbine location and is performed in the direction

of
:::
the AV10 wake, thus excluding the merge region from the search. Thus the centerline of

:::
the AV7 wake gets detected twice if

no stopping criteria
:::::::
criterion (e.g., the AV10 centerline passes AV7 location) is activated. Both detected centerlines agree in the

AV7 wake region and follow the Gaussian centerline rather well. Near-border wake centers of the AV7 wake deviate from the685

presumed centerline because border noise is erroneously attributed as a part of the wake. Considering the problems the border

noise may pose for the wake detection in less clean scans

:::::
When

:
it
::::::
comes

::
to

:::
the

::::::::::
comparison

::
of

:::::
wake

:::::::::::::
characterization

::::
over

:::
the

:::::
whole

::::
data

::::
set,

::
the

:::::
effect

:::
of

::::
weak

::::::
wakes

::
or

:::::::
merging

:::
on

::
the

::::::::
Gaussian

:::::::
method

::::::::::
performance

::::::::::
complicates

::
a
:::::
direct

::::::::::
comparison.

::::
Due

::
to

:::
the

::::::
errors,

:::
the

:::::::
Gaussian

:::::::::
centerline

::::::
cannot

::
be

:::::
taken

::
as

:
a
:::::
’true’

:::::
value

:::
and

:::::::
requires

::::::::::
verification

::
on

:::
its

::::
own.690

::::::
Instead,

:::
we

:::::::
perform

::
a
:::::
visual

::::::::::
comparison

:::
of

:::
the

::::::::
Gaussian

:::
and

:::::
ATS

::::::::
centerline

::::::
search

:::::::
methods

:::
to

:::::
score

::::
their

:::::::
success

::::
rate.

:::
The

:::::::::::
performance

::
of

::::
both

::::::::
methods

:::::
rather

::::::
differs

:::::
along

:::
the

:::::
wake,

::::::::
therefore

:::
we

:::::::
evaluate

:::
the

::::::::
detection

:::::
result

:::
on

:::
two

:::::::::
segments:

:::::::::
l ≤ 4D and

:::::::::::
l > 4D from

:::
the

:::::
wind

:::::::
turbine.

::::
The

:::::::::::::
l ≤ 4D segment

:::::::
usually

::::::
covers

:::
the

:::::
most

:::::::::::
well-resolved

::::
part

::
of

::::
the

::::
wake

:::
in

:::::::::::
non-corrupted

::::::
scans,

:::
we

::::::::
attribute

:
it
:::

as
:::
the

::::
near

::::::
wake.

::::
The

::::
rest

::
of

:::
the

:::::
wake

::::::
would

:::
be

::::
then

:::::::
referred

:::
as

:::
the

:::
far

:::::
wake

::::
and

:::::::::::
characterized

::
by

:::::
lower

:::::
wake

::::::
deficit.

:::::
Next,

:::
we

:::::
score

:::
the

:::::::
success

:::
rate

::::::
based

::
on

:::::::
whether

:::
the

:::::::
method

::::
was

::::
able

::
to

:::::::
identify

::::
both695

::::
wake

:::::
shape

::::
and

:::::::::
centerline,

:::::
failed

::
on

:::
one

:::
of

:::
the

:::::
tasks,

::
or

:::
did

:::
not

:::::::::
distinguish

:::
the

:::::
wake

::
at

::
all

::::::
(Table

::
4).

:

::
As

:::::::::
mentioned

:::
for

:::
the

::::
LES

:::::
wake

:::::::::::
identification

::::
and

:::::::::::::
characterization

::::::
(Sect.

::
5),

:::
the

:::::
ATS

:::
and

::::::::
Gaussian

:::::::
methods

:::
are

::::::
prone

::
to

:::::
errors

::
in

:::::::
different

:::::::
aspects.

::
A

::::::
partial

::::::
success

:::
for

:::
the

::::::::
Gaussian

:::::::
method

:::::
would

:::::::
usually

::::
mean

::
a
::::::::
centerline

:::::::::
estimated

::::
with

:
a
:::::
large

:::::::
standard

::::::::
deviation,

::::::
while

:
a
::::::
partial

:::::::
success

:::
for

:::
the

::::
ATS

:::::::
method

::::::
would

::
be

:::
the

::::::::
detection

:::
of

:::
the

:::::
wake

::::::
shape,

:::
but

:::
not

:::
the

::::
full

::::::::
centerline.

:
700
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Figure 22.
:::::::
Overview

::
of

:::
the

:::::::
Gaussian

:::
and

::::
ATS

:::::
method

::::::::::
performance

::
on

:::
the

::::
wake

:::::::
detection

:::
and

:::::::::::::
characterization.

:
A
::::::::

summary
:::

for
:::
the

::::
data

:::
set

::::::::
excluding

:::::::::
corrupted

:::::
scans

:
is
:::::::::

presented
::
in

::::
Fig.

::
22

:::
by

:::::::
showing

:::
the

::::::
counts

:::
for

::::
each

:::::::
outcome

::::
and

::::
their

:::::::::
distribution

::::::::
between

::
the

:::::::
subsets.

:

:::
The

::::
near

:::::
wakes

:::
are

::::
well

::::::::
resolved

:::
and

:::::
show

:
a
::::
high

:::::::
number

::
of

::::::::
outcomes

:::::
where

::::
both

::::::::
methods

:::::::
succeed.

::::
The

:::::
partial

:::::::::
detections

::
are

::::::
spread

::::::::::
differently.

:::
The

::::::::::
non-perfect

:::::::::
outcomes

:::
for

:::
the

::::
AV7

::::
near

:::::
wake

:::
are

::::::
spread

:::::
rather

:::::::
equally

::::
(Fig.

:::::
22a).

::::
The

::::::::
increased

::::
error

:::
rate

:::
of

::
the

:::::
ATS

::::::
method

::
in

:::
the

::::
AV7

::::
near

:::::
wake

::
is

:::::
caused

::::::
either

::
by

::::::
strong

:::::
border

:::::
noise

:::::::
(parallel

::::::
subset)

::
or

::::::
strong

::::::::
upstream705

::::
wake

::::::::
influence

:::::::
(aligned

::::::
subset)

::
–

::::
both

:::::
distort

:::
the

::::::::
detected

::::
wake

::::::
shape.

:::
Due

::
to
:::
the

:::::::
studied

::::
wind

:::::::::
directions,

:::
the

:::::
AV10

::::
near

:::::
wake

:
is
:::
not

::::::::
subjected

::
to
:::
the

::::::::
upstream

::::::
turbine

:::::::::
influence.

:::
The

:::::
wake

::
is

::::
very

::::
clear

:::
and

:::::
poses

::::::::
problems

::::::
mainly

:::
for

:::
the

::::
ATS

::::::
method

::
in
:::
the

:::::::
parallel

::::::
subset,

:::::
when

:
it
::::::
cannot

::
be

::::::::
identified

:::
as

:
a
:::::::::
continuous

::::::
shape.

::::::
Hence,

:::
the

::::
ATS

::::::
method

:::::::::::::
under-performs

::::
and

::::
stops

::
at
:::
the

:::::
wake

::::::::::::
identification,

:::::
while

:::
the

::::::::
Gaussian

::::::
method

::::
can

::::::
succeed

:::
in

::::
both

::::::
aspects (Fig. 15)

::::
22c).

:
710

:::
The

::::::::::
comparison

::
of

::::
AV7

:::
far

::::
wake

::::::::
accuracy

::::
(Fig.

::::
22b)

::
is
:::::::
relevant

::::
only

:::
for

:::
the

:::::::
bimodal

::::::
subset,

:::::
where

:::
the

::::::::::::
corresponding

:::::
wake

::::::
reaches

:::
the

:::::::
required

::::::
length.

::::::::
Detection

::::::::
outcomes

:::
for

:::
the

::::
AV7

:::
far

:::::
wake

:::::
follow

::
a

::::::
pattern

:::
that

:::::::::
resembles

::
the

:::::
other

:::::
cases:

::::
very

::::
low

:::::
counts

::
of

::::::
partial

::
or

:::
full

:::::::
success

:::::
when

:::
one

::
of

:::
the

::::::::
methods

::::
fails,

::::::
higher

:::::
counts

:::
for

::::::
partial

:::
and

:::
full

:::::::
success

::
of

::::
both

::::::::
methods.

:::
The

:::::::::
exception

::::
from

::::
this

::::::
pattern

::
is

:::
the

::::::
AV10

::
far

:::::
wake

:::::
(Fig.

:::::
22d).

::::
Both

::::::::
methods

::::::
achieve

::::::
partial

:::::::
success

:::::
most

:::::
often.

::::
The

::::::::
decreased

::::::
success

::::
rate

::
is

::::::::
primarily

::::::
caused

::
by

:::
the

:::::
wake

:::::::
merging

::
in

:::::::
bimodal

:::
and

:::::::
aligned

:::::::
subsets.

:::::
When

::
it

:::::
comes

::
to

:::
the

:::::::
parallel715

::::
wake

::::::
subset,

::::
both

::::::::
methods

:::
are

:::::
likely

::
to

::::
fail.

:::
The

:::::
weak

:::::
AV10

:::
far

:::::
wake

:::::
limits

::::::::
efficiency

:::
of

::::
both

::::::::
methods:

:::
the

::::::::
threshold

::
is

:::
not

::::::
enough

::
to

:::::::
separate

:::
the

:::::
wake

::::
from

:::
the

::::
free

::::
flow

:::
and

:::
the

:::::
fitting

::::::
cannot

::
be

::::::
carried

:::
on

::
to

:::
the

:::::
nearly

::::
flat

::::
wake

::::::
deficit

:::::::
function.

:
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Figure 23. Comparison of the
::::::
between

:
reference wind direction

::::::
(WIND) and estimated wake direction

::::::
(WAKE).

:::
The

::::
low

:::::
count

::
of

::
(0, excluding the near-border sector of 1− 2 width from the detection should improve the outcome)

:::::
pairs

:::::::::
throughout

:::
the

:::::::::
comparison

::::::::
indicates

:::
that

:::::
none

::
of

:::
the

:::::::
methods

::::::::::
outperforms

:::::::
another

::
in

:::
any

::::
part

::
of

:::
the

:::::
wake.

::
If

:::
one

::::::
method

:::::
fails,

::
the

:::::
other

::::::
usually

::::
fails

:::
too

::
or
::::::::
achieves

::::
only

:
a
::::::
partial

::::::
success.720

6.3 Wind and wake direction

The regression line fitted to the ATS-detected centerline also indicates the wake direction. A strong mismatch between reference

wind direction and wake direction can be seen for most lidar scans from the data set (Fig. 20
::
21b).

Comparing the directions for the whole data set, we observe a clear trend for the wake direction deviating clockwise from the

reference wind direction
::::
until

::
the

:::::::::
crosswind

::::::
effects

::::
start

::
at

:::
210◦ (Fig. 21). The trend continues for the reference wind direction725

above 210 for the corrupted lidar scans, where wake detection was still possible despite the erroneous data.
:::
23).

:

The valid points for the reference wind directions less than 210◦ group into two distinct clusters (Fig. 21
::
23). The leftmost

cluster corresponds to the bimodal subset and lies within the range of wind directions of 140−170◦. Another cluster contains

the results for the aligned, transitional, and parallel wakes subsets and covers the range of wind directions of 170−210◦. Fitting

a linear regression to each group returns a similar slope but a different intercept value. Although the fitted line slope is not equal730

to one, the regression fit on the selected range shows a nearly constant offset between wind and wake direction with the bimodal

subset having noticeably lower difference, than other subsets.

The vertical veer and clockwise rotation of the wake in the Northern hemisphere due to the Coriolis force are known ef-

fects causing wake rotation and were confirmed by in situ observations and LES studies of the wind farms (Magnusson and

Smedman, 1994; Abkar and Porté-Agel, 2016; van der Laan and Sørensen, 2017). The wind turbine AV7, closest to the li-735

dar, is scanned nearly at the hub height, while the farther wind turbines, AV10 and AV11, are scanned near the top-tip height

(Fig. 1). Due to the elevation and vertical veer, the wind and wake direction discrepancy is the strongest for AV10 and AV11.
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Figure 24.
::::
Scan

::::
#553

:::::::
(bimodal

::::::
subset).

:::
(a)

:::::::
Intensity

:::::::
histogram

:::
of

::
the

:::::::::
normalized

::::
data,

:::
(b)

::
the

::::
ATS

::::::
method

:::::
search

:::
for

:::
the

::::::::
thresholds,

:::
(c)

::::::::
thresholded

::::::
image.

Nevertheless, we also observe a deflection for the near wake of AV7, although the noticeable effects of the Coriolis force are

usually recorded for the downwind distance of 6D or higher. The additional discrepancy can be explained by the yaw mis-

alignment (Bromm et al., 2018), reference measurements uncertainty (Gaumond et al., 2014),
:::
and

:
the lidar installation’s imper-740

fection. The discrepancy
:::::
wake

:::::::
direction

::::::::
variation for the bimodal subset could be

::::::::
(reference

::::
wind

::::::::
direction

::::::::
140− 160◦

:
)
::::
was

possibly reduced because of the longer wakes and, consequently, more precise regression fit
:::::::::
estimation

::
of

:::
the

:::::
wake

:::::::
direction.

We do not have additional data to distinguish these factors and leave it for a
:
future study.

The outliers showing strong differences between wind and wake direction highlight the lidar scans where the wake detection

:::::::::::
identification

:::
and

:::::::::::::
characterization

:
was hindered by noise or strong irregularity of the wakeshape. The wind-wake direction plot745

can be used for diagnostic purposes to select the lidar scans that require additional processing prior to wake detection
::
the

:::::
wake

:::::::::::
identification.

6.4 Near and far wake separation with a threshold
:::::
Wake

::::::::::::
identification

::
in

:::
the

::::::::
bimodal

::::::
subset

:::::
using

:::
the

::::
ATS

:::::::
method

Bimodal subsets
:::::::
Bimodal

::::::
subsets

:::::
often have a distinctive double peak in the intensity histogram , which results into two local

minimums in the second derivative graph
::::
(Fig.

::::
24a). The highest histogram peak corresponds to the free flow. The second peak750

forms due to a long far wake from AV10 and subsequent merging of the two wakes.

:::
The

::::::
double

:::::
peak

::::
from

::::
the

::::::::
histogram

:::::::::
translates

:::
into

::::
two

:::::
local

:::::::::
minimums

::
in

:::
the

:::::::
second

::::::::
derivative

:::::
graph

:::::
(Fig.

:::::
24b).

::::
The

::::::::
occasions

::
of

:::
two

:::::
local

:::::::::
maximums

::
in
:::
the

::::
first

::::::::
derivative

:::::
were

::::
rarer

::
in

:::
the

::::::::
regarded

::::
data

:::
set.

::::::::
Applying

:::
the

::::
ATS

:::::::
method

::
to

::::
both

::::::
second

::::::::
derivative

:::::::::
minimums

::::::::
provides

:
a
::::::
unique

::::::::::
opportunity

::
to

:::::::
estimate

::::
two

:::::::::
thresholds

::::::
T2 and

::::
T3 in

::::::::
addition

::
to

:::
the

::::::::
threshold

::::::
T1 from

:::
the

::::
first

:::::::::
derivative.

:::
The

::::
final

::::::::
threshold

::::::
values

:::::
either

:::::::
separate

:::
the

:::
full

:::::
wake

::::
from

:::
the

::::
free

:::
flow

:::::::::::::
((T1 +T2)/2 )

::
or

::::::
extract755

::::
only

:::
the

::::
most

:::::::
intense

:::
part

:::
of

:::
the

:::::
wake

::::::::::::
((T1 +T3)/2 )

::::
(Fig.

:::::
24c).

::::
The

:::::::
splitting

:::::
point

::::
falls

::::::::::::
approximately

::
at
:::
the

:::::::::::
downstream

:::::::
distance

::
of

:::::::
4− 5D ,

:::::::
marking

::
a

::::::::
transition

::::
from

:::
the

::::
near

::
to

:::
far

:::::
wake.
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:::
We

:::
ran

::
the

::::
ATS

:::::::
method

::::::
without

:::::::::::::
subset-specific

:::::::::
parameters

:::::::
meaning

::::
that

:
it
::::::
always

::::::::
estimated

::::
only

::::
one

:::::::
threshold

:::
for

:::
the

:::::
wake

:::::::::::
identification.

::::::
During

:::
the

::::::::
threshold

:::::::::
estimation

::::::
(Sect.

::::
4.1),

:::
the

::::::
current

:::::::::
algorithm

:::::
selects

:::
the

::::::
global

:::::::::
maximum

::
or

::::::::
minimum

:::
of

::
the

::::
first

::::
and

::::::
second

:::::::::
derivatives,

:::::::::::
respectively.

::::
The

:::::::
free-flow

:::::::::
histogram

::::
peak

:::::::
usually

:::::
results

:::
in

:::
the

:::::
global

:::::::::
maximum

::
of

:::
the

::::
first760

::::::::
derivative

::
in

:::
our

::::
data

:::
set

:::
and

:::::
does

:::
not

:::::
affect

:::
the

::::::::::
performance

:::
of

:::
the

::::
ATS

:::::::
method.

::::::::
However,

:::
the

:::::
local

::::::::
minimum

:::::
values

:::
of

:::
the

::::::
second

::::::::
derivative

::::::
appear

::
to

::
be

::::
more

::::::::
sensitive

::
to

:::
the

:::::::
intensity

::::::::::
distribution.

:::::::
Relying

::
on

:::
the

:::::
global

:::::::::
minimum

:::
may

::::
lead

::
to

::::::::
selecting

:
a
::::::
stricter

::::::::
threshold

:::::::::::
T3 (Fig.24b).

::
A

::::
strict

::::::::
threshold

:::::
does

:::
not

:::::
detect

::::
most

::
of

:::
the

:::
far

:::::
wake,

::
as

::::::
shown

::
in

:::::::
Fig.24c.

:

:
A
::::

less
:::::
strict

::::::::
threshold

::::::::
T2 could

::
be

::::::
chosen

:::::
based

:::
on

:::
the

:::::::::
proximity

::
to

:::::
T1 as

:
a
:::::::

control
:::::
value.

::::::::
However,

::
it
::::::
would

::::::
require

:::
an

::::::::
automatic

:::::
check

:::::::
whether

:::::::
another

::::
local

::::::::
minimum

::::
can

:::::::
produce

:
a
::::
valid

:::::::::
threshold.

::::
The

:::::::::::::
implementation

:::::
posed

:
a
:::::::::
challenge,

::
if

:::
the765

::::::
current

::::::::
algorithm

:::
ran

:::::::
without

:::::::::::::
subset-specific

::::::::::
parameters,

:::
and

::::::::
produced

:::::::::
erroneous

::::::::
threshold

:::::::::
estimation

:::
for

:::::
other

:::::
scans.

::::
We

:::::::
refrained

:::::
from

::::
using

:::::
more

:::::::
complex

::::::::
approach

::
in

:::
the

:::::::
bimodal

:::::
subset

:::
for

::::
now.

::::
The

::::::
current

::::
ATS

:::::::
method,

::::::::
therefore,

::::::::::::
overestimated

::
the

::::::::
threshold

::::
and

:::
did

:::
not

:::::::
identify

:::
the

:::
full

:::::
wake

::
in

:::::
about

:::
8%

::
of

:::
the

:::::::
bimodal

:::::
cases.

:

7 Conclusions

We proposed an automatic thresholding method for the wake detection based on the image processing method for the whitecaps770

detection on the ocean surface. We also described an automatic method to detect the wake centerline from an irregular wake

shape. The results showed that image processing techniques were also a viable solution for wake detection and did not

strongly depend on the supplementary measurements , such as reference
::::::::
developed

::
a
:::
set

::
of

:::::::
methods

:::
to

::::::
analyze

:::::
lidar

:::::
scans

::
for

:::::
wake

:::::::::::
identification

:::
and

::::::::::::::
characterization.

::::::
During

:::
the

::::::
study,

::
we

:::::::
focused

:::
on

:::
the

:::::::::
procedures

:::
that

::::::
would

:::::::::::
automatically

:::::::
process

:
a
:::::
large

::::
data

:::
set

:::
and

:::::::::
primarily

::::
rely

::
on

::::
the

::::::::::
information

::::::::
contained

:::
in

:::
the

::::
lidar

::::
data

:::
or

:::
site

:::::::::::::
characteristics

::::
such

:::
as

::::
lidar

::::
and775

::::
wind

::::::
turbine

:::::::::
positions.

::
To

::::::::
structure

:::
the

:::::::
analysis

:::
of

:::
the

::::::
results,

:::
we

::::
split

:::
our

::::
data

:::
set

::::
into

::::::
several

:::::::
subsets

::::::::
grouping

:::
the

:::::
scans

::::
with

::::::
similar

::::::::::::
characteristics.

::::::
While

:::
the

:::::::::::
classification

:::::
could

::
be

:::::::::
performed

:::::
based

:::
on

:::
the

::::
wind

::::::::
direction

::
or

::::::
visual

:::::::::
inspection,

:::
we

:::::::::
introduced

::::::
entropy

::
as

:::::::
criterion

::
to
::::::
reflect

:::
the

::::
flow

::::::::::::
characteristics.

:::::
When

:::::::::
calculated

::
in

:::
the

::::::::
azimuthal

::
or

:::::
radial

::::::::
direction,

::::::::
Shannon

::::::
entropy

::
is

:::::::
sensitive

:::
to

:::
the

::::::::::
disturbances

::::::
caused

:::
by

:::::
wakes

::::
and

:::::
allows

:::::
scan

:::::::::::
classification

:
if
:::
the

:::::
wind

::::::::
direction

::
is

::::::::
unknown.

::::
The

::::::
entropy

::::::
values

::::
also

:::::::::
highlighted

:::
the

:::::
lidar

:::::
scans

:::
that

:::::
were

:::::::::
unsuitable

:::
for

:::
the

:::::::
analysis

:::
due

:::
to

:::
the

::::
high

::::::
amount

:::
of

:::::::::::
non-physical780

:::::::::::
measurements

::::::
caused

:::
by

:::
the

:::::::::
crosswind

::::::
effects.

::::
The

::::::::::
classification

:::
by

:::::::
entropy

::::::
criteria

:::::::::
introduced

::
in

:::
the

:::::
study

:::
was

::::
not

:::
yet

::::
used

::
to

:::::
apply

:::::::::::
scan-specific

::::::::::
corrections

:::::
during

:::
the

:::::::::::
thresholding.

:

::
An

:::::::
existing

:::::::::
automatic

::::::::::
thresholding

:::::::
method,

:::
the

:::::::::::
deficit-based

::::::
method

::
as

:::::::
referred

::
in

:::
the

:::::
study,

:::::::::
thresholds

::
the

:::::
wind

:::::
speed

::::
data

:
at
:::::

95%
::
of

:::
the

::::::::
free-flow

:
wind speed and direction. The preprocessing tools developed alongside the wake detection method

helped to recognize the lidar scans that are not suitable for the analysis. The same tools allowed to group the valid scans785

into subsets
:::
was

:::::::
initially

:::::::::
suggested

:::
for

::::
more

:::::::
regular

::::
wind

::::::
tunnel

::::::
wakes.

::::
The

:::::::
reliance

:::
on

:::
the

:::::
actual

:::::
wind

:::::
speed

:::::::
hinders

:::
the

::::::::::
deficit-based

:::::::
method

:::::::::::
performance

::
on

:::
the

::::
lidar

::::
data

::
–
:
a
::::::::

retrieval
::::::::
procedure

::::::
should

:::
be

::::::
applied

::
to

:::
the

:::::::::
measured

:::::
radial

:::::::
velocity

::
to

:::::::::
reconstruct

:::
the

:::::
wind

:::::
field.

:::::::::::
Additionally,

:::
the

:::::
fixed

::::
ratio

::
of

:::::
95%

::::
does

:::
not

::::::
regard

:::
the

::::::
quality

:::
of

:
a
:::::

lidar
::::
scan.

:::
To

:::::::::
overcome

::::
these

::::::::::::
disadvantages,

:::
we

::::::::
proposed

:::
an

::::::::
automatic

:::::::::::
thresholding

:::::::
method

:::
for

:::::
wake

:::::::::::
identification,

:::
the

:::::
ATS

:::::::
method, based on the

expected features. Future plans include testing the preprocessing tools on a larger data set to completely remove dependency790
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on the supplementary dataand visual analysis for the filtering and classification
::::::
method

:::
for

:::::::::
whitecaps

::::::::
detection

::
on

:::
the

::::::
ocean

::::::
surface.

::::
The

:::::::
method

:::
did

:::
not

::::::
require

:::
the

:::::::::
knowledge

:::
of

:::
the

:::::
actual

:::::
wind

:::::
speed

:::
and

:::::
could

:::
be

::::::
applied

::
to

:::
the

:::::
radial

:::::::
velocity

:::::
data.

:::
The

::::::::::
preparatory

::::
step

::::::
applied

::::::::::::
normalization

:::::::
through

::::::
scaling

::::
data

::
to

:::
the

:::::
range

::
of

::::::
[0,1] ,

::::
thus

::::::::
requiring

:::
the

:::::::
removal

::
of

:::::::
outliers

:::::
during

:::
the

::::
lidar

::::
scan

::::::::::::
preprocessing.

The
:::::::::
comparison

::
to

:::
the

:::::::
manual

::::::::::
thresholding

:::::::
showed

::::
that

:::
the ATS method generally agreed well

::::::::
performed

::::::
better

::::
than

:::
the795

::::::::::
deficit-based

:::::::
method

:::
and

:::
on

:::
the

:::
par

:
with the manual threshold selection. We also compared the ATS method against

::::
wake

:::::::::::
identification,

:::::
which

:::::::
opened

:
a
:::::::::
possibility

::
to

:::
use

::
it

:::::
when

::::::
manual

::::::::::
thresholding

::
is
:::::::::
infeasible.

:

:::
We

::::
also

::::::::
described

::
an

:::::::::
automatic

:::::::
method

:::
for

:::
the

:::::
wake

::::::::
centerline

::::::
search

:::::
from

:::
the

::::::::::
thresholded

:::::
data.

:::
The

:::::::::
centerline

::::::
search

::::
could

::::
run

:::::::
without

::::
wind

::::::::
direction

::::::::
provided

:::
by

:::::::
making

:
a
::::::
rough

::::::::::::
approximation

::
of

::::
the

::::
wake

:::::::::
direction.

::::::::
However,

:::
the

:::::::
current

::::::::
algorithm

::::::::
processes

::::
only

:::
the

::::
first

:::::::::
continuous

:::::
shape

:::::::
limiting

:::
the

::::::::::
application

::
to

:::
the

::::
wind

:::::
fields

::::
with

::::
little

:::::
noise

::::::::::
obstructing

:::
the800

::::
wake

::::::::::::
identification.

:::
We

::::::::
compared

:::
the

:::::::::
centerline

:::::
found

:::::
from

:::
the

::::::::::
thresholded

::::
data

::
to

:
the Gaussian fit method. Although the Gaussian method

performed
::::::::::
performance

:
on the lidar scans

:::
was

:
not as good as on the LES data, the detections

::::
wake

:::::::::::::
characterization

:
in the

near-wake region showed a good
:
an

:
agreement between the methods with the respect to the manual

::::::::
centerline

:
detection. At the

same time, the accuracy of both Gaussian and ATS
:::::::::
ATS-based

:
methods decreased in the far-wake region

:
,
::::::::
especially

:::
for

:::::
noisy805

:::
data

:
or in the case of wake-wake interaction. In the latter case, the ATS method often detected

::::::::
identified two wakes as a single

shape. To perform a centerline detection, we adjusted a threshold to split the wakes. The separation of wake and false positives

remained an open problem and left room for improving the ATS method in the
:
,
:::::::
affecting

:::
the

:::::::::
centerline

:::::
search

:::::::::
algorithm.

::::
The

::::::::
algorithm

::::::::
performs

:::::
better

::::
when

:::
the

:::::
wake

:::::::
directly

:::
hits

:::
the

::::::::::
downstream

:::::
wind

::::::
turbine

::
–

:::
the

::::::
merged

::::::
wakes

:::
can

::
be

::::::::::
considered

::
as

:::
one

:::::
wake

:::
and

::::
have

::
a
:::::::
common

:::::::::
centerline.

::::::
When

:::
the

:::::
wakes

:::
are

:::::::
forming

::::
side

::
by

::::
side

::::
and

:::
get

::::
close

::
to
:::::
each

:::::
other,

:::
the

::::::::
threshold810

:::
may

:::::
need

::::::::
additional

:::::::::
adjustment

:::::
until

:::
the

::::::::
identified

::::
wake

:::::
shape

::
is
:::::
split.

:::
The

::::::
results

::::::
showed

::::
that

::::::::
automatic

:::::::::::
thresholding

::::
from

:::
the

::::::::
intensity

::::::::
histogram

::::
was

:::::
viable

:::
for

:::
the

:::::
wake

:::::::::::
identification

:::
not

::::
only

::
for

:::
the

:::::
LES

:::
but

:::
also

:::::
lidar

::::
data.

:::
We

:::
see

::
a
::::::::
potential

::
to

:::::::
improve

:::
the

:::::
wake

:::::::::::::
characterization

::::::::
algorithm

:::
to

:::::
detect

:::
the

::::::::
centerline

:::
of

::
the

::::::
whole

:::::
wake

:::
and

::::
plan

::
to

::::::
present

::
it

::
in future studies.

Code and data availability. The Python code for wake identification using ATS method, centerline detection and a sample lidar data set are815

available upon request.

Video supplement. The video https://doi.org/10.5446/54055 demonstrates wake identification results for all lidar scans in the data set. No

post-processing is performed after running the ATS algorithm.
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Figure A1. Comparison of the intensity distribution in the original (raw) data and image plotted using Python Matplotlib with different

grayscale colormaps.

Appendix A:
:::::
Image

:::::
data

:::::::::
processing

An image has several properties which may affect the algorithm performance compared to the use of the raw wind speed data:820

1. Image resolution in dots-per-inch (dpi): the resolution of 72 dpi transforms an original data point into an image pixel as

1-to-1 approximately. Higher resolution increases the number of pixels per data point. Lower resolution merges several

data points into one pixel.

2. Colormap: the ATS method relies on the image grayscale intensity as an input. A non-grayscale image can be desaturated,

but the colormap of the original image then should be sequential rather than perceptually uniform or diverging. For the825

latter, the conversion to the grayscale gradually reduces the contrast between high and low values making the detection

::::
wake

:::::::::::
identification

:
impossible. Additionally, several grayscale colormaps exist. Depending on the colormap, the image

intensity histogram
:::::::
intensity

::::::::
histogram

::
of

:::
an

:::::
image

:
may shift to the left or right compared to the raw data. We observed

this effect when the ’Greys’ colormap of the Python Matplotlib library was used. This colormap emphasizes light tones;

as a result, the intensity histogram peak slightly shifts to the right, although the general shape of the peak is preserved830

(Fig. 23
:::
A1). The colormaps ’binary’ or ’gray’ from the same library return the result that follows the original data.

3. The image
:::::
Image

:
intensity: as processed by Python, the values are rounded up to second digits and some are assigned

to different bins compared to the original data. The histogram and CDF have stronger oscillations than the raw data

(Fig. 23
:::
A1) and require smoothing before the ATS method can be applied

:::::::::
application

::
of

:::
the

::::
ATS

:::::::
method.

Running an automated threshold detection on the image raises another question: how much does the image resolution affect835

the detection
:::::::::::
identification accuracy compared to the raw data. We apply the ATS algorithm to raw and image data under

different resolutions: 72, 150, and 300 dpi. We observe little influence from the image resolution, except for few LES cases
:
,
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Figure A2.
:::
(a-b)

:::::::::
Normalized

::::
wind

:::::
speed

:::
data

::::
with

::
far

:::::
wakes

:::::::::
highlighted

:::
and

::::
(c-d)

::::::::::
corresponding

:::::::
grayscale

:::::::
intensity

::::::::
histograms

::
of
:::
the

::::
lidar

:::
scan

:::::
#551.

:::::
where the low resolution of 72 dpi affected the threshold detection. In those cases, the detected threshold is lower than in fine

resolution cases, and, therefore, a larger shape is identified as a wake. The image resolution of 150 dpi and above agrees well

with the wake detection
:::::::::::
identification from the raw data. The general shape of an image intensity histogram does not depend on840

the image resolution. The image resolution of 150 dpi or higher is recommended for use, although 72 dpi also produces good

detection results.

In the case of lidar measurements, the detection
::::
wake

:::::::::::
identification

:
from the image data can be performed in two ways: by

plotting the original data either in polar or Cartesian coordinates. The detection
::::
wake

:::::::::::
identification

:
from the polar coordinates

image does not bear a significant
::::::
notable

:
difference from the raw datadetection. After the conversion to ,

:::::
apart

::::
from

::::
the845

:::::::::::::
aforementioned

:::::::
specifics

::
of

:::
the

:::::
image

::::::::
resolution

::::
and

:::::::
intensity.

::::::::
However,

::
if

:::
the

::::
lidar

::::
data

::
are

::::::
plotted

::
in

:
the Cartesian coordinates

::
as

:
a
:::::::
scanned

:::::
sector, the lidar close and far range get distorted, affecting the

:::::::::
percentage

::
of

:::
the

::::
area

:::::::
covered

::
by

:::
the

::::::
wakes

::::
and,

:::::::::::
consequently,

:::
the histogram shape.

The effect is most pronounced when the wind blows towards the lidar. As described in the subsets overview in Sect. ??, this

wind direction and wake behavior result in the bimodal intensity histogram. The leftmost, high peak, contains points from the850

free flow, while the second, low, peak accumulates points from the far wake. The second peak gets smoothed when the input

44



data is
::
are

:
changed from the normalized wind speed to the grayscale image plotted in Cartesian coordinates. As can be seen

from the comparison (Fig. 24
::
A2), the lower peak corresponds to the data in the lidar’s close range. After

:::
the conversion to the

Cartesian coordinates, the close range area shrinks significantly, while the free-flow area on the far lidar range enlarges. The

transition between coordinate systems changes the balance between wake and free-flow pixels and virtually increases the share855

of the latter.

(a-b) Normalized wind speed data with far wakes highlighted and (c-d) corresponding grayscale intensity histograms of the

lidar scan #551.
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