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Abstract. Lidar-assisted control (LAC) of wind turbines is a control concept that takes advantage of a nacelle-mounted lidar (a

remote sensing device) to measure upstream wind speeds of a turbine to allow a preview of the incoming turbulence. Because

the turbine will not be exposed to the identical turbulence as that measured by the lidar in advance, the simulation of a LAC

system will be more realistic if wind evolution can be modelled in the wind field generation. Since the commonly used 3D

stochastic wind field generation method does not include wind evolution, in this paper, we aim
::
the

::::
main

::::
goal

::
of

::::
this

:::::::
research

::
is5

to extend the 3D method to 4D to enable the modelling of wind evolution along the wind direction. The most novel part of this

research is that we propose a
:
"two-step"

:
Cholesky decomposition approach for the factorization of the coherence matrices in

the wind field generation. With this approach, 4D wind fields can be generated by combining multiple statistically independent

3D wind fields. To enable better integration of the 4D method into the common workflow of wind turbine simulations, we

implement the 4D method as an open-access tool evoTurb in combination with TurbSim and Mann turbulence generator.10

Moreover, since 4D wind field generation is supposed to be coupled with lidar simulations, and considering the range weighting

effect of lidars and eventually multiple range gates, a 4D wind field will contain many more simulation points than a 3D one.

To avoid excessive computational effort, we further investigate the impacts of the spatial discretization in 4D wind fields on

lidar simulations to provide some insights to optimize the application of 4D wind field generation.

1 Introduction15

Wind turbines are highly dynamic systems operating in turbulent wind fields in the atmospheric boundary layer, with inter-

acting effects of aerodynamics, structural dynamics, control systems, soil dynamics, and hydrodynamics (only for offshore

locations) (Moriarty and Butterfield, 2009). Simulation of wind turbine systems requires algorithms to properly generate in-

flow turbulence. Although computational fluid dynamics (CFD) such as direct numerical simulations or large eddy simulations

(LES), which solve the Navier-Stokes equations numerically, produce more “realistic” turbulence in the physical sense, these20

algorithms are computationally too expensive for engineering design. Therefore, in the wind energy industry, stochastic wind
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field simulations are mainly applied. There are two commonly used tools for that: TurbSim, provided by National Renewable

Energy Laboratory, and Mann turbulence generator, made available by DTU Wind Energy, Technical University of Denmark.

TurbSim was initially developed on the basis of the 3D wind field simulation method proposed by Veers (1988), known as the

Veer’s
::::
Veers

:
method (Jonkman, 2009). This simulates stationary and homogeneous multidimensional random processes with25

specified cross-spectrum density (Shinozuka, 1971; Shinozuka and Jan, 1972)
:::::::
densities

:
to generate turbulent wind velocities.

Several spectral models of turbulence are available in TurbSim, of which the most commonly used model is the Kaimal (1972)

spectral and exponential coherence model (hereinafter referred to as Kaimal model)— one of the two turbulence models

provided in IEC 61400-1:2019.

Mann turbulence generator (MTG) is based on the Mann (1994) uniform shear model
:::::::::
(hereinafter

::::::::
referred

::
to

::
as

::::::
Mann30

::::::
model), which is another turbulence model given in IEC 61400-1:2019. In contrast to the Kaimal (1972) model which is

formulated based on Kolmogorov (1941) "−5/3" law, the Mann (1994) model combines the spectral tensor with the rapid

distortion theory, which implies a linearization of the Navier-Stokes equation, and the modelling of the eddy lifetimes to

include more physical considerations in the stochastic modeling of turbulent properties. Moreover, the computational method

included in MTG is demonstrated in Mann (1998), which uses 3D inverse fast Fourier transformation (3D IFFT) (Heideman35

et al., 1985) to improve the computational efficiency.

It is worth mentioning that both tools create a 3D wind field: TurbSim creates time series of wind vectors at points in a 2D

vertical rectangular grid fixed in space, namely V(t,y,z) (Jonkman, 2009); MTG creates a 3D wind field in space, namely

V(x,y,z), and applies Taylor’s (1938) frozen hypothesis to convert the x axis (aligned to the mean wind direction) to time axis

by assuming that the turbulent wind field remains unchanged and propagates with the mean wind speed. Having such 3D wind40

fields is sufficient for the aeroelastic simulation of wind turbines with a feedback control system, and the application of Taylor’s

(1938) hypothesis is also justified because, in principle, only turbulence acting on the turbine needs to be considered in this

case. However, that is not sufficient for modeling a lidar-assisted control (LAC) system, which takes advantage of a nacelle-

mounted lidar, i.e., a remote sensing device that can measure wind speeds in front of the wind turbine using Doppler effect

(Weitkamp, 2005), to allow the wind turbine to proactively adjust to the incoming turbulence (see, e.g., Bossanyi et al., 2014;45

Schlipf, 2015; Simley, 2015; Simley et al., 2018). The reason for that is that the LAC system uses turbulence signals taken

at some distance upwind as input, but the turbulence will evolve before it reaches the turbine — this physical phenomenon

is called wind evolution (Chen et al., 2021). Thus, the turbine will not be exposed to exactly the same disturbances as that

measured by the lidar (Guo and Schlipf, 2021). To make it possible to simulate this effect in stochastic wind field simulations

and to assess the benefits of LAC more reasonably, Taylor’s (1938) hypothesis should no longer be applied, and wind evolution50

must be taken into account.

Wind evolution refers to time-dependent variation of turbulence structure
::::::::
structures

:::::::
(eddies). In practice, wind evolution

is usually quantified with the longitudinal coherence , i.e., magnitude-squared coherence between the wind speeds mea-

sured at different locations in the mean wind direction (see, e.g., Simley and Pao, 2015; Schlipf et al., 2015; Chen et al., 2021)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Pielke and Panofsky, 1970; Kristensen, 1979; Simley and Pao, 2015; Schlipf et al., 2015; Chen et al., 2021). As re-55

viewed in Chen et al. (2021), two types of wind evolution models have been proposed in previous research. On the one

2



hand, an empirical model which is a simple exponential function with a single decay parameter was initially suggested by

Pielke and Panofsky (1970), following the study of Davenport (1961). Subsequently, Panofsky and Mizuno (1975) studied

the correlations between the decay parameter and other wind-field-related parameters and suggested the first parameterization

model for the exponential wind evolution model. On the other hand, Kristensen (1979) believed that the longitudinal coherence60

should have different properties than the lateral and vertical coherence and deduced another model form based on modeling the

probability of eddy decay and eddy transversal diffusion. In recent years, Simley and Pao (2015) modified the exponential wind

evolution model by including a second parameter to adjust the coherence at very low frequency, taking a similar model form

as the coherence model for transverse and vertical separations proposed by Thresher et al. (1981), and suggested a model to

determine both model parameters based on LES simulations. On the basis of Simley and Pao’s (2015) model, Chen et al. (2021)65

suggested a concept to build parameterization models using supervised machine learning (ML) algorithms and presented the

results of Gaussian process regression models. In a following work, the performance of different ML algorithms was compared

considering their computational efficiencies (Chen and Cheng, 2020).

Some attempts have been made to simulate the effect of wind evolution or integrate wind evolution models into 3D simula-

tions. For example, Laks et al. (2013) proposed an approach to extend the Veer’s
:::::
Veers (1988) method from the original wind70

field simulated on the rotor plane to an additional vertical plane in the inflow direction for generating preview measurements of

lidars. Bossanyi (2013) suggested a method to simulate an evolving turbulent wind field with two random realizations of wind

fields, which is implemented in Bladed — a simulation tool for wind turbine performance and load calculations (DNV-GL,

2016). However, both methods only can
::
are

::::::::
intended

::
to

:
generate unfrozen turbulence on two different vertical planes, which

are not directly applicable to the current commercial lidars that are able to measure at multiple upstream distances. De Maré75

and Mann (2016) extended the 3D Mann (1994) spectral tensor to a 4D (space-time) turbulence model by introducing the

Kristensen (1979) model, but the corresponding 4D wind field simulation tool has not been developed.

In this work, we aim to extend the Veer’s (1988)
:::::
Veers method of 3D stochastic wind field generation to 4D in a general form

so that the simulation of multi-distance lidar measurements can be better integrated into the current framework of the aeroelastic

simulation of wind turbines. We first derive the mathematical expression of how to combine the longitudinal coherence into a80

conventional 3D wind field simulation. Based on this, a
:
"two-step"

:
Cholesky decomposition approach is proposed to factorize

the matrices of the lateral-vertical coherence and the longitudinal coherence, respectively, to make the 4D wind field generation

more feasible in practice.

The two-step Cholesky decomposition approach also makes it possible to generate a 4D wind field by combining multiple

statistically independent 3D wind fields. To facilitate practical application of our 4D method, we implement it as an open-85

access tool evoTurb (evolving turbulence) published on Github (coded in Matlab and Python). This tool takes 3D wind fields

generated using standard wind field simulation tools — TurbSim or MTG, so that the longitudinal coherence can be introduced

in synthetic wind fields without changing any other turbulence properties. Figure 1 shows a 4D wind field generated with

evoTurb by combining wind fields from MTG as an example. Based on this tool, we suggest a concept for integrating 4D wind

field simulations into the workflow of the aeroelastic simulation of wind turbines as illustrated in Fig. 2. Besides independent90

3D wind fields, evoTurb takes wind evolution model parameters (which can be obtained from parameterization models) as
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input to produce proper longitudinal coherence and takes lidar configurations as input to determine the simulation grid. The

output of evoTurb is a 4D wind field, which can be fed into the aeroelastic simulation of wind turbines with a built-in lidar

simulator.

Figure 1. (a) A frozen turbulent wind field generated with the Mann turbulence generator. (b) An unfrozen turbulent wind field generated

with the open-access tool evoTurb by combining multiple wind fields from the Mann turbulence generator. The turbulence properties: mean

wind speed = 16 m s−1, turbulence intensity = 0.16, shear exponent = 0.2. Only the U component is shown.

Since the 4D wind field simulation is supposed to be applied in combination with lidar simulations, it is expected to generate95

wind speed time series for a 3D grid, and thus the computational effort is much larger than that of the 3D method. Therefore,

we further look into the possibility to reduce the size of the simulation grid. For LAC, the auto-spectrum of lidar
::::::::::
line-of-sight

:::::
(LOS)

:
measurements is an important indicator since it is related to the variance of LOS wind speeds

::
its

:::::::
variance

:
in time

domain, which can be further used to estimate turbulence intensity (Peña et al., 2017; Schlipf et al., 2020). In addition, the

coherence between the lidar-estimated u component in the upstream wind by a nacelle-mounted lidar and the u component on100

the rotor plane can be used to derive the usable frequency components of lidar signals for the feedforward control (Schlipf,

2015). Hence we focus on the impact of spatial discretization in lidar simulations on these two quantities. In this work, we

analyze the discretization of a lidar range weighting function, different interpolation methods of wind speeds, and different

simulation grids to provide some insights to optimize the simulation configurations.

This paper is organized as follows: Section 2 explains the methodology of the 4D wind field simulation; Section 3 discusses105

lidar simulations based on 4D wind fields; Section 4 gives a summary and an outlook of this research.
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Figure 2. Concept for integrating the 4D wind field simulator evoTurb into the aeroelastic simulation of wind turbines.

2 4D wind field generation

This section focuses on the methodology and implementation of the 4D wind field generation method proposed in this research.

Section 2.1 introduces the basic approach of the Veer’s (1988)
::::
Veers

:
method for the 3D wind field generation. Section 2.2

explains how the Veer’s (1988)
:::::
Veers method can be extended to 4D. Section 2.3 proposes a two-step Cholesky decomposition110

approach to make the 4D wind field generation more feasible in practice. Section 2.4 shows the implementation of the 4D wind

field generation coupling with TurbSim and MTG. Section 2.5 gives the validation of the proposed 4D wind field generation

method.

2.1 The Veer’s
:::::
Veers method for 3D wind field generation

The Veer’s
:::
The

:::::
Veers (1988) method is based on the generation of random processes, which generates 3D turbulent wind fields115

by the complex Fourier coefficients (CFC) in frequency domain. To maintain required coherence among the turbulence, for

each frequency component, a coherence matrix that contains the magnitude coherence between any two wind speed fluctuations

at this frequency is factorized using the Cholesky decomposition (Press et al., 1992) and multiplied by uniformly distributed

random phases to form a transformation matrix. This matrix is then scaled by a factor composed by the
:::::::::
proportional

:::
to

:::
the

:::::
square

::::
root

::
of

:::
the auto-spectrum at this frequency and a FFT factor to obtain the complex Fourier coefficients for this frequency120

component. This procedure is conducted for the whole frequency range to acquire the complex Fourier coefficients for all

frequency components and the time series of wind speed fluctuations are generated by applying inverse fast Fourier transform

(iFFT) (Heideman et al., 1985) to the complex Fourier coefficients.

As explained above, the key to the Veer’s (1988)
:::::
Veers method is to compute the CFC for each frequency component. Here,

we take the example of generating time series of the u component to explain the key formula in detail. The reason for taking u125
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component as example is that currently, only the longitudinal coherence of the u component is considered to be introduced in

wind field generation.

Consider n non-overlapping spatial points on the yz plane, which can be arbitrarily distributed. For a specific frequency

component (the frequency is omitted in the following formulas for brevity), the CFC vector of the u component for 3D wind

fields is computed by
:::::::::::
(Veers, 1988)130

Uyz = [ûyz,1 ûyz,2 . . . ûyz,n]> =AuHu,yzXn. (1)

This formula consists of three parts:

(1) Au is the amplitude composed of
::::::::
two-sided

::::::
Fourier

:::::::::
coefficient

::::::::
obtained

::::
from the auto-spectrum of the u component

:::
Su

at this frequency and a FFT factor

Au =
√

∆f ·Su,
:::::::::::::

(2)135

::::
with

:::
∆f

:::
the

::::::::
frequency

::::
step

::
in
:
Hz

:
.
::
A

:::::
factor

::
of

::::
1/2

:::::
needs

::
to

::
be

:::::::::
multiplied

::
in
:::
the

::::::
square

::::
root

::
if

:::
Su :

is
::
a
::::::::
one-sided

::::::
power

::::::
spectral

::::::
density. For a specific frequency component, Au is a constant.

(2) Hu,yz is the Cholesky factor obtained by factorizing the lateral-vertical coherence matrix Cu,yz :
at

:::
this

:::::::::
frequency using

Cholesky decomposition(Press et al., 1992). Cu,yz is a n-by-n matrix with entries γu,yz,i,j , the magnitude coherence of

the u component between any two spatial points indexed by
::::::
spatially

::::::::
separated

::::::
points

:::::::
indexed

::::
with

:
i and j on the yz140

plane

Cu,yz =


γu,yz,1,1 . . . γu,yz,1,n

...
. . .

...

γu,yz,n,1 . . . γu,yz,n,n

 . (3)

:::
For

:::
the

:::::::
general

::::::::
definition

::
of

::::
the

::::::
spatial

:::::::::
coherence,

::::::
please

::::
refer

:::
to

::::::::
Appendix

:::
A.

:
Because under the same wind field

conditions, γu,yz,i,j only depends on the spatial separation between the two points (see Eq. (A3)), Cu,yz is a symmetric

matrix. The Cholesky decomposition (Press et al., 1992) can decompose a real, symmetric, positive-definite matrix into145

the product of a lower triangular matrix, i.e., the Cholesky factor, and its transpose. For brevity, the operation to obtain

the Cholesky factor is denoted by "chol( )". In this case,

Hu,yz = chol(Cu,yz), (4)

with

Hu,yz =


hu,yz,1,1 0

...
. . .

hu,yz,n,1 . . . hu,yz,n,n

 , (5)150

which satisfies

Cu,yz = Hu,yzH
>
u,yz. (6)
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(3) Xn is a n-by-1 vector of random phases which are uniformly distributed between 0 and 2π

Xn = [eiθ1 eiθ2 . . . eiθn ]>, (7)

with i the imaginary unit. For convenience, the size of the vector is indicated by the subscript.155

2.2 Extending the Veer’s
::::
Veers

:
method for 4D wind generation

In principle, Eq. (1) can be used to generate random processes with specific correlation according to the given coherence

matrix, which is not limited by dimensions. Therefore, we can extend Eq. (1), which is originally for spatial points on a vertical

plane corresponding to 3D wind fields V(t,y,z), to spatial points in 3D space corresponding to 4D wind fields V(t,x,y,z).

To explain this idea, we continue with the example of the u component. Consider p non-overlapping spatial points in 3D160

space, which can also be arbitrarily distributed as in the 3D case. For a specific frequency component, the CFC vector of the u

component for 4D wind fields can be formulated in a similar way to Eq. (1)

Uxyz =AuHu,xyzXp, (8)

with

Hu,xyz = chol(Cu,xyz). (9)165

In Eq. (8), Au is the same as that in Eq. (1). Xp is still a vector of random phases but with a size of p-by-1 according to the grid

size. The main difference lies in the Cholesky factor for 4D wind fields Hu,xyz (p-by-p), or more precisely, the 3D coherence

matrix Cu,xyz (p-by-p) which is supposed to contain the magnitude coherence of the u component between any two spatial

points in 3D space γu,xyz,i,j .

Currently, there is no simple model for the 3D coherence available. Therefore, a general approach to create the 3D coherence170

is combining the lateral-vertical coherence and the longitudinal coherence (see, e.g. Schlipf et al., 2013; Laks et al., 2013;

Bossanyi et al., 2014; Simley, 2015). Simley (2015) investigated two different methods for combining the lateral-vertical and

the longitudinal coherence, i.e.,the "product" method, taking the product of both, and the "root-of-sum-of-squares (RSS)"

method, taking the RSS of both. According to the comparison based on LES, the RSS method is more accurate, while the

product method slightly underestimates the 3D coherence (Simley, 2015). However, we choose the product method in this175

study because it allows us to come up with a "two-step" Cholesky decomposition approach which makes the 4D wind field

generation more feasible in practice. This will be introduced in Sect. 2.3.

In fact, Eq. (8) is exactly the general formula of the CFC in the 4D wind field generation. After acquiring the CFC, the

subsequent steps are the same as in the 3D case. Finally, the generated wind speeds should be time-shifted according to the

mean wind speed and the corresponding longitudinal positions. It is worth mentioning that compared to the methods proposed180

by Laks et al. (2013) or Bossanyi (2013), which only extend the Veer’s (1988)
::::
Veers

:
method from the original wind field

::::
wind

::::
field

::
at

:::
the

::::
rotor

:::::::
position

:
to an additional vertical plane, the method proposed here is a more general extension of the Veer’s

(1988)
::::
Veers

:
method and thus more widely applicable.
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2.3 Two-step Cholesky decomposition approach

A problem may occur when directly applying Eq. (8): the
:::
The

:
size of the 3D coherence matrix may be very large, which will185

cause
:::::
could

::
be

:::::
much

:::::
larger

:::::
than

:::
the

:::
size

:::
of

:::
the

::::::::::::
lateral-vertical

:::::::::
coherence

::::::
matrix

::::
(i.e.,

::::::
p� n)

:::::::
because

:::
the

:::::::
former

::::::::
considers

:::
one

:::::
more

:::::
spatial

:::::::::
dimension

:::::
than

:::
the

:::::
latter.

::::
This

::::
will

::::
lead

::
to

:
a
::::::

much
:::::
higher

::::::::::::
computational

::::
cost

:::
of the Cholesky decomposi-

tion(Press et al., 1992) to be very slow
:
,
:::::
which

::
is
:::::::::::
theoretically

::::::::::
proportional

:::
to

:::
the

::::
cube

::
of
::::

the
:::::
matrix

:::::
size,

:::::::
denoted

::
as

::::::
O(p3)

:::::::::::::
(Higham, 2008). To tackle this issue, we propose a "two-step" Cholesky decomposition approach by taking the following two

assumptions:190

(1) As mentioned above, the 3D coherence γu,xyz,i,j is assumed to be the product of the lateral-vertical coherence γu,yz,i,j

and the longitudinal coherence γu,x,i,j

γu,xyz,i,j = γu,yz,i,jγu,x,i,j . (10)

(2) Considering that regular grids are more commonly used in practice, we define a 3D grid withm identical, non-overlapping

planes perpendicular to the x axis with n points (i.e., p=mn) instead of an arbitrary grid.195

Similar to the lateral-vertical coherence, the longitudinal coherence only depends on the spatial separation between the two

points on the x axis under the same wind field conditions. Therefore, for these m planes, a longitudinal coherence matrix Cu,x

can be formed by the magnitude coherence of the u component between any two planes

Cu,x =


γu,x,1,1 . . . γu,x,1,m

...
. . .

...

γu,x,m,1 . . . γu,x,m,m

 . (11)

With the both assumptions, the 3D coherence matrix Cu,xyz (mn-by-mn) can be computed by the Kronecker product "⊗"200

(Henderson et al., 1983) of the longitudinal coherence matrix Cu,x (m-by-m) and the lateral-vertical coherence matrix Cu,yz

(n-by-n)

Cu,xyz = Cu,x⊗Cu,yz

=


γu,x,1,1Cu,yz . . . γu,x,1,mCu,yz

...
. . .

...

γu,x,m,1Cu,yz . . . γu,x,m,mCu,yz

 . (12)

Using the Kronecker product (Henderson et al., 1983) provides
::::
With

:::
the

::::
help

:::
of

:::
the

:::::::::
Kronecker

:::::::
product,

:::
we

:::::::
derived

:
a very

useful property for the Cholesky decomposition(Press et al., 1992) :
:

205

chol(A⊗B) = chol(A)⊗ chol(B), (13)
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where
::::
with A and B are matrices of arbitrary size. The mathematical proof is given in Appendix C. Applying Eq. (13), Eq. (9)

becomes

Hu,xyz = chol(Cu,xyz)

= chol(Cu,x⊗Cu,yz)

= chol(Cu,x)⊗ chol(Cu,yz)

= Hu,x⊗Hu,yz, (14)

which means instead of applying the Cholesky decomposition (Press et al., 1992) to a large matrix, we can now break it down210

into two Cholesky decomposition (Press et al., 1992) for two small matrices. We call this "two-step" Cholesky decomposition.

::::
This

:::::::
approach

::::
can

:::::
reduce

:::
the

::::::::::::
computational

::::
time

:::
of

::::::::
Cholesky

::::::::::::
decomposition

::::
from

:::::::::
O((mn)3)

::
to
:::::::::::::::
O(m3) +O(n3).

With the two-step Cholesky decomposition, Eq. (8) is rewritten as

Uxyz =Au(Hu,x⊗Hu,yz)Xmn. (15)

Compared to Eq. (1), only the Cholesky factor of the longitudinal coherence matrix Hu,x is a new term, and the other terms215

can be obtained from 3D wind fields. This leads to the idea to generate a 4D wind field by combining multiple statistically

independent 3D wind fields.

2.4 4D wind field generator: evoTurb

Following the idea mentioned above, Eq. (15) can be rearranged as

Uxyz = (Hu,x⊗AuHu,yz)


Xn,1

...

Xn,m

 . (16)220

It can be observed that the term AuHu,yzXn,i is exactly the CFC vector of the u component for a 3D wind field (see Eq. (1)).

Instead of directly calculating Uyz,i, it can be obtained by applying FFT (denoted by F{ }) to a time series of the u component

uyz,i(t,y,z) generated with a 3D wind field generator

AuHu,yzXn,i = Uyz,i = F{uyz,i(t,y,z)}. (17)

Based on this, the CFC of the u component for a 4D wind field with m vertical planes can be calculated by constraining m225

statistically independent 3D wind fields with the longitudinal coherence matrix
U>xyz,1

...

U>xyz,m

= Hu,x


U>yz,1

...

U>yz,m

 , (18)
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with Uxyz,i the CFC vector (n-by-1) of the u component of the ith yz plane in the 4D wind field and Uyz,i the CFC vector

(n-by-1) of the u component of the ith 3D wind field. And thus, the CFC matrix of the 4D wind field (left-hand side) and the

CFC matrix of the 3D wind fields (second term of the right-hand side) are m-by-n matrices. It is essential to ensure that all the230

random phases within the CFC matrix of the 3D wind fields follow an uniform distribution. This is why it is emphasized that

the input 3D wind fields must be "statistically independent", i.e.,they must be generated with different random seeds.

In comparison to the direct generation of 4D wind fields, the advantage of this concept is that it can introduce the longitudinal

coherence into the stochastic wind field generation without changing any other wind field properties generated by these standard

tools. This is conducive to the integration of the 4D wind field generation with the current framework of the aeroelastic235

simulation of wind turbines. Moreover, this concept makes it possible to use pre-generated 3D wind fields (with different

random seeds) for the generation of 4D wind fields. The input 3D wind fields should be randomly selected and non-repetitive.

Different combinations of the same 3D wind fields, i.e.,assigning the 3D wind fields to the vertical planes in a 4D wind field

differently, can form different 4D wind fields, and thus a 3D wind field can be used multiple times. This can significantly reduce

the computational effort required to generate 4D wind fields, considering that in the aeroelastic simulations of wind turbines, a240

design load case requires several simulations using wind fields generated with different random seeds (DNV, 2016).

Based on this concept, we develope an open-access 4D wind field generator — evoTurb1. As illustrated in Fig. 2, evoTurb

is coupled with TurbSim (specifically for the Kaimal (1972) model) and MTG, but the implementation of both is slightly

different. For more details regarding the turbulence models, please refer to Appendix A.

For the Kaimal (1972) model in TurbSim, we just need to apply Eq. (18) to the u component because the Kaimal model only245

considers the spatial coherence of the u component. The v and w components of the 4D wind field can be directly taken from

the corresponding 3D wind fields.

However, the
::::::::
However,

::
in

::::::
reality,

:::
the

::::::::::
atmospheric

:::
air

::::
flow

:
is
::::::::
assumed

::::::::::::
incompressible

:::
for

::::::
normal

:::::
wind

::::::
turbine

:::::::::::
applications.

::::
This

::::::
implies

::::
that

:::::
either

::::
the

:
v
:::

or
::
w

::::::::::
component

::
is

:::::::
spatially

:::::::::
correlated

::::
due

::
to

:::
the

:::::::::
continuity

:::
of

:::
the

:::::::::::::
incompressible

::::
fluid

:::
as

::::::::
discussed

::
by

:::::::::::
Mann (1994)

:
.250

:::
The

:
Mann (1994) model additionally contains the coherence between the u and w components. If we only apply Eq. (18)

to the u component, the coherence between the u and w components will be decorrelated except for the first vertical plane. To

maintain the coherence between the u and w components defined by the Mann (1994) model, we assume that the w component

also follows the same longitudinal coherence as that of the u component

Hw,x = Hu,x. (19)255

Similar to Eq. (18), the CFC matrix of the w component is calculated with
W>

xyz,1

...

W>
xyz,m

= Hw,x


W>

yz,1

...

W>
yz,m

 , (20)

1
:::::
Github: https://github.com/SWE-UniStuttgart/evoTurb
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with

Wyz,i = F{wi(t,y,z)}. (21)

The functionality of evoTurb (referred to the main script of the codes) is briefly introduced as follows:260

(1) TurbConfig: Import the configuration file.

(2) Execute3DSim: Call TurbSim or MTG to generate m 3D wind fields with different random seeds and save these wind

fields for later use. If the same wind fields already exist, this step will be skipped.

(3) Import3DTurb: Import the generated 3D wind fields.

(4) Generate4DTurb: Compute the CFC of the 3D wind fields. Compute the longitudinal coherence matrices using a wind265

evolution model and the corresponding Cholesky factors. Compute the CFC of the 4D wind field. Apply iFFT to the

CFC of the 4D wind field.

(5) Export4DTurb: Export the 4D wind field as binary files.

The wind evolution models supported by evoTurb are briefly introduced in Appendix B.

In fact, the Mann (1994) model additionally contains the spatial coherence of different v and
::
at

:::::::
different

::::::::
locations,

:::
the

::::::
spatial270

::::::::
coherence

::
of

:
w components

::
at

:::::::
different

::::::::
locations,

:
and the coherence between the u and w components

:
at
:::

the
:::::

same
:::::::
position,

which theoretically should also be considered in the 4D wind field simulation. De Maré and Mann (2016) and Bos (2017)

have proposed methods to extend the Mann model to spatial-temporal tensor, from which the longitudinal coherence of all

velocity components can be derived. However, the model proposed by de Maré and Mann (2016) has not yet been validated

with measurements. And Bos’s (2017) approach requires a formula of the wavenumber-dependent eddy lifetimes, which still275

need to be investigated with experiments or high-fidelity CFD simulations. Because the longitudinal coherence of the v and w

component is less important for LAC compared to that of the u component (Schlipf et al., 2013; Held and Mann, 2019), we put

our emphasis only on the u component in this study. The effects of neglecting the longitudinal coherence of the v component

and the rationality of assuming the identical longitudinal coherence for the u and w components remain to be investigated.

2.5 Validation of evoTurb280

The validation of evoTurb mainly focuses on two aspects: whether the longitudinal coherence is correctly simulated and

whether other wind field properties generated by TurbSim and MTG are not affected by evoTurb.

The validation is done by two examples coupling with TurbSim and MTG, respectively.
:::
The

:::::::
relevant

:::::::::
parameters

:::
of

:::
the

::
4D

:::::
wind

::::
field

:::::::::
generation

:::
are

::::::::::
summerized

::
in
:::::::

Table 1.
::::
The

:::::
Mann

::::::
model

:::::::::
parameters

:::
are

::::::
defined

:::::::::
according

::
to

:::::::::::
Mann (1994).

:
For

simplicity, the wind evolution model of Simley and Pao (2015) (see Table B1) is applied with user-defined parameters instead of285

its parameterization model . The relevant parameters of the 4D wind field generation are listed in Table 1
:::
and

:::
the

:::::::::
parameters

:::
are

::::::
chosen

:::::
based

::
on

:::::::::::::::
Chen et al. (2021). For the validation of coherence and spectra, we consider the spectrum calculated from one

realization (one simulated time series) as one sample and compute the ensemble average of 16 samples generated with different

11



random seeds. It is worth mentioning that the averaged coherence is calculated by dividing the averaged cross-spectrum by

the averaged auto-spectra. The auto-spectra and cross-spectra are estimated using the Bartlett’s (1948) averaged periodogram290

method with rectangular windows (size of 1024 data points).

Table 1. The wind field parameters for the validation. αε2/3, l, and Γ are the Mann model parameters. Iref and Lu are parameters of the IEC

Kaimal model
::::::::
(turbulence

::::
class

::
A). And the rest are the common parameters of both models. The hub height is considered 90 m.

Parameters Values Notations

αε2/3 [m s−2] 0.11 A measure of the energy dissipation

l [m] 61 Length scale related to eddy size

Γ [-] 3.2 Anisotropy due to shear

Iref [-] 0.16 Reference turbulence intensity

Lu [m] 340.2 Integral length scale of the u component

Vhub [m s−1] 16 Mean wind speed at hub height

a [-] 2 Wind evolution decay parameter

b [-] 0 Wind evolution offset parameter

To validate the coherence, Fig. 3 compares the theoretical and simulated coherence between different horizontal separations

in the two 4D wind fields. The good agreement between the theoretical and simulated longitudinal coherence of ∆x= 50 m

and ∆x= 100 m, respectively, proves that evoTurb can correctly model the user-defined longitudinal coherence in 4D wind

fields. The fact that the lateral-vertical coherence of ∆y = 20 m is consistent with its theoretical curve confirms that the original295

turbulence characteristics of both tools are not changed by evoTurb. The good match between the theoretical and simulated

3D coherence of ∆x= 50 m and ∆y = 20 m validates that the longitudinal coherence and the lateral-vertical coherence are

correctly combined in evoTurb.

Figure 3. Comparison of the theoretical and simulated coherence between different horizontal separations in 4D wind fields. The simulated

coherence is calculated by dividing the averaged cross-spectra by the auto-spectra of 16 samples. Sim. = simulated. Theo. = theoretical.
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As presented in Sect. 2.4, evoTurb takes
:::::::
generates

::
a
:::
4D

:::::
wind

::::
field

:::
by

::::::::::
constraining

:
independent 3D wind fields as input

and constrain them with the user-defined longitudinal coherence. This process is visualized in Fig. 4 by the example of MTG.300

Figure 4a–c show three independent 3D wind fields generated with MTG. Obviously, there is no coherence between them.

These three wind fields are fed in evoTurb, specifically as the vertical planes at x= 0 m, x= 50 m, and x= 100 m, respectively,

in this example. It can be observed in Fig. 4d–f that after applying the longitudinal coherence, the three wind fields become

coherent, especially the large eddy structures that correspond to the low frequency components. Figure
::::
More

:::::::::::
specifically:

:::
Fig. 4a and d are identical since the wind field at x= 0 m is inherently regarded as the reference wind field in the constraining305

process. Figure
:
;
:::
the

:::::
wind

:::::
fields

::
in

::::
Fig. 4e is more similar to

:::
and

:
f
::::

are
::::::::
generated

:::
by

::::::::::
constraining

::::
the

::::
wind

:::::
fields

:::
in Fig. 4d

because of a smaller
:
b
::::
and

:
c
::
to
::

a
::::
with

:::
the

:::::::::
coherence

::
at

::::::::
∆x= 50 m

::
and

::::::::::
∆x= 100 m

:
at
:::
the

:::::
same

:::::
time.

:::::::
Because

:::
the

:::::::
smaller

::
the

:
longitudinal separation, while

:::
the

:::::
higher

:::
the

::::::::::
coherence, Fig. 4f is less similar and

:
e

:
is
:::::

more
::::::
similar

::
to

::::::
Fig. 4a

:::::::::
compared

::
to

::::::
Fig. 4f,

:::::::
whereas

::::::
Fig. 4f retains more eddy structures of the original wind field as shown in Fig. 4c. ,

::::
e.g.,

:::
the

::::::
strong

::::::
eddies

::
at

:
z
::
of

::::
100 m

::
to

::::
150 m

::
in

:::
the

:::
first

:::
10 s

:
.
:::::
Please

::::
note

::::
that

:::
the

:::::::
temporal

:::::
shifts

::::
due

::
to

:::
the

::::::::::
longitudinal

::::::::::
separations

:::
are

:::
not

::::::
shown

::
in310

:::::::
Fig. 4d–f

::
in

:::::
order

::
to

:::::
make

:
it
::::::
easier

::
to

::::::
observe

:::
the

:::::::::
difference

::::::
caused

::::
only

::
by

:::::
wind

::::::::
evolution.

:

Figure 4. Illustration of U component in a 4D wind field. (a–c) are three independent realizations of 3D turbulent wind fields generated with

the Mann turbulence generator, which are fed in evoTurb. (d–f) are the corresponding vertical planes at x= 0 m, x= 50 m, and x= 100 m

in the 4D wind field.
:::
The

:::::::
temporal

::::
shifts

:::
due

::
to

:::
the

:::::::::
longitudinal

:::::::::
separations

::
are

:::
not

:::::
shown.

Regarding the special issue related to the Mann (1994) model raised in Sect. 2.4, Fig. 5 specifically illustrates the auto-spectra

of u, v, and w components and the uw cross-spectrum at x= 100 m of the example of MTG. The good agreement between the

simulated spectra and the theoretical ones derived from Mann (1994) spectral tensor proves that with the assumption made in

13



Sect. 2.4, the auto-spectra and the uw cross-spectra are maintained in the constraining process. In addition, it can be observed in315

Fig. 4 that the anisotropy turbulence due to the shear distortion considered in the Mann (1994) model also remains unaffected.

Figure 5. Comparison of the simulated and theoretical spectra of the Mann (1994) model at x= 100 m in a 4D wind field. The simulated

spectra are averaged with 16 samples.

3 Lidar simulation with integration of 4D wind fields

As mentioned in the introduction, 4D wind field generation is supposed to be applied to the simulation of lidar-assisted control

systems, and thus, this section intends to study its integration with lidar simulations. Section 3.1 briefly introduces the basics

of lidar simulations. Section 3.2 derives the theoretical formulas of the auto-spectrum of LOS measurements and the coherence320

between the
::::
rotor

:::::::
effective

::::
wind

:::::
speed

::::::::
(REWS)

:::
and

:::
the lidar-estimated u component in the upstream wind and the u component

on the rotor plane
:::::
REWS

:
to serve as a theoretical basis. Section 3.3 investigates the effect of the discretization of a lidar range

weighting function on the simulated auto-spectrum of LOS measurements. Section 3.4 discusses the impact of interpolation

methods on the auto-spectrum of u component in lidar simulations. Section 3.5
::::::::
discusses

::::::
impact

::
of

:::::::
discrete

::::::::::
simulations

:::
on

::::
lidar

:::::::
spectral

::::::::
properties

::::
and proposes a sparse grid for lidar simulations to reduce the computational effort of 4D wind field325

generation.

3.1 Lidar simulation

Lidars in this article refer specifically to coherent Doppler wind lidars whose measuring principle is based on the optical

Doppler effect. Such lidar systems measure wind speed by transmitting narrow bandwidth laser signals into the atmosphere

and detecting the Doppler shift in the backscattered signals from aerosol particles in the atmosphere using coherent detection330
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(Fujii and Fukuchi, 2005). The Doppler shift is caused by the motion of the aerosol particles entrained with the wind, and

thus can be used to estimate the line-of-sight (LOS) wind speed (i.e., the projection of wind velocities onto the laser beam

direction) in the probe volumes of lidars. To extract the Doppler shift, the collected backscattered signals are converted into

digital signals and split into blocks, on which FFT is performed to calculate their power spectra. These spectra are averaged to

reduce background noises so that the frequency of the peak can be estimated.335

Two types of wind lidars are commonly available for the wind energy applications: continuous-wave lidars and pulsed

lidars. In this research, we take the example of a pulsed lidar. As its name implies, a pulsed lidar emits regularly spaced short

laser pulses. In the data processing of pulsed lidars, the return signals of each pulse are first divided into range gates, and the

averaging of power spectra is done for the same range gate from different pulses (Peña et al., 2013).

Due to the measuring principle of lidars, two effects should be considered in lidar simulations in general: the volume340

averaging effect and the time averaging effect (Schlipf, 2015). As mentioned above, this section aims to study the impact of

spatial discretization in lidar simulations. Therefore, the focus of our discussion here is on the volume averaging effect rather

than the time averaging effect, and thus the simulation of the time averaging effect is omitted by generating the 4D wind fields

with the same sampling rate as the lidar simulation (fs = 4Hz).

The volume averaging effect can be simulated by applying a range weighting function ϕ(s) to the ideal point measurements345

of the LOS wind speeds vlosP(r, t) at the measuring distance r within the probe volume (see, e.g., Peña et al., 2013; Peña et al.,

2017)

vlos(r0, t) =

∞∫
−∞

ϕ(s)vlosP(r, t)ds with s= r− r0, (22)

where vlos(r0, t) is the LOS wind speed of the probe volume focusing at the distance r0, s is the spatial distance to the focus

point along the laser beam, and t is time. Because our focus is the turbulence, only the wind fluctuations are considered in the350

lidar simulations, and thus vlosP(r, t) is calculated by projecting the vector of the wind fluctuations
::::
speed

:
at r onto the laser

beam direction

vlosP(r, t) = [u(r, t) v(r, t) w(r, t)] · [xn yn zn]>, (23)

using
::::
with

::::::::
[xn yn zn] the normal vector of the beam direction [xn yn zn]>.

::::
(
−−→
PO

::
in

:::::::
Fig. 6).

:::
The

:::::::
normal

::::::
vector

:::
can

:::
be

::::::
simply

::::::::
calculated

::::
after

::::::::
knowing

:::
the

:::::::
azimuth

:::::
angle

::
φ
::::
and

::::::::
elevation

:::::
angle

::
β

::
of

:::
the

:::::
lidar

:::::
beam.

:::::::
Figure 6

::::::
shows

:
a
:::::::

typical
:::::::::
coordinate355

::::::
system

::::
used

:::
for

::::::::
simulating

:::
an

::::::::::::::
upstream-looking

:::::::
nacelle

::::
lidar.

:

For pulsed lidars, the range weighting function can be analytically computed as the convolution between the pulse power

profile and the range gate profile (Banakh and Smalikho, 1994), which is approximately constant for different range gates

(Cariou, 2013). For simplicity, the range weighting function is modelled by a Gaussian-shape function (see, e.g., Schlipf,

2015)360

ϕ(s) =
1

σL
√

2π
exp(− s2

2σ2
L

) with σL =
WL

2
√

2ln2
, (24)
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Similarly, following Ref.[1], the cross-spectrum for Kaimal
model is

S RL( f ) = F {uRR}F ∗{uLL}
=

1
nbnR cos β cos φ

nR∑

i=1

nb∑

j=1

F {ui}F ∗{vlos, j}, (22)350

with ui the ith longitudinal wind component in the rotor swept
area. See Ref.[][4D]. for detailed derivation of the Fourier
transform of vlos, j, where the main algorithm is to loop over
the Fourier transform of all velocity components included in ui

and vlos, j.355

3.4. Lidar measurement correlation

In LAC application, the more interesting indication of how
well the lidar predict the REWS is by the following transfer
function [1, 34]

GRL( f ) =

∣∣∣∣∣
S RL( f )
S LL( f )

∣∣∣∣∣ . (23)360

If a filter is designed to have the gain GRL( f ), it turns out be
be an optimal Wiener filter [34, 35]. For certain frequency, the
larger gain means that less information needs to be damped out
before the signal is used. Thus, it indicates how much informa-
tion measured by the lidar is usable for feedforward control.365

The transfer functions for the selected lidar system, see Ta-
ble 2 for the detail configuration, and the IEA 3.4 MW refer-
ence wind turbine are shown in Figure 4. It can be seen that
more stable atmospheric condition or smaller Mann turbulence
scale [13] results in smaller correlation, as can been seen by370

the less area under the transfer function. On the other side,
stronger evolution condition (larger ax) reduces the correlation
obviously. And the reduction caused by the turbulence scale is
not as significant as that caused by wind evolution.

With the fitted Kaimal spectra [36] based on Mann model375

[13], we did not observe a significant difference in the measure-
ment transfer function GRL( f ). The main difference between
the fitted Kaimal spectra and Mann spectral tensor is that the
Mann model [13] additionally includes the distortion in turbu-
lence structure, the single point uw cross-correlation, and the380

spatial correlation of different v and w components in the turbu-
lent field. While, Kaimal model [36] is purely statistical model
and only the spatial correlation of the u component is included.
The correlation model used in this work shows that these ad-
ditional considerations in Mann model [13] does not influence385

GRL( f ) very significantly, which is in accordance with the ob-
servation by Ref. [5].

4. Turbine modeling and control

In this section, we first derived a simplified low-order wind
turbine model and a baseline wind turbine controller extended390

with pitch forward control loop.

Table 2: Configuration for the selected lidar system.

number of beams 4
beam azimuth-angles φ [◦] 15.0, 15.0, -15.0, -15.0
beam elevation-angles β [◦] 12.5, -12.5, -12.5, 12.5
measurement distance in x [m] 120
full scan time 1 s
pulse width at half maximum zR 30 m

y(v)

x(u)

z(w)

P

φ

β

O

Figure 3: The coordinate system of the studied lidar system. P denotes one of
the lidar focused positions.

4.1. Wind turbine model
We use the reduced wind turbine model [1] that represents

the overall dynamic and the main motions of wind turbines [37].
It includes the aerodynamics, drive-train dynamics, pitch actu-395

ator dynamics and tower fore-aft dynamics. The reduced model
is often used for turbine controller design since it is simpler to
calculate and reproduces reliably the overall dynamic behavior
of the system [1].

4.1.1. Aerodynamics400

The aerodynamics are modeled by:

Ma =
1
2
ρπR2 cP(λ, θ)

Ωr
v3

rel, (24)

Fa =
1
2
ρπR2cT(λ, θ)v2

rel, (25)

λ =
ΩrR
vrel

, (26)

vrel = uRR − ẋT, (27)405

where Ma and Fa are the aerodynamic torque and thrust force,
respectively, ρ is the air density, R is the rotor radius, Ωr is the
rotor side rotational speed, and cP and cT are the power and
thrust coefficients determined by the tip speed ratio λ and pitch
angle θ. The relative rotor equivalent wind speed vrel is simplify410

calculated by superposition of the rotor effective wind speed
uRR and the tower top speed ẋT.

4.1.2. Drivetrain dynamics
The three degree-of-freedom (DOFs) drive-train model used

here was based on a two coupled mass-spring-damper systems415

[38, 39] modeling the dynamics of the rotor speed Ωr, the gen-
erator speed Ωg, and the shaft torsional angle φT:

JrΩ̇r = Ma − Mr (28)

6

Figure 6.
:::
The

::::::
typical

::::::::
coordinate

:::::
system

:::
for

::::::::
simulating

::
an

:::::::::::::
upstream-looking

::::::
nacelle

::::
lidar.

::
P

:::::
denotes

:::
an

::::::
arbitrary

::::
point

:::::
along

:::
the

:::
lidar

:::::
beam

:::::::
direction.

where the full width at half maximum WL is set to 30 m following Cariou (2013).

In lidar simulations, Eq. (22) requires a discrete approximation in practice

vlos(r0, t) =

Nrw∑
k=1

Frw,k · vlosP,k(rk, t) (25)

with the number of discrete points Nrw and the discrete range weighting coefficient Frw,k for the spatial point indexed with k365

defined as

Frw,k =
ϕ(sk)∑Nrw
k=1ϕ(sk)

. (26)

The discrete range weighting coefficients are normalized to ensure that their sum equals one. In general, equidistant discrete

points are selected.

3.2 Derivation of auto-spectrum and coherence of lidar measurements370

In this section, we derive the analytical expressions of the auto-spectrum of LOS measurements and the coherence between the

::::::
REWS

:::
and

:::
the lidar-estimated u component and the u component on the rotor plane

::::::
REWS to serve as a theoretical basis for

the analysis of the impact of spatial discretization in lidar simulations in Sect. 3.3–3.5.

We formulate the mathematical derivation according to the Kaimal (1972) model and perform the derivation mainly based on

the linearity of 1D Fourier transform because this procedure is easier to understand. As for the Mann (1994) model, Mann et al.375

(2008) and Held and Mann (2019) give neat derivations for the auto-spectrum of LOS measurements and the cross-spectrum of

the lidar-estimated and the actual rotor effective wind speeds based on the Mann spectral tensor based on the multiple integral

and the multidimensional Fourier transform. Following similar approaches, the lidar spectral properties derived below can also

be conducted for the Mann (1994) model.

Inspired by Schlipf (2015), the theoretical auto-spectrum of LOS measurements is calculated by380

Slos = F{vlos}F∗{vlos}, (27)
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where F∗{ } denotes the conjugate of Fourier transform. Taking the discrete approximation for the LOS measurements with

Nrw points (see Eq. (25)), Eq. (27) becomes

Slos = F{
Nrw∑
i=1

Frw,i · vlosP,i}F∗{
Nrw∑
j=1

Frw,j · vlosP,j}

=

Nrw∑
i=1

Nrw∑
j=1

Frw,iFrw,jF{vlosP,i}F∗{vlosP,j}

=

Nrw∑
i=1

Nrw∑
j=1

Frw,iFrw,jSlosP,i,j . (28)

In Eq. (28), SlosP,i,j denotes the cross-spectrum of two LOS wind speeds at the points i and j, which can be explicitly expanded385

by substituting Eq. (23) as follows
::::::::::::
(Schlipf, 2015)

SlosP,i,j = F{xnui + ynvi + znwi}F∗{xnuj + ynvj + znwj}

= x2
nSu,i,j +xnynSuv,i,j +xnznSuw,i,j

+xnynSvu,i,j + y2
nSv,i,j + ynznSvw,i,j

+xnznSwu,i,j + ynznSwv,i,j + z2
nSw,i,j (29)

with the product of the Fourier transform and its conjugate constituting the cross-spectrum. Therefore, we can compute Slos by

combining Eq. (28) and Eq. (29) and substituting the cross-spectra according to a turbulence model.

In the Kaimal (1972) model, besides the auto-spectra of u, v, and w components denoted by Su, Sv , and Sw, respectively,390

only the cross-spectrum between the u components at two points spatially separated on the yz plane is modelled, while other

cross-spectra are assumed zero. Thus, Eq. (29) can be simplified as

SlosP,i,j =

x
2
nSu + y2

nSv + z2
nSw if i= j,

x2
nSu,i,j if i 6= j.

(30)

::
As

::::::::
discussed

::
in
:::::
Sect.

:::
2.4,

::
it

::
is

::::::::
unrealistic

:::
to

:::::
ignore

:::
the

::::::
spatial

::::::::::
correlations

::
of

:
v
::
or

::
w
:::::::::::
components

:
at
::::::::
different

:::::::
locations

:::::
from

:::
the

:::::::
physical

::::
point

::
of

:::::
view.

:::
The

:::::::
volume

::::::::
averaging

::
of

::::
LOS

:::::
wind

::::::
speeds

:::::::::
contributed

:::
by

::
the

:::::::::::
uncorrelated

:
v
::
or
::
w
:::::::::::
components

::::
could

:::
be395

:::::::::::
unrealistically

::::
low

:::::::
because

::::
they

:::
are

:::::::
averaged

::::
out.

::
In

:::
the

::::
case

:::
that

:::
the

:::::
laser

::::
beam

::
is
::::::::::
misaligned

::::
from

:::
the

::::::::::
longitudinal

::::::::
direction

::::::::::
significantly,

::::::
further

:::::
study

::
is

::::::::
necessary

::
to

:::::::
quantify

:::
the

:::::
errors

::::::
caused

::
by

:::::::::
neglecting

:::
the

::::::
spatial

::::::::
coherence

:::
of

:
v
::
or

::
w

:::::::::::
components.

It is worth emphasizing that in 4D wind fields, Su,i,j denotes the cross-spectrum between two u components at two points

spatially separated in a 3D space when i 6= j. If these two points have a longitudinal separation, a temporal shift corresponding400

to this spatial separation must be taken into account, because in practice, the simulated wind speeds should be time-shifted ac-

cording to their locations in the longitudinal direction. If the temporal shift between these two points is assumed ∆t, according
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to the time-shifting property of the Fourier transform (Pinsky, 2003), the cross-spectrum of these two points is

Su,i,j = F{ui(t−∆t)}F∗{uj(t)}

= e−j2πf∆tF{ui(t)}F∗{uj(t)}. (31)405

This temporal shift introduces an additional sinusoidal-shape "coherence" into the cross-spectrum. For convenience, we define

it as

γs = e−j2πf∆t. (32)

γs should be distinguished from the longitudinal coherence γu,x caused by wind evolution, which is contained in the term

F{ui(t)}F∗{uj(t)}. In fact, γs has a certain influence on the simulated auto-spectrum of LOS measurements when applying410

a discrete approximation of the lidar range weighting function
:
is

::::::
applied, which will be discussed in Sect. 3.3. Consider a 3D

coherence γxyz,i,j for ui and uj . Eq. (31) becomes

Su,i,j = γs,i,jγxyz,i,jSu., (33)

:::::::
because,

::
by

:::::::::
definition,

:::
the

:::
3D

::::::::
coherence

:

γxyz,i,j =

√
|F{ui(t)}F∗{uj(t)}|2

F{ui(t)}F∗{ui(t)}F{uj(t)}F∗{uj(t)}

=
|F{ui(t)}F∗{uj(t)}|

Su
≈ F{ui(t)}F

∗{uj(t)}
Su

.
::::::::::::::::::::::::::::::::::::::::::::::

(34)415

::::
Here

:::
the

:::::::
absolute

:::::::
operator

::
is

:::::::
removed

:::
by

::::::::
assuming

:::
the

:::::::::
imaginary

:::
part

::
in

:::::::::::::::::
F{ui(t)}F∗{uj(t)}::

is
:::::::::
negligible.

:

Following Schlipf (2015), the theoretical coherence between the
:::
The

::::::
REWS

::
is
:::::
often

:::::::
assumed

::
to

:::
be

:::
the

:::::::
averaged

:
u compo-

nent on the rotor plane and the
:::
over

:::
the

:::::
rotor

:::::
swept

::::
area

:::::::::::::::::::::::::::::::
(Schlipf, 2015; Held and Mann, 2019)

uR =
1

NR

NR∑
i=1

ui,

:::::::::::::

(35)

::::
with

::
ui:::

the
:::
ith

:
u component in the upstream wind estimated by a nacelle-mounted lidar uL can be calculated from their420

cross-spectrum Su,uL and their respective auto-spectra Su and SuL

γ2
u,uL

=
|Su,uL |2

SuSuL

.

:::
NR :::

the
::::
total

:::::::
number

::
of

::
u
::::::::::
components

:::
in

:::
the

::::
rotor

::::::
swept

::::
area.

:
If perfect turbine alignment is assumed,

::
the

:::::::::::::
lidar-estimated

::::::
REWS uL can be estimated from vlos using the normal vector of the laser beam

uL =
vlos

xn
.

1

xn,j

1

NP

NP∑
j=1

vlos,j ,

::::::::::::::

(36)425
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With Eq. ,

SuL = F{uL}F∗{uL}=
F{vlos}F∗{vlos}

x2
n

=
Slos

x2
n
,

and
::::
with

::::
xn,j ::

the
::::
first

:::::::
element

::
of

:::
the

::::::
normal

:::::
vector

:::
of

:::
the

:::
jth

:::::::::::
measurement

:::::::
position,

::::
vlos,j:::

the
:::
jth

::::
lidar

:::::
LOS

:::::::::::
measurement,

::::
and

::
NP:::

the
:::::::

number
::
of

::::::::::::
measurement

::::::::
positions.

:::::::::
Following

::::::::::::
Schlipf (2015),

:::
the

:::::::::
theoretical

:::::::::
coherence

:::::::
between

:::
the

:::
uR :::

and
:::
uL:::

can
:::
be

::::::::
calculated

::::
from

:::::
their

::::::::::::
cross-spectrum

::::
SRL:::

and
::::
their

:::::::::
respective

::::::::::
auto-spectra

::::
SRR:::

and
::::
SLL430

Su,uLγ
2
RL
::

= F{u}F∗{uL}=
F{u}F∗{vlos}

xn

|SRL|2

SRRSLL
::::::

. (37)

For brevity, Eq. is
::::
SRL,

::::
SRR,

:::
and

::::
SLL :::

are not explicitly derived here because the approach is similar to Eq. (28)
:::
and

::::
their

:::::::
detailed

:::::::::
derivations

:::
can

::
be

::::::
found

::
in

::::::::::::
Schlipf (2015).

3.3 Impact of discrete lidar range weighting functions

As introduced in Sect. 3.1, a discrete approximation of a lidar range weighting function is necessary for lidar simulations.435

In this section, we investigate the effect of the step width
::::::
spacing

:
of the discrete range weighting function on the simulated

auto-spectrum of lidar measurements.

As indicated in Eq. (31), the time shift of the wind speed due to the longitudinal separation additionally introduces a

sinusoidal-shape coherence γs (defined in Eq. (32)) into the cross-spectrum of lidar measurements. When the travel time of

the turbulence box is approximated with ∆t= ∆x/Ū , Eq. (32) can be converted to wavenumber domain so that the influence440

of the mean wind speed
::
Ū

:
can be eliminated

γs(k) = e−j2πk∆x with k = f/Ū. (38)

Please note that the wavenumber k is defined in m−1.

For simplicity, the simulated laser beam is assumed aligned to the wind direction. In this case, Eq. (38) directly reveals the

relationship between the critical wavenumber of the additional coherence
::
γs,:::::::

denoted
::
as kc and the step width

:::::::::
(indicating

:::
the445

::::
peak

::
of

:::
γs),::::

and
:::
the

::::::
spacing

:
∆sk

kc = 1/∆sk. (39)

To visualize this issue, we take the following 3-point (3pt), 5-point (5pt), and 7-point (7pt) cases as examples:

3pt: sk,3pt =−15m, 0m, 15m; ∆sk,3pt = 15m

5pt: sk,5pt =−30m, −15m, ..., 30m; ∆sk,5pt = 15m450

7pt: sk,7pt =−30m, −20m, ..., 30m; ∆sk,7pt = 10m

The theoretical lidar range weighting function (WL = 30m) and the normalized discrete approximations of these three cases are

shown in Fig. 7a-d. Figure 7e and f illustrate the magnitude of the FFTs of the range weighting functions and the corresponding
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theoretical auto-spectra of the LOS measurements for the respective cases. It can be clearly observed that γs introduces a small

amount of noise into the high frequency range of the LOS auto-spectra. The critical wavenumbers and their high resonances455

:::::::::
highlighted

::
in

::::::
Fig. 7e

:::
and

::
f are calculated according to Eq. (39) as follows:

k1 = 1/∆sk,3pt = 1/∆sk,5pt = 1/15m−1,

k2 = 1/∆sk,7pt = 1/10m−1,

k3 = 2k1 = 2/15m−1,

k4 = 3k1 = 2k2 = 1/5m−1. (40)

It is worth noting that the comparison of the 3-point case and the 5-point case proves that kc is only dependent on ∆sk but

independent of the number of discrete points. The slight discrepancy between both coherence curves
::::::
curves

::
of

:::
the

:::::::::
magnitude

::
of

:::
the

::::
FFTs

::::
(see

:::::::
Fig. 7e) should result from the different value range of the discrete points.460

Based on the above analysis, we suggest that the step width of
::
to

:::::::
consider

:::::::
spacing

:::::
rather

::::
than

:::
the

::::::
number

:::
of

::::::
discrete

::::::
points

::::
when

::::::::
applying a discrete range weighting function

::
in

::::
lidar

::::::::::
simulations.

::::
The

::::::
spacing could be chosen according to the maximum

relevant wavenumber kmax in a specific application to prevent noise caused by the discretization from appearing in the relevant

wavenumber range:

∆sk≤<:1/kmax. (41)465

3.4 Impact of interpolation methods

In practice, the lidar simulation points are not necessarily located on the grid points of the simulated wind fields. To tackle this

issue, one may consider using interpolation to approximate the values of the desired points for lidar simulations. In this section,

we discuss the impact of interpolation on the auto-spectrum of u component with two examples: nearest-neighbor interpolation

and linear interpolation.470

For simplicity, we consider a 2-by-2 square grid on the yz plane with a width of 5 m as shown in Fig. 8. The four vertices are

defined as p1(y1,z1), p2(y1,z2), p3(y2,z1), and p4(y2,z2), for which the u component ui (i = 1...4) are simulated. The point

to be interpolated is the center point of the square grid p0(y0,z0).

Nearest-neighbor interpolation takes the value of the nearest point. In this example, u0,nearest is approximated by u1, and thus

475

Su0,nearest = Su. (42)

Apparently, using nearest-neighbor interpolation will not change the auto-spectrum.

2D linear interpolation calculates u0 by the weighted mean of the values neighboring grid points (Press et al., 1992)

u0,linear =

4∑
i=1

riui. (43)
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Figure 7. (a) Theoretical Gaussian-shape range weighting function with a full width at half maximum of 30 m for a pulsed lidar. (b-

d) 3-point, 5-point, and 7-point normalized discrete approximations of the range weighting function, with steps ∆sk of 15 m, 15 m, and

10 m, respectively. (e) Magnitudes of the FFTs of the different discretizations of the range weighting function. Critical wavenumbers: k1 =

1/15m−1, k2 = 1/10m−1, k3 = 2/15m−1, k4 = 1/5m−1. (f) Theoretical auto-spectra of the u component and the LOS measurements of

the different discretizations of the range weighting function. The LOS measurements are assumed aligned to the wind direction.

The weighting factor ri is calculated according to the proportion of the partial area diagonally opposite the point pi to the480

whole area as illustrated in Fig. 8 with corresponding colors
::::::::::::::::
(Press et al., 1992)

r1 =
(y2− y0)(z2− z0)

(y2− y1)(z2− z1)
, r2 =

(y0− y1)(z2− z0)

(y2− y1)(z2− z1)
,

r3 =
(y2− y0)(z0− z1)

(y2− y1)(z2− z1)
, r4 =

(y0− y1)(z0− z1)

(y2− y1)(z2− z1)
. (44)
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Figure 8. Visualization of 2D linear interpolation. The interpolated value at p0 is calculated by the weighted mean of the values at neighboring

grid points. The weighting factor ri for the value at the point pi is calculated according to the proportion of the partial area diagonally opposite

the point pi to the whole area, which is shown with corresponding colors.

The sum of the weighting factors equals one. Similar to Eq. (28), the auto-spectrum is computed by

Su0,linear = F{
4∑
i=1

riui}F∗{
4∑
j=1

rjuj}

=

4∑
i=1

4∑
j=1

γu,yz,i,jrirjSu (45)

with γu,yz,i,j the coherence of the u component between the points i and j in the grid. Knowing the fact that485

γu,yz,i,j < 1 and ri < 1,

Su0,linear < Su, (46)

when the point to be interpolated does not overlap any existing grid points. Equation (45) means that using linear interpolation

will decrease the auto-spectrum.

Figure 9 confirms that nearest-neighbor interpolation does not alter the auto-spectrum, while linear interpolation filters

out the auto-spectrum especially in the high frequency range because the coherence decays more for high frequencies. In490

fact, according to Eq. (45) and Eq. (46), all interpolation methods based on weighted averaging of the values at neighboring

grid points will reduce the auto-spectrum because
:::
the weighting factors must be multiplied with the coherence between the

interpolated point and the corresponding neighboring points, which is always less than one. Consequently, we believe that

nearest-neighbor interpolation is preferable in terms of maintaining the auto-spectrum.

3.5 Discussion about simulation grids495

As discussed in Sect. 3.3, lidar simulations require a sufficiently dense grid of wind fields to avoid the effect of spatial dis-

cretization on the simulated auto-spectrum of LOS measurements. However, a dense grid makes 4D wind field generation

computationally intensive according to its principle presented in Sect. 2. Given this situation, we attempt to propose an approx-

imate method with a sparse grid — "semi-frozen grid" and compare it with two typical grids — "direct grid" and "full grid".

The definitions of these three types of simulation grids are introduced below.500
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Figure 9. Comparison of the impact of nearest-neighbor interpolation and linear interpolation on the auto-spectrum of the u component. A

2-by-2 square grid on the yz plane with a width of 5 m is considered and the point to be interpolated is the center point of the square grid.

The auto-spectra are averaged with 16 samples.

If the position and the measuring trajectory of the lidar to be simulated are fixed, we can directly generate wind speeds at

all the points required for lidar simulations, including the discrete points for modelling the volume averaging effect of lidars.

We define this type of grid as "direct grid" (see Fig. 10a). It is worth noting that because direct grid is irregular, the method

presented in Sect. 2.2 (see Eq. (8)) should be applied to generate 4D wind fields. However, direct grid is not applicable to

simulations of a nacelle-mounted lidar because its position moves with the nacelle of a wind turbine in aeroelastic simulations.505

In this section, direct grid actually serves as a reference for comparison because it does not require interpolation of wind speeds.

Figure 10.
::::::::
Illustration

::
of

::::
three

::::
types

::
of
::::
grids

:::
for

::::
lidar

:::::::::
simulations.

:
(
:
a)
:::::
Direct

::::
grid.

:
(
:
b
:
)
:::
Full

::::
grid.

:
(
:
c)
::::::::::
Semi-frozen

::::
grid.
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To simulate a nacelle-mounted lidar, the grid of wind fields must cover all the range gates of the lidar and the space in their

vicinity so that LOS measurements can be properly modelled when the required points constantly change due to the nacelle

motion. For this purpose, we define the grid consisting of the vertical planes (perpendicular to x axis) with regular grid points

at the x positions of the focus points and the discrete volumes of all range gates as "full grid" (see Fig. 10b). The wind speeds510

at the points required for lidar simulations are acquired using nearest-neighbor interpolation according to the results of Sect.

::::
With

:::
the

:::
full

::::
grid

:::::::
method,

:::
the

::::::
overall

::::::
effects

::
of

::::
both

:::::::
discrete

::::::
ranging

:::::::::
weighting

::::::::
functions

::::::
(taking

::::::
3-point

::::
and

::::::
5-point

:::::
cases

::
as

::
an

::::::::
example)

::::
and

:::::::::::
interpolation

:::::::
methods

::::::
(linear

::
or

:::::::
nearest)

::::
are

::::::::
illustrated

::
in
::::

Fig. 3.4
:::
11.

:::
The

:::::
wind

::::
field

::
is
:::::::::
generated

:::::
using

::
the

:::::::
Kaimal

:::::
model

:::::
with

:::
the

:::::::::
parameters

:::::
listed

::
in

:::::
Table

::
1.

::::
The

:::
grid

::::::
width

::
on

:::
the

::
y

:::
and

::
z
::::
axes

:::
for

:::
full

::::
gird

::
is

::::
5m.

::
A

:::::::::
four-beam

:::::
pulsed

::::
lidar

:::::
with

:::::::::
parameters

:::::
listed

::
in

:::::
Table

:
2
::
is
:::::::::
considered

:::
for

:::
the

::::
lidar

:::::::::::
simulations.

:::
The

:::::::
motion

::
of

::::
lidar

:::::::
position

::
is

:::
not

:::::
taken515

:::
into

:::::::
account

::
in

:::
this

:::::::::::
comparison,

:::
and

::::
thus

:::
the

::::
lidar

::
is

:::::::
assumed

:::::
fixed

::
at

:::
the

:::::::::
coordinate

::::::
system

::::::
origin.

:::::::::
Figure 11a

:::::
shows

::::
that

:::
the

:::::::::::
auto-spectrum

::
in
:::::
high

::::::::
frequency

:::::
range

::
of

:::
the

::::::
3-point

::::
case

:::::::
slightly

:::::::
exceeds

::
the

:::::::::
theoretical

:::::
curve

:::::
when

::::::::
compared

:::
to

::
the

:::::::
5-point

:::
case

::::::
shown

::
in

::::::::
Fig. 11b.

:::::::::
Moreover,

::
in

::::
both

:::::::
Fig. 11a

:::
and

::
b,
:::::
using

:::::
linear

:::::::::::
interpolation

:::::::
slightly

:::::::
reduces

:::
the

::::::::::::
auto-spectrum

::
in

:::
the

::::
range

:::::
after

:::
the

:::::
peak.

:::
As

::::::::
observed

::
in

:::::::
Fig. 11c,

::::
both

:::::::
discrete

:::::::
ranging

:::::::::
weighting

::::::::
functions

:::
and

:::::::::::
interpolation

::::::::
methods

:::::
seem

::
to

::::
have

::
no

::::::::
influence

:::
on

::
the

:::::::::
coherence

:::::::
between

:::
the

::::::
REWS

::::
and

:::
the

::::::::::::
lidar-estimated

::::::
REWS.520

Table 2.
::::::::
Parameters

:::
the

::::::::
simulated

:::::
pulsed

:::
lidar

::::::
system.

::::::::
Parameters

: :::::
Values

::::
Units

:

::::::
Number

::
of

:::::
beams

: :
4 [-]

::::
Beam

:::::::
azimuth

:::::
angles

::::
15.0,

::::
15.0,

::::
-15.0,

:::::
-15.0 [

:

◦]

::::
Beam

:::::::
elevation

:::::
angles

: ::::
12.5,

::::
-12.5,

:::::
-12.5,

::::
12.5 [

:

◦]

:::::
Range

:::
gate

: ::
87 [m]

:::::::
Sampling

::::::::
frequency

:::
1.0 [Hz]

:::
Full

:::::
width

:
at
::::
half

:::::::
maximum

: ::
30 [m]

As mentioned above
:::::::
However, using full grid for lidar simulations requires a massive amount of

::::::::
relatively

::::
high computational

effort for
::
the 4D wind field generation

::::::
because

:
it
:::::
needs

::
to
::::::::
generate

::
the

:::::
same

:::::::
number

::
of

::
3D

:::::
wind

:::::
fields

::
as

:::
the

::::::
unique

:
x
::::::::
positions

:::::::
required

::
to

:::::::
simulate

:::
all

:::::::
discrete

:::::
points

::
of

::::::::::::
measurement

::::
gates. To reduce the computational effort

::
of

:::
full

::::
grid, we propose an

approximate method that combines 4D wind field generation and Taylor’s (1938) frozen hypothesis: a sparse grid which only

contains the vertical planes with regular grid points at the x positions of the focus points of the lidar range gates is defined525

in the 4D wind field generation, and Taylor’s (1938) hypothesis is applied to the lidar probe volumes (which can be regarded

as mini wind fields) to model the volume averaging effect. We define this method as "semi-frozen grid" (see Fig. 10c). As

discussed in Chen et al. (2021), Taylor’s (1938) hypothesis is considered valid within the probe volumes because the spatial

length of the probe volumes actually corresponds to a temporal length on the order of magnitude of 10−7 s (typical length of a
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Figure 11.
::::::::
Comparison

:::
of

::
the

::::::::
simulated

::::
lidar

::::::
spectral

::::::::
properties

::::
with

:::::::
different

::::::
discrete

::::::::
weighting

:::::::
functions

::::
and

::::::::::
interpolation

:::::::
methods.

:
(a
:
)
:::
and

::
(
:
b)

:::::::::
Auto-spetra

:::
of

::::
LOS

:::::::::::
measurements.

:
(
:
c
:
)
::::::::
Coherence

:::::::
between

::::
rotor

:::::::
effective

::::
wind

:::::
speed

:::::::
(REWS)

:::
and

::::::::::::
lidar-estimated

::::::
REWS.

:::
The

::::::
discrete

::::::::
weighting

::::::::
functions:

:::::
3-point

:::
and

::::::
5-point

:::::
cases

::
in

::::::::
accordance

::::
with

:::::
Fig. 7.

:::
The

::::::::::
interpolation

:::::::
methods:

:::::
linear

:::
and

::::::
nearest.

::::
The

:::::::
simulated

:::::::::
auto-spectra

:::
are

:::::::
averaged

:::
with

:::
16

::::::
samples.

laser pulse), and thus wind evolution is negligible for such a short instant
:::::
More

::::::::::
specifically,

:::
Eq. (33)

:::
can

::
be

::::::::
rewritten

::
as

:
530

Su,i,j = γs,i,jγx,i,jγyz,i,jSu
::::::::::::::::::::::

(47)

::::::::
following

:::
our

:::::::
previous

::::::::::
assumptions

::
in

::::::::
Sect. 2.3.

::::::::::
Semi-frozen

::::
grid

:::::::
assumes

:::::
frozen

:::::::::
turbulence

:::::::
between

:
i
:::
and

::
j,
::::
i.e.,

::
the

::::::::::
longitudinal

::::::::
coherence

::::::::
γx,i,j = 1

:::
for

::::
any

::::::::
frequency.

Illustration of three types of grids for lidar simulations. (a) Direct grid. (b) Full grid. (c) Semi-frozen grid.

To evaluate if semi-frozen grid is a proper approximation, we compare these three grids by considering the auto-spectra of535

LOS measurements and the coherence between
:::
the

::::::
REWS

:::
and

:::
the

:
lidar-estimated u component in the upstream wind and the

u component on the rotor plane
:::::
REWS. 4D wind fields are generated in each of these three grids with Kaimal (1972) model

with the same parameters listed in Table. 1
:::
the

::::::
Kaimal

::::::
model

::::::::::
(parameters

:::
see

:::::
Table

:::
1). The grid width on the y and z axes

for
::::
both full gird and semi-frozen grid is 5m. A four-beam pulsed lidar with parameters listed in Table. 2is considered for

the lidar simulations
:::
The

::::
lidar

:::::::::::
configuration

:::
see

:::::
Table

::
2. The motion of lidar position is not taken into account

:::::::::
considered in540

this comparison, and thus the lidar is assumed fixed at the coordinate system origin. For simplicity, LOS measurements are

simulated with three discrete points in the probe volumes.

Parameters the simulated pulsed lidar system. Parameters Values Units Number of beams 4 -Beam azimuth angles 15.0,

15.0, -15.0, -15.0 ◦Beam elevation angles 12.5, -12.5, -12.5, 12.5 ◦Range gate 40, 87 Sampling frequency 4.0 Full width at

half maximum 30545

As shown in Fig. 12, the simulated auto-spectra and coherence in the three grids have no obvious difference and they all

match their theoretical curves given by the formulas derived in Sect. 3.2. Based on these results, we consider semi-frozen grid

to be a good compromise between the accuracy of lidar simulations and computational efforts of 4D wind field generation.
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However, because the simulation results depend on the properties of wind evolution and the lidar range weighting effect, the

applicability of semi-frozen grid to aeroelastic simulations of wind turbines should be verified according to specific conditions.550

Figure 12. Comparison of the simulated
:::
lidar spectral properties with different grids. (

:
a
:
)
:::::::::
Auto-spetra

::
of

::::
LOS

:::::::::::
measurements.

:
(
:
b
:
)
::::::::
Coherence

::::::
between

::::
rotor

:::::::
effective

::::
wind

::::
speed

:::::::
(REWS)

:::
and

:::::::::::
lidar-estimated

::::::
REWS. Direct grid: all the points required for lidar simulations are directly

defined in the 4D wind field generation. Full grid: the vertical planes with regular grid points at the x positions of the focus points and the

discrete volumes of the lidar range gates. Semi-frozen: the vertical planes with regular grid points at the x positions of the focus points of

the lidar range gates. Beam azimuth angle: 15.0 ◦. Beam elevation angle: 12.5 ◦. Range gate: 87 m. The simulated auto-spectra are averaged

with 16 samples.

4 Conclusions

Lidar-assisted control (LAC) of wind turbines is a control concept which takes advantage of a nacelle-mounted lidar (a remote

sensing device) to measure upstream wind of a turbine to enable the turbine to preact to the incoming turbulence (see, e.g.,

Schlipf, 2015; Simley, 2015). The recent commercial certification of LAC has drawn more attentions to this technology (Schlipf

et al., 2018). Because LAC is a preview control
::::::
strategy

:
based on the upstream turbulence, an appropriate modelling of wind555

evolution is essential to evaluate the benefits of LAC for wind turbines in aeroelastic simulations. Therefore, the commonly

used stochastic 3D wind field simulation methods (Veers, 1988; Mann, 1994), which do not consider wind evolution, are no

longer sufficient for this propose.

Out of the need for a wind field generator capable of simulating wind evolution, in the first part of this paper, we present a

general method for 4D (space-time) stochastic wind field generation based on the extension of the Veer’s
::::
Veers (1988) method,560

which enables 4D wind field generation for arbitrary grids. To increase the applicability of the 4D method, we further propose

a two-step Cholesky decomposition approach on the basis of the general method, which is applied to 4D wind field generation

for regular grids under specific assumptions. The two-step Cholesky decomposition approach leads to the idea to generate a

4D wind field by combining multiple statistically independent 3D wind fields. Based on this concept, we have developed an
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open-access 4D wind field generator — evoTurb, which is coupled with TurbSim (specifically for the Kaimal (1972) model)565

and Mann turbulence generator (MTG). This tool has two main advantages: (1) The modelling of wind evolution is introduced

into the stochastic wind field generation without changing any other wind field properties generated by TurbSim or MTG,

which is beneficial to integrating the 4D wind field generation with the current framework of the aeroelastic simulation of

wind turbines. (2) Pre-generated 3D wind fields can be used to generate 4D wind fields, which significantly increases the

computational efficiency of 4D wind field generation.570

Because 4D wind field generation is supposed to be applied to simulations of LAC systems, in the second part of this paper,

we study lidar simulations in 4D wind fields with respect to the following three aspects and provide corresponding suggestions:

(1) Discrete lidar range weighting function: Because lidar simulations require a discrete lidar range weighting function, we

analyze the impact of different step widths
::::::
spacing

:
of the discrete range weighting function. It is found that the dis-

cretization will introduce an additional sinusoidal-shape coherence at the wavenumber of the reciprocal of the step width575

::::::
spacing

:
into the auto-spectrum of the simulated lidar measurements

::
but

::::::
seems

::
to

:::::
have

::
no

::::::::
influence

:::
on

:::
the

:::::::::
coherence

:::::::
between

:::
the

::::
rotor

::::::::
effective

:::::
wind

:::::
speed

::::::::
(REWS)

:::
and

:::
the

:::::::::::::
lidar-estimated

::::::
REWS. Therefore, we suggest that the step

width
::
to

::::::
choose

:::
the

::::::
spacing

:
of a discrete range weighting function could be chosen according to the maximum relevant

wavenumber in a specific application to prevent noise caused by the discretization from appearing
::::
being

:::::::::
introduced

::::
into

::
the

::::::::::::
auto-spectrum

:
in the relevant wavenumber range.580

(2) Interpolation methods: In practice, when the lidar simulation points are not exactly located on the grid points of the

simulated wind fields, interpolation is used to approximate the values of the desired points for lidar simulations. Our

analysis shows that nearest-neighbor interpolation does not affect the auto-spectrum, while interpolation methods based

on weighted averaging of the values at neighboring grid points will filter out the auto-spectrum of the u component

especially in the high frequency range. The reason for the latter is that
:::
the weighting factors must be multiplied with the585

coherence between the interpolated point and the corresponding neighboring points, which is always less than one.
:::
No

::::::
obvious

::::::
impact

:::
on

:::
the

:::::::::
coherence

:::::::
between

:::
the

::::::
REWS

:::
and

::::
the

::::::::::::
lidar-estimated

::::::
REWS

::
is

::::::::
observed

:::
for

::::
both

:::::::::::
interpolation

:::::::
methods.

:
Consequently, we consider nearest-neighbor interpolation to be preferable in terms of maintaining the auto-

spectrum.

(3) Simulation grids: A sufficiently dense grid of wind fields is necessary for lidar simulations to avoid the negative effects590

of spatial discretization, but such a dense grid makes 4D wind field generation computationally expensive. This dilemma

motivates us to propose an approximate method with a sparse grid — "semi-frozen grid". This method uses a sparse grid

which only contains the vertical planes with regular grid points at the x positions of the focus points of the lidar range

gates to generate 4D wind fields and applies Taylor’s (1938) hypothesis to the lidar probe volumes to model the volume

averaging effect. It is confirmed that lidar simulations with "semi-frozen grid" perform as well as "direct grid" (the points595

required for lidar simulations are directly defined in the 4D wind field generation) and "full grid" (the vertical planes

with regular grid points at the x positions of the focus points and the discrete volumes of the lidar range gates). As a

result, we believe that semi-frozen grid is applicable to aeroelastic simulations of wind turbines under some conditions.
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There is still space to improve evoTurb. For example, the impact of assuming the identical longitudinal coherence for the u

and w components for the Mann (1994) model should be examined. Moreover, the longitudinal coherence of the v component600

can be added to evoTurb if it is relevant for other applications. Regarding simulations of LAC systems, it is necessary to

interface evoTurb with aeroelastic simulation environments of wind turbines, e.g. OpenFast. In addition, it is well worthwhile

to investigate the probability of different degrees of wind evolution occurring in nature to provide a better reference for defining

the simulation requirements. Last but not least, long-term field testing is desired for the validation of LAC simulations with

different wind evolution conditions in the future.605

Code availability. The open-access tool evoTurb has been published on Github: https://github.com/SWE-UniStuttgart/evoTurb.

Appendix A: Turbulence models

In the stochastic wind field generation, the wind velocity fluctuations are assumed to be statistically stationary Gaussian pro-

cesses or Gaussian fields, which can be completely characterized by their mean, variance, auto-spectrum, and cross-spectra

between any two spatial points (Pope, 2000). As evoTurb is made compatible with TurbSim and Mann turbulence generator610

(MTG), the turbulence models deployed in both tools are briefly introduced in this section. For more details, please refer to

IEC 61400-1:2019.

:::::
Before

::::::
giving

::::
the

:::::::
formulas

:::
of

::::
both

::::::::::
turbulence

:::::::
models,

:
a
:::::::

general
:::::::::
definition

::
of

:::
the

::::::
spatial

:::::::::
coherence

::::::::
between

:::
the

:::::
wind

::::::::::
components

:
i
:::
and

::
j

::::::::::::
(i, j = u,v,w)

::
at

:::
two

:::::::
spatially

::::::::
separated

::::::::
locations

::
k

:::
and

:
l
::
is

:::::
given

::
as

:::::::
follows:

:

γij,k,l(f) =
|Sij,k,l(f)|√
Si,k(f)Sj,l(f)

,

::::::::::::::::::::::::

(A1)615

::::
with

:
f
:::
the

:::::::::
frequency

::
in Hz,

:::::::
Si,k(f)

:::
and

::::::
Sj,l(f)

:::
the

:::::::::
respective

::::::::::
auto-spectra

:::
and

::::::::
Sij,k,l(f)

:::
the

::::::::::::::
cross-spectrum.

The Kaimal (1972) spectral and exponential coherence model is the most commonly used turbulence model in TurbSim.

The non-dimensional auto-spectrum for wind component k (k = u,v,w
:::
the

::::
wind

::::::::::
component

:
i
:::::::::
(i= u,v,w) is a function of the

integral scale parameter Lk::
Li:and wind speed at hub height Vhub:

fSk(f)

σ2
k

fSi(f)

σ2
i

::::::

=
4 · fLk

Vhub(
1 + 6 · fLk

Vhub

)5/3

4 · fLi

Vhub(
1 + 6 · fLi

Vhub

)5/3

:::::::::::::

, (A2)620

where f is frequency in , Sk is
:::
with

::
Si:::

the
:
one-sided auto-spectrum , and σk is

::
and

:::
σi :::

the standard deviation of the correspond-

ing wind speed component.

In this model, only spatial coherence of
:::
the

:::::
spatial

:::::::::
coherence

:::
for the u component on the

::::
same yz plane (indicated with the

subscript "yz") is considered using an exponential coherence model:

γu,yz(dyz,f) = exp

−12

√(
fdyz
Vhub

)2

+

(
0.12 · dyz

Lu

)2
 , (A3)625
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where dyz is
:
an

:::::
entry

::
of

:
a matrix containing separations between any pair of points on the yz plane.

The Mann (1994) uniform shear turbulence model is the model deployed in the MTG. Similar to the Kaimal model, the

one-sided auto-spectra
:::
The

::::::::
two-sided

:::
1D

::::
(the

::
x

::::::::
direction)

:::::::
spectra of Mann model are also given in a non-dimensional form

:::
can

::
be

:::::::::
computed

::::
with

fSi(f)

σ2
i

=
σ2

iso

σ2
i

· 2k1 ·ΨiiFij
::

(k1)with=

∞∫
−∞

∞∫
−∞

Φij(

:::::::::::

k1=
2πlf

Vhub
,k2,k3)dk2dk3,

:::::::::::
(A4)630

where σi is the variance of the wind component i (i= u,v,w), σiso is the unsheared, isotropic variance, l is the scale parameter.

Ψij(k1) (j = u,v,w) is the one-dimensional, wavenumber spectrum (auto-spectrum for i= j, cross-spectrum for i 6= j) which

describes the two-point correlation for the spatial structure of turbulence

Ψij(k1) =

∞∫
−∞

∞∫
−∞

Φij(k1,k2,k3)dk2dk3,

where
:::
Φij::

is
:::
the

:::::::
spectral

:::::
tensor

:::::::
defining

:::
the

::::::::
ensemble

:::::
mean

::
of

:::
the

:::::::
Fourier

::::::::
coefficient

:::
of

:::
the

::::
wind

::::::::::
components

:::::::::
(i, j = 1,2

::
or

::
3635

:::::
stands

:::
for

::::::
u,v,w)

:::::::::::::::::::::::::::::::::::::::::
(see, e.g., Peña et al., 2017; Held and Mann, 2019).

:
k1, k2, and k3 are the non-dimensional spatial wavenum-

bers for the three wind component directions. For brevity, the spectral tensor Φij(k1,k2,k3) is not explicitly given in this paper.

Please refer to Mann (1994) or IEC 61400-1:2019 for more details.

The spatial coherence
:::::::::
magnitude

:::::::::
coherence

:::
(no

::::::
square)

:
for spatial separations perpendicular to the longitudinal direction

can be obtained , according to its definition, by
::
by

:
640

γij,yz(fk1
:
, lδ2∆y

::
, lδ3∆z

::
) =

∣∣∣∫∞−∞ ∫∞−∞Φij(k1,k2,k3)e−ik2δ2e−ik3δ3dk2dk3

∣∣∣√
Ψii(k1)Ψjj(k1)

∣∣∣∫∞−∞ ∫∞−∞Φij(k1,k2,k3)e−ik2∆ye−ik3∆zdk2dk3

∣∣∣√
Fii(k1)Fjj(k1)

::::::::::::::::::::::::::::::::::::::::

,

(A5)

where δ2 and δ3 are non-dimensional
::
∆y

::::
and

:::
∆z

:::
are spatial separations for lateral and vertical directions, and i is the imaginary

unit.
:::
The

:::::::::
frequency

::::::
spectra

::
or

::::::::
coherence

:::
of

:::::
Mann

:::::
model

:::
can

:::
be

:::::::
obtained

:::::
using

:::
the

:::::::::
conversion

:::::::::::::
k1 = 2πf/Vhub ::::

with
:::
the

::::
help

::
of

:::::::
Taylor’s

:::::
frozen

:::::::::
hypothesis

::::::::::::
(Mann, 1998).

:

Appendix B: Wind evolution models645

Wind evolution refers to the decorrelation of turbulence structures (eddies) dependent on evolution time. In practice
::::::::
Following

:::::::
previous

:::::::
research

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see, e.g., Pielke and Panofsky, 1970; Kristensen, 1979; Simley and Pao, 2015; Schlipf et al., 2015; Chen et al., 2021)

, wind evolution is measured by the longitudinal coherence , i.e., the magnitude-squared coherence between velocity fluctua-

tions at different locations in the longitudinal direction. Its definition is analog to the lateral-vertical coherence, but it is worth

noting that the longitudinal coherence corresponds to a lagged correlation,
::::::
which

::::::
means

:::::
when

:::::::::
calculating

:::
the

:::::::::::
longitudinal650

:::::::::
coherence,

:::
one

::
of

:::
the

:::::
wind

:::::
speeds

::::::
should

:::
be

::::::
shifted

::
by

:::
the

::::::::::::
corresponding

::::
time

:::
lag

:::::::
between

::::
both

:::::
wind

::::::
speeds.
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Table B1. Summary of the wind evolution models supported in evoTurb.
::
dx :

is
:::
the

:::::
spatial

::::::::
separation

:::
on

::
the

::::
wind

::::::::
direction.

::
Ū

::
is

::
the

:::::
mean

::::
wind

:::::
speed.

:
σ
::
is

:::::
related

::
to

::
the

::::
total

:::::::
turbulent

:::::
kinetic

::::::
energy

:::
and

::
can

:::
be

:::::::
calculated

::::::
through

:::::::::::::

√
σ2
u +σ2

v +σ2
w.

:::
Lu :

is
:::
the

::::::
integral

:::::
length

::::
scale

::
of

::
the

::
u

:::::::::
component.

::::::
GPR(·)

::::::
denotes

::
a
:::::::
Gaussian

::::::
process

::::::::
regression

:::::
model.

:::
For

::::::
brevity,

:::
the

:::::::
predictors

::::
(i.e.,

::::
input

::::::::
variables)

:::
are

::
not

::::::::
explicitly

::::
listed

::
in

::
the

:::::
table.

:::
For

::::
more

:::::
details,

:::::
please

::::
refer

::
to

:::
the

:::::::::
open-access

:::
tool

:::::::
evoTurb.

Reference Model Parameterization

Simley and Pao (2015) γ2
u,x(dx,f) = exp

(
−a ·

√(
fdx
Ū

)2
+ (bdx)2

)
a= 8.4 σ

Ū
+ 0.05 b= 0.25L−1.24

u

Chen et al. (2021) γ2
u,x(fdless) = exp

(
−
√
a2f2

dless + b2
)
, fdless = f∆t a= GPR(·) b= GPR(·)

Kristensen (1979) γ2
u,x(ξ) = exp[−2αG(ξ)] ·

[
1− exp

(
− 1
αmξ2

)]2
, ξ = fLu

Ū

α= σ
Ū

D
Lu ::::::::

α= σ
Ū
dx
Lu

m=

1, if α≥ 1

2, if α < 1

G(ξ) = 334/3ξ2 · (33ξ+3/11)1/2

(33ξ+1)11/6

Currently, only the longitudinal coherence of the u component γu,x (for brevity, the position indices i and j are omitted) is

considered. To model γu,x, evoTurb supports different wind evolution models proposed in some previous studies (see Table B1).

:
It
::
is

:::::
worth

::::::::::
mentioning

::::
that

::::
these

:::::::
models

:::
are

:::::::
provided

::
in
:::

the
:::::

form
::
of

:::
the

::::::::::::::::
magnitude-squared

:::::::::
coherence

::::
γ2
u,x::

in
::::::::
literature,

::::
and

:::
thus

::::
the

::::::
square

::::
root

:::::
needs

::
to

:::
be

:::::
taken

:::::
when

:::::::
applied

::
to

:::
the

::::
4D

::::
wind

:::::
field

::::::::::
generation. The models can be categorized as655

empirical and physical. The first two models are empirical models following a similar simple exponential form. They are all

based on the same assumption that turbulent eddies decay exponentially but consider different model parameters (Simley and

Pao, 2015; Chen et al., 2021). The last model is a physical-deduced model which assumes that the coherence can be modelled

with the square of the probability that an eddy observed at the first location can also be observed at the second location. This

considers two probabilities: the probability that the eddy does not decay during its travel, which is also modelled with the660

exponential expression, and the probability that the eddy is carried towards the second location, which is modelled with the

transversal diffusion of eddies (Kristensen, 1979). For more details regarding these wind evolution models, please refer to the

corresponding references.

Appendix C: Mathematical proof for the Cholesky decomposition of the Kronecker Product

The Kronecker product (Henderson et al., 1983) is a special multiplication operation on two matrices of arbitrary size, which665

gives a block matrix as a result. For an m-by-n matrix P and a p-by-q matrix Q, the Kronecker product P⊗Q is a pm-by-qn

block matrix defined as

P⊗Q =


p1,1Q . . . p1,nQ

...
. . .

...

pm,1Q . . . pm,nQ

 . (C1)
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According to Schacke (2004), the Kronecker product has the following properties for the real matrices P, Q, M, and N:

(P⊗Q)> = P>⊗Q>; (C2)670

(P⊗Q)(M⊗N) = (PM)⊗ (QN). (C3)

The Cholesky decomposition (Press et al., 1992) can decompose a real, symmetric, positive-definite matrix A into the

product of a lower triangular matrix LA, i.e.,the Cholesky factor, and its transpose

A = LAL>A . (C4)

The operation to obtain the Cholesky factor is defined as675

LA = chol(A). (C5)

With the above-mentioned properties, we can extend the Kronecker Product of two real, symmetric, positive-definite matrices

A and B as

A⊗B = (LAL>A )⊗ (LBL>B )

= (LA⊗LB)(L>A ⊗L>B )

= (LA⊗LB)(LA⊗LB)> (C6)

with LA and LB the Cholesky factors of A and B, respectively. By applying the Cholesky decomposition to Eq. (C6), we can680

prove that

chol(A⊗B) = chol((LA⊗LB)(LA⊗LB)>)

= LA⊗LB

= chol(A)⊗ chol(B). (C7)
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