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Abstract. This paper is the first in a two-part study on lubrication in wind turbine main-bearings. Elastohydrodynamic lubri-

cation is a complex field, the formulas and results from which should not be applied blindly, but with proper awareness and

consideration of their context, validity and limitations in any given case. The current paper, “Part 1”, therefore presents an

introductory review of elastohydrodynamic lubrication theory in order to provide this necessary background and context in an

accessible form, promoting cross-disciplinary understanding. Fundamental concepts, derivations and formulas are presented,5

followed by the more advanced topics of: starvation, non-steady effects, surface roughness interactions and grease lubrication.

“Part 2” applies the presented material in order to analyse wind turbine main-bearing lubrication in the context of available

film thickness formulas and related results from lubrication theory. Aside from the main-bearing, the material presented here is

also applicable to other lubricated non-conformal contacts in wind turbines, including pitch and yaw bearings and gear-teeth.

1 Introduction10

Wind turbine main-bearings have come under increased research scrutiny of late, due to higher than expected failures rates

and failure mechanisms which are yet to be fully understood (Hart et al., 2019, 2020; Hart, 2020; Guo et al., 2021; Nejad

et al., 2022). Integral to main-bearing function and performance is the fact that it is a rolling bearing, tasked with allowing

low-friction, free rotation of the shaft while also supporting the turbine rotor. Lubrication of the main-bearing is therefore

necessary to prevent rapid wear and damage propagation from taking place. As such, the lubricant and lubrication mechanisms15

acting within this component must be accounted for as part of any attempt to fully characterize and understand main-bearing

internal operational conditions, failure mechanisms and reliability. This two-part study seeks to begin this process.

Lubrication, and elastohydrodynamic lubrication (EHL) in particular, is a complex, nuanced and rapidly evolving field.

While simplified film thickness formulas have been developed, their application should be accompanied by careful consid-

eration of their validity and possible limitations in any given case. Furthermore, additional effects may be present where20

operational conditions vary rapidly or where grease lubrication is used. For the benefit of non-EHL-specialists, it is therefore

argued that there is considerable value in an introductory review of this field which presents the reader with a comprehensive

overview of EHL theory, including: fundamental equations and the problem formulation, the approximations being applied,

numerical solution methods, general characteristics of EHL contacts, simplified film thickness equations and their validity, and,
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an overview of additional effects caused by time-varying conditions, starvation, surface roughness and grease behaviour. While25

a number of excellent review papers are available in this field (Spikes, 2006; Lugt and Morales-Espejel, 2011; Greenwood,

2020), some are older now and for others a prior familiarity with topic fundamentals is ideally required. In the case of review

papers which cover specific topics within EHL (Morales-Espejel and Wemekamp, 2008; Lugt, 2009, 2016; Morales-Espejel,

2014; Poll et al., 2019; Marian et al., 2020; Meng et al., 2020), a much higher level of familiarity is necessary. This paper,

“Part 1” of the main-bearing lubrication study, therefore presents an introductory1 review of EHL for non-conformal (roller30

bearings, gear-teeth etc.) contacts which covers both topic fundamentals and recent results, while remaining accessible to a

more general engineering audience. While main-bearings form the focus of the overall study, the material presented in Part 1

applies equally to other lubricated non-conformal contacts in wind turbines, including pitch and yaw bearings and gear-teeth.

To aid the reader, a table of symbols is provided in Appendix A.

2 Surface separation and lubrication regimes35

Fluid film lubrication exists when two machine surfaces are completely separated by a layer of lubricant. In such circumstances,

forces are carried via pressures generated within the lubricant and frictional/wear conditions are greatly improved. The presence

of an adequate lubricant film is therefore critical to the reliability and longevity of machine components. In the context of wind

energy, one normally encounters non-conformal contacts (roller bearings, gear-teeth etc.) operating in the elastohydrodynamic

regime2, in which significant elastic deformations of lubricated surfaces occur.40

For completely smooth surfaces a lubricant film would always be present, even if vanishingly small. However, in reality

material surfaces are not perfectly smooth and exhibit roughness, geometrical variations, on the order of 0.01-10 ηm (Hamrock

et al., 2004). It transpires that typical lubricating film thicknesses also sit somewhere within this range, meaning film thickness

needs to be considered relative to surface roughness in order to determine whether a separation of surfaces has been achieved.

The appropriate relative quantity is the film parameter,45

Λ =
hm
σ
, (1)

which relates the minimum film thickness, hm, to the combined (root-mean-square) roughness of contacting surfaces I and

II, σ =
√
σ2

I +σ2
II (Hamrock et al., 2004). While delineations between lubrication regimes are difficult to make exactly, the

following rough estimates indicate film parameter values associated with each (Hamrock et al., 2004):

– Hydrodynamic lubrication, 5< Λ< 10050

– Elastohydrodynamic lubrication, 3< Λ< 10

– Mixed lubrication, 1< Λ< 5

– Boundary lubrication, Λ< 1.
1This being the case, the aim is to provide an accessible and representative overview of EHL theory, as opposed to an exhaustive review of the entire field.
2Although a novel (conformal) journal bearing design in this space is being developed (Rolink et al., 2020, 2021).
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Figure 1. A control volume of fluid lying between moving bearing surfaces with surface tangential velocities uI and uII.

Hydrodynamic lubrication is generally associated with conformal surfaces (e.g. journal bearings) and negligible elastic de-

formations. Boundary lubrication occurs when surfaces are no longer separated by a lubricant film and there is significant55

surface-surface contact. Mixed lubrication represents an intermediate state in which some penetration of the lubricant film has

occurred, such that the load is shared between asperity contacts and fluid pressures. For non-conformal contacts fully elastohy-

drodynamic lubrication is aspired to, with mixed and boundary cases representing increasing levels of friction and a heightened

risk of wear related damage.

3 Reynolds equation and the elastohydrodynamic lubrication problem60

Lubricated conjunctions can support applied loads as a result of pressure distributions generated through fluid film interactions.

The differential equation governing these interactions is known as the Reynolds equation. While derivations and applications

of this equation are commonplace, a proper discussion of nuances occurring in the current problem requires a more detailed

understanding of the equation’s origin and underlying terms. As such, key elements from the derivation based on the laws of

viscous flow and mass conservation will be presented, for more detailed considerations see Hamrock et al. (2004) and Dowson65

(1962). The full EHL problem is then defined. Note, a table of symbols is provided in Appendix A. The derivation of Reynolds

equation begins by considering the rectangular control volume shown in Figure 1 of height h, width ∆x and length (into the

page) ∆y. The mass of lubricant contained within this control volume at any point in time is ρh∆x∆y, where ρ is the lubricant

density. The rate at which this mass changes over time is determined by the difference between mass flowing into and out of

the control volume. From Figure 1, mass flow differences in x- and y-directions are given by,70

−∂ρq
′
x

∂x
∆x∆y and −

∂ρq′y
∂y

∆y∆x, (2)
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where,

q′x =

h∫
o

u dz and q′y =

h∫
o

v dz, (3)

are volume flow rates per unit length/width. Conservation of mass requires that the rate at which mass is accumulated in the

control volume equals the total difference between mass flowing into and out of the volume. Thus,75

−∂ρq
′
x

∂x
∆x∆y−

∂ρq′y
∂y

∆y∆x=
∂

∂t
(ρh∆x∆y) , (4)

from which ∆ terms cancel such that,

−∂ρq
′
x

∂x
−
∂ρq′y
∂y

=
∂

∂t
(ρh) . (5)

Applying zero-slip boundary conditions at lubricant-solid interfaces, and performing a number of integrations3, it can be shown

that volume flow rate expressions take the form (Hamrock et al., 2004),80

q′x = − h3

12η

∂p

∂x︸ ︷︷ ︸
Poiseuille flow

+
uI +uII

2
h︸ ︷︷ ︸

Couette flow

(6)

q′y = − h3

12η

∂p

∂y
+
vI + vII

2
h. (7)

η is the lubricant dynamic viscosity and p is pressure. As indicated, these flow rates contain Poiseuille and Couette contribu-

tions. Poiseuille flow is that driven by pressure gradients in the fluid, whereas Couette flow is induced by surface velocities uI

and uII (shown in Figure 1); more specifically by shear stresses resulting from a viscous fluid interacting with moving boundary85

surfaces.

Substituting Equations 6 and 7 into Equation 5 and defining the mean entrainment velocities,

ũ=
uI +uII

2
, ṽ =

vI + vII

2
, (8)

the general Reynolds equation, which governs the pressure distribution in fluid film lubrication, is obtained;

∂

∂x

(
ρh3

12η

∂p

∂x

)
+

∂

∂y

(
ρh3

12η

∂p

∂y

)
=

∂

∂x
(ρhũ) +

∂

∂y
(ρhṽ) +

∂

∂t
(ρh) . (9)90

In a bearing context, the full EHL problem consists of finding a solution to the Reynolds equation which also satisfies the

following conditions of total film thickness and load balance,

h= hm +hg +he, (10)

∫∫
p(x,y, t) dxdy = w(t). (11)95

3For example, this includes integrations: ∂
∂z

(
η ∂u
∂z

)
→ ∂u

∂z
→ u→

∫
u
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Equation 10 stipulates that, at each location, total film thickness (h) must equal the sum of surface separation components

resulting from: minimum separation (hm), un-deformed surface geometry (hg) and local elastic deformations (he) caused by

resulting pressures in the system. Equation 11 stipulates that the pressure distribution must balance the applied force, w(t), at

each point in time. Evaluation of elastic deformations is discussed further in Section 3.1, below.

As presented, the Reynolds equation is valid for variable-viscosity compressible flows, with changes in viscosity and density100

driven primarily by pressure (under isothermal conditions). Variations in lubricant properties are usually captured via empirical

equations; for example, the Barus law and Roelands equation (Hamrock et al., 2004),

η = η0e
αp, η = η010−[1.2+log10(η0)][1−(1+p/2000)Z1 ], (12)

(respectively) are both commonly used under isothermal conditions to characterise changes in viscosity. η0 is the lubricant

dynamic viscosity at the inlet temperature and for (gauge-pressure) p= 0, α is the pressure-viscosity coefficient and Z1 a105

dimensionless pressure-viscosity index. Viscosity also varies strongly with temperature. In practise, viscosity information is

normally provided at two reference temperatures, with interpolation allowing an appropriate value for η0 (at the inlet tempera-

ture) to be identified (ASTM, 2020). For non-isothermal computational EHL modelling, empirical equations along the lines of

Equation 12 that also include temperature have been developed (Hamrock et al., 2004). Similar equations are used to describe

density variations with pressure, for example,110

ρ= ρ0

(
1 +

0.6p

1 + 1.7p

)
, (13)

for some mineral oils, in which a roughly linear initial increase in density with pressure levels off to a maximum of +35.3% as

p→∞. In Equation 13, different coefficients may be used depending on the lubricant. More accurate representations have also

been developed which rely on greater numbers of coefficients. Empirical equations of the above types are developed within a

specific range of conditions, hence, the validity of applied empirical relationships should be considered when looking to solve115

any given EHL problem. It should be noted that the Barus law, while easily implemented and useful for gaining an intuitive

understanding of pressure-viscosity effects, is known to provide a poor approximation of real lubricant viscosity variations

with pressure. Indeed, there is a growing call for more realistic modelling of lubricant rheological behaviour in general (Bair

et al., 2016; Bair, 2019). It is argued that these aspects of EHL must be properly accounted for before it can be considered

a truly quantitative discipline (Vergne and Bair, 2014; Bair et al., 2016; Bair, 2019). Despite these shortcomings, there still120

remain many examples where numerical models employing the above empirical equations are able to accurately recreate

results obtained experimentally (e.g. see Tsuha and Cavalca (2020); Venner and Wijnant (2005); Zhang et al. (2020)).

3.1 Appromixations in EHL modelling

The outlined derivation and EHL problem definition together provide an accessible justification of Equations 9-11, however,

it should be noted that approximations are present for which proper consideration requires a first-principles derivation, and125

associated discussions, starting from the Navier-Stokes and continuity equations. Similarly, elastic deformations of bearing

surfaces are usually resolved by approximating each body as an elastic half-space. As with any model, it is important to
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understand the approximations being made and the conditions under which they are valid. Therefore, these aspects of numerical

EHL models will be briefly outlined.

First, the fluid context is considered. EHL of machine components generally results in film thickness values which are130

small compared to the length of the conjunction through which the lubricant is flowing (see Section 6, below). Denoting

typical surface separation in the conjunction by h0 and typical conjunction length (over which changes in separation occur)

by L, in the limit h0/L→ 0 the inertial terms in the Navier-Stokes momentum equations disappear and one also obtains

∂p/∂z = 0, i.e. pressure becomes constant across the film. Volume flow-rate expressions (Equations 6 and 7) are then obtained

via integration of the simplified, and now quasi-steady, momentum equations. Reynolds equation (Equation 9) follows by135

applying an integrated form of the continuity equation, ensuring mass-flow conservation. The approximation, ho/L≈ 0, is

known as the “lubrication approximation” and is valid in cases where ho/L� 1. See Panton (2013) and Hamrock et al. (2004)

for more details. Note, the derivation outlined in Section 3 implicitly uses this same approximation.

The problem of two curved elastic bodies in contact can be reduced to that of a single “equivalent” elastic ellipsoid or

cylinder contacting a rigid plane (Dowson, 1967; Harris and Kotzalas, 2006b). The geometry of the equivalent ellipsoid or140

cylinder is captured by the reduced radii of curvature Rx and Ry in x and y directions (see Appendix A). With respect to

conjunction shape and deformation, undeformed surface geometries are generally approximated as being parabolic, resulting

in,

hg =
x2

2Rx
+

y2

2Ry
. (14)

Local deformations are most commonly evaluated by treating each body as an elastic half-space, to which is applied the same145

pressure distribution as exists in the lubricated conjunction. This simplification allows deformations to be evaluated using

relatively simple integral formulas (Johnson, 1987; Evans and Hughes, 2000). The magnitude of deflections resulting from

an applied distribution of pressure is governed by the contacting materials’ elastic moduli (E) and Poisson ratios (ν), which

may be combined into a single reduced modulus of elasticity, E′, for the equivalent elastic ellipsoid or cylinder (see Appendix

A). The half-space approximation is valid only if: surface geometries close to the contact region roughly approximate a plane150

surface, strains within the contact region are small enough to be evaluated using linear elasticity theory, and, stress fields

resulting from pressures in the conjunction are not strongly influenced by body boundaries. These requirements are satisfied if

the significant dimensions of the contact region are small with respect to the dimensions of the contacting bodies and the relative

radii of curvature of the surfaces (Johnson, 1987). The same conditions on dimensions and curvature also ensure validity of

the parabolic geometries approximation. Hertzian contact theory, which concerns the (dry) contact of non-conforming elastic155

solids, is closely related and relevant to the lubrication problem (e.g. see Section 4). Hertzian theory assumes contacting

surfaces (no longer separated by a lubricant layer) are frictionless, that the contact patch is elliptical or rectangular, and applies

the same approximations as outlined above for the evaluation of geometries and deflections (Johnson, 1987). While the EHL

problem requires numerical modelling to solve, Hertzian analysis of dry contact yields elegant analytical formulae describing

load-deflection relationships.160
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Figure 2. Surface normal-stress distributions in line (left) and point (right) contacts.

4 Line and point contacts

The current section deals with instances of dry contact. When an elastic solid is acted on by a load, deformation will occur.

Cases of two contacting and loaded solids result in the formation of a contact patch, with the geometry of contacting solids

determining the shape of the contact patch. Components which initially contact along a line (e.g. a cylindrical roller contacting

a raceway), referred to as line contacts, lead to a rectangular contact patch with a semi-cylindrical surface normal-stress165

distribution which remains identical along its length4 (Harris and Kotzalas, 2006b), see Figure 2. For an applied load per unit

length of roller, wl, this takes the form,

sl(x) =
2wl
πb

(
1−

(x
b

)2)1/2

, (15)

where b is the contact width. Line contacts can be considered as the limiting case of a long (elliptical) point contact, see below,

or the problem can be reduced to that of line-loading on a two-dimensional elastic half-space (Johnson, 1987). Components170

which initially contact at a single point (e.g. a ball or spherical roller bearing contacting a raceway), referred to as point contacts,

lead to an elliptical contact patch and semi-ellipsoidal surface normal-stress distribution (Harris and Kotzalas, 2006b),

sp(x,y) =
3w

2πab

(
1−

(x
b

)2
−
(y
a

)2)1/2

, (16)

for w the applied load and with maximum normal-stress located at the contact centre. a and b are the elliptical contact di-

mensions, see Figure 2. With respect to pressures acting within a contact patch note that, under Hertzian contact, the pressure175

distribution being applied across each surface (by the other) must equal the surface normal-stress distribution which results

(Equations 15 and 16). Therefore, Equations 15 and 16 also describe the pressure distributions acting within the contacts,

commonly referred to as the “Hertzian pressure distributions”.

Contact patch geometry is captured by the ellipticity parameter, this being the ratio,

k =
a

b
, (17)180

4Ignoring end-effects and roller crowning.
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of the elliptical semi-major and semi-minor axes a and b, respectively5. For a given Hertzian point contact, as load is applied

the axes expand proportionately to each other. Hence, k remains constant and is a function of undeformed surface geometries

only. The value of k in a particular contact case is determined by an implicit equation, involving elliptic integrals, which

requires iterative solving. Approximate formulas have been developed to allow for fast evaluation of the ellipticity parameter

and associated elliptic integrals (Brewe and Hamrock, 1977; Hamrock and Dowson, 1977a; Antoine et al., 2006). The EHL185

problem outlined above applies equally to both contact types, with the line contact case often simplified to a 2D axis-symmetric

problem in which side-leakage (y, v and ∂/∂y terms) is neglected and the applied load at time t, w(t), becomes the applied

load per unit length of roller, wl(t).

Given simplifications associated with line contact EHL, it has proved useful in some analyses to consider the concept of

an equivalent line contact representation of a point contact. Taking a point contact with applied load w and patch dimensions190

a and b, a 2D line contact representation is sought which shares its rolling direction patch width (b), geometry (Rx) and

centreline (y = 0) stress distribution under dry contact. These conditions can be shown to hold for the distributed load wl =

3w/4a applied to a line contact whose x-direction geometry matches that of the point contact, but, which has the adjusted

reduced modulus Ẽ′ =
(

1 + Rx

Ry

)
E−1E′. E is an elliptic integral of the second kind whose value depends on k (e.g. see Hart

(2020)). Full details of this equivalent line contact formulation are provided in Appendix B. Other approaches to these types of195

equivalence have been taken in the literature; for example, seeking an equivalent line contact in which the maximum or mean

Hertzian pressure coincides with that of the point contact for cases where patch widths (b) in the line and point contact don’t

coincide (Hamrock and Dowson, 1981).

5 Full EHL solutions

The first complete solution to an EHL problem was presented by Dowson and Higginson in 1959 (Dowson and Higginson,200

1959) for four line contact cases. All calculations were carried out by hand, using mathematical tables and mechanical calcu-

lators (Hooke, 2009). Much important work followed this initial breakthrough, but it wasn’t until almost two decades later that

computing power became sufficient to allow EHL solutions in the point contact case to be obtained (Lubrecht et al., 2009).

Since then, a plethora of significant advances have followed regarding numerical solvers for EHL problems, including: de-

velopment of advanced multilevel multigrid solvers (Venner, 1994; Venner and Lubrecht, 2000a, b); full coupling of elastic205

and hydrodynamic equations - the differential deflection method (Evans and Hughes, 2000; Hughes et al., 2000; Holmes et al.,

2003) - which enhances algorithmic efficiency and stability; and computational fluid dynamics implementations. These listed

solvers apply the elastic half-space approximation for evaluation of deflections. A full system approach has also been devel-

oped which incorporates full-body elasticity using finite element methods (Habchi et al., 2008; Lugt and Morales-Espejel,

2011; Habchi, 2018). Implementation of EHL in multibody dynamics software modelling has also been considered (Dlugoš210

5Note, no single convention holds for the allocation of axis labels (x/y) and contact patch dimensions (a/b). In the current work, x is taken to be the

direction of rolling and a the semi-major axis of the contact patch, with line contacts treated as long elliptical contacts in this context. For the types of

rollers/contacts seen in wind turbine main-bearings (i.e. where the semi-major axis of contact lies transverse to the direction of rolling) this allocation results

in the normal-stress distributions shown in Equations 15 and 16.
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Figure 3. General characteristics of EHL contacts, including indicative orders of magnitude for vertical and horizontal scales. Also shown

are the central and minimum film thickness values, hc and hm respectively. Note, the depicted features would be expected to occur within a

narrow central section of the conjunction shown in Figure 1.

and Novotnỳ, 2021). For an overview of recent developments in numerical EHL modelling see (Meng et al., 2020). Accurate

EHL solutions are now generated routinely and fairly easily even for complex cases such as those involving time-varying loads

and speed, moving surface roughness or mixed lubrication conditions. However, it should be noted that this only holds where

solver code and relevant expertise are available, since setting up such solvers is highly non-trivial.

Simplified formulations of the EHL problem have also been developed which allow for analytical and semi-analytical solu-215

tions to be obtained (Wolveridge et al., 1970; Morales-Espejel and Wemekamp, 2008; Greenwood, 1972). Such formulations,

while approximate, are highly efficient and provide important insights into EHL behaviour and conditions, even proving useful

when implementing full numerical solvers (e.g. they can help with the identification of appropriate mesh dimensions, as well

as supporting interpretation and sense-checking of results).

6 General characteristics of EHL contacts220

Figure 3 details characteristic features which tend to be present in EHL contacts6, as has been confirmed extensively using

numerical modelling and experimental investigations (Hamrock et al., 2004; Spikes, 2006; Albahrani et al., 2016; Foord et al.,

1969; Wymer and Cameron, 1974). Significant elastic deformation can be seen to have taken place, resulting in a near parallel

channel throughout most of the contact conjunction. Pressure at the inlet can be seen to rise rapidly to meet the Hertzian

(dry-contact) pressure curve (see Section 4), which is then tracked through much of the conjunction. Extremely high pressures225

develop within the contact gap, resulting in dramatic increases in lubricant viscosity and so dominance of the shear (Couette)

driven terms of Equations 6 and 7. Prior to the outlet, a constriction occurs in the oil film, immediately after a sudden spike

6More specifically, Figure 3 shows a ‘slice’ through the contact in the direction of rolling, x.
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in pressure. These features are coupled, with the pressure spike driven by the abrupt reduction in film height. The constriction

itself is a consequence of mass-flow continuity as follows.

We briefly consider the simplified case in which flow in the y-direction (side-leakage) is ignored; focusing on the non-230

transient case, ∂ (ρh)/∂t= 0, mass-flow continuity (Equation 5) requires,

ρq′x = constant, (18)

throughout. Considering Equation 6 at different points in the conjunction: at the entrance ∂p/∂x > 0 and so the Poisuille term

will act against the Couette flow, in the centre of the contact it has already been indicated that Poisueille flow is minimal and

Couette flow dominant (so mass flow ∼ ρũh); however, in the exit region, decreasing pressures (∂p/∂x < 0) lead to Poiseuille235

and Couette terms acting in the same direction while, simultaneously, rapid reductions in viscosity are taking place - increasing

the Poiseuille term magnitude. From Equations 6 and 18 it is clear that in order to avoid flow discontinuity, a reduction in h or

ρ (or both) must occur.

In practise it has been found that a marked reduction7 in film thickness occurs close to the outlet (as shown in Figure 3) in

both incompressible and compressible cases. This is true both with and without side-leakage. In the latter case the pressure spike240

magnitude is dramatically reduced relative to incompressible results (one example in Hamrock et al. (2004) sees a reduction of

3.7 times). The central film thickness, hc, is smaller (on the order of tens of %) for compressible flow under otherwise identical

conditions, while the minimum film thickness, hm, only changes by a few percent (Venner and Bos, 1994; Hamrock et al.,

2004).

For line contacts the features shown in Figure 3 are present along much of the roller length, with distortions known to occur245

at roller ends (Wymer and Cameron, 1974). For point contacts the same features are present, but arranged in a horseshoe which

tracks the elliptical contact patch boundary. Central film thickness, representative of much of the conjunction, is still at the

contact centre; while minimum film thickness tends to occur at two side-lobes, away from the centreline (Foord et al., 1969).

Graphical depictions of typical film thickness variations across point and line contact conjunctions are shown in Figure 4.

The horseshoe and side-lobe characteristics of point contacts arise due to the presence of Poiseuille-term driven lateral flow250

(side-leakage). In such cases, mass-flow continuity8 again indicates the presence of a constricted band aligned perpendicular

to conjunction outflow, but, with outflow velocities now vector values containing u and v components (not to be confused with

ũ and ṽ, see Figure 1). The perspective of relative (Poiseuille vs Couette) flow contributions, and implications for u and v

values at different points, is important when interpreting effects of load, speed and ellipticity on described contact features. An

excellent account of such analysis may be found in Wheeler et al. (2016a).255

Additional relevant characteristics of EHL contacts (both point and line) are as follows:

1. Both minimum, hm, and central, hc, film thickness values are important for understating conditions within the contact

conjunction. The former, combined with surface roughness information, indicates the degree to which separation of

7(hc−hm)/hc× 100% values of between 17 and 70% have been reported in the literature (Chaomleffel et al., 2007), with operating conditions being a

strong driver.
8Following a similar argument to that outlined above.
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Figure 4. Typical film thickness variations in (a) point and (b) line contact conjunctions, end effects (see Appendix C) are not shown in the

latter case. Note, these depictions are purely conceptual, film height values in one should not be interpreted as necessarily being equal to

those in the other.

surface asperities has been achieved; while the latter allows good representation of traction/friction conditions throughout

most of the almost parallel gap.260

2. With respect to operating conditions, the entrainment velocity (ũ) is known to be the main driver of lubricant film

thickness. The relative effect of load is significantly smaller, attributable to the fact that load changes coincide with an

expansion or contraction of the contact patch. Material properties are not insignificant, but in practise only a narrow

range of values will apply in any given rolling bearing situation. The lubricant viscosity at the inlet, η0, also plays an

important role in determining the resulting film thickness.265

3. As load increases and/or entrainment velocity decreases, surface geometries and pressures converge to those of dry

Hertzian contact. The pressure spike also reduces such that maximum pressure occurs at the contact centre and equals

that of dry contact.

4. As the ellipticity of point contact geometry increases9, the elliptical conjunction (Figure 4a) tends asymptotically to a line

contact conjunction (Figure 4b). This effect can be understood in the context of relative flow, since v→ 0 as ellipticity270

increases.
9Elongating Figure 4a vertically.
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7 Dimensionless groupings and film thickness equations

When modelling a physical system via a set of equations, such as for EHL, it is possible to re-express the problem in an

equivalent dimensionless form which generally depends on a reduced number of, also dimensionless, parameters. These di-

mensionless parameters are constructed as appropriate products, powers and ratios of dimensional quantities appearing in the275

original set of equations. In reduced and dimensionless form the problem is simplified and generalised, with effects of interact-

ing physical phenomena elucidated. To illustrate this last point, consider a system for which solutions depends on parameters

q1 and q2 with physical units in common. It may be the case that system response (e.g. flow rate, wave height etc.) is propor-

tionately increased by q1, but decreased by q2. In such a scenario, ultimate response is driven by the dimensionless quantity

q1/q2, rather than each value independently. The relevant number of parameters to characterise response is therefore reduced,280

and the interaction between effects associated with q1 and q2 made clear. Dimensional analysis or similarity analysis are the

names given to the study and application of such ideas and associated methods.

In EHL, the following parameters comprise the most common set of dimensionless groupings used to describe lubrication

conditions in line contact conjunctions (Dowson, 1967; Harris and Kotzalas, 2006a):

Wl =
wl

E′Rx
(load) (19)285

U =
η0ũ

E′Rx
(speed) (20)

G= α∗E′ (material). (21)

Recall that wl is load per unit length. α∗ is the lubricants inverse asymptotic isoviscous pressure coefficient, 1/α∗ =
∫∞
0

η0
η dp,

a quantity which can be directly determined for a given lubricant using high-pressure viscometer measurements.

α∗ vs α

The pressure-viscosity coefficient α, generally obtained via curve-fitting to measurements, has commonly been used

instead of α∗ for EHL analyses. Indeed, for a lubricant that really did follow a Barus law pressure-viscosity curve

(see Equation 12) it is easily shown that α∗ = α, with the substitution therefore appropriate in this case. However, in

practise the Barus law does not provide a good characterisation of viscosity variations with pressure. The coefficient

α∗, first proposed by Blok in 1963, characterises a lubricants pressure-viscosity behaviour as a single parameter, but

without assuming any particular functional form for η(p). Other candidate coefficients have also been proposed in the

literature, but, for the purposes of estimating EHL film thickness (using existing formulas) it has been demonstrated

that the inverse asymptotic isoviscous pressure coefficient, α∗, is the one which should be used (Vergne and Bair,

2014). All such coefficients are temperature dependent, with the α∗ used in film thickness equations necessarily being

the value corresponding to the lubricant inlet temperature, T . For further discussion of these aspects of EHL modelling,

see Bair (1993); Vergne and Bair (2014).
290
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In the case of point contacts, speed and material parameters remain unchanged whereas dimensionless load becomes (Dowson,

1967; Harris and Kotzalas, 2006a),

W =
w

E′R2
x

, (22)

where w is the applied load. Point contact geometry is captured in dimensionless form by the ellipticity parameter, k, or

equivalently by D =Ry/Rx. Equivalence follows from the fact that k can be expressed as a function of D only (Masjedi and295

Khonsari, 2015a). Non-dimensional film thickness is given by H = h/Rx.

Dimensionless groupings are commonly identified using a combination of intuition, experience and trial-and-error. How-

ever, systematic processes exist by which a minimal, or “optimal”, set of dimensionless quantities can be identified that fully

determine system behaviour as defined by governing equations (Moes, 1992; Hsiao, 2001). It should be emphasised that iden-

tification processes, and the resulting optimal dimensionless sets, depend on the governing equations and boundary conditions300

of a problem only. Note, also, that minimal sets of dimensionless quantities for a given problem tend not to be unique. While

the number of elements in each minimal set will be the same, alternative choices for the groupings of dimensional variables

are generally present. All alternative groupings which form a minimal set can be identified if required (Hsiao, 2001).

For the EHL problem (as defined by equations in Section 3) in line and points contacts, optimal parameter analysis reduces

the three parameters above (load, speed and material) to just two (Moes, 1992; Hsiao, 2001), a load parameter,305

Ml = wl

(
1

η0ũE′Rx

)1/2

= Wl (2U)
−1/2 (line contact) (23)

M = w

(
1

η30ũ
3E′R5

x

)1/4

= W (2U)
−3/4 (elliptical contact), (24)

and viscosity parameter,

L= α∗
(
ũη0E

′3

Rx

)1/4

=G(2U)
1/4

. (25)

The factors of 2 are present to coincide with Moes (1992), in which entrainment speed is taken to be the sum, rather than310

mean, of surface velocities. While this is the form generally used (Marian et al., 2020; Wheeler et al., 2016b), the parameters

are equally valid with the factors of 2 removed. Both forms have appeared in the literature (Moes, 1992; Hsiao, 2001), hence,

it is important to ascertain which has been applied if comparing operating conditions or applying related film thickness equa-

tions. Non-dimensional film thickness in the optimal parameter case takes the form H = (h/Rx)(2U)
−1/2. The same analysis

identifies D−1, introduced above, as the parameter representing contact patch geometry in the elliptical case (Hsiao, 2001).315

Additional parameters are required to fully capture more complex viscosity and density characteristics, for full details see

Hsiao (2001). Despite the proven reduction in the number of parameters required to characterize EHL conditions, use of Wl

(or W ), U and G persists, although film thickness equations utilising reduced sets of parameters have been developed (Marian

et al., 2020). The parametersMl (orM ) and L are, however, commonly used when plotting operating regions and results, since

visualisation becomes clearer and easier with a reduced number of variables.320

Having identified a set of dimensionless parameters (optimal or otherwise) which determine the response of the system

defined by governing equations, it follows that features of interest (e.g. hm and hc) will also be determined by these same
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parameters. If such relationships can be sufficiently well approximated by analytical equations, fast evaluation and analysis of

key features becomes possible without requiring complex numerical solvers to be implemented in every case. Film thickness

formulas have therefore been developed by performing least-squares curve fits between outputs of full EHL solvers and ana-325

lytical expressions containing dimensionless parameters. Equations 26 and 27 present two of the earlier equations identified

this way for estimating minimum film thickness (hm) in line and point contacts, respectively,

Line contacts (Dowson, 1967):

hm
Rx

= 2.65
U0.70 G0.54

W 0.13
l

(26)

Point contacts (Hamrock and Dowson, 1977a):330

hm
Rx

= 3.63
U0.68 G0.49

W 0.073

(
1− e−0.68k

)
(27)

Despite the early stage at which they were developed, these equations provide remarkably accurate estimates and are still used

today (Harris and Kotzalas, 2006a). Equation 26 is based on Barus law viscosity modelling and Equation 27 on Roelands

equation viscosity modelling. The relative importance of speed, load, viscosity and material properties (as described at the

end of Section 6) may be seen to be reflected in the exponent values of the above equations. Quite a number of subsequent335

refinements have been undertaken using larger datasets generated by more advanced solvers (Marian et al., 2020). Some of the

most extensive fitting was undertaken for line and point contacts in Masjedi and Khonsari (2012) and Masjedi and Khonsari

(2015a), respectively, resulting in the following equations:

Line contacts (Masjedi and Khonsari, 2012):

hm
Rx

= 1.652
U0.716G0.695

W 0.077
l

(28)340

Point contacts (Masjedi and Khonsari, 2015a):

hm
Rx

= 1.637
U0.711k−0.023

G0.65k−0.045

W 0.09k−0.15

(
1− 0.974e−0.676k

)
(29)

Both of these equations are based on Roelands equation viscosity modelling. Unfortunately, the full range of dimensionless

parameter values over which these formulas were fitted appears to have been misrepresented in the literature. In Wheeler

et al. (2016b), and then reproduced in Marian et al. (2020), parameter limits for the point contact hm equation are given345

(approximately) as 15≤M ≤ 104 and 5≤ L≤ 20. While these limits are those of the cases shown in the results tables of

Masjedi and Khonsari (2015a), it is explicitly stated that only a subset of the full analysis is reproduced there. Moreover, the

full range of dimensionless parameter values used for curve fitting are also given. Taking the stated limiting values in Masjedi

and Khonsari (2015a), the domain across which these equations were fitted is in fact bounded by 2.82≤M ≤ 1.47× 105 and

2.97≤ L≤ 28.20. The true domain of validity for these equations is therefore significantly larger than has been reported. For350

completeness, parameter limits for the line contact equation (Masjedi and Khonsari, 2012) are also stated; limits in L match

those of the point contact case and for Ml, 2≤Ml ≤ 353.55. With respect to ellipticity, Equation 29 was developed across the
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range 1≤ k ≤ 8. At k = 8, film thickness predictions match closely those of the line contact formula (Equation 28) applied to

an “equivalent line contact” representation of the conjunction (see Section 4). It was therefore recommended that the equivalent

line contact approach is taken for cases where k > 8 (Masjedi and Khonsari, 2015a).355

The same studies which result in formulas for hm also use curve-fitting to identify similar formulas for hc (Hamrock and

Dowson, 1977a; Masjedi and Khonsari, 2012, 2015a; Marian et al., 2020).

7.1 Accuracy of film thickness equations

It is important to appreciate that analytical film thickness equations provide estimated values based on curve fitting within a

specific range of dimensionless parameter values, i.e. operating conditions. Applicability limits for any given equation must360

therefore be checked and respected for each case being analysed. Furthermore, isothermal conditions and Newtonian fluid

behaviour are also often assumed. Correction factors for such effects have been proposed (Marian et al., 2020), these are subject

to the same limitations as outlined for the film thickness equations themselves. In the context of curve-fitting, derived formulas

are able to recreate the numerical results on which they are based to a high degree of accuracy. For example, comparisons

between Equation 29 and numerical fitting data result in a mean error of 3.27% and a maximum error of 9.79% (Masjedi365

and Khonsari, 2015a); note, it is not clear whether these numbers relate to the full dataset or only a subset. Similarly, for

the line contact hm equation (Equation 28) a maximum error of 10.41% is reported (Masjedi and Khonsari, 2012). This is

certainly promising, but, investigating accuracy at points not included in the fitting set is crucial to forming a full picture

of equation performance. In Wheeler et al. (2016b) a range of point contact analytical film thickness equations for hm and

hc were compared in this way. Maximum observed errors across tested hm equations occurred for the circular contact case370

(k = 1), reaching about 90%10. In general, hm was found to be overestimated by analytical equations, with the severity of

over-estimation increasing as load increases or entrainment speed decreases. When ellipticity was increased to k = 2.92, errors

in hm predictions reduced to satisfactory levels (about 6% on average). The study concluded that Equation 29 (along with its

companion hc equation) should be used for cases of long elliptical contacts (k > 1). Other equations are recommended for

circular contacts (k = 1), while the slender contact case (k < 1) remains an open problem (Wheeler et al., 2016b). The major375

conclusion of Wheeler et al. (2016b) is that current analytical equations must be considered as providing qualitative, rather than

truly quantitative, estimates of film thickness. Note, consistent with the discussion concerning viscosity coefficients (above),

Wheeler et al. (2016b) use the inverse asymptotic isoviscous pressure coefficient, α∗, throughout their analysis.

Despite the above caveats, film thickness equations in many cases do provide good estimates of film values, in particular

when lubricant properties are well known. h values are generally better predicted in line contacts and long elliptical contacts380

and hc tends to be better predicted than hm (Chaomleffel et al., 2007; Wheeler et al., 2016b). As outlined above, hm tends to

be over-predicted rather than under-predicted by analytical equations.

10Recent work (Habchi and Vergne, 2021) has confirmed that the presented film thickness equations struggle at predicting hm in point contacts (k = 1).

An improved analytical approach is also presented therein.
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Figure 5. Graphical depictions of a lubricated contact inlet under (a) fully-flooded and (b) starved conditions.

8 Starvation

EHL behaviour and film thickness equations discussed above assume fully-flooded conditions, in which an adequate supply

of lubricant is available to the contact. Starvation is the term given to cases in which lubricant supply is insufficient. Figure 5385

illustrates these different regimes. Under starved conditions, surface-to-surface filling of the inlet with lubricant only occurs

close to the contact edge. This reduces the magnitude of developed hydrodynamic pressures, in turn reducing the load carrying

capacity relative to fully-flooded conditions and, hence, the film thickness at any given load is also reduced. Starvation levels

are commonly characterised by the dimensionless inlet meniscus distance, m̃= xm/b, where xm is shown in Figure 5. In

the case of line contacts, film thickness reduction formulas under starvation have been presented in the literature based on a390

semi-analytical analysis of the starved EHL problem (Wolveridge et al., 1970) and curve-fitting to the results of numerical

integration of simplified lubrication equations (Goksem and Hargreaves, 1978). Starvation was studied in these works by

varying the inlet location in hydrodynamic pressure integrals. Note, the non-dimensional inlet distance used in these earlier

works differs from m̃, and the viscosity-pressure relationship was characterised using a Barus law. More recently, Masjedi

and Khonsari (2015b) undertook an extensive computational study of film thickness reductions under starvation, with surface395

roughness also present. Similar to earlier work, starvation is generated by moving the inlet of the solver domain towards the

contact centre. A Roelands pressure-viscosity relationship was used. While in other work starvation levels are indicated by an

appropriately non-dimensionalised inlet distance, Masjedi and Khonsari instead propose that starvation be linked to the mass

flow rate through the starved contact (ṁs) relative to fully-flooded conditions (ṁff). Their starvation degree is therefore defined

as the fractional reduction in flow rate,400

ζ = 1− ṁs

ṁff
. (30)

ζ takes values between 0 and 1, with 0 indicating fully-flooded conditions and 1 complete starvation. This definition has an

intuitive appeal, since film thickness is fundamentally linked to the quantity of lubricant moving through the contact. The

appropriateness of ζ in this context is evidenced by the quality of fits and simplicity of parametric equations obtained from
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curve-fitting to model outputs. In the case of line contacts, hc reductions were found to be linear in ζ, with hm reductions405

similar but weakly nonlinear. The latter fit takes the form (Masjedi and Khonsari, 2015b),

hm,s
hm

= 1− ζ1.08, (31)

for which the maximum reported error across fitted point was less than 5%. This analysis closely mirrored those authors’

previous work in which Equations 28 and 29 were presented.

In the case of point contacts, perhaps the most important earlier work was that of Hamrock and Dowson (Hamrock and410

Dowson, 1977b), who studied the effects of starvation on elliptical contact conjunctions computationally. As above, this was

achieved by adjusting the inlet distance of their solver domain and using a Roelands pressure-viscosity equation. Based on a

parametric study and subsequent curve-fitting, they proposed formulas for the reduction in central and minimum film thickness

values under starvation, with the level of starvation indicated by m̃. For hm this takes the form,

hm,s
hm

=


(
m̃−1
m∗−1

)0.25
: if m̃ <m∗ (starved)

1 : if m≥m∗ (fully-flooded),
(32)415

where,

m∗ = 1 + 3.34

(
Rxhm
b2

)0.56

. (33)

m∗ represents the transition point to starved lubrication, this being the dimensionless inlet distance at which the minimum film

thickness begins to change as m̃ is reduced further. hm is the fully-flooded minimum film thickness, and hm,s the minimum

film thickness under starvation. While a valuable contribution, important aspects of starved flow regimes in point contacts were420

not included, as will be outlined below.

Lubricant flow characteristics under starvation: Figure 6 shows characteristics features, from above, of fully-flooded and

starved EHL in line (subfigures a and b) and point (subfigures c and d) contacts. In line contacts, ignoring end effects (see

Appendix C), side leakage is negligible and so little or no lubricant is displaced laterally. It follows that in this case it is

reasonable to treat the quantity of lubricant (and so the meniscus distance) available at each point along the contact as being425

the same, even in a full bearing in which the lubricant supply to each roller is influenced by the passage of previous rollers.

In such line contact cases a straight meniscus of equal height will be present, conforming to starvation as nominally modeled

by moving the inlet towards the contact centre. In point contacts, things are significantly different. In fully flooded conditions,

Figure 6c, the lubricant remains enclosed about the contact, ensuring a sufficient supply into the conjunction. However, as the

oil supply is reduced or speed/viscosity are increased, the flow regime transitions to the “butterfly” shape shown in Figure 6d.430

Flow speeds (including lateral flow contributions) interact with effects of surface tension and viscosity such that the lubricant

film ruptures behind the contact, resulting in the bulk of the lubricant being displaced to the sides of the rolling track where

separated sidebands form (Poll et al., 2019; Fischer et al., 2021b). In a lubricated point contact rolling bearing, sidebands

at the outlet of one roller form the inlet to the next roller, explaining the inflow of Figure 6d. If no oil flowed from the
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Figure 6. Graphical depictions of lubricant flow characteristics in fully-flooded and starved regimes for line (a-b) and point (c-d) contacts.

sides to the middle of the track, the small amount remaining across the track centre11 after roller passage would rapidly435

and monotonically deplete during subsequent over-rollings, meaning a steady-state is never achieved. However, experimental

evidence and bearing operational experience have both shown that, in general, a steady-state level of starvation is reached,

indicating a balance between lubricant feed and loss mechanisms. Replenishment (also called reflow) of starved point contacts

must therefore be taking place. Out-of-contact replenishment can occur, wherein the oil/air surface tension drives a flattening

of lubricant sidebands between roller passes, causing lubricant to flow back towards the track centre (Guangteng and Spikes,440

1996; Fischer et al., 2021a). But, this mechanism is relatively slow and so only significant at low over rolling frequencies

or in cases of very high sidebands12 (Guangteng and Spikes, 1996). At exceedingly small film thicknesses (on the order of

10s of nm) direct van der Waal and related interactions elicit a powerful lubricant spreading effect, the disjoining pressure,

which slows reductions in film thickness caused by increasing starvation levels and prevents total film collapse (Guangteng and

Spikes, 1996). Disjoining pressure is therefore another form of out-of-contact replenishment. In typical bearing applications,445

close-to-contact replenishment is the dominant mechanism of reflow (Fischer et al., 2021a). Close-to-contact replenishment

11In reality the regions marked as ‘air’ in the figure contain an oil/air mix.
12This only occurs in situations where a copious supply of lubricant is present, with starvation driven by high rolling speeds rather than low lubricant

volumes (Guangteng and Spikes, 1996).
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takes place as follows: sideband height means that surface-to-surface filling with lubricant initially occurs at the sidebands

(referred to as the sideband meniscus, occuring a distance xb from the contact centre, as shown in Figure 6d). Immediately

downstream of each sideband meniscus, lateral flows are induced which separate the flow volume such that part of the lubricant

volume is drawn towards the track centre (also shown in Figure 6d), with the remainder displaced around the contact. This450

mechanism determines the amount of oil in front of the contact conjunction, and so also the meniscus distance, xm. The larger

xb, the greater the amount of oil that flows to replenish the contact inlet, increasing xm. Similarly, a reduction in xb reduces

oil replenishment to the contact, decreasing xm. Beyond the standard parameters which characterise EHL (see Section 7), the

inlet meniscus distance under starvation is additionally effected by flow behaviour, wetting behaviour and the total volume of

oil in the system (Fischer et al., 2021a, b). Lubricant flow behaviour is dictated by the relative magnitude of viscous forces to455

surface tension (σoil,air) forces, as captured by the capillary number,

Ca =
ηu

σoil,air
. (34)

Wetting behaviour relates to the effects of lubricant properties on fluid surface formation at solid/fluid/air boundaries. In the

literature, this has been characterised using the contact angle, θ, occurring at the three way interface (see Figure 6d) (Fischer

et al., 2021a, b). The impact of these factors on xm has been explored in the literature and, as demonstrated in Fischer et al.460

(2021a), each may be understood in the context of the effect on xb, as follows. xm has been shown to reduce as Ca increases

(Nogi et al., 2018; Fischer et al., 2021a). The associated increase in viscous force contributions (relative to surface tension)

results in sidebands being pushed further out from the track centre. Due to the geometry of a point contact the vertical distance

between track and roller is greater here, delaying sideband meniscus formation and so reducing xb, which in turn reduces

xm. An increase in θ (as shown for θ2 > θ1 Figure 6d) or an increase in the total oil volume both result in higher lubricant465

sidebands. This causes the sideband meniscus to form earlier, increasing xb and so also xm.

Returning to film thickness formulas under starvation, it should be clear that limitations are present for the outlined Hamrock

& Dowson starvation analysis, in the context of an operating rolling bearing, which led to Equations 32 and 33. Specifically,

a straight inlet meniscus was assumed with no provision for sidebands and other effects described above. Despite this, good

agreement has been demonstrated between numerical and experimental results and the Hamrock & Dowson analytical starva-470

tion equations (Nogi, 2015a, b; Nogi et al., 2018) in some cases. This indicates that,

1. The dimensionless inlet distance, m̃, does indeed appear to be a key factor determining film thickness reductions under

starvation

2. Equations 32 and 33 can provide good estimates of film reductions under starvation (in some instances) so long as m̃

and m∗ are known or can be well estimated.475

m∗ requires the minimum film thickness under fully-flooded conditions, hm, which may be estimated using equations described

in Section 7. The same caveats to that discussion apply again here. A remaining piece of the puzzle is therefore being able to

estimate the dimensionless inlet distance, m̃, for given operating conditions and contact geometry and while accounting for

real world characteristics of starved flow. The discussion of starved flow characteristics, above, indicates that this might be
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done through the adoption of an expanded parameter set for equation fitting. Such an approach has been undertaken by Nogi480

et al. (Nogi, 2015b; Nogi et al., 2018) for circular and elliptical point contacts. Starved flow was modelled using a numerical

EHL solver which accounts for film rupture behind the contact as driven by Ca. Sideband formation was also included by

considering conservation of mass, after film rupture, at the outlet of the computational domain. The outlet oil distribution was

then fed in at the inlet to simulate repeated over-rollings while neglecting out-of-contact replenishment. Simulations were run

until a steady-state was achieved. A Roelands pressure-viscosity relationship was used. Numerical model results were shown485

to agree well with experimental measurements (Nogi, 2015a, b; Nogi et al., 2018), with analytical formulas then fitted to the

numerical results for a range of dimensionless parameter values. In Nogi (2015b) a circular point contact (k = 1) meniscus

distance formula is presented which includes Ca and hi. The latter is the initial film height, uniform across the inlet, used

when initiating the numerical simulations. hi relates to the total oil volume available, although not in the most straightforward

manner. Nogi et al. (2018) then also includes ellipticity, k, when fitting equations. In each case, equations are adapted to account490

for a nonuniform inlet meniscus across the contact. In the notation of the current paper, the elliptical point contact meniscus

distance equation (for hm) presented in Nogi et al. (2018) is,

m̃=

(
hi
ch

)0.5973+0.0217k(
hc,k=1

ch

)−0.3437+0.249/k

exp
(
−(0.708 + 0.792k)C0.63

a

)
(1 + 0.19exp(1− k)) . (35)

ch is the Hertzian approach of the contact, capturing its relative size and geometry. hc,k=1 indicates the fully-flooded central

film thickness when k = 1. It should be noted that axis selection in the original paper is such that the ellipticity ratio appearing495

there is the inverse of k as defined in this paper. The circular contact specific equation of Nogi (2015b) is fitted over a larger

range of parameters and so may provide better results for that case. More recently, Fischer et al. (2021b) applies the CFD

model presented in Fischer et al. (2021a) to identify a formula for m̃ which is dependent on Ca, θ and the total available

oil volume. This model uses CFD simulation to study oil flow in the vicinity of point contact geometry. Modelled roller and

raceway surfaces are rigid and the gap height set manually, remaining fixed throughout. Curve fitting to outputs of a parametric500

study resulted in the meniscus distance equation (Fischer et al., 2021b),

m̃= 4.533exp
(
−2.571C0.384

a

)
cos(θ)−0.249

(
Vl,oil× 10−6

)0.446
b−1, (36)

where Vl,oil is the available oil volume per unit length of track in µl/mm. This equation relates to the case of a circular point

contact. It is interesting to note the similarities in Equations 35 and 36 with respect to the terms and exponents involving Ca

and information on the available oil volume. Equation 36 does not contain a fully-flooded film thickness term. Fischer et al.505

(2021b) also compares experimentally measured central film thickness values under starvation with those obtained applying

Equations 36 and the central film thickness equivalent of Equation 32. hc values, as speed (and so Ca) is increased, predicted

by the analytical equations were found to fall much more precipitously than the measured values. Furthermore, measured

film thickness values leveled off at 80-90nm, behaviour reminiscent of disjoining pressure effects described in Guangteng and

Spikes (1996), although occurring here at higher film thickness values. At present it is unclear what is causing this disparity. It510

could be that in tested cases Equation 36 fails (for whatever reason) to provide a good estimate of the real meniscus distance,

or that Equation 32 is unable to accurately characterise starvation here, even if m̃ is well estimated. Whether or not one of

20



these is true depends on the physical effects present and whether they are captured in the models used to develop predictive

equations. Based on similarities between the two m̃ expressions, the Nogi et al. equations would not be expected to fare much

better at predicting the behaviour seen experimentally in Fischer et al. (2021b). Despite disparities in predicted and measured515

film reductions under starvation, the results in Fischer et al. (2021a) indicate that Equation 36 appears to capture the point of

starvation onset (i.e. where m̃=m∗) to a reasonable degree of accuracy, and so might be applicable in assessing whether a

given bearing in specified conditions is expected to operate in the fully-flooded or starved regime. However, the utility of the

presented equation in this regard has only been shown for a small number of experimental cases and so further work would

would be needed to determine if this holds in general. Since reasonable agreements with experimental data have been seen for520

starvation predictions in other work (Nogi, 2015a; Nogi et al., 2018), a more comprehensive comparison of experimental data

with numerical model and analytical equation predictions is required in order to 1) ascertain under which conditions current

equations (i.e Equations 32, 33, 35 and 36 among others) are viable 2) identify the physical processes leading to disparities

between measured and predicted film reductions 3) seek to improve/extend analytical starvation equations such that identified

additional effects are accounted for. Starvation as charactised by ζ (Masjedi and Khonsari, 2015b), rather than m̃, may also be525

worth further consideration. Note, a starved film reduction formula for point contacts is also presented in Masjedi and Khonsari

(2015b), although it was developed under the assumption of a straight inlet meniscus. Beyond the required developments

outlined above, a further issue which remains to be tackled is that of predicting starvation in a full bearing. While progress has

been made on predicting m̃ values, current formulas require information on the total available oil volume. In Equation 31 this

is captured by ζ, and in Equations 35 and 36 this is captured by hi and Vl,oil, respectively. It is not yet clear how these values530

might be determined in practice for real bearings, especially where they have been operating for some time.

Since direct prediction of film thickness reductions under starvation in a full bearing is not yet possible in a practical sense,

it is helpful to consider the typical order-of-magnitude effect of starvation on h values. Film reduction magnitudes seen in the

literature tend to be on the order of 10s of % (Harris and Kotzalas, 2006a; Masjedi and Khonsari, 2015b; Nogi et al., 2018).

With some earlier literature suggesting it be assumed minimum film thickness values reduce to 71% of their fully flooded values535

(Hamrock and Dowson, 1981; Lugt, 2009), reported as 70% in Harris and Kotzalas (2006a), where starvation is suspected but

starvation levels are unknown. These numbers should, however, be treated as crude order-of-magnitude estimates only since, in

reality, film reductions due to starvation depend on a range of effects and operating parameters (as outlined above). Starvation

is known to commonly occur in grease lubricated roller bearings, hence, starvation will be revisited in this context in Section

11.540

9 Non-steady effects in EHL

Many EHL contacts operate under non-steady conditions in which load, speed and even contact curvature (the latter being the

case during gear meshing) change with time. The critical timescale, tc, determining the impact of such variations is the time

it takes for a particle of lubricant to pass through the contact (Venner and Wijnant, 2005). When the time taken for conditions

to vary is large, compared to tc, non-steady effects become negligible and a quasi-static analysis is sufficient for characterising545
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film variations over time. For example, this is generally the case for roller bearings operating under constant load, in which each

roller sees a continuous variation in applied force as it traverses the loaded zone. In the absence of additional effects, the film

thickness variations are well captured by applying steady-state equations (Section 7) at each time step. However, if variations

occur rapidly, meaning over timescales similar to or shorter than tc, local surface deformations are induced at the inlet which

then propagate through the contact. Non-steady EHL phenomena have been studied numerically, including via semi-analytical550

models, and experimentally (Hooke, 2003; Venner and Wijnant, 2005; Morales-Espejel, 2008; Zhang et al., 2020). Steady-state

formulae do not capture variations in film thickness and pressure within the contact resulting from rapid non-steady effects, their

use in such cases therefore risks over-estimating minimum film thickness values (Hooke, 2003). Piezoviscous behaviour plays

an important role in non-steady EHL. Recall, as discussed in Section 6, that very high viscosities and Couette flow dominance

hold in the central region of a loaded EHL contact. As the lubricant film passes into the central region, it therefore becomes555

very “stiff” and moves through the conjunction, at approximately ũ, as a shear flow that is independent (for the most part)

of the contact inlet. In the case that entrainment speed is suddenly increased, increased film thicknesses occur at the contact

inlet (via local surface deformations) which are then carried through the conjunction at the new entrainment speed (Hooke,

2003). The new, increased, film thickness values are only seen across the whole contact once the original values have passed

out of the conjunction. While the increased entrainment speed (ũ) is seen simultaneously across the whole contact, a greater560

film thickness requires an increased volume of lubricant in the conjunction. For a shear dominant flow, this can only happen

through the advective process described above, irrespective of pressure changes at the inlet. This explains why film changes

from rapid speed adjustments aren’t uniform across the contact. While in steady-state conditions film thickness sensitivity to

load is known to be small, the effects of rapid load variations can be dramatic (Venner and Wijnant, 2005; Hooke, 2003). As

load increases, the width (b) of the contact also increases, meaning the contact edge is moving rapidly in the opposite direction565

to entrainment. The result is an augmented “effective” entrainment speed,

ũeff = ũ+
db

dt
, (37)

for the inlet. Due to the stiff nature of the central film, this results in the formation of a dome-shaped entrapment of lubricant at

the inlet which is then carried through the conjunction. Similarly, a rapid reduction in load results in negative values of db/dt,

and so a reduced effective entrainment speed at the inlet. In this case, a local drop in film thickness forms at the inlet and570

moves through the contact (Venner and Wijnant, 2005). A conceptual representation of the latter case is provided in Figure

7. Somewhat counter intuitively, it is therefore the case that rapid increases in load can temporarily increase the minimum

film thickness, while rapid load reductions can temporarily decrease the minimum film thickness. Periodic load variations

have also been considered in the literature. Film height variations through the contact are accompanied by local variations in

pressure and material stress (Hooke, 2003). For time-varying loads, the rate of expansion or contraction, db/dt, relative to575

entrainment speed, ũ, has been proposed as a criteria for determining whether a quasi-static analysis may be used (Hooke,

2003). Non-steady effects were found to become important where,

|db/dt|
ũ

(×100%)≥ 25%. (38)
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While effective entrainment speed plays an important role in non-steady EHL, squeeze film effects (∂(ρh)/∂t in Equation 9)

also strongly influence the resulting film thickness variations over time (Zhang et al., 2020). Both effects must therefore be580

accounted for.

Inlet

ũ

Film 
height

db
hnew hold

Time - 0
Time - 1
Time - 2

Figure 7. Conceptual depiction of the effect of a rapid load reduction for an EHL contact. Steady-state conditions hold initially (Time - 0),

before a rapid load reduction causes the contact width to reduce (Time - 1). Movement of the contact edge causes a reduction in effective

entrainment speed of db/dt, reducing hydrodynamic pressures within the inlet. Because of this, the larger material deformations close to the

contact edge cannot be sustained. Hence, a local reduction in film thickness has formed (Time - 1) which then passes through the stiff central

region of the contact mostly unchanged (Time - 2). The contact interior is initially unaffected, only altering as the local perturbation passes

through and new steady-state film heights enter the conjunction.

EHL contacts also experience non-steady conditions due to intermittent operation, i.e. starts and stops along with associated

periods of acceleration/deceleration. Piezoviscous behaviour again plays an important role in such cases (Sugimura et al.,

1999). Lubricant entrained into a contact at start-up initially forms a “front” which passes through the conjunction at constant

height before characteristic features of the EHL contact (see Section 6) are then established (Glovnea and Spikes, 2001).585

Secondary fronts have also been found to occur in some cases (Glovnea and Spikes, 2001), giving the initial film a stepped

profile. Under cases of very high acceleration, oscillatory film thickness behaviour has been observed (Glovnea and Spikes,

2001) which has been linked, in part, to dynamics of the overall mechanical system within which an EHL contact is operating

(Popovici et al., 2004). In instances of shutdown, halting of operation sees an EHL oil film begin to collapse, initially in a

uniform manner (Ohno and Yamada, 2007). As the deceleration reduces the entrainment speed further, a local minima forms590

at the contact inlet. Together with the minima at the contact outlet, these features form an entrapment of lubricant within the

contact. Subsequent reductions of the film thickness within the entrapment are slow; in some cases entrapped films remain

almost unchanged for hours or days (Ohno and Yamada, 2007). The thickness of the initial entrapped lubricant film has been

shown to increase with increasing values of the parameter,

αη0× deceleration, (39)595
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indicating that both rheological and operational effects are important (Ohno and Yamada, 2007). Time variations in surface-oil-

layer thickness distributions also occur within lubricated components. Such oil migration is driven by gravitational and surface

tension effects after operation is halted (Gao et al., 2022), and (additionally) by centrifugal forces while operating (Van Zoelen

et al., 2008, 2010).

10 Surface roughness interactions600

As discussed in Section 2, film thickness must be considered relative to surface roughness in order for the lubrication regime

to be known. However, it is also the case that rough surface micro-geometry will interact with the lubricant flow and deform

elastically, with both effects influencing surface separation and lubrication conditions. Much work has been undertaken over

the years in what is now known as micro-EHL, leading to significant advances in understanding and modelling capabilities. An

excellent overview is provided by Morales-Espejel (2014). The presence of roughness results in part of the load being carried605

by surface asperities (Masjedi and Khonsari, 2015a), as opposed to being carried purely hydrodynamically. Such interactions

are important when considering micropitting of machine elements (Morales-Espejel, 2014). With respect to conditions in

the lubricated conjunction, roughness has been shown to result in both “mean" and “local effects". Mean effects are overall

modifications to surface separation and pressure, relative to an equivalent smooth contact. Local effects are in the form of local

variations in film height and pressure which move through the contact and, hence, are non-steady in nature. The mean effect610

resulting from the presence of homogeneous surface roughness is an increase in film thickness, but, by an amount that is smaller

than the change in surface σ (Morales-Espejel, 2014; Masjedi and Khonsari, 2015a). Therefore when roughness increases, hm

increases, but Λ decreases. Note, more structured roughness can have a different effect (Morales-Espejel, 2014). Film thickness

equations presented in Section 7 are those for smooth surfaces. Additional multiplicative factors have been identified, also via

curve fitting, which account for surface roughness effects. For the Masjedi and Khonsari line and point contact minimum film615

thickness equations these, respectively, take the form (Masjedi and Khonsari, 2015a, 2012):

Φl = 1 + 0.026

(
sstd

Rx

)1.120

V 0.185W−0.312l U−0.809G−0.977 (40)

Φp = 1 + 0.141

(
sstd

Rx

)1.073

V 0.149W−0.044U−0.828G−0.954k−0.395, (41)

where sstd is the standard deviation of surface heights (assuming normally distributed roughness, sstd = σ) and V = vh/E
′ is

a dimensionless hardness number, with vh the surface Vickers hardness. From analysis across standard ranges of operating620

parameters, line and point contact results for dimensionless roughness levels, sstd/Rx, of around 1× 10−6− 5× 10−6 or less

have been shown to be well approximated by smooth surface results (Masjedi and Khonsari, 2015a, 2012). Note, the above

modification factors may be applied where Λ> 0.5, but are no longer valid if the film parameter falls below this value (Masjedi

and Khonsari, 2015a, 2012).
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11 Grease lubrication625

The vast majority of rolling element bearings are grease lubricated, where “grease” may be defined as a dispersion of a

thickening agent in a liquid lubricant (Lugt, 2009). Lubricant base oil is held inside sponge-like structures of thickener fibres

through a combination of Van der Waal and capillary forces. The resulting semi-solid consistency is beneficial due to its

ease of use, good sealing action and corrosion resistance. However, this same consistency generally leads to starved lubrication

conditions (Poll et al., 2019), since grease will not reflow (at a macroscopic level) back to the rolling track after being swept out630

by the passage of rolling elements. The total quantity of grease directly participating in the separation of contacting surfaces

is therefore reduced. The initial phase of grease redistribution, the “churning phase”, occurs within the first ∼10 hours of

operation after a bearing has been freshly charged with grease (Cen and Lugt, 2020). Once this initial grease flow has ceased,

the bearing enters the “bleeding phase” in which swept grease reservoirs are generally only able supply lubricant to the contacts

by releasing (“bleeding") oil through phase separation (Lugt, 2016). Oil is also mechanically released from the thickener635

network by over-rolling, principally in the churning phase (Lugt, 2009). The starved lubrication contribution of the bled-oil

portion of a grease lubricated contact may be treated as described in Section 8 (Fischer et al., 2021a). However, other effects

can also be present, as will be outlined. Understanding, modelling and predicting grease lubrication is difficult. This is because

thickener and base oil interactions result in nonlinear shear stress - shear rate behaviour, even at low shear rates and pressures.

The apparent viscosity of grease also decreases continuously over time while being sheared, then recovers once shearing stops640

(thixotropy) (Lugt, 2009, 2013). Over longer timescales, grease properties change as the thickener structure deteriorates due to

being mechanically worked (Cen et al., 2014). Oxidation also slowly degrades grease performance. Due to these complexities,

there is as yet no complete theory which allows film thickness in grease lubricated bearings to be accurately and consistently

predicted in general. While a complete theory of grease lubrication is not yet established, significant advances have been made

regarding the key mechanisms and interactions at work. A summary of pertinent results in this field will therefore be outlined:645

1) The thickener contributes to film thickness at low speeds: At higher speeds the film thickness observed in fully-flooded

grease lubricated contacts often coincides with that of oil lubrication using the grease base-oil (Morales-Espejel et al., 2014;

Cen et al., 2014; Kanazawa et al., 2017; Nogi et al., 2020). However, this is not always the case since the bulk grease and

bled-oil can have significantly different rhealogical properties to the base oil, even at high speeds (Cousseau et al., 2012). Still,

it is common at higher speeds for fully-flooded grease lubrication to be strongly determined by the viscosity of the base oil.650

As speed is reduced, film thickness initially reduces inline with the behaviour predicted by standard film thickness equations

(See Section 7), but, eventually a “transition speed” is reached after which further reductions in speed result in increasing film

thickness values. The rate of increase in this region, as speed is decreased, can be similar to that seen for oil lubrication as

speed is increased, meaning these low speed grease effects are significant with respect to resulting film thicknesses. Speed

versus film thickness plots for fully-flooded grease lubrication therefore exhibit a characteristic ‘V’ shape (Cen et al., 2014;655

Morales-Espejel et al., 2014; Kanazawa et al., 2017). The described behaviour at low speeds results from entrained thickener

fibers becoming the dominant driver of surface separation, further evidenced by the fact that in this region the film thickness,

for a given grease, is independent of base oil viscosity and temperature (Kanazawa et al., 2017). As the grease is mechanically
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worked over time, the thickener structure degrades and constituent particles become smaller. This reduces film thickness values

seen in the low speed region, whereas the higher speed region is unaffected (Cen et al., 2014). The degradation process has660

been found to primarily occur within the first 100h of operation. The transition from low-speed to higher-speed behaviour

has been found to be dependent on film thickness (Kanazawa et al., 2017). More specifically, experimental findings indicate

that the described “low-speed” effects occur for film thicknesses h < cD, for some constant c and where D is the diameter

of thickener fibres or possibly that of entangled fibre networks13 (Kanazawa et al., 2017). Recent modelling work (Nogi

et al., 2020), validated against experimental results, has elucidated the possible mechanisms at play. In Nogi et al. (2020),665

fully-flooded grease lubrication of a point contact is modelled by characterising the base-oil as a Newtonian fluid, and the

thickener network as a porous plastic medium which is also a non-Newtonian fluid. Their findings indicate that the thickener

concentration remains at that of the bulk grease throughout the conjunction when speeds are high. However, at low speeds the

base oil becomes more easily squeezed out of the inlet than the thickener network itself14, resulting in significant increases in

thickener concentration (both within and around the contact) and order-of-magnitude increases in the film thickness, relative670

to the base oil alone. The increase in thickener concentration leads to an increase in the equivalent viscosity of lubricant

entering the conjunction. Considering typical EHL behaviour (see Sections 7), increased film heights in this setting would

therefore be expected. Increases in hm for grease lubrication at low speeds may be understood in the context of reduced side-

leakage as a result of the equivalent viscosity increase within the conjunction (Nogi et al., 2020; Lugt, 2009), see Section 6.

The concept of an equivalent/effective viscosity for lubricating grease has been applied previously. For example, in Morales-675

Espejel et al. (2014) it is demonstrated that effective-viscosity variations (with speed), for a range of greases, can be well

described by analytical expressions containing just two free parameters. Identifying parameter values which characterise a

particular grease requires (at a minimum) only two measured datapoints of speed and film thickness, at the same temperature.

Extrapolation to other temperatures may then be performed using standard viscosity-temperature equations (Morales-Espejel

et al., 2014; ASTM, 2020). Despite its relative simplicity, this approach was shown to perform well when comparing predicted680

film thickness values with experimental data across a range of temperatures. It is emphasised that this method, and indeed all

of the phenomena described in this first item, relate specifically to conditions of fully-flooded grease lubrication.

2) Starved grease lubrication is dependent on bled oil availability and replenishment, as well as thickener deposits on contact

surfaces: As indicated towards the beginning of this section, the hydrodynamic component of starved grease lubrication is

as described in Section 8, with bled-oil providing the liquid lubricant to line and point contacts. The available volume and685

properties of bled-oil from the applied grease therefore determine the rate of contact replenishment, and so the hydrodynamic

contribution to film thickness. Additionally, it has been shown that over-rolled and broken-down thickener fibers can deposit

on the contacting surfaces, forming a thin layer (Cann et al., 1992; Cann, 1996; Hurley and Cann, 1999; Poll et al., 2019). The

total film thickness under starved grease lubrication is therefore the sum of hydrodynamic and deposited layer components

(Poll et al., 2019; Fischer et al., 2021a). Furthermore, the wettability properties15 of oil on a thickener layer can be significantly690

13This is our interpretation of Kanazawa et al. (2017) results, summarising their findings and proposed mechanisms of grease film formation.
14Due to differing behavioural changes exhibited by the base oil and thickener network under a decreasing shear rate (Nogi et al., 2020).
15The contact angle, θ, in the context of Section 8.

26



different to those of oil on steel (Huang et al., 2016). Therefore, thickener deposits also directly influence the hydrodynamic

film component.

3) Grease lubrication is fundamentally non-steady: It has been observed experimentally that, even after the churning phase

has ended, fluctuations in temperature for grease lubricated bearings occur which are irregular and of varying duration (Lugt,

2013). This is true even under constant operating conditions. Temperature time-series may also look very different to each695

other for identical bearings run under the same conditions. Some such instances of temperature fluctuation may be caused by

later cases of churning, due to a grease lump breaking away and entering the raceway. However, further experiments (Lugt,

2013) demonstrated that they most commonly occur as part of a repeating cycle of,

i) starvation driven film breakdown and metal-to-metal contact, leading to an increase in temperature

ii) lubricant replenishment and an increase in film-thickness, leading to a reduction in temperature700

Replenishment resulting from an increase in temperature may be due to the softening and release of fresh grease, increased

bleed rates and/or the increased mobility of bled-oil (i.e. a reduction in its viscosity). In addition to the above, a recent ex-

perimental study considered non-steady effects in grease lubricated starved contacts, showing that behaviour similar to that

outlined in Section 9 can also be observed for grease lubrication (Zhang and Glovnea, 2020).

4) Close-to-contact replenishment has been shown to be the dominant reflow mechanism in grease lubricated full bearings:705

Recent work has explored ball-bearing contact replenishment in real bearings (Cen and Lugt, 2019, 2020). For bearings with

different numbers of balls (hence different timescales between contact passes) and different cage geometries, the normalised

film thickness (relative to fully-flooded conditions) was found to be a function of the parameter speed × viscosity × half

contact-width. Since these quantities are local to the contact and independent of the time between ball passes, it may be

concluded that contact replenishment is a local phenomenon in these grease lubricated bearings. Also consistent with the710

results discussed in Section 8, it was shown that increases in speed and/or viscosity lead to increased levels of starvation (Cen

and Lugt, 2019, 2020) and reduced film thickness values (Cen and Lugt, 2020).

As previously stated, understanding of grease lubrication has advanced significantly. It should be noted that much of the recent

progress, outlined here, has been developed for point contacts either as single contacts or within ball-bearing test rigs (although

some important work has also been undertaken for roller bearings containing line contacts (Lugt, 2009, 2013)). The relative715

importance of described effects may therefore differ in practise, depending on the roller type, the characteristics of applied

loading and the distribution of load within the bearing etc. General film thickness formulas for grease lubrication are not yet

available. As stated, there is a consensus that grease lubricated bearings are usually operating under starved conditions. Similar

to the oil lubrication case, grease starvation effects on film thickness are usually of the order of 10s of % (Cen and Lugt,

2019, 2020), with one study proposing starved grease film thickness values be estimated as 70% of the fully flooded value720

(under oil lubrication), assuming a viscosity equal to that of the base-oil (Lugt, 2009). This coincides with the film reduction

levels discussed at the end of Section 8. However, as previously, this should be treated as a crude order-of-magnitude estimate

only.
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12 Conclusions

EHL theory has come an exceptionally long way since its inception around 1950. Incredibly complex elastohydrodynamic725

lubrication problems are now solved routinely, with experimental comparisons demonstrating the effectiveness of currently

available models. However, important further work remains, much of which is centred around the need for more realistic

modelling of lubricant rheological behaviour and the extension of results from single contacts to full bearings. Therefore,

elastohydrodynamic lubrication is (and will likely remain) a complex and rapidly evolving field. The current review has at-

tempted to ensure the details of these complexities are accessible to a more general engineering audience, in order to support730

cross-disciplinary understanding with respect to this field and future interdisciplinary work. It is again emphasised that when

applying film thickness equations, or indeed any other output of lubrication modelling, the approximations, assumptions and

overall validity of applied equations should be considered on a case by case basis, allowing predictions to be properly contex-

tualised. Such considerations should also dictate which equations are used. The theory presented in this review is applied in

“Part 2” of the study in order to consider lubrication in a wind turbine main-bearing.735
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Appendix A: Table of symbols

a semi-major contact dimension, assumed here to lie transverse (y) to the rolling direction (m)

b semi-minor contact dimension, assumed here to lie in (x) the rolling direction (m)

EI, EII Youngs modulii of solids I and II (Pa)

E′ reduced modulus of elasticity (Pa), 2/E′ = (1− ν2I )/EI + (1− ν2II)/EII

G dimensionless material parameter (-), G= α∗E′

h, hm, hc film thickness, minimum film thickness and central films thickness, respectively (m)

k ellipticity parameter (-), k = a/b

L dimensionless viscosity parameter (Moes) (-), L=G(2U)1/4

Ml, M dimensionless load parameter (Moes) for line and point contacts respectively (-), Ml =Wl (2U)−1/2, M =W (2U)−3/4

p pressure (Pa)

rIx, rIIy, . . . radius of curvature of surface I/II in the x/y direction, presented here as a strictly positive quantity (m)

Rx reduced radius of curvature in the entrainment direction (m), 1
Rx

= sgn(Ix)
rIx

+ sgn(IIx)
rIIx

Ry reduced radius of curvature transverse to the entrainment direction (m), 1
Ry

= sgn(Iy)
rIy

+ sgn(IIy)
rIIy

sgn(·) sgn(Ix) is 1 if surface I is convex in the x-direction and −1 if it is concave in the x-direction (similarly for II and/or y)

sl, sp surface stress in line and point contacts, respectively (Pa)

sstd standard deviation of surface heights (assuming normally distributed roughness, sstd = σ) (m)

T lubricant inlet temperature (°C)

uI, uII tangential velocities, in the entrainment direction (x), of surfaces I and II at the contact location (m/s)

ũ mean entrainment velocity (m/s), ũ= (uI +uII)/2

U dimensionless speed parameter (-), U = η0ũ/(E′Rx)

vI, vII, ṽ similar to “u” terms, but transverse (y) to entrainment direction (m/s)

V dimensionless hardness number, V = vh/E
′, for vh the surface Vickers hardness (-)

w normal load in point contact (N)

wl normal load per unit length in line contact (N/m)

Wl, W dimensionless load parameter for line and point contacts respectively (-), Wl = wl/(E′Rx) , W = w/
(
E′R2

x

)
α pressure-viscosity coefficient of the lubricant (at the inlet temperature, T ) (Pa−1)

α∗ inverse asymptotic isoviscous pressure coefficient (at the inlet temperature, T ) (Pa−1), 1/α∗ =
∫∞
0

η0
η
dp

Λ lubrication film parameter (-), Λ = hm/σ

η lubricant dynamic viscosity (Pa · s)

η0 lubricant dynamic viscosity at the inlet temperature, T , and for (gauge-pressure) p= 0 (Pa · s)

νI, νII Poisson’s ratios of solids I and II (-)

ρ lubricant density (kg ·m−3)

ρ0 lubricant density at the inlet temperature, T , and for (gauge-pressure) p= 0 (kg ·m−3)

σI, σII surface roughness, in the form of root-mean-square deviations, for surfaces I and II respectively (m)

σ combined roughness of contacting surfaces (m), σ =
√
σ2

I +σ2
II

Φl, Φp film thickness modification factors accounting for surface roughness effects, line and point contacts respectively (-)
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Appendix B: Equivalent line contact formulation

Starting from Equations 15 and 16 and reducing se to the case y = 0, the resulting stress distributions can only be identical

if contact widths (b) are the same and if wl = 3w/4a. Therefore, it only remains to ensure that the contact width for the740

equivalent line contact, under distributed load wl = 3w/4a, matches that of the point contact under applied load w. Point

contact semi-minor and semi-major axes, for the applied load w, take the following forms (Harris and Kotzalas, 2006b),

b =

(
6wE

πkΣρE′

)1/3

, (B1)

a =

(
6k2wE
πΣρE′

)1/3

. (B2)

Σρ = 1/Rx + 1/Ry is the point contact curvature sum. The line contact with equivalent x-direction geometry has curvature745

sum Σρ,line = 1/Rx. The line contact with this geometry and reduced modulus Ẽ′ sees the following contact width, under

distributed load wl (Harris and Kotzalas, 2006b),

b=

(
8wlRx

πẼ′

)1/2

. (B3)

Note, Equations B1-B3 all constitute standard formulae in Hertzian contact theory. Equating Equations B1 and B3, having

substituted wl = 3w/4a and with a given by Equation B2, it follows that Ẽ′ =
(

1 + Rx

Ry

)
E−1E′.750

Appendix C: Finite line contacts

End effects in finite length line contacts have not been considered in the current work. This is due to their relative complexity

and specificity with respect to roller profiling. In general, end effects lead to the global minimum in film thickness actually

occurring at the edges of line contact rollers. Roller profiling can mean that the global minimum is not too far from that along

the roller centreline (the value predicted by line contact film thickness equations). Towards the centre of a finite roller it has755

also been shown that there are only small differences in the pressure and film thickness profiles when comparing with a semi-

infinite 2D model. A key takeaway is that the centreline film thickness equations for line contacts may over-estimate the true

value of hm across the roller. For more information see Mihailidis et al. (2013); Tsuha and Cavalca (2020) and further literature

discussed therein.
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