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Abstract. Wake meandering is a low-frequency oscillation of the entire wind turbine wake that can contribute to power and

load fluctuations of downstream turbines in wind farms. Field measurements of two Doppler LiDARs mounted on the nacelle

of a utility-scale wind turbine were used to investigate relationships between the inflow and the wake meandering as well as

the effect of wake meandering on the temporally averaged wake. A correlation analysis showed a linear relationship between

the instantaneous wake position and the lateral velocity that degraded with the evolution of the turbulent wind field during the5

time of downstream advection. A low-pass filter proportional to the advection time delay is recommended to remove small

scales that become decorrelated even for distances within the typical spacing of wind turbine rows in a wind farm. The results

also showed that the velocity at which wake meandering is transported downstream was slower than the inflow wind speed, but

faster than the velocity at the wake center. This indicates that the modelling assumption of the wake as an passive scalar should

be revised in the context of the downstream advection. Further, the strength of wake meandering increased linearly with the10

turbulence intensity of the lateral velocity and with the downstream distance. Wake meandering reduced the maximum velocity

deficit of the temporally averaged wake and increased its width. Both effects scaled with the wake meandering strength. Lastly,

we found that the fraction of the wake turbulence intensity that was caused by wake meandering decreased with downstream

distance contrary to the wake meandering strength.

1 Introduction15

The wind turbine wake is a flow region of reduced wind speed and increased turbulence that extends downstream of a wind

turbine for several rotor diameters. In wind farms the wake of an upstream turbine becomes the inflow of a downstream

turbine, leading to power losses and increased mechanical wear, which translates into an increased cost of the energy. Therefore,

understanding and predicting characteristics of wind turbine wakes has received extensive attention in the literature (see reviews

by Vermeer et al. (2003); Sørensen (2011); Sanderse et al. (2011); Mehta et al. (2014); Stevens and Meneveau (2017); Porté-20

Agel et al. (2020)).

One characteristic of wind turbine wakes is wake meandering, a low frequency, large scale oscillation of the entire wake

in the lateral and vertical direction (Taylor et al., 1985). Two theories have been presented as the origin of wake meandering:
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(i) a passive advection of the entire wake by large scale turbulence of the inflow (Larsen et al., 2008), and (ii) an intrinsic

shear instability of the wake characterized by periodic vortex shedding (Medici and Alfredsson, 2006). Support for the passive25

advection hypothesis has been presented in Trujillo et al. (2011); Keck et al. (2014) and for the shear instability hypothesis in

Medici and Alfredsson (2006); Heisel et al. (2018); Yang and Sotiropoulos (2019). The passive advection hypothesis forms the

basis of the dynamic wake meandering model (Larsen et al., 2008), which assumes that wake meandering is driven by large

scale turbulence (with two rotor diameters used as a threshold). While the passive advection hypothesis assumes the inflow

wind speed as the downstream propagation velocity of the wake meandering, Bingöl et al. (2010) reported better agreement30

between the dynamic wake meandering model and field measurements using an reduced wake velocity from the Jensen (1983)

wake model.

Several characteristics of wake meandering have been reported in literature mainly from wind-tunnel experiments. The

strength (or amplitude) of wake meandering is larger in the lateral direction than in the vertical direction (España et al.,

2012; Bastankhah and Porté-Agel, 2017), increases with downstream distance (Garcia et al., 2017), and depends on incoming35

boundary-layer characteristics (Bastankhah and Porté-Agel, 2017). The instantaneous horizontal wake position is correlated to

the upstream transverse velocity for large wavelengths and the correlation decreases with downstream distance (Muller et al.,

2015; Aubrun et al., 2015).

In this paper, we use field measurements at a utility scale wind turbine across a wide range of turbulence intensities and

wind speeds to investigate (i) the effect of the inflow state on the correlation between lateral velocity and instantaneous wake40

position, (ii) the downstream advection velocity of wake meandering, and (iii) the effect of wake meandering on the temporal

averaged velocity deficit and the turbulence intensity of the wake. The present study extends on the investigations of Trujillo

et al. (2011) on the effect of wake meandering on the mean wake and the turbulence intensity to a wider range of atmospheric

conditions, validates the findings of Muller et al. (2015) from wind tunnel scale turbines with field experiments at a utility scale

wind turbine, and presents new insights into the limits of passive advection based wake meandering predictions.45

2 Methods

This section introduces the measurement site, the measurement instruments, and the analysis approach of the measured data.

2.1 Measurement site and Doppler LiDAR setup

The measurement campaign was conducted at an isolated 2.5 MW Liberty C96 wind turbine from Clipper Windpower with

a hub height (zhub) of 79 m and a rotor diameter (D) of 96 m located at the Kirkwood Community College campus in Cedar50

Rapids, Iowa, United States (Fig. 1). The immediate surroundings of the wind turbine as well as the area to the north and

west are urbanized. The area to the south and east is agricultural farm land. The topography is characterized by gentle rolling

hills. The data of the supervisory control and data acquisition (SCADA) system of the wind turbine is available providing the

temporal mean values of the wind speed at hub height (uhub, where the bar indicates a temporal average), the nacelle position,

and the yaw misalignment of the nacelle.55
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Figure 1. Satellite image of the measurement site with the location of the wind turbine (© Google Earth). The wind turbine coordinates are

41.9165◦ latitude and −91.6508◦ longitude.

Two Doppler LiDARs of the type Stream Line manufactured by Halo Photonics were installed on the nacelle of the wind

turbine. The Doppler LiDAR measures the radial (or line-of-sight) velocity along a laser beam that is emitted from a movable

scanner head. The Doppler LiDARs were configured to measure with a sampling frequency of 3 Hz and a range gate length

of 18 m. A positive value of the radial velocity corresponds to a motion away from the Doppler LiDAR, and a negative radial

velocity is a motion towards the Doppler LiDAR.60

The backward facing Doppler LiDAR was programmed to perform 230 successive Plan Position Indicator (PPI) scans of the

wind turbine wake at hub height covering an azimuth range of ±12◦ from the rotor axis (Fig. 2a, red). The scanner was starting

at az = 168◦ and travelling at a speed of 6◦ s−1 to az = 192◦ while continuously measuring, which resulted in an azimuth

resolution of 2◦ (Fig. 2b). This scan pattern was completed within a 29 minute period (a single PPI with return to the starting
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Figure 2. Scan patterns of the nacelle mounted Doppler LiDARs viewed from top (a). Wake scans of the backward facing Doppler LiDAR

(red) were accompanied by measurements in a lateral staring mode of the forward facing Doppler LiDAR (blue). LiDAR beams are shown

as lines with range gate centers indicated as points. The wind turbine is stylized in black (not to scale) and rotor area is indicated with black

dashed lines. The bottom panel shows the scanner path for a section of a wake scan (b), where the grey area indicates the successive PPIs

that together become a wake scan.

position took 7.2− 7.6 s). A full set of 230 PPI scans will be defined as "wake scan" in the following. These wake scans were65

scheduled every second hour.

Coinciding with a wake scan, the forward facing Doppler LiDAR was measuring in a horizontal staring mode at a 90◦ angle

to the rotor axis for 14 min at a temporal resolution of 3 Hz (Fig. 2, blue). The rejection criteria for wake scans not suited

for further analysis based on data quality, turbine yaw activity, and inflow characteristics will be presented at the beginning of

Sect. 3.70

2.2 Post-processing of measurments from the wake scanning Doppler LiDAR

The wake scans are processed along the following steps to obtain the instantaneous wake position:

1. Doppler LiDAR measurements with a signal-to-noise ratio (SNR) of less than −17 dB are rejected (Pearson et al., 2009).
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2. The remaining radial velocities are gridded on a polar coordinate system ur(φ,r, t) with an angular (φ) resolution of

2◦, a radial (r) resolution of 18 m, and a time stamp (t) aligning with the PPIs of the wake scans. The az positions of75

the LiDAR scans and the φ positions of the polar coordinate system can have a difference of 0.2◦ towards the end of a

PPI resulting from small variations of the scanner behaviour and fluctuations of the measurement frequency from PPI

to PPI. Multiple measurements are available for the outside grid points due to a short resting time of the scanner at the

turn-around point and the measurements closest in time are used at those grid points.

3. The transition to a Cartesian coordinate system is made with y = r sin−1(φ) and approximating x= r cos−1(φ) with80

x= r (spatial error < 3% based on geometry).

4. A instantaneous velocity deficit is computed with

∆ur(x,y, t) = maxy(ur(x,y, t))−ur(x,y, t), (1)

where maxy(ur(x,y, t)) is the maximum of the velocity observed for each PPI of the wake scan at a given downstream

distance. While this is not the longitudinal velocity deficit typically used in the literature, the effect of the lateral and85

vertical velocity on the wake center position is negligible as shown in Appendix A. Appendix B explains our reasoning

to compute the instantaneous velocity deficit relative to the instantaneous velocity outside of the wake and not relative

to the mean wind speed at hub height.

5. The instantaneous position of the wake center is detected in analogy to the center-of-mass from the velocity deficit with

ycom(x,t) =

∑
y y∆ur(x,y, t)∑
y∆ur(x,y, t)

. (2)90

The above processing steps are applied for downstream distances between xD−1 = 4 and xD−1 = 9. The double-peak shape

of the near-wake was a problem for the detection of ycom for xD−1 < 4 and the decline of the SNR with increasing range led

to gaps in the data for xD−1 > 9.

2.3 Post-processing of measurements from the lateral staring Doppler LiDAR

The time series of the lateral velocity component, v(t), is obtained from the 7th range gate at y = 117 m of the Doppler95

LiDAR operating in the lateral staring mode. Range gates closer than y = 117 m were either affected by near range problems

of the Doppler LiDAR (the first four range gates), or v(t) was biased towards motions away from the wind turbine and higher

standard deviations compared to greater distances (5th and 6th range gate). The latter might be caused by the influence of the

wind turbine on the wind field. We inverted the sign of the Doppler velocity in order to have positive velocities towards the

positive y-direction in Fig. 2. We assume horizontal homogeneity of the inflow and that v(t) is representative for the lateral100

inflow velocity over the rotor area. Measurements with a SNR below −17 dB are removed from the time series and the gaps

are interpolated linear.
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Further, we derived two quantitative measures to characterize the inflow state from the lateral staring Doppler LiDAR. First,

the lateral turbulence intensity is given by

Iv = σ(v)u−1
hub, (3)105

where σ(v) is the standard deviation of v(t) over the 14-minute period. It quantifies the strength of the lateral velocity fluctua-

tions relative to the mean wind speed. Second, the integral time scale of the lateral velocity component, Ti,v , is estimated from

the noise corrected auto-correlation function of v(t) by fitting an exponential decay law (Lothon et al., 2006). It is a measure

for the correlation length and can be interpreted as the scale of the dominant eddies of the turbulent wind field.

2.4 Advection velocity110

Advection velocity is referring to the velocity of downstream propagation of wake meandering and is defined as

uadv =
∆x

∆Tadv
, (4)

where ∆x is a spatial separation in the x-direction between two measuring points and ∆Tadv is the time delay between the

wake meandering signals at the two points. ∆x is known from the scan geometry and ∆Tadv is determined from the time lag

of the maximized cross-correlation as described in the following steps. The cross-correlation is computed between v and ycom115

as well as between ycom at two spatially separated downstream distances. The terms upstream signal and downstream signal

will refer to their relative streamwise position to each other.

1. Both, the upstream signal (v or ycom(x− 0.5∆x)) and the downstream signal (ycom(∆x) or ycom(x+ 0.5∆x)), are

low-pass filtered with a moving mean that has a window length of ∆xu−1
hubβ

−1 with β = 3 (Cheng and Porté-Agel,

2018). The inverse proportionality of β to Iv proposed by Corrsin (1963) is not used here, because it is only valid for a120

convective atmospheric boundary layer, which cannot be ensured for all wake scans in our data set (e.g. at night-time).

2. If the upstream signal has a higher temporal resolution in the case of v(t), each time step of the downstream signal is

paired with the temporally closest time step of the upstream signal for synchronization.

3. The cross-correlation function between the upstream signal and the downstream signal is computed for time lags between

0.1∆xu−1
hub and 1.5∆xu−1

hub.125

4. If the cross-correlation function has a local maximum (i.e. not equal to the smallest or largest lag) with a correlation

above 0.5, the corresponding time lag is selected as ∆Tadv and uadv is computed with Eq. (4).

The time series of ycom has a temporal resolution of ∆ts = 7.2 s due to the time a single PPI scan takes (Sect. 2.1). Therefore,

∆Tadv has to be a multiple of ∆ts, which results in a loss of precision (ε) for uadv given by

uadv ± ε=
∆x

∆Tadv ∓ 0.5∆ts
. (5)130
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Figure 3. Error of the estimated downstream advection velocity of wake meandering (ε) as a function of the mean wind speed at hub height

(uhub) and the spatial separation (∆x). If the error becomes larger than the threshold, the detected advection velocity is rejected.

Assuming an upper limit of uadv = uhub (Sect. 3.1.2 will show that uadv is smaller or equal to uhub for all cases), it is shown

in Fig. 3 that the precision decreases for high wind speeds or small spatial separations. Only combinations of wind speed and

spatial separation that result in a precision of at least 0.1uhub will be used.

3 Results

The scan setup described in Sect. 2.1 was implemented between 19 August 2017 and 2 October 2017. Data before 5 September135

2017 is discarded due to a time synchronisation problem with one of the Doppler LiDARs. To ensure high quality measurement

data and suitable conditions for the investigation, wake scans were rejected if

– low SNR of the wake scanning Doppler LiDAR led to gaps in the measurement data, which is quantified by a rejection

rate of more than 0.5% at any range gate between xD−1 = 4 and xD−1 = 9 (Sect. 2.2);

– the SCADA data reported a non-operational wind turbine, yaw movements of the nacelle, or a mean wind speed below140

5 m s−1;

– the wake was partially outside of the Doppler LiDAR field-of-view, quantified by more than 25% of either ∆ur(6D,xsin(168◦), t)

or ∆ur(6D,xsin(192◦), t) being larger than the temporal mean of 1
2maxy(∆ur(6D,y,t)).

The remaining data set consists of 43 wake scans accompanied by measurements of the lateral velocity component of the

inflow. A characterization of the data set is shown in Fig 4. The data set covers a wind speed range between 5 m s−1 and145

11 m s−1 (Fig 4a), and lateral turbulence intensities between < 1% and 8% (Fig 4b). The check on the wake position within
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Figure 4. Distribution of the mean wind speed at hub height from the SCADA data (a), the lateral turbulence intensity from the lateral staring

Doppler LiDAR (b), and the mean yaw misalignment of the wind turbine from the SCADA data (c).

the wake scanning Doppler LiDAR’s field-of-view implicitly ensured a good alignment of the wind turbine with the mean wind

direction (Fig 4c).

The results presented in the subsequent subsections are not differentiated according to the wind direction of the inflow. We

assume that individual buildings in the vicinity of the wind turbine should not affect the measurements at zhub based on the150

blending height concept. Note that the roughness sublayer in an urban environment should not extend further than five times

the building height (Grimmond and Oke, 1999), which is lower than zhub for an assumed building height of 10 m (two-story

and three-story buildings).

3.1 Wake meandering

The first part of the results investigates the relationships between the instantaneous lateral velocity of the inflow and the155

instantaneous wake position.

3.1.1 Correlation between lateral velocity and wake position

Assuming the wake is advected passively and the turbulence field does not evolve during the downstream advection, a linear

relationship between the lateral velocity at the turbine location and the wake center position at a given downstream distance

would be expected. For an evolving turbulent wind field, the autocorrelation function of a variable is expected to decay ex-160

ponentially for idealized isotropic and homogeneous turbulence (Von Kármán, 1948). The rate at which the autocorrelation

function decays is described by the integral time scale. Hence, we would expect a lower correlation between v(t) and ycom(t)

for a given time lag (here the time delay due to advection), if the dominant features of the wind field have a short lifespan, which

is equivalent to a fast decay of the autocorrelation function and a short integral time scale. Vice versa, a higher correlation is

expected for a long integral time scale.165

This hypothesis is confirmed in Fig. 5a, where the abscissa Ti,v∆T−1 quantifies aforementioned interplay of the time delay

and the evolution of the turbulent field. Ti,v is the integral time scale of the lateral velocity component (Sect. 2.3) and ∆T is the

time delay due to downstream advection as defined in the figure legend. Low values of the correlation between v(t) and ycom(t)

8



are observed if the time delay is longer than the lifespan of the dominant eddies and the correlation increases, if the lifespan

of the dominant eddies increases relative to the time delay. This result holds for the assumption of a downstream advection170

with the mean wind speed (black crosses in Fig. 5) as well as for the subset of the data set with a successful detection of the

avection velocity based on the maximized cross-correlation (blue crosses in Fig. 5). The findings agree with expectation that

the correlation decreases, if a relatively larger amount of small scale turbulence is included that is not expected to be correlated.

Figure 6 shows an example case for a wake scan with high correlation (Fig. 6a and 6c) and a wake scan with low correlation

(Fig. 6b and 6d).175

Larsen et al. (2008) hypothesised that wake meandering is driven by large scale turbulence and recommended 2D as a low-

pass filter threshold. Applying a low-pass filter equivalent to 2D to v(t) and ycom(t) does increase the correlation compared to

the unfiltered data (Fig. 5b) supporting the assumption of large scale turbulence as the driver of wake meandering.

Cheng and Porté-Agel (2018) proposed a low-pass filter threshold proportional to the time delay due to downstream advec-

tion based on Taylor’s diffusion theory (Taylor, 1922). Their filter size is given by xu−1
hubβ

−1 with β = 3 to account for the180

difference between Lagrangian and Eulerian scales (Angell et al., 1971). The results for this low-pass filter threshold are similar

to the ones for the threshold of 2D at xD−1 = 6 (Fig. 5c), but for xD−1 > 6 this filter threshold maintains an improvement of

the correlation of approximately 0.2, while the 2D threshold decreases with downstream distance (Fig. 5d). This shows that

the evolution of the turbulence field becomes important at sufficiently large downstream distances and removing scales which

are not expected to be correlated improves the correlation between v(t) and ycom(t).185

Based on the above findings we recommend to use a low-pass filter threshold based on the advection time delay as suggested

by Cheng and Porté-Agel (2018) with a lower limit equivalent to 2D for wake meandering predictions. This accounts for large

scale turbulence as the origin of wake meandering at short downstream distances, but also accounts for the evolution of the

turbulent wind field once it becomes relevant at larger downstream distances. The results also show that the evolution of the

turbulent wind field frequently becomes relevant on scales that are similar to the distance between wind turbine rows in a wind190

farm.

3.1.2 Wake meandering strength and lateral turbulence intensity

The relationship between the lateral turbulence intensity of the inflow and the wake meandering strength is investigated. It

can be visually observed that the fluctuations of ycom increase with the turbulence intensity of the lateral velocity component

(Fig. 7). Quantifying the strength of wake meandering as the temporal standard deviation of ycom, an increase of the wake195

meandering strength with the lateral turbulence intensity is observed (Fig. 8a). The wake meandering strength also increases

with downstream distance (Fig. 8b), which is explained with the longer downstream advection time leading to larger lateral

displacement of the wake based on the lateral velocity. The range of the wake meandering strength at a given downstream

distance in Fig. 8b is explained by the turbulence intensity range of the data set.
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Figure 5. The correlation coefficient between the time-shifted lateral velocity and the wake center position (r(v,ycom)) without low-pass

filtering (a), with low-pass filtering by a moving mean with a window width of 2Du−1
hub (b), and with low-pass filtering by a moving mean

with a window width of xu−1
hubβ

−1 (c). Data points using a time delay based on the mean wind speed are shown with black crosses and data

points using a time delay based on the maximized cross-correlation are shown with blue crosses (see Sect. 2.4). The bottom-right panel (d)

shows the ensemble-averaged improvement of the correlation with low-pass filtering compared to the unfiltered correlation coefficient as a

function of the downstream distance.
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Figure 6. The time series of the line-of-sight velocity profiles at xD−1 = 6 from the wake scanning Doppler LiDAR (a,b) and the time series

of the lateral velocity along the laser beam of the lateral staring Doppler LiDAR (c,d). The example case in the left column (a,c) was chosen

for its visually clear relationship between lateral velocity and wake center position. The example case in the right column (b,d) illustrates the

absence of a correlation between lateral velocity and wake center position even though wake meandering is visible. The lateral velocity was

time shifted with ∆T = 6Du−1
adv for (c), and ∆T = 6Du−1

hub for (d) to account for a time delay arising due to the downstream advection.

3.1.3 Downstream advection velocity of wake meandering200

The advection velocity of wake meandering is investigated based on the time delay determined with a cross-correlation ap-

proach (Sect. 2.4). The majority of downstream advection velocities found from the time delay between v and ycom range

between 0.6uhub and 1.0uhub (Fig. 9a). The majority of advection velocities found from cross-correlation of ycom at two

downstream distances showed values between 0.7uhub and 0.9uhub (Fig. 9b). For both results, only cases with a sufficiently

high cross-correlation and a distinct peak of the cross-correlation function were considered (Sect. 2.4). We assume that the205

results of the advection velocity reported in Fig. 9b are more robust compared to Fig. 9a, because the underlying correlations

are higher, no assumptions on the origin of wake meandering are made, and any time synchronisation issues between the two

Doppler LiDARs cannot affect the result. The found advection velocities are in most cases lower then uhub, but higher than

the velocity at the wake center (Fig. 9c). This finding is in line with Bingöl et al. (2010), who reported smaller errors of the

dynamic wake meandering model if a reduced downstream advection velocity was used. The results are also in agreement with210

Zong and Porté-Agel (2020), who showed analytically that the advection velocity is bounded between 0.5uhub and uhub.

11



23:30 23:40 23:50 00:00

Time [UTC] Sep 30, 2017   

-1

0

1

(a)

2

4

6

8

10

01:30 01:40 01:50 02:00

Time [UTC] Sep 16, 2017   

-1

0

1

(b)

2

4

6

8

03:30 03:40 03:50 04:00

Time [UTC] Oct 02, 2017   

-1

0

1

(c)

2

4

6

8

10

Figure 7. Time series of the radial velocity profiles from the wake scanning Doppler LiDAR at xD−1 = 6 for low (a), medium (b), and high

(c) lateral turbulence intensity (Iv). The three example cases were chosen to span the range of turbulence intensities present within the data

set.

Cheng and Porté-Agel (2018) recommended the average of the mean wind speed and the velocity at the wake center as

an estimate for the advection velocity. It is given by ua(x) = 0.5(uhub +ucen(x)) where ucen(x) is the temporal average of

ur(x,ycom, t). A comparison of the detected advection velocities from the cross-correlation approach and ua shows reasonable

agreement at a correlation of 0.7 (Fig. 10).215

3.2 Effect on the time averaged wake

The second part of the results is investigating the effect of the wake meandering on the properties of the time-averaged wake.

The effect of wake meandering is investigated by comparing the wake in the nacelle frame of reference and the meandering

frame of reference following the apporach of Trujillo et al. (2011). The transformation from the nacelle frame of reference to
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Figure 8. The normalized wake meandering strength (σ(ycom)D−1) as a function of the lateral turbulence intensity (Iv) at xD−1 = 6 (a).

The legend shows the equation of a linear fit to the measurements (red line) and their correlation coefficient. The distribution of the observed

wake meandering strength as a function of downstream distance (b). The whiskers show the range of the data, the top and bottom of the blue

box indicate the 25th and 75th percentile, and the red center marker is the median.

the meandering frame of reference is given by220

ỹ = y− ycom, (6)

where the tilde is indicating the meandering frame of reference. After the transformation, the measurement data in the mean-

dering frame of reference is interpolated on a regular grid using the nearest available measurement value for each grid point

in the lateral direction. An example of the transformation is shown in Fig. 11a and 11b. This method of transformation re-

tains fluctuations of the wake center position smaller than the azimuth resolution of the wake scans. The irregular edge of the225

meandering frame of reference is caused by the limited azimuth range of the wake scans.

3.2.1 Mean Velocity Deficit

First, the effect of wake meandering on the longitudinal mean velocity deficit is investigated. It is given by

∆u(x,y) =
∆ur(x,y)

cos(φ− 180◦)
(7)

for the nacelle frame of reference, and by230

∆u(x, ỹ) =
∆ur(x, ỹ)

cos(φ− sin−1(ycom/x)− 180◦)
(8)
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Figure 9. Frequency of occurrence of the advection velocity based on the cross-correlation between v(t) and ycom(t) (a), the advection

velocity based on the cross-correlation between ycom(t) at two different downstream distances (b), and the wake center velocity based on

the temporal average of ur(x,ycom, t) (c) normalized by uhub. The absence of data in (b) for xD−1 < 4.5 and xD−1 > 7.5 is caused by the

error threshold for uadv (Fig. 3).
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Figure 10. Comparison of the observed advection velocities with an estimation based on the average of the mean wind speed and the velocity

at the wake center.

for the meandering frame of reference, where a bar indicates a temporal average. A qualitative comparison of the mean velocity

deficit profile in both frames of reference shows a slightly deeper and narrower wake in the meandering frame of reference

(Fig. 11c). For a quantitative investigation of the full data set, a Gaussian function given by

f(y) = C exp

(
(y− y0)2

4σ2
y

)
(9)235

is fitted to the mean velocity deficit profile in both frames of reference. The fit coefficients σy and C describe the wake width

and the wake depth, respectively. To assure that only cases with an Gaussian velocity deficit are considered, a correlation

coefficient of at least 0.99 between fit and measurements is required or the result is discarded.

The results show that the depth of the mean wake in the nacelle frame of reference is smaller compared to the meandering

frame of reference and the difference increases with wake meandering strength (Fig. 12a). At the same time the wake is wider240

in the nacelle frame of reference and the effect on the width increases with the wake meandering strength (Fig. 12b). Both

observations agree with modeling results presented in Braunbehrens and Segalini (2019) and their explanation of a quasi-

steady velocity deficit of the instantaneous wake that is spatially shifted and ensemble averaged to yield the time averaged

wake.

As the wake meandering strength increases with downstream distance (Fig. 8b), it could be expected that the observed245

differences of C and σy between the two frames of references also increase with downstream distance. For C this increase

is not clearly observed (Fig. 12c), but σy shows the expected increase with downstream distance (Fig. 12d). It is possible

that the expected trend for C is masked by the measurement errors, because its amplitude decreases with xD−1 due to the
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Figure 11. Time series of radial velocity profiles at xD−1 = 6 in the nacelle frame of reference (a) and the meandering frame of reference (b).

The corresponding mean longitudinal velocity deficit profiles are shown in (c) and the radial turbulence intensity profiles in (d), respectively.

wake recovery. The transformation method from the nacelle frame of reference to the meandering frame of reference retains

wake meandering on scales smaller than the lateral grid resolution and, therefore, the shown results could be biased towards250

underestimating the effect of wake meandering on the temporally averaged wake.

3.2.2 Turbulence Intensity

The effect of wake meandering on the turbulence intensity across the wake is investigated. An increase of the turbulence

intensity from the meandering frame of reference to the nacelle frame of reference can be observed for the example case

illustrating the transformation (Fig. 11d). This effect is quantified with the laterally averaged difference of the turbulence255

intensity between the two frames of reference. Lateral positions with less than 75% data availability in the meandering frame

of reference are discarded.

The results show that the turbulence intensity contributed by wake meandering increases with the strength of wake me-

andering (Fig. 13a). The magnitude of the turbulence intensity resulting from wake meandering decreases with downstream
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Figure 12. Difference of wake depth (a) and wake width (b) between the nacelle frame of reference and the meandering frame of reference as

a function the wake meandering strength. Wake depth and wake width of the nacelle frame of reference are C and σy , and of the meandering

frame of reference are C̃ and σ̃y . Panels (c) and (d) show the distribution of observed differences in depth and width as a function of xD−1.

The whiskers show the range of the data, the top and bottom of the blue box indicate the 25th and 75th percentile, and the red center marker

is the median.
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Figure 13. Laterally averaged difference of the radial turbulence intensity at xD−1 = 6 between the nacelle frame of reference (Ir) and

the meandering frame of reference (Ĩr) as a function of the wake meandering strength (a). The distribution of observed turbulence intensity

differences as a function of xD−1 are shown in panel (b) with the whiskers showing the range of the data, the top and bottom of the blue box

indicating the 25th and 75th percentile, and the red center marker showing the median. The angle brackets indicate the lateral averaging.

distance (Fig. 13b). This decrease of turbulence intensity due to wake meandering with xD−1, despite an increase of the wake260

meandering strength with xD−1 (Fig. 8b), could indicate that the recovery of the velocity deficit plays a more dominant role,

compared with the wake meandering strength, in the far wake.

4 Summary and Conclusions

Atmospheric field measurements of the wind velocity from two Doppler LiDARs mounted on the nacelle of a utility-scale

wind turbine were used to investigate wake meandering. The relationship between the lateral velocity component of the inflow265

and the instantaneous wake position and the effect of wake meandering on the time-averaged wake were analysed. The main

conclusions of this study are:

– In agreement with previous wind tunnel studies, we observe that the strength (or amplitude) of wake meandering in-

creases with the turbulence intensity of the inflow and with downstream distance from the wind turbine. Both trends

appear to be linear.270

– A correlation between the lateral velocity component and the instantaneous wake position supports the passive advection

hypothesis. Further, we found that the quality of the correlation depends on the ratio of the integral time scale of the lateral
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velocity to the time delay due to downstream advection, which can be explained by the evolution of the turbulent wind

field during the downstream advection.

– Applying a low-pass filter equivalent to 2D improves the correlation between v and ycom for short downstream distances275

up to 5D supporting the hypothesis that large scale turbulence has an important role in the origin of wake meandering.

However, at large downstream distances beyond 5D a more suitable low-pass filter threshold is based on the time delay

due to downstream advection to remove scales that are expected to be decorrelated due to the evolution of the turbulent

wind field.

– The speed at which wake meandering is propagating downstream is smaller than the inflow wind speed at hub height,280

but larger than the velocity at the wake center. This indicates that the wake is not entirely passive and that at least

for the downstream advection process the velocity deficit of the wake itself has an influence. Because the downstream

advection time directly affects predictions of the instantaneous wake position, this could introduce a bias towards under

estimating the wake meandering strength. The average of inflow wind speed at hub height and the average velocity at the

wake center as proposed by Cheng and Porté-Agel (2018) showed reasonable agreement with the observed advection285

velocities.

– Wake meandering decreases the depth and increases the width of the time-averaged wake and contributes to the tur-

bulence intensity of the wake. For all of those three quantities, the observed effect due to wake meandering was small

relative to the base magnitude of the time-averaged wake itself. Only the effect on width of the time-averaged wake

increased with downstream distance. The effect on the turbulence intensity decreased with downstream distance and the290

effect on the wake depth did not show a clear increase or decrease with downstream distance. This suggests that ad-

verse effects on downstream wind turbines resulting from wake meandering become less severe with increasing turbine

spacing despite the wake meandering strength increasing with downstream distance.

In the future, the dataset presented here could be used to validate and improve numerical models of wake meandering. These

include, for example, the dynamic wake meandering model (Larsen et al., 2008) as well as the statistical wake meandering295

model of Thøgersen et al. (2017). Incorporating the effect of large scale fluctuations of the wind speed on the downstream

advection process and wake meandering is one lead we are planning to pursue in this direction.

Data availability. The data is not made available publicly.

Appendix A: Error of the wake center position due to the lateral velocity

The wake center position computed with Eq. (2) uses the radial velocity instead of the longitudinal velocity. The presence of a300

lateral velocity component will bias the wake center position, which will be discussed in the following.
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To investigate the bias, we assumed an Gaussian wake for the longitudinal velocity component and a constant lateral velocity.

The horizontal velocity vector is given by

u(y) =

(
u0 −Aexp

(
− y2

2σ2
y

)
, v

)
(A1)

with u0 = 6 m s−1, A= 0.4u0, σy = 40 m, and a variable lateral velocity v. Then the projected line-of-sight velocity that305

would be measured by the Doppler LiDAR is computed with

vr(y) = u · er, (A2)

where er = (−cos(φ),sin(φ)) is the unit vector in the beam direction for a PPI of the wake scanning Doppler LiDAR (Fig. 2a).

The resulting radial velocity profiles are shown in Fig. A1a for v = 0 m s−1 (solid blue line) and v = 2 m s−1 (solid black

line). Then, the wake center position was computed with Eq. (2) for both cases and they are shown as a vertical dotted lines in310

Fig. A1a. From the difference of wake center positions between the two cases, a bias of the wake center position is apparent. For

the given example in Fig. A1a the difference between the two wake positions is ycom(u0,v = 0)−ycom(u0,v = 2) = −11.7 m.

For each of the 43 cases investigated in Sect. 3 we extracted the maximum lateral velocity observed by Doppler LiDAR in the

lateral staring mode and the mean wind speed from SCADA data. We then computed the bias of the wake position analogue to

Fig. A1a for each case and compared it with the wake meandering strength in Fig. A1b. The bias of the wake position resulting315

from the lateral velocity is in all cases smaller than the wake meandering strength. The given biases can be regarded as an

upper limit of the error, because we used the absolute maximum of the lateral velocity. Further, it should be noted that the bias

of the wake position resulting from the lateral velocity is in the opposite direction to the expected wake displacement with

the passive advection hypothesis. Therefore, the error would be reducing the correlations shown in Fig. 5 and not artificially

inflating them.320

The presence of a vertical velocity will not bias the wake position, because it will affect the radial velocity on both sides of

the PPI identically.

Appendix B: Instantaneous velocity deficit definition

Two definitions of the instantaneous velocity deficit are compared and their effect on the detection of the instantaneous wake

position is discussed. The first definition is relative to the mean wind speed of the inflow at hub height given by325

∆ur(x,y, t) = uhub−ur(x,y, t). (B1)

The second definition is relative to the instantaneous ambient wind speed outside of the wake given by

∆ur(x,y, t) = maxy(ur(x,y, t))−ur(x,y, t), (B2)

where maxy(ur(x,y, t)) is the maximum of the radial velocity for a given time and downstream distance, which is taken as

the instantaneous velocity outside of the wake. The effect that those two definitions of ∆ur(x,y, t) have on the wake position330
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Figure A1. The error of the wake center position resulting from the influence of the lateral velocity component. Explanations are in the Text

of Appendix A.

computed with Eq. (2) will be investigated by assuming a Gaussian wake given by

ur(y,t) = u0 −Aexp

(
− (y− y0(t))2

2σ2
y

)
, (B3)

with A= 3.5 m s−1, σy = 40 m, y0(t) = 0.2D cos( 3πt
1800 ) to model wake meandering, and u0 either having a constant value of

7 m s−1 to model a stationary inflow (Fig. B1a) or u0 = 7 + sin( 2πt
1800 ) m s−1 to model a non-stationary inflow (Fig. B1d).

Both definitions yield the same velocity deficit for a stationary ambient flow outside of the wake and subsequently identical335

wake center positions (Fig. B1a-c). For a non-stationary ambient wind speed, the two velocity deficit definitions lead to different

results for the wake center position (Fig. B1d-f) and only the definition given by Eq. (B2) reproduces the sinusoidal input for

the wake meandering. The above observations from the idealized cases can also be found in our field measurements (Fig. B1g-

i). Negative values of ∆u in Fig. B1f and Fig. B1i were set to zero for the computation of ycom, because the center-of-mass

method (Eq. 2) does not work for negative values.340

We will use the velocity deficit definition based on maxy(ur(x,y, t)) in this paper, because it provides a better detection of

the wake center position. However, the results presented in Sect. 3 hold for both definitions of the velocity deficit. It should be

noted that the definition based on maxy(ur(x,y, t)) removes a portion of the inflow turbulence from the velocity deficit field

of the wake and, therefore, the turbulence intensity should be computed from ur(x,y, t) directly and not ∆ur(x,y, t).
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Figure B1. Time series of velocity profiles (top row) and derived velocity deficits with Eq. (B2) based on maxy(ur(x,y, t)) (middle row) and

with Eq. (B1) based on uhub (bottom row). The left two columns present a Gaussian wake with sinusoidal wake meandering for a constant

inflow wind speed (left column) and a non-stationary inflow wind speed (middle column). The right column shows an example case from the

data set presented in Sect. 3, which was selected for its pronounced differences between the two velocity deficit definitions.
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