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Abstract. In this work, a computationally efficient engineering model for the aerodynamics of swept wind turbine blades is

proposed for the extended blade element momentum (BEM) formulation. The model is modified based on a coupled near- and

far-wake model, in which the near-wake is assumed to be the first quarter revolution of the non-expanding helical wake of the

own blade. For the special case of in-plane trailed vorticity, the original empirical equations determining the steady-state value

of the near-wake induction are replaced by the analytical results, which are in the form of incomplete elliptic integrals. For5

the general condition of helical trailed vorticities, the steady-state near-wake induction is approximated based on the results

of the special conditions and a correction factor. The factor is calculated using empirical equations with influence coefficient

tensors, to minimize the computational efforts. These influence coefficient tensors are pre-calculated and are fitted to the results

from the numerical integration of the Biot-Savart law. With the indicial function approach, it is not necessary to explicitly save

the information of the vorticities that were trailed in the previous time steps. This engineering approach is a combination of10

analytical results and numerical approximations, with low and constant computational effort for each time step. The proposed

model is practically applicable to time-marching aero-servo-elastic simulations. The results of the swept blades with uniform

inflow perpendicular to the rotor calculated from the proposed model are compared with the results from a BEM code, a lifting-

line solver as well as a Navier-Stokes solver. The significantly improved agreement with the higher-fidelity models compared

to the BEM method highlights the performance of the proposed method.15

1 Introduction

With the technological advancements in the design optimization and manufacturing of horizontal-axis wind turbines, the turbine

blades are becoming increasingly flexible. Thus, there could be significant in-plane and out-of-plane deformations due to the

aeroelastic loads. In addition, there is an increasing interest in the backward swept blades because of the possibility to achieve20

passive load alleviation with geometric bend-twist coupling (Liebst, 1986; Zuteck, 2002; Larwood and Zutek, 2006; Larwood

et al., 2014; Manolas et al., 2018). The recent research by Barlas et al. (2021) is on the aeroelastic design optimization of
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blade tip add-ons with curved shapes. Higher-fidelity tools such as lifting-line solvers (LL) and fully-resolved Navier-Stokes

solvers (often referred to as Computational Fluid Dynamics, CFD), are limited in the application of design optimization and in

repetitive aeroelastic load calculations, due to their high computational cost.

In the spectrum of the lower-fidelity models, the most commonly used blade element momentum (BEM) method implicitly

assumes a planar rotor with straight blades. If the actuator disc (AD) is not planar, the induction deviates from what the BEM5

model predicts as demonstrated by Madsen and Rasmussen (1999) using a CFD model for computation of the AD flow. Further,

the disc approach in the BEM method has some fundamental shortcomings in the capability to model response to turbulent

inflow, stability and steep load variations along the blade like partial pitch actuation.

This led to the formulation of the coupled model (usually referred to as the near-wake model) by Madsen and Rasmussen

(2004), which is a hybrid model of a lifting-line method and the BEM method. It combines the detailed modelling of the local10

blade aerodynamics in the lifting-line model using a simplified approach and the far-wake modelling by the BEM method.

The near-wake is defined to be the first quarter revolution of the trailed vorticity of the own blade, which is modelled as

non-expanding helical vortex filaments. The near-wake induction is approximated using empirical equations and correction

factors. The indicial function approach is used, so that the information of the vorticities trailed from the previous time steps are

not explicitly stored. Then, the computational effort is relatively low and is independent of the elapsed simulation time. The15

remaining trailed vorticity of the wind turbine vortex system is defined as the far-wake and is modelled by a far-wake BEM

model (Madsen and Rasmussen, 2004). The near-wake model and the far-wake model are coupled together with a coupling

factor to get the total induction (Andersen et al., 2010; Pirrung et al., 2016).

Since the first version of the model in 2004, there have been several improvements. Integration in the multibody aeroelastic

HAWC2 code is presented in Andersen et al. (2010) and further developments of the model are presented in Pirrung et al.20

(2014), Pirrung et al. (2016) and Pirrung et al. (2017a). However, the model in its latest version (Pirrung et al., 2017a) still

assumes straight blades and is not able to correctly model the aerodynamics of the swept blades. This is the further development

of the model to be presented in the present work.

There has been previous work by Li et al. (2018) on this topic, in which the good performance of the modified coupled

model on the prediction of the aerodynamic loads of the swept blades is demonstrated. However, in that work, the near-wake25

induction is calculated by directly integrating the Biot-Savart law numerically. This approach is computationally expensive and

is not suitable for the application to aeroelastic simulations. In addition, the method of modelling the curved bound vorticity

influence on itself in that previous work was incomplete and limited to swept blades. The updated method of modelling the

influence of curved bound vortex is described in detail later by Li et al. (2020).

In the present work, the background of the engineering aerodynamic models for horizontal-axis wind turbines are first briefly30

described. Then, the details of the near-wake model, including the analytical solutions as well as the engineering approaches for

a computationally efficient implementation, are described. Afterwards, the far-wake model and the coupling method are briefly

discussed. Finally, the aerodynamic loads of the swept blades under the special condition of uniform inflow perpendicular to

the rotor plane predicted by the proposed model are compared with the results from a BEM code, a lifting-line solver as well

as a CFD Reynolds-averaged Navier–Stokes (RANS) solver.35
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2 Background: Engineering aerodynamic models

For the application of aeroelastic simulations of wind turbines, there are multiple low- and mid-fidelity engineering aerody-

namic models with different assumptions. An example of a low-fidelity model is the polar grid implementation of the blade

element momentum (BEM) method with unsteady aerodynamics (Madsen et al., 2020). For the computation of the induction,

the momentum part of BEM, the swept area is assumed to be a planar surface and form an actuator disc (AD). However, all5

computations of the aerodynamic forces in the blade element part of BEM, as input to induction computations, are carried out

for the actual blade shapes taking into account in-plane sweep and out-of-plane shape. The momentum theory and the angular

momentum theory are applied to balance the out-of-plane loads as well as the in-plane loads between the AD and the flow.

The evaluation of induction is carried out at each time step on a stationary polar grid covering the AD (Madsen et al., 2020).

When the blade has no prebend and it is straight, the version of the BEM method that excludes the drag force in the momentum10

balancing is equivalent to a vortex cylinder model that excludes the wake rotation effect (Branlard and Gaunaa, 2015). It is also

argued by Branlard (2017) that the proper way of implementing the BEM method should exclude the drag force during the

momentum balancing from which the induced velocities are determined. This means in the BEM method, the wake of the rotor

is equivalently modelled with non-expanding concentric vortex cylinders. This also implicitly shows that the BEM method

assumes the blades are straight and stay in the rotor plane.15

An example of the higher-fidelity model is the lifting-line method, which models each blade of the rotor with a bound vortex

line. This is under the assumption that the bound vorticity of a blade is concentrated into a line vortex at the quarter-chord line.

Vortices are trailed from the bound vortex line, with the trailed vorticity strength equal to the spanwise gradient of the bound

vorticity. The trailed vortices are modelled with helical vortex filaments and could possibly include the wake expansion effect.

There is also shed vorticity for the unsteady conditions. Comparing to the BEM method, the lifting-line method models the20

blade and the wake using vortex line filament and helical vortex filaments instead of using superposition of actuator discs and

concentric vortex cylinders. The assumption that the blades are straight and are located in the rotor plane can be relaxed. In

addition, the influence of the non-straight bound vortex on itself should also be explicitly included (Li et al., 2020). With this

bound vorticity correction, the lifting-line method is able to correctly model the influence of the blade sweep and dihedral.

The coupled near- and far-wake model is considered as a hybrid of the aforementioned two methods. For the first quarter25

revolution of the own wake of every blade, which corresponds to the near-wake, the model is similar to the lifting-line method

without wake expansion. In the modified coupled model by Pirrung et al. (2016), the bound vortex line located at the quarter-

chord line is assumed to be straight and stays in the rotor plane. The trailed vorticity emanates from it and forms the non-

expanding helical wake with the rotation of the blade. The remaining wake, including the own wake of the blade after the first

quarter revolution and also the wake of other blades, is defined as the far-wake. The far-wake is modelled by a far-wake BEM30

model (Madsen and Rasmussen, 2004) that does not account for Prandtl’s tip-loss correction. The idea is similar to using the

vortex cylinder model as the far-wake model, in which the vortex cylinders begin further downstream compared to the rotor

plane. The near-wake model and the far-wake model are coupled together with a coupling factor (Andersen et al., 2010; Pirrung

et al., 2016). The coupling factor is computed so that the aerodynamic thrust of the whole rotor calculated from the coupled
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model is comparable to that calculated from the BEM method. The different ideas of modelling the blades and the wake in the

three different engineering aerodynamic models are illustrated in Fig. 1.

Figure 1. Illustration of the modelling of the blade and the wake in the three different engineering aerodynamic models. In the lifting-line

method (left), each blade is modelled by a bound vortex line, and the trailed vorticity is modelled with helical vortex filaments. In the

generalized actuator disc model, such as the BEM method (middle), the blades are modelled by superposition of actuator discs with the aid

of a tip correction model. The vortices are trailed from the rotor plane and form concentric cylindrical vortex wakes. Only the tip vortex is

shown in the figure. In the coupled near- and far-wake model (right), the blades and the near-wake are modelled similar to the lifting-line

method while the far-wake is modelled similar to the BEM method.

In the modified coupled model proposed in the present work, the assumption of straight blades in the original coupled model

is partially relaxed. The bound vortex can be curved but is constrained to the rotor plane, which means the blades can be swept

forward or backwards. There are two key features of the modified model and they correspond to two impacts of the blade5

sweep on the vortex system. The first one is the influence of the curved bound vortex on itself, which has been described by Li

et al. (2020). It has been shown that the influence of the curved bound vortex should be explicitly modelled for the generalized

lifting-line methods that use 2-D airfoil data. The influence is modelled by including the difference of the 3-D induction of

the curved bound vortex and the 2-D induction evaluated at the three-quarter-chord point. The method is applicable to both

the modified coupled near- and far-wake model and the lifting-line method. The second feature is the in-plane-shifted starting10

position of the trailed vorticity due to the blade sweep, which will be discussed in detail in this work. The calculation points

and the trailing points are located on the curved bound vortex line, which is following the quarter-chord line of the swept

blade. The trailed vorticities emanate from the trailing points and will then be shifted forward or backwards compared to the

calculation points due to the non-straight bound vortex. The relatively shifted position of the trailed vorticity compared to the

straight blade will change the steady-state near-wake induction.15

The modified near-wake model is similar to the modified lifting-line model for curved wind turbine blades that is labelled as

LL-test in Li et al. (2020). The calculation points for the trailed vorticity induction are placed on the quarter-chord line, which

is also the (curved) bound vortex line. This can be justified by the comparison of the results of swept blades from different

versions of the lifting-line methods with the Navier-Stokes solver, as performed in Li et al. (2020). If the curved bound vortex

influence is explicitly modelled, the results from the lifting-line methods are in good agreement with the higher-fidelity Navier-20

Stokes solver. This is true irrespectively of the location of point used for the calculation of the trailed vorticity induction (i.e.

quarter-chord or three-quarter chord).
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3 Trailing function

The trailing function represents the induction due to an elementary trailed vorticity arc, depending on its azimuthal location

relative to the blade. In a previous work (Li et al., 2018), the trailing functions of the axial and the tangential induction of a

counter-clockwise rotating swept blade have been derived using the Biot-Savart law. In this section, the trailing functions for

a clockwise rotating swept blade, whose rotational vector is in the downwind direction, are derived. The coordinate system as5

well as the geometry of the trailed vortex are clarified in a consistent manner. In addition, the steady-state near-wake induction

is also defined and the analytical expressions for some special cases are derived in Appendix B1 and B2.

The coordinate system used in the present work is consistent with the commonly used conventions for wind turbine aero-

dynamics. In this work, we assume the blade has no prebend, which means the out-of-plane component of the geometry is

assumed to be zero. However, if prebend exists, the projection of the blade main-axis into the rotor plane should be used to10

calculate the sweep geometry for the input of the model proposed here. The origin of the coordinate system is located at the

rotational center of the rotor, and it is locally defined for every blade and every section. The z-axis is defined from the rotational

center to the calculation point of any given section. The x-axis is common for every blade and section. It is parallel to the rotor

axis, and it is positive in the upwind direction. The y-axis is normal to both x-axis and z-axis, and its direction is defined so

that a right-handed system is found. For different sections, the corresponding coordinate systems are rotated about the x-axis,15

so that the calculation point s is always located on the z-axis. In Fig. 2, the front view of a clockwise rotating backward swept

blade and its trailed helical vortex are shown to illustrate the coordinate system and the geometric variables.
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Figure 2. The front view of a backward swept wind turbine blade that is rotating clockwise with the rotational speed Ω and its trailed vortex.

The calculation point s is located on the z−axis. Two conditions are shown for this backward swept blade. Firstly, when the trailing point v1

is further inboard compared to the calculation point, the relative distance h1 and the sweep angle ψ1 are both smaller than zero. Secondly,

when the trailing point v2 is further outboard, the relative distance h2 and the sweep angle ψ2 are both larger than zero. The difference of

the azimuthal angle of the elementary trailed vorticity ds with respect to the trailing point is β. The position vector x is pointing from the

elementary trailed vortex ds to the calculation point s. Please note, the position vector x and the elementary trailed vorticity ds shown in

the sketch are their projection into the rotor plane.
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The radius of the trailing point is noted as r. The radius of the calculation point is rcp. The difference between the radius

of the calculation point and the trailing point, which is equal to r minus rcp, is noted as h. The sweep angle is ψ, which is

defined as the difference between the azimuthal angle of the calculation point and the trailing point. The elementary trailed

vortex filament ds is positive for trailed vorticity with positive strength when pointing away from the blade since the blade is

rotating clockwise. The position vector x is pointing from the elementary trailed vortex filament ds to the calculation point5

s. The azimuthal difference of the elementary trailed vorticity with respect to the trailing point is β, which corresponds to the

azimuthal angle that the elementary trailed vorticity has travelled. The rotational speed of the blade is Ω.

It is assumed that the near-wake part of the trailed vorticity convects downstream with the velocity determined at the blade.

This is because the first quarter revolution of the wake is generally very close to the rotor plane where it is emitted. The in-plane

and out-of-plane components of the flow velocity at the trailing points are vip and voop, respectively:10

vip = Ωr+ vmotionip + vindip (1)

voop = U∞+ vmotionoop + vindoop (2)

where the relative flow velocities from the induction and the blade motion are included in the velocity. They are noted with the

superscripts ind and motion, respectively.

The z−component is the radial component of the velocity and is not considered in this study. This is because for the swept15

blades, the radial velocity contributes to the large in-plane component of the relative velocity seen by the 2-D airfoil section.

The contribution is also linearly proportional to the sine of the sweep angle. Since for ordinary operation conditions, the flow

angle is small, the influence of the radial velocity on the flow angle and consequently on the lift and drag force of the 2-D

section is negligible.

The relative velocity V tprel and the helix angle ϕ of the trailed vorticity are determined by the velocity vector at the trailing20

point on the blade.

V tprel =
√
v2
oop + v2

ip (3)

ϕ= arctan

(
voop
vip

)
(4)

In the previous work by Pirrung et al. (2016) and later by Li et al. (2018), the tangential speed Ωr due to rotation is used as

vip. The in-plane induced velocity is generally much smaller than the tangential speed Ωr. When the in-plane motion vmotionip25

is small compared to Ωr, the results using either the full value for the in-plane velocity or only Ωr will be similar.

Assuming both vip and voop are constant, the elapsed time ∆t resulting from the trailed vorticity element ds traveling an

azimuthal angle of β is:

∆t=
rβ

vip
(5)
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The x−component of the position vector x that is pointing from the elementary trailed vorticity ds to the calculation point

s is:

xx = voop∆t=
voop
vip

rβ (6)

The other components of the two vectors of x and ds that are used to determine the induction function, can be easily

determined. They are expressed as function of h, r, ψ, β and ϕ as follows:5

x =




rβ tanϕ

r sin(β+ψ)

r−h− r cos(β+ψ)


 (7)

ds = dscosϕ




−tanϕ

−cos(β+ψ)

−sin(β+ψ)


 (8)

For the infinitesimally trailed vorticity element ds with strength ∆Γ, the induced velocity at the blade section s due to this

trailed vortex element is calculated according to the 3-D Biot-Savart law. The minus sign in the equation is due to the definition

of x that is pointing from the elementary trailed vorticity to the calculation point.10

dw =−∆Γ
4π

x×ds

‖x‖3
(9)

The elementary axial and tangential induced velocity, which are the x− and y−component of dw in Eq. (9), can be derived

as:

dwx =−∆Γ
4π

xy dsz −xz dsy
‖x‖3

=
∆Γdscosϕ

4πr2

1− (1− h
r )cos(β+ψ)

[
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ) + (β tanϕ)2

] 3
2

(10)15

dwy =−∆Γ
4π

xxdsz −xz dsx
‖x‖3

=
∆Γdssinϕ

4πr2

1− h
r − cos(β+ψ)−β sin(β+ψ)

[
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ) + (β tanϕ)2

] 3
2

(11)

In the above equations, the length of the elementary trailed vorticity arc is ds, which is determined using Eq. (12). The

variable β∗ is the generalized azimuthal angle, as proposed in the work of Pirrung et al. (2017b). The projection of β∗ into the

rotor plane will be the azimuthal angle β, as shown in Eq. (13).20

ds= V tpreldt= rdβ∗ (12)

dβ =
vipdt
r

= dβ∗ cosϕ (13)
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Recall that the near-wake part of the trailed vorticity is defined as the first quarter revolution of the wake of the own blade.

Thus, the integral of the trailing functions in Eqs. (10) and (11) with the azimuthal angle β from 0 to π
2 is defined as the

steady-state value of the axial and the tangential near-wake induction (noted as Wx and Wy).

Wx =

β=π
2∫

β=0

dwx (14)

Wy =

β=π
2∫

β=0

dwy (15)5

The value ofWx andWy can be calculated by directly integrating the Biot-Savart law in Eqs. (10) and (11) numerically, such

as in the previous work (Li et al., 2018). However, the computationally heavy characteristic of this method is not favourable

for the purpose of time-marching aeroelastic simulations. Alternatively, the steady-state induction is approximated by applying

corrections to the results of some special conditions using empirical functions and pre-calculated influence coefficient tensors,

which will be described in Sect. 5. In addition, the indicial function method is used for the calculation involving integration10

over time and the dynamic response, which will be described in Sect. 4.

4 Indicial function method

The numerical implementation of the lifting-line method and the coupled method requires the radial discretization of the blade.

If the blade is discretized intoN sections, there will beN calculation points andN+1 trailing points. TheN+1 trailing points

define N line segments of bound vorticity, and the trailed vorticities emanate from these trailing points. This is a discretized15

approximation of the curved bound vortex line and continuous trailed vortex sheets.

For the free-wake lifting-line method that is implemented as a time-marching fashion for numerical computations, the vortex

wake system is evolving and its size is growing in time. The information of the vorticities trailed and shed in the previous time

steps has to be explicitly stored. For every single vortex element, there will be influence from all other vortex elements on it. For

each time step, the size of the problem is in the order ofO(N2
vor), whereNvor is the number of vortex elements. There has been20

intensive work to reduce the computational effort, three approaches are highlighted. Firstly, it is possible to trim the far-wake

which effectively decrease the size of Nvor (Boorsma et al., 2018). Secondly, it is possible to use computationally efficient

algorithms that decrease the size of problem to O(Nvor logNvor), such as particle based method: vortex-particle or particle-

particle method (Rasmussen, 2011; Ramos García et al., 2018). Thirdly, it is possible to use parallel computing with graphics

processing unit (GPU) to reduce the total computational time (Marten, 2020). However, the size of Nvor is generally in the25

order of 103 to 105 larger than the number of sections N . This means the time-marching lifting-line method is computationally

heavy even after these modifications. Therefore the method is not practical for the aeroelastic simulation of the whole design

load basis (DLB) of a wind turbine, which corresponds to more than 200 hours of real-time simulation (Hansen et al., 2015;

Boorsma et al., 2020).

8

https://doi.org/10.5194/wes-2021-96
Preprint. Discussion started: 26 August 2021
c© Author(s) 2021. CC BY 4.0 License.



In the near-wake model, the trailing functions in Eqs. (10) and (11) are both approximated with the sum of two exponential

functions as shown in Eq. (16). The two components are decaying with the increase of the generalized angle β∗, following the

exponential functions. The reason of using the generalized azimuthal angle β∗ in Eq. (16) is to account for the influence of

the downwind convection velocity on the near-wake trailed vorticity length (Pirrung et al., 2017b). The two exponential terms

represent the fast and slow response of the indicial function, respectively. In Eq. (16), the parameters of Ai and bi are related5

to the characteristics of the dynamic response. According to Beddoes (1987), the parameters of A1 = 1.359, A2 =−0.359,

b1 = 1 and b2 = 4 are favourable for straight blades. Since the focus of this work is mainly on obtaining the correct steady-state

induction for swept blades, the same set of parameters are used.

dw̃ =
∆Γr

4πh|h| (A1e
−b1β∗/Φ +A2e

−b2β∗/Φ)dβ∗ (16)

Assuming Φ is constant, the approximated near-wake induction for a specific value of generalized azimuthal angle β∗ is the10

integral of the trailing function in Eq. (16) from 0 to β∗.

W̃ (β∗) =
∆Γr

4πh|h|Φ
[
A1

b1
(1− e−b1β∗/Φ) +

A2

b2
(1− e−b2β∗/Φ)

]
(17)

When the value of β∗ approaches infinity, we have the approximated steady-state near-wake induction W̃ (β∗ =∞):

W̃ (β∗ =∞) =
∆Γr

4πh|h|Φ
(
A1

b1
+
A2

b2

)
(18)

In Eq. (18), since the value of Ai and bi are constants and the value of h and r are only dependent on the geometry, the value15

of Φ can be interpreted as a normalized steady-state near-wake induction for unit strength of trailed vorticity. It will be used to

represent the steady-state near-wake induction in the following sections.

One of the important features of the near-wake model is the use of exponential functions to approximate the trailing function

that is based on the Biot-Savart law. The approximated trailing function can then be integrated using the indicial function

approach instead of using direct numerical integration. With this approach, the information of the individual trailed vortex20

elements emitted from the previous time steps is implicitly stored. For every time step, it is only necessary to calculate the

decrement of the induction at the previous time step and the increment of the induction at the current time step.

X̃i
w = X̃i−1

w e−b1∆β∗/Φ + D̃X∆Γ(1− e−b1∆β∗/Φ) (19)

Ỹ iw = Ỹ i−1
w e−b2∆β∗/Φ + D̃Y ∆Γ(1− e−b2∆β∗/Φ) (20)

where25

D̃X =
r

4πh|h|
A1

b1
Φ (21)

D̃Y =
r

4πh|h|
A2

b2
Φ (22)

The fast and slow response terms are calculated separately and then summed together to get the complete near-wake induc-

tion.

W̃ i = X̃i
w + Ỹ iw (23)30
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The problem is now in the order of O(N2) for each time step, where the number of sections N is practically only 50 to

100 and is much smaller than Nvor. The computational effort is low and remains constant for every time step. The indicial

function method could be interpreted in different ways, for example: first-order low-pass filter, solution of the first-order ordi-

nary differential equation (ODE), convolution of the induction function, Duhamel’s integral and exponential time differencing

(ETD).5

4.1 Distinguish the analytical and approximated induction

It could be confusing that the approximated value of the steady-state near-wake induction in Eq. (18) corresponds to β =∞
while the analytical value of the steady-state near-wake induction in Eqs. (14) and (15) corresponds to β = π

2 .

For the analytical near-wake induction Wx and Wy that are calculated directly from the Biot-Savart law in Eqs. (14) and

(15), the integration is from β = 0 to β = π
2 because it corresponds to the first quarter revolution of the own wake. Otherwise,10

if integrated from β = 0 to β =∞, the induction will correspond to the whole helical wake of the own blade until infinitely far

downstream. For the integration from β = π
2 on-wards until infinity, the calculated induction belongs to the far-wake part.

For the approximated induction in Eq. (17), the integral from zero to infinity corresponds to the steady-state value of the

approximated near-wake induction. Because it is only to approximate the analytical near-wake induction in Eqs. (14) and (15),

and does not include the far-wake part. The relationship between the approximated and the analytical steady-state near-wake15

axial and tangential induction are summarized in the following equations. The negative sign in Eq. (15) is due to the definition

of the positive direction of the tangential induction.

Wx ≈ W̃x(β∗ =∞) =
∆Γr

4πh|h|Φx
(
A1

b1
+
A2

b2

)
(24)

Wy ≈ W̃y(β∗ =∞) =− ∆Γr
4πh|h|Φy

(
A1

b1
+
A2

b2

)
(25)

The difference between the analytical and the approximated near-wake induction is illustrated in Fig. 3. From the left figure,20

it could be observed the analytical and the approximated trailing function are different and are difficult to compare. In the right

figure, the integral of the trailing function representing the induction for different size of the azimuthal angle is shown. It could

be observed the steady-state value of the approximated induction at β =∞ correspond to the analytical near-wake induction

at β = π
2 . So, for the approximated induction function as shown in the right figure, the physical meaning of β is not strictly the

azimuthal angle. Instead, it is a measure of the time that the vortex has been emanated from the trailing point.25

5 The steady-state value

The different methods of obtaining the normalized steady-state near-wake induction Φ, in the original implementation, in the

previous modifications and in the suggested modification will be described in this section. For the suggested modification, de-

tails of the modified convective correction are described. Then, the modified indicial functions are given. Finally, the algorithm

of computing the induction from given geometry and vorticity strength is summarized.30
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Figure 3. Illustration of the difference between the analytical and the approximated normalized trailing functions (left) and the corresponding

induction functions (right). The parameters for the illustration are h/r = 0.5, ψ = 10◦, ϕ= 5◦. The approximated steady-state near-wake

induction is when β =∞ and corresponds to the analytical near-wake induction at β = π
2

.

5.1 Original implementation

In the original implementation of the near-wake model by Beddoes (1987) and further extension by Wang and Coton (2001),

only the axial induction is modelled. The value of Φ that represents the normalized steady-state axial induction is determined

using the empirical functions:

Φ =




−π4 (1 + h

2r ) ln(1− h
r ) if h/r > 0

ln(1−hr )

1.5+ln(1− h
2r )

if h/r < 0
(26)5

There are two major limitations when using the empirical functions in Eq. (26) to approximate the near-wake induction.

Firstly, when the value of h/r is close to 1, which corresponds to the influence of the vorticities trailed from the tip region

on the root region, the approximated steady-state result from these empirical equations will deviate significantly from the

analytical results. Secondly, in these empirical equations, the value of Φ is only dependent on the relative position h/r, but not

dependent on the helix angle ϕ. These empirical equations implicitly assume the trailed vorticity stays in the rotor plane with10

zero helix angle. With the increase of the helix angle, the approximated induction will gradually deviate from the analytical

results and the error from these empirical equations will increase accordingly.

5.2 Previous modifications

There has been previous work by Pirrung et al. (2017a, b) targeted at the two issues pointed out in the previous section. Firstly,

the root correction is introduced to correct the value of Φ for the condition of h/r close to 1. It is discovered by Pirrung15

et al. (2017a) that when the trailed vorticity is in-plane (ϕ= 0), there is a good agreement between the analytical steady-state
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near-wake axial induction Wx and the approximated value calculated using Eqs. (17) and (26) with β = π
2 instead of β =∞

(here β∗ = β because ϕ= 0). Recall that the approximated steady-state near-wake induction should correspond to β =∞ as

described in Sect. 4.1, the root correction is to scale the value of Φ accordingly.

ΦC =
W̃ (β = π

2 )

W̃ (β =∞)
Φ = Φ

A1
b1

(1− e−π2 b1/Φ) + A2
b2

(1− e−π2 b2/Φ)
A1
b1

+ A2
b2

(27)

Secondly, the influence of the helix angle on the near-wake induction is modelled by introducing the convective correction.5

The value of Φ is adjusted with the correction to approximate the steady-state induction for the general condition of an arbitrary

helix angle. The corrected value of Φ∗ is from a linear interpolation of the value for the special condition of in-plane trailed

vorticity (ϕ= 0) and the special condition with straight trailed vorticity (ϕ= π
2 ). For the condition of in-plane trailed vorticity,

the value of ΦC in Eq. (27) that is with the root correction is used. For the condition of straight trailed vorticity, the value

of Φs is calculated from Eq. (28) (Pirrung et al., 2017b, Eq. (7)), which is an approximation of the analytical induction of a10

semi-infinite line vortex.

Φs = 0.788
∣∣∣∣
h

r

∣∣∣∣ (28)

Φ∗ = kΦΦs + (1− kΦ)ΦC (29)

The weight kΦ is calculated from the parameter of h/r and ϕ with empirical functions. The empirical functions rely on two

pre-calculated influence coefficient matrices that are fitted to the results from direct numerical integration. The two matrices15

correspond to positive and negative value of h/r respectively. The empirical functions are in the form of composite functions

as in Eq. (30).

kΦ = fϕ

(
fh
r

(
h

r

)
,ϕ

)
(30)

This approach has a very low computational cost, which is crucial for the efficiency of the coupled near- and far-wake model.

The approximated steady-state axial induction of a straight blade after these corrections is having reasonably good accuracy. In20

addition, the near-wake part of the tangential induction is included in the modification. It is argued by Pirrung et al. (2016) that

the same value of Φ can be used for the tangential induction of straight blades and will have acceptable accuracy for a small

value of |h/r|. This is confirmed by the analytical derivations in Appendix B1.1. For the detailed description of the modified

method and the pre-calculated influence coefficient matrices, the reader is referred to Pirrung et al. (2016, 2017b).

5.3 Suggested modification25

Recall the procedures to approximate the steady-state near-wake induction in the previous modifications by Pirrung et al.

(2016). Firstly, the steady-state induction of the special conditions of in-plane and straight trailed vorticity are approximated.

Secondly, the approximated steady-state induction for an arbitrary helix angle ϕ is obtained by applying corrections to these

two special conditions. In the modification suggested in the present work, the blade sweep is considered and the definition
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of the convective correction is adjusted. In addition, different equations are used to approximate the axial induction and the

tangential induction.

Firstly, for the special condition of zero helix angle (in-plane trailed vorticity), modification is needed to get the correct

steady-state results for the swept blades. In the original empirical equation of Φ and also the previous modification of root

correction, the blade is assumed to be straight. When the blade is swept instead of being straight, the results from the previous5

methods will have offsets. One possible solution is to obtain another empirical function of Φ that includes the additional

variable of blade sweep angle ψ. Alternatively, for this special condition of in-plane trailed vorticity, the value of Wx and Wy

in Eqs. (14) and (15) are derived analytically to be in the form of incomplete elliptic integrals, see Appendix B1. In addition,

the steady-state axial and tangential induction of the special condition of straight trailed vorticity (ϕ= π
2 ) are also derived, see

Appendix B2. This means the value of Φ for both the axial and the tangential induction can be directly calculated from the10

analytical equations for these two special conditions. The previous empirical equations in Eq. (26) and the root correction in

Eq. (27) are then not necessary.

Secondly, the idea of convective correction for the general case of an arbitrary helix angle is used but the definition is

adjusted. The convective correction is now defined as the function to obtain the steady-state induction from the special condition

of in-plane trailed vorticity (ϕ= 0) and possibly also the special condition of straight trailed vorticity (ϕ= π
2 ). Since the steady-15

state induction could be represented by the value of Φ as shown in Eq. (18), the convective correction is having the form in

Eq. (31). There will be separate convective correction functions for the axial and the tangential induction.

Φ∗
(
h

r
,ψ,ϕ

)
= fconv

(
kΦ,Φip,Φss

)
(31)

where, in turn:

kΦ = fkΦ

(
h

r
,ψ,ϕ

)
(32)20

5.4 Prerequisites of the modified convective correction

In the previous modifications by Pirrung et al. (2017b), the empirical equations for the convective correction are dependent on

two variables: the relative position h/r and the helix angle ϕ. For the current modification, there is one more design variable

that is the sweep angle ψ. As a result, the procedure to obtain the influence coefficient tensors involves one more degree of

freedom, which is then more complicated and requires careful considerations. Three prerequisites, which are the definition of25

the equivalent relative position, the normalization of the sweep angle and the determination of the feasible design space, are

proposed for the ease of obtaining the influence coefficient tensors.

5.4.1 Equivalent relative position

The relative position h/r is introduced by Beddoes (1987) to represent the geometric relative position of the trailing point and

the calculation point. It is defined as the ratio of the radial distance of the trailing point and the calculation point (r− rcp) over30

the radius of the trailing point r, which has been explained in Sect. 3. For the simplicity of the notation, the relative position
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h/r is noted as h̃ in the following of this work. When the trailing point is further outboard compared to the calculation point, h̃

is positive with the value between 0 and 1. Instead, when the trailing point is further inboard compared to the calculation point,

the value of h̃ is negative and is not bounded. The unbounded negative value of h̃ can cause unnecessary difficulties when

obtaining the influence coefficient tensors. In the previous work of Pirrung et al. (2017b), the data fitting for negative value of

h̃ was performed for the range of [−4,0). However, it is difficult to argue what the range of negative h̃ should be to cover the5

design space and how many grid points are needed to ensure sufficiently good results.

In order to solve this problem, the equivalent relative position ĥ is introduced in Eq. (33) and is bounded between -1 and 1.

When h̃ > 0, its equivalent value is itself. When h̃ < 0, the equivalent relative position is the opposite number of the value of

h̃ when switching the location of the calculation point and the trailing point.

ĥ=




h/r if h/r > 0

h
h−r if h/r < 0

(33)10

5.4.2 Normalization of sweep angle

Another procedure to ease the process of obtaining the influence coefficient tensors is to normalize the sweep angle ψ. For

the induction function in Eqs. (10) and (11), the blade sweep is described by the sweep angle ψ, which is defined as the

azimuthal difference between the calculation point and the trailing point. For a specific swept blade and when the trailing point

is further outboard compared to the calculation point (ĥ > 0), the range of ψ will generally increase with the increase of ĥ.15

This is illustrated in Fig. 4 for the same calculation point but with different trailing points. When ĥ < 0, there will be a similar

dependency of the range of ψ on the value of |ĥ|.

Figure 4. Illustration of the variation of the range of the sweep angle ψ with the increase of the relative position ĥ for a swept blade. The

calculation point s is further inboard compared to the trailing point and is not changed. When the trailing point is changing from v1 to v2 and

then to v3, the value of ĥ together with the sweep angle ψ are increasing.

The spread of the realistic points in the 2-D plot of ψ against ĥ will expand with the increase of |ĥ|. This will introduce

difficulties when obtaining the influence coefficient tensors through data fitting. Practically, the data fitting is performed on a

sampling mesh grid with uniform spacing for each of the design variables and is intended to cover the whole design space.20

There are three design variables of ĥ, ψ and ϕ which corresponds to a cuboid space. Because of the dependency of the sweep

angle ψ on the equivalent relative position ĥ, the realistic design space inside this cuboid design space will be highly skewed.

There will be many sampling grid points that correspond to unrealistic conditions. If directly using the uniformly spaced mesh

grid within this design space, the data fitting will aim to minimize the error for both realistic and unrealistic conditions. This is
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harmful to the quality of the fitted results, especially when the weight on the unrealistic conditions, which is measured by the

number of sampling grid points that are unrealistic, is too large.

In addition, when the value of |ĥ| is close to zero, the feasible range of ψ is also small, so that the realistic conditions are

clustered together into a small space inside the cuboid space for the data fitting. This means there will be insufficient number

of sampling points in this region and the fitted data can not sufficiently represent the features of the blade sweep. Then, it will5

be difficult to correctly approximate the steady-state induction using these fitted influence coefficients for a small value of |ĥ|.
Furthermore, the data fitting for a small value of |ĥ| is important for the calculation of the induction on the blade, because it

represents the influence of the trailed vorticity on the neighbouring sections.

As a result, it is favourable to normalize the sweep angle to spread the realistic design space more evenly inside the cubic

parameter space for data fitting and also to proactively enlarge the spread of the realistic conditions for a small value of |ĥ|.10

The proposed method of normalizing the sweep angle ψ is dividing it by ĥ. The normalized sweep angle ψ̃ can be considered

as a measure of the blade local curvature.

ψ̃ =
ψ

ĥ
(34)

5.4.3 Range of feasible designs

Since the data fitting is practically performed in a cuboid parameter space, it is necessary to determine the range of each15

variable. For the value of |ĥ|, the range is (0,1). For the helix angle, the range is from 0 to π
2 . It is difficult to directly determine

the range of the normalized sweep angle ψ̃.

To obtain the range of the normalized sweep angle, an initial numerical study is performed by calculating the value of ĥ and

ψ̃ for a large variety of swept blades. The planform of the swept blades used in the numerical test is obtained from a quadratic

Bézier curve which is parameterized with: sweep ratio r̄s, sweep magnitude ∆d and tip sweep angle Λtip, and is illustrated20

in Fig. 5. The quadratic Bézier curve is modified so that the exponent is able to be changed and is not necessarily being two.

Then, another parameter, which is the exponent factor, is introduced so that the main-axis is possible to have more variety of

local curvatures.

Figure 5. The parameterization of the swept blade with sweep ratio r̄s, sweep magnitude ∆d and tip sweep angle Λtip (Li et al., 2018).

The purpose of this preliminary study is to determine the range and also the Pareto front of the design variables. So, the

range of the geometric variables for this numerical study is chosen to represent the blades with relatively large sweep. The25

range of the sweep ratio is from 0.25 to 0.75. The ratio of the sweep magnitude over the sweep ratio is set to vary between

0.2 and 1. So, the swept magnitude ∆d is from 20% to 100% the value of sweep ratio r̄s. The tip sweep angle Λtip is varying

from 25◦ to 57◦. The exponent of the Bézier curve is varying from 1.5 to 2.5. The blade for the test is with a hub radius equal
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to 2% of the rotor radius, which is relatively small when compared to typical wind turbines. The blade is discredited into 50 to

300 sections using cosine spacing. The numerical test is performed for both backward swept blades and forward swept blades.

Since the scatter plot of the realistic value of (ĥ, ψ̃) is approximately symmetric with respect to the two Cartesian coordinate

axes of ĥ= 0 and ψ̃ = 0, only the first quadrant is shown in Fig. 6.

Figure 6. The scatter plot of the realistic conditions of the normalized sweep angle ψ̃ against the equivalent relative position ĥ in the first

quadrant.

The range of ĥ is firstly investigated. From the figure, the minimum possible value of ĥ is around 1.4× 10−5, and the5

maximum value is approximately 0.98. This gives guidelines to the range of ĥ for the data fitting.

Secondly, according to the scatter plot in Fig. 6, it is possible to have a trapezoid region of the design variables of ĥ and ψ̃

instead of a rectangular region for the first quadrant. This can reduce the ratio of the unrealistic conditions inside the design

space, which is beneficial for the data fitting. The trapezoid region for the first quadrant is determined with the four corner

points of A : (0,0), B : (1,0), C : (1,0.5) and D : (0,1.5). It is possible to introduce another variable ψ̂ to represent the blade10

sweep, so that it is possible to have a rectangular space of (ĥ, ψ̂) that corresponds to this trapezoid design space. For the other

quadrants, the trapezoid region is symmetric with the two Cartesian coordinate axes of ĥ= 0 and ψ̃ = 0. The relationship

between ψ̃ and ψ̂ is given by:

ψ̂ =
ψ̃

1.5− |ĥ|
=

ψ

1.5ĥ− ĥ|ĥ|
(35)

5.5 Modified convective correction15

In this section, the modified convective correction is described in detail. The idea is similar to the method of calculating the

corrected value of Φ∗ using empirical equations and influence coefficient matrices by Pirrung et al. (2017b).
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5.5.1 The base trailing function and base induction

For the trailing functions of dwx and dwy in Eqs. (10) and (11), there are trigonometric functions of sine and cosine which are

not favourable for the analytical derivation and will also impose difficulties to the practical implementation. This is because

when calculating the ratio of the two values that contains sine or cosine, the issue of dividing by zero could occur. As a result,

the two new trailing functions of dwI and dwII are introduced, they are noted as the base trailing functions. The trailing5

functions of dwx and dwy could be considered as the projections of the base trailing function dwI and dwII with the helix

angle ϕ.

dwI =
dwx
cosϕ

(36)

dwII =
dwy
sinϕ

(37)

The steady-state value of the near-wake base induction corresponds to the integral of the base trailing functions in Eqs. (36)10

and (37) with the azimuthal angle β from 0 to π
2 .

WI =

β=π
2∫

β=0

dwI =
Wx

cosϕ
(38)

WII =

β=π
2∫

β=0

dwII =
Wy

sinϕ
(39)

The normalized base axial and tangential induction are also introduced, they are defined similar to the normalized axial and

tangential induction in Eqs. (24) and (25).15

Φx = ΦI cosϕ (40)

Φy = ΦII sinϕ (41)

For the special condition of in-plane trailed vorticity (ϕ= 0) and straight trailed vorticity (ϕ= π
2 ), the normalized base

induction of Φip and Φss are derived analytically in Appendix B1 and B2.

If the shape of the blade does not change (or the change is within a threshold) between two time-steps, only the helix angle20

ϕ will change during the convergence calculation. So that the corresponding values of Φip and Φss are not necessary to be

re-calculated, but can be stored and reused instead.

5.5.2 The three-layer composite function

The convective correction is an empirical composite function of three independent variables which corresponds to three layers.

These empirical functions are based on polynomial functions and rational functions. The composite functions are designed so25

that there is only one independent variable for each layer. Then, an optimum approach will be letting the helix angle ϕ be the

final layer in the composite functions.
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For a given combination of the three design variables (ĥ, ψ̂,ϕ), the computation will begin from the influence coefficient

tensor and the normalized sweep ψ̂, which is the first layer. The results from the first layer will be the influence coefficients

for the second layer, which is only the function of ĥ. The results from the second layer will be the coefficients for the third

layer, which is only the function of ϕ. In this final layer, the factor of kΦ for the convective correction is then computed. If the

geometry is not changed, only the final layer associated with the helix angle ϕ needs to be re-calculated during the iterations.5

The calculated coefficients from the first two layers of the composite function associated with the blade geometry can be saved

and reused.

Following the aforementioned description, the function of the convective correction is a triple composite function that has

the form as in Eq. (42).

kΦ = fϕ

(
fĥ

(
fψ̂

(
ψ̂
)
, ĥ

)
,ϕ

)
(42)10

The influence coefficient tensors for the axial and the tangential induction are different and will be described separately. In

addition, the whole design space is divided into several sub-spaces with their own influence coefficients, which is for the ease

of data fitting. The empirical functions for both the axial and tangential normalized base induction and for all the regions are

the same and are as follows:

kΦ =
aĥ,1ϕ

4 + aĥ,2ϕ
3 + aĥ,3ϕ

2 + aĥ,4ϕ+ 1

aĥ,5ϕ
3 + aĥ,6ϕ

2 + aĥ,7ϕ+ 1
(43)15

aĥ,i = aψ̂,i,1|ĥ|5 + aψ̂,i,2|ĥ|4 + aψ̂,i,3|ĥ|3 + aψ̂,i,4|ĥ|2 + aψ̂,i,5|ĥ|+ aψ̂,i,6 (44)

aψ̂,i,j = Ii,j,1ψ̂4 + Ii,j,2ψ̂3 + Ii,j,3ψ̂2 + Ii,j,4ψ̂+ Ii,j,5 (45)

5.5.3 Influence coefficients for axial induction

For the approximation of the normalized axial induction ΦI , which is defined in Eq. (24), the whole parameter space is divided

into three regions and each with its own influence coefficient tensor. The definition of the three regions for the parameter space20

of (ĥ, ψ̂) and the corresponding influence coefficients for the axial induction are summarized in Table 1.

The first region corresponds to the first and fourth quadrant of the design space of (ĥ, ψ̂). This is when the calculation point

is further inboard compared to the trailing point (ĥ > 0) for both the condition of backward sweep (ψ̂ > 0) and also forward

sweep (ψ̂ < 0). The influence coefficient tensor is Ia1. The value of Φ∗I is calculated from the convective correction factor kΦI

and the normalized induction ΦI,ip.25

Φ∗I = kΦIΦI,ip (46)

where ΦI,ip is calculated using Eq. (B6).

The second region corresponds to the third quadrant of the design space of (ĥ, ψ̂). This is when the calculation point is

further outboard compared to the trailing point for the forward swept blades. The influence coefficient tensor is Ia2. The value

of Φ∗I is also calculated with Eq. (46).30
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The third region corresponds to the second quadrant of the design space of (ĥ, ψ̂). This is when the calculation point is

further outboard compared to the trailing point for the backward swept blades. The influence coefficient tensor is Ia3. The

convective correction in this region is the linear interpolation between ΦI,ip and ΦI,ss with the weight of kΦI .

Φ∗I = kΦIΦI,ip + (1− kΦI )ΦI,ss (47)

where ΦI,ip is calculated using Eq. (B6) and ΦI,ss is calculated using Eq. (B22).5

The influence coefficient tensors of Ia1, Ia2 and Ia3 with double-precision floating-point numbers are in the online supple-

ment (Li et al., 2021). In addition, a version with reduced digits is in Appendix D1.

Table 1. The definition of the three regions for the parameter space of the equivalent relative position ĥ, the normalized sweep angle ψ̂ and

the corresponding influence coefficients for the axial induction. The equation of the convective correction and the maximum relative error of

the fitted induction are also listed.

Name Range of ĥ Range of ψ̂ Influence coefficient Convective correction equation Maximum relative error

Region a1 (0, 1) [-1, 1] Ia1 Eq. (46) 0.78%

Region a2 (-1, 0) [-1, 0] Ia2 Eq. (46) 1.10%

Region a3 (-1, 0) [0, 1] Ia3 Eq. (47) 1.34%

5.5.4 Influence coefficients for tangential induction

For the approximation of the normalized tangential induction ΦII , the whole parameter space of (ĥ, ψ̂) is divided into two10

regions and each with its own influence coefficient tensor. The definition of the two regions for the parameter space of (ĥ, ψ̂)

and the corresponding influence coefficients for the tangential induction are summarized in Table 2.

The first region corresponds to the first and fourth quadrant of the design space of (ĥ, ψ̂). This corresponds to when the

calculation point is further inboard compared to the trailing point and for both the condition of backward sweep (ψ̂ > 0)

and also forward sweep (ψ̂ < 0). The influence coefficient tensor is It1. The value of Φ∗II is calculated from the convective15

correction factor kΦII and the normalized base induction ΦII,ip.

Φ∗II = kΦIIΦII,ip (48)

where ΦII,ip is calculated using Eq. (B7).

The second region corresponds to the second and third quadrant of the design space of (ĥ, ψ̂). This corresponds to when

the calculation point is further outboard compared to the trailing point and for both the condition of backward sweep (ψ̂ > 0)20

and also forward sweep (ψ̂ < 0). The influence coefficient tensor is It2. The value of the corrected Φ∗II is also calculated with

Eq. (48).

As for the axial induction, the influence coefficient tensors of It1 and It2 for the tangential induction with double-precision

floating-point numbers are in the online supplement. In addition, a version with reduced digits is in Appendix D2.
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Table 2. The definition of the two regions for the parameter space of the equivalent relative position ĥ, the normalized sweep angle ψ̂ and the

corresponding influence coefficients for the tangential induction. The equation of the convective correction and the maximum relative error

of the fitted induction are also listed.

Name Range of ĥ Range of ψ̂ Influence coefficient Convective correction equation Maximum relative error

Region t1 (0, 1) [-1, 1] It1 Eq. (48) 0.54%

Region t2 (-1, 0) [-1, 1] It2 Eq. (48) 0.95%

5.5.5 Quality of the fitted influence coefficients

The quality of the fitted influence coefficients for the modified convective correction described in Sect. 5.5 is tested numerically

in this section. The numerical test is performed on a mesh grid with very fine resolution. The results of the base induction

defined in Eqs. (38) and (39) calculated from the numerical integration of the Biot-Savart law are compared with the results5

calculated from the convective correction. The relative error is defined in Eq. (49).

ε=

∣∣∣∣∣
W − W̃
W

∣∣∣∣∣× 100% =
∣∣∣∣
Φ−Φ∗

Φ

∣∣∣∣× 100% (49)

The numerical integration is calculated using the Runge-Kutta algorithm with Dormand–Prince method implemented in the

ode45 function in MATLAB version 2020a (Shampine and Reichelt, 1997). The relative and absolute error tolerances of the

numerical solver are set to 1× 10−9 and 1× 10−13, respectively. For the numerical test, the range of the helix angle is from10

0 to 89.8◦ with the spacing of 0.05◦. The range of ψ̂ is from -1 to 1 with the spacing of 1× 10−3. The range of |ĥ| is from

1× 10−5 to 0.99. The spacing is 1× 10−5 for |ĥ| between 1× 10−5 and 2× 10−4 and the spacing is 2× 10−4 for |ĥ| between

2× 10−4 and 0.99. For each region, the maximum relative error that is defined in Eq. (49) is calculated and is summarized in

Table 1 and 2. In total, for both the axial and the tangential induction, each test corresponds to 3.57×1010 different conditions.

It can be seen that for both the axial and the tangential induction, the results calculated using the convective correction15

method with the fitted influence coefficient tensors have relatively high accuracy. In addition, for both the base axial and

tangential induction, and for all regions, the relative error is always zero when ϕ= 0. This is because of the well-chosen

empirical function in Eq. (43).

5.5.6 When the parameter is outside the range

The user of the coupled model should bear in mind that the model has its limitations with certain range of validity. The data20

fitting was performed on a relatively large range, which is intended to cover most of the swept blades. However, it is possible

that the input value is outside of the range of validity. As a result, it is necessary to put a limit to the input parameters for the

model to avoid catastrophic failure of the model. The range of the input variables and the corresponding physical representation

are explained. Then, the limits on the input variables and their effects are described.
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For the helix angle ϕ, the data fitting and the tests are performed on the range of [0,89.8◦]. When the value of ϕ is less

than zero, it corresponds to the trailed vorticity convects upstream. Since the trailing functions in Eqs. (36) and (37) are even

functions of the helix angle ϕ, the absolute value of ϕ should be used when ϕ is less than zero. When the value of |ϕ| is greater

than 89.8◦, it is almost equivalent to having straight trailed vorticity (|ϕ|= 90◦). So, it is possible to put an upper boundary of

89.8◦ to the helix angle. For example, for the standstill condition with 90◦ helix angle, the value of WI and WII are calculated5

with ϕ= 89.8◦. But when calculating Wx and Wy from WI and WII , the value of ϕ= 90◦ is used. The limiting of the helix

angle will only introduce negligible error.

For the normalized relative position ĥ, the numerical test in Sect. 5.5.5 has been performed for |ĥ| ∈ [1× 10−5,0.99]. For

|ĥ|> 0.99, it corresponds to the influence of the blade tip on the part of the blade that is within 1% of radius. This range can

only be reached if the user extends the blade until the rotational center, since the hub radius is mostly larger than 2% of the10

rotor radius. The aerodynamic load at this region is not important, so the value of |ĥ| should be simply set to the upper limit

of 0.99. For |ĥ|< 1× 10−5, it corresponds to the influence of the trailing vorticity on the neighbouring sections when the

discretization of the blade is very fine using cosine spacing with more than 300 sections. So, it is recommended to limit the

number of sections to be no greater than 250.

For the normalized sweep ψ̂, the numerical test in Sect. 5.5.5 has been performed for ψ̂ ∈ [−1,1]. For the parameter study15

in Sect. 5.4.3, the blades with a maximum sweep angle of 57◦ is within this range. So, if the blade is smooth, the blade with

forward or backward swept of less than 57◦ should be within the validity range. If the blade has a higher sweep angle, it is also

possible that the condition is still within the validity range because there is some margin as shown in Fig. 6. However, if the

blade has significant sweep, it is possible the normalized sweep is outside the validity range. In addition, if the blade main-axis

has kinks (i.e. non-continuous derivative), it is possible that there is very high value of ψ̂ around these regions. Both conditions20

can cause uncertain performance of the model, so the value of ψ̂ should be limited to the bound of [−1,1]. In addition, since

both conditions require attention from the user, a warning message should be printed by the computer program.

5.6 The modified indicial function

The indicial function described in Sect. 4 is also modified so the modified convective correction can be applied. Firstly, since

the normalized induction of Φx and Φy are having trigonometric functions of cosine and sine, their value could reach zero.25

If the normalized induction Φ that is used in the exponent terms in Eqs. (19) and (20) is close to zero, the indicial function

will have very poor numerical performance. As a result, the base normalized induction should be used in the exponent terms

instead. Secondly, the dynamic response of the axial and tangential induction are assumed to be similar. Then, the normalized

axial base induction ΦI defined in Eq. (40) is used in the exponential terms in both the axial and the tangential indicial function.

In addition, a lower limit of 0.01 is applied to the value of ΦI to avoid the too fast response when the value of ΦI is close to30

zero.
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For the axial induction, the modified indicial functions are:

W̃ i
x = X̃i

w,x + Ỹ iw,x (50)

X̃i
w,x = X̃i−1

w,x e
−b1∆β∗/ΦI + D̃X,x∆Γ(1− e−b1∆β∗/ΦI ) (51)

Ỹ iw,x = Ỹ i−1
w,x e

−b2∆β∗/ΦI + D̃Y,x∆Γ(1− e−b2∆β∗/ΦI ) (52)

where5

D̃X,x =
r

4πh|h|
A1

b1
Φx =

r

4πh|h|
A1

b1
ΦI cosϕ (53)

D̃Y,x =
r

4πh|h|
A2

b2
Φx =

r

4πh|h|
A2

b2
ΦI cosϕ (54)

For the tangential induction, the modified indicial functions are:

W̃ i
y = X̃i

w,y + Ỹ iw,y (55)

X̃i
w,y = X̃i−1

w,y e
−b1∆β∗/ΦI + D̃X,y∆Γ(1− e−b1∆β∗/ΦI ) (56)10

Ỹ iw,y = Ỹ i−1
w,y e

−b2∆β∗/ΦI + D̃Y,y∆Γ(1− e−b2∆β∗/ΦI ) (57)

where

D̃X,y =− r

4πh|h|
A1

b1
Φy =− r

4πh|h|
A1

b1
ΦII sinϕ (58)

D̃Y,y =− r

4πh|h|
A2

b2
Φy =− r

4πh|h|
A2

b2
ΦII sinϕ (59)

5.7 Algorithm of computing induction using convective correction15

The algorithm of computing the axial and tangential near-wake induction using the convective correction is summarized in

this section. The algorithm corresponds to the calculation from the dynamic bound vorticity strength Γdyn to the near-wake

induction W in the diagram by Pirrung et al. (2017a, Fig. 3).

6 Far-wake model and coupling method

The basis for the far-wake model is the BEM model implemented in the HAWC2 code (Madsen et al., 2020) without tip-20

loss correction. The effect of increased induced velocity towards the blade tip due to the trailed vorticity induction is already

included in the near-wake model. Recall that the near-wake is defined as the first quarter revolution of the non-expanding

helical trailed vorticity of the own blade.

The far-wake axial induction is calculated as a function of the scaled thrust coefficient (Andersen et al., 2010; Pirrung et al.,

2016). The scaling of the thrust coefficient is based on a coupling factor that is calculated from the axial induction from the25

near-wake model and the reference axial induction. This reference axial induction is computed as in the regular BEM method in
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Algorithm 1 Overview of the convective correction method

for each blade do

for each blade calculation point do

for each blade trailing point do

Calculate the trailing function strength ∆Γ at this trailing point from the bound vorticity strength of the neighbouring sections.

Calculate the geometric variables of h/r and ψ from the geometry of the calculation point and the trailing point.

Calculate the analytical value of ΦI,ip, ΦII,ip, ΦI,ss and ΦII,ss using Eqs. (B12), (B13), (B22) and (B23).

Calculate the normalized relative position ĥ and normalized sweep angle ψ̂ using Eqs. (33) and (35).

Determine if the design variable ĥ, ψ̂ and helix angle ϕ are in the feasible region, following the description in Sect. 5.5.6.

Determine the region for the axial and tangential induction based on the value of (ĥ, ψ̂) and choose the corresponding influence

coefficient tensor following the description in Sect. 5.5.3 and 5.5.4

Calculate the convective correction factor kΦ using Eq. (43).

Calculate Φ∗I and Φ∗II that is after the convective correction, Eqs. (46) to (48), following the description in Table 1 and 2.

Calculate Xw,x, Yw,x, Xw,y and Yw,y using Eqs. (51), (52), (56) and (57).

Calculate the contribution of the near-wake helical trailed vorticity to the axial and tangential induction of this section at the new

time-step using Eq. (50) and (55).

end for

Sum the contribution of the trailed vorticities from all trailing points to the induction at this calculation point.

Include the curved bound vortex influence, see Li et al. (2020).

end for

end for

the HAWC2 code, which includes the tip-loss correction (Andersen et al., 2010; Pirrung et al., 2016). The aim of the coupling

factor is that the thrust of the rotor calculated from the coupled near- and far-wake model is at a similar level as that from the

reference BEM model. The scaling factor is calculated from the rotor-averaged axial induction with the weight of the annulus

area, and it is applied to the far-wake axial and tangential induction. The scaling factor is set to be less than one to avoid

exaggerated axial induction.5

For the case of straight blades, previous studies have illustrated that the coupling factor is able to be automatically adjusted

during the computation. Indeed, the dynamic response of the coupled model shows improved agreement with higher-fidelity

models and experiments, when compared to the BEM method (Pirrung et al., 2017a; Schepers et al., 2021). However, the

current method of coupling the near- and far-wake model is implicitly based on the assumption that the blade is straight and

the rotor is planar. This is because in the reference BEM, a relationship between the axial induction and the thrust coefficient10

that is fitted to actuator disc simulations is used (Madsen et al., 2020). When the blade is swept, the relationship between the

axial induction and the thrust coefficient should differ from the case of the straight blade, especially near the blade tip. If using

the same coupling method, the total thrust coefficient could have large deviations comparing to the straight blade. This means

that the current coupling method is not strictly suitable for the rotors with swept blades.
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For the application of the steady-state aerodynamic load calculation of swept blades under uniform inflow that is perpen-

dicular to the rotor plane, it is also possible to fix the coupling factor equal to that of the baseline straight blade. As will be

described in Sect. 8.1, the influence of blade sweep on the far-wake should be small. As a result, it is reasonable to assume the

far-wake of the swept blade begins from the same position as that of the straight blades, which means using the same coupling

factor. However, the method of fixing the coupling factor is not applicable to the dynamic response calculation. The results of5

the coupled method with both automatically adjusted coupling factor and the fixed coupling factor will be shown in Sect. 8.

7 Models used for comparison

In order to assess the performance of the proposed coupled near- and far-wake model, the results from two higher-fidelity

aerodynamic models are used for the comparison. In particular, a version of the lifting-line method implemented in the MIRAS

code (Ramos-García et al., 2016; Li et al., 2020) and the in-house Navier-Stokes solver EllipSys3D (Michelsen, 1992, 1994;10

Sørensen, 1995) are used.

In the lifting-line method used for comparison, the bound vorticity is represented by the concentrated lifting-line that is

located at the quarter-chord line of the blade. This is where the trailed vortices emanate from and will form the helical vortex

wake system. The induced velocity due to the trailed vorticities is evaluated at the quarter-chord line, with a possible contribu-

tion from the shed vorticity in the unsteady case. The influence of the curved bound vortex is modelled by adding the difference15

of the induced velocity due to the 3-D bound vorticity and an imaginary 2-D bound vorticity (infinitely long line vortex) eval-

uated at the three-quarter-chord point to the induction of the blade section. This implementation of the lifting-line method is

labelled as LL-test in the previous work of Li et al. (2020). The coupled near- and far-wake model proposed in the present work

is considered as an approximation of this implementation of the lifting-line method. So, the result from this lifting-line method

is a benchmark of how the proposed coupled method performs. In addition, the coupled method is not expected to perform20

better than the lifting-line method.

Apart from the lifting-line method, the results from a rotor-resolved Navier-Stokes solver were also used for comparison.

The in-house finite volume code EllipSys3D solves the incompressible Navier-Stokes equation on a structured grid. Several

approaches are available in EllipSys3D for dealing with turbulence. In the present study, the RANS formulation in combination

with the k-ω SST turbulence model was used (Menter, 1994).25

The modified coupled near- and far-wake model is implemented in a test version of the in-house aero-servo-elastic simulation

tool HAWC2 based on the release version 12.8 (Larsen and Hansen, 2007). The modifications of the near-wake model proposed

in this work as well as the influence of curved bound vortex proposed by Li et al. (2020) are implemented. The implementations

of the far-wake model, the coupling method as well as the iteration relaxation method are identical with the previous work

by Pirrung et al. (2017a).30

The BEM method implemented in the HAWC2 code version 12.8 is also used for the comparison (Madsen et al., 2020). The

BEM method is the most commonly used low-fidelity aerodynamic model. The result from the BEM method is considered as

a baseline and is to illustrate the improvements of the proposed coupled method comparing to it.
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8 Results

In this section, the aerodynamic loads calculated from different models are compared. The blades are assumed to be stiff, which

means the effect of elastic deformation is not included.

8.1 The consistent definition of the loads

In the previous work of Li et al. (2018), the aerodynamic loads calculated from the BEM method and an early version of the5

coupled model are compared with the results from CFD. In that previous work, the out-of-plane loads from the coupled model

and the BEM method are having similar trends but are very different from the prediction from CFD. In that previous work, it

was argued that the wrong pattern of the out-of-plane load offset is due to the insufficient far-wake BEM model in the coupled

model. Since the BEM method predicts the wrong pattern, the error is inherited to the coupled method because a far-wake

BEM model is used.10

The previous argument is erroneous and will be illustrated using the vortex theory. It has been described in Sect. 2 that the

BEM method without tip correction is equivalent to modelling the wake with concentric vortex cylinders that begin at the rotor

plane. So, the far-wake BEM method with scaled inductions can be considered as having the vortex cylinders begin further

downstream compared to the rotor plane. The influence of the blade sweep on the vortex wake is the in-plane shifted position

of where the trailed vorticity begins. This means the influence of the blade sweep on the wake is mainly on the part of the wake15

that is close to the rotor plane, so the influence on the stream-wise location where the far-wake vortex cylinders begin is very

small. As a result, the corresponding influence of the far-wake reflected on the loads should not be that pronounced to have

such big offsets as shown in the previous work of Li et al. (2018).

Instead, the reason is discovered to be the inconsistent definition of the loads. Recall the procedures to obtain the aerodynamic

loads in the lifting-line-like methods that rely on 2-D airfoil data, such as the BEM method, the lifting-line method and the20

coupled near- and far-wake model. For each blade section, the 3-D velocity at the calculation point consists of the induced

velocity, the blade motion and the onset flow, and is projected into the 2-D airfoil section. After subtracting the 2-D bound

vorticity induction at this section, the angle of attack and the relative velocity are calculated from the velocity triangle. Then,

the 2-D lift and drag force can be calculated and are projected with respect to the rotor plane to obtain the in-plane and out-

of-plane loads. The resulting aerodynamic loads should correspond to force per unit length of curved blade length, since they25

are from the 2-D aerodynamic loads. If we want to have other definitions of the load, we have to multiply the load with the

corresponding scaling factor. For example, to get the loads with the definition of force per unit radius, the factor ds
dr , which is the

ratio of the local elementary increase of curved blade length over the elementary increase of radius, should be applied (Madsen

et al., 2020).

In this work, the in-plane and out-of-plane loads are defined as force per unit length of z-coordinate, which corresponds to30

the radius of the straight blade. So, the factor ds
dz , which is the ratio of the local elementary increase of curved blade length

over the elementary increase of z−coordinate, should be applied. In this work, the aerodynamic loads calculated from CFD is

also with the same definition. The post-processing of the CFD results is done by performing planar cuts that are perpendicular
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to the z-axis, and then integrating the pressure and viscous force along the cut contour. The results were averaged over the last

350 iterations, in order to provide mean values for the loads of the inboard part of the blade (where shedding is expected).

8.2 The blades for comparison

The wind turbine blades that are used for the comparison are modified based on the IEA-10.0-198 10 MW reference wind

turbine (RWT) (Bortolotti et al., 2019). The baseline straight blade is modified by aligning the half-chord line to a straight5

main-axis. The rotor diameter is 198 m, of which the hub radius is 2.8 m and the blade length is 96.2 m. For the swept blades,

the planform is obtained from a modified Bézier curve which is parameterized with: sweep ratio r̄s, sweep magnitude ∆d and

tip sweep angle Λtip, which has been illustrated in Fig. 5. For a clean comparison, the pre-bend as well as the blade cone are

removed for all blades. The airfoils are aligned perpendicular to the curved main-axis of the half-chord line. The chord and

twist distribution of the swept blade remains the same as the baseline blade, for the sections with the same z-coordinate. For the10

baseline straight blade, the z-coordinate is equivalent to the radial position. For the swept blade, the length in the z-coordinate

remains the same as the baseline straight blade. The actual radius of the swept blade is increased compared to the baseline

straight blade. The backward swept blades used in this study are having the same parameters as Blade-1 to Blade-4 in the

previous work of Li et al. (2018). The parameters of the four backward swept blades used for the comparison in this work are

summarized in Table 3. The sketch of the geometry of the backward swept blades and the baseline straight blade are shown15

in Fig. 7. In addition, four forward swept blades with the name of Blade-5 to Blade-8 that have the same parameters as the

backward swept blades Blade-1 to Blade-4 but with different direction of sweep are introduced.

The operational condition is the same as the in previous work by Li et al. (2020), with uniform inflow of 8 m s−1 perpendic-

ular to the rotor. The rotor is operating at rotational speed of 0.855 rad s−1, which corresponds to a tip-speed-ratio of 10.58 for

the rotor with baseline straight blades. The blades are not pitched, so the main-axis of the swept blades and the straight blade20

will always stay in the rotor plane.

Table 3. The parameters of the planforms of four backward swept blades (Li et al., 2018) .

Name Sweep ratio r̄s Sweep magnitude ∆d Tip sweep angle Λtip

Blade-1 50% 10% 20◦

Blade-2 50% 10% 40◦

Blade-3 25% 5% 20◦

Blade-4 25% 5% 40◦
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Figure 7. The top view of the backward swept blades Blade-1 to Blade-4 together with the baseline straight blade.

8.3 Description of the simulation setup

A set of rotor-resolved meshes were used for the CFD simulations, each of them corresponding to a different blade geometry.

They were generated in two consecutive steps, that were fully scripted in order to ensure a similar resulting grid quality. Firstly,

a structured mesh of the blade surface was generated with the openly available Parametric Geometry Library (PGL) tool (Zahle,

2019). A total of 128 cells were used in the spanwise direction, and the chordwise direction was discretized with 256 cells (with5

8 of them lying on the trailing edge). Secondly, the surface mesh was radially extruded with the hyperbolic mesh generator

Hypgrid (Sørensen, 1998) to create a volume grid. A total of 256 cells were used in this process, and the resulting outer domain

was located at approximately 11 rotor diameters. A boundary layer clustering was taken into account, with an imposed first

cell height of 1× 10−6 m. The resulting volume mesh accounted for a total of 14.2 million cells. An inlet/outlet strategy was

followed for the boundary conditions of the outer limit of the CFD domain, and the flow was assumed to be fully turbulent.10

For the lifting-line method, each time step corresponds to 1.5◦ of azimuthal angle and each simulation is calculated for 20

thousand time steps, which correspond to 83.3 revolutions. The vortex core size is 0.1% of the local chord length. Each blade

is discretized radially into 50 sections with cosine spacing. The airfoil data is from 2-D fully turbulent CFD results (Bortolotti

et al., 2019). The first row of trailed vorticities begins from the lifting-line that is located at the quarter-chord line.

For the modified coupled near- and far-wake model and the BEM method implemented in the HAWC2 code, each time step15

corresponds to 0.01 s and each simulation is calculated for 600 s. Each blade is discretized radially into 80 sections. The same

set of airfoil data that is from 2-D fully turbulent CFD result is used. For the computation of the swept blades, the coupling

factor is either automatically adjusted or fixed to the value of the baseline straight blade, as described in Sect. 6. Both results

for the swept blades will be shown.

8.4 Results for baseline geometry20

Firstly, the loads of the baseline straight blade calculated from the BEM method, the modified coupled model (NW), the

lifting-line method (LL) and the Navier-Stokes solver (CFD) are compared in Fig. 8. To be noted, the loads plotted from all

four models are corresponding to aerodynamic force per unit length of the z−coordinate (equals to radius for the straight

blade).

For the out-of-plane loads, the results from all the models are having good agreement. At z−coordinate of 80 m that corre-25

sponds to approximately 80% span, the relative difference of the out-of-plane load from the BEM method is 1.6% and 0.2%

compared to CFD and LL. At the same spanwise location, the relative difference of the out-of-plane load from the coupled
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method is 1.1% and 0.4% compared to CFD and LL. For the in-plane loads, the results have some small differences but are

still similar. At the z−coordinate of 80 m, the relative difference of the in-plane load from the BEM method is 6.8% and

0.8% compared to CFD and LL. And the relative difference of the in-plane load from the coupled method is 4.3% and 1.6%

compared to CFD and LL at the same spanwise location.

The differences between the CFD and LL are assumed to be related to the 2-D airfoil aerodynamic coefficients retrieved5

from the look-up table involved in the lifting-line approach. This source of disagreement is also to be considered for BEM and

for the coupled method. The relative difference of the loads calculated from BEM and the coupled method compared to the

loads from LL is relatively small. This means both the BEM and the coupled method can be used in the design optimization of

a straight blade with acceptable accuracy.
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Figure 8. Comparison of out-of-plane load (left) and in-plane load (right) of the baseline straight blade calculated from the Navier-Stokes

solver (CFD), the lifting-line method (LL), the proposed coupled method (NW) and the blade element momentum method (BEM).

8.5 Results for backward swept blades10

The steady-state results of the swept blades are also calculated from the BEM method, the modified coupled model, the lifting-

line models and the CFD. In order to clearly show the influence of the backward sweep on the loads, the difference between

the loads of the backward swept blade Blade-1 with respect to the baseline straight blade is shown in Fig. 9. It is calculated by

subtracting corresponding sectional loads at the same z−coordinate. The loads are with the definition of force per unit length

of z−coordinate. In this study, the focus is on the influence of blade sweep on the loads. The root region that has z−coordinate15

less than 20 m is experiencing separation and is not the focus of this study.

For both out-of-plane and in-plane load of the backward swept blade, the results from the coupled method of either auto-

matically adjusted or fixed coupling factor are very similar. For the offset of the out-of-plane load, the result from the coupled

method is in good agreement with the lifting-line method. The results are also in harmony with the result from CFD. For the

inboard part of the swept blade that the main-axis is still straight, the out-of-plane load of the swept blade is almost identical20
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Figure 9. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the backward swept Blade-1 with

respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).

to that of the baseline straight blade. When moving towards the blade tip, the out-of-plane load of the swept blade is lower

compared to the baseline straight blade until approximately halfway until the blade tip. Then, when moving further towards

the tip, the load of the swept blade is higher compared to the baseline straight blade until almost all the way until the blade

tip. This pattern was also observed in the previous work (Li et al., 2020). For the offset of the in-plane load, the result from

the coupled method is also in good agreement with the lifting-line method. Both methods can correctly predict the spanwise5

pattern of in-plane load redistribution of the swept blade, which is similar to the pattern seen for the out-of-plane load. Both

methods underestimate the decrease of the load of the swept blade compared to CFD near z−coordinate of 60 m. In general,

the results from the lifting-line method and the coupled method are in good agreement with CFD.

The BEM method is not able to correctly predict this pattern of the radial redistribution of the loads. For the out-of-plane

load, it predicts an maximum increase of the load near the blade tip of approximately 100 Nm−1, while LL and CFD predicts10

more than 340 Nm−1 of load increase. In addition, the BEM method is not able to predict the approximately 80 Nm−1 decrease

of the out-of-plane load at near z−coordinate of 65 m, as seen in the prediction by LL and CFD. For the in-plane load, the

BEM method predicts that the load of the swept blade and the straight blade are almost identical along the span.

The results of the other backward swept blades are shown in Appendix C1. For all four backward swept blades, the per-

formance of the modified coupled model with either fixed or automatically adjusted coupling factor is almost as good as the15

lifting-line method, and both are in good agreement with CFD. In addition, an early version of the modified coupled method

that has slightly lower accuracy and a smaller range of validity has been intensively used for the aeroelastic design optimization

and load calculation of backward swept blade tips by Barlas et al. (2021). In that work, the proposed method with automatically

adjusted coupling factor performed well for the optimization and had generally good agreement with higher-fidelity models.

This means the suggested coupled model with the current far-wake model and the automatically adjusted coupling factor is20
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applicable to backward swept blades if special care is taken by the user. The coupled method is having similar performance as

the lifting-line method, which means it is favourable for the load calculation and design optimization of swept blades. Instead,

the BEM method is not able to correctly predict the influence of the blade sweep on the loads. The poor performance of the

BEM method is as expected because the influence of the curved bound vortex and the shifted starting position of the trailed

vorticity are not modelled. The results also indicate that the BEM method is not suitable for the design optimization of blades5

with noticeable backward sweep.

8.6 Results for forward swept blades

The difference between the loads of the forward swept blade Blade-5 with respect to the baseline straight blade is shown in

Fig. 10. As for the backward swept blades, the loads are with the definition of force per unit length of z−coordinate.
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Figure 10. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the forward swept Blade-5 with

respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).

For the coupled method with fixed coupling factor, the results of both out-of-plane load and in-plane load are in good10

agreement with the higher-fidelity lifting-line method and CFD. However, for the coupled method with automatically adjusted

coupling factor, the loads have significant offsets compared to the higher-fidelity models. This means the current coupling

method is not capable of correctly adjusting the coupling factor automatically.

Similar to the backward swept blade cases, the BEM method is not able to predict the radial redistribution of the loads, but

predicts an increase of the load compared to the baseline straight blade near the blade tip. For the in-plane load, the BEM15

method predicts that the in-plane load of the swept blade and the straight blade are almost identical along the span.

The results of other forward swept blades are shown in Appendix C2. As seen for the backward swept blades, for all four

forward swept blades, the performance of the modified coupled model with fixed coupling factor is almost as good as the

lifting-line method, and both are in good agreement with CFD. The BEM method, on the other hand, is not able to correctly
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predict the influence of the blade forward sweep on the loads. The loads predicted by the coupled method with automatically

adjusted coupling factor show significant offsets compared to higher-fidelity models and should thus not be used. This means

for forward swept blades, the current coupled method is only applicable to steady-state load calculation with fixed coupling

factor. As a result, the current coupled method is not applicable to the aeroealstic calculation of forward swept blades.

9 Conclusions and future work5

A computationally efficient modified coupled near- and far-wake engineering aerodynamic model for the swept wind turbine

blades is proposed. The core of the modifications in this work is to obtain the steady-state induction of the near-wake, which is

defined as the first quarter revolution of the helical trailed vorticity of the own blade. To achieve this, an engineering approach

that combines analytical solutions and approximations based on pre-calculated influence coefficient tensors is proposed. The

far-wake model is currently based on a far-wake BEM method. The near- and far-wake model are coupled with a coupling10

factor that is to scale the far-wake induction, so that the thrust of the whole rotor is similar to that calculated from the BEM

method. For the calculation of the steady-state condition with the uniform inflow applied perpendicular to the rotor plane, a

fixed coupling factor that is determined according to the baseline straight blade can be applied.

The modified model is used to calculate the steady-state loads of the baseline straight blade, four backward swept blades

and four forward swept blades that are modified based on the IEA-10.0-198 10 MW reference wind turbine. The influence of15

the blade sweep on the loads predicted by the proposed method is shown to have good agreement with the prediction from

higher-fidelity models, which are a version of the lifting-line solver and a Navier-Stokes solver. The numerical comparison

shows that the BEM method is not able to correctly model the influence of blade sweep and is having large discrepancies with

the results from the two higher-fidelity models. The improvement of the proposed coupled method over the BEM method is

significant and the results from the proposed method are having similar performance as the lifting-line method. The proposed20

method is computationally efficient and favourable for the application of wind turbine aero-servo-elastic simulations and design

optimization. The method shows improved agreement with higher-fidelity models compared to the conventional BEM method

when the model is carefully used. However, the current coupling method is not suitable for aeroelastic calculation of forward

swept blades. Further work on the far-wake model and the coupling method is needed for the method to be confidently used in

the aeroelastic simulations for general swept blades.25

There are several future works needed to further improve the model. Firstly, it is favourable to also have the parameters

representing the dynamics of the indicial functions fitted to numerical results. This can improve the dynamic response of the

coupled model. The dynamic response of swept blades from the coupled model should also be compared with results from

higher-fidelity models. Secondly, using the method of fixing the coupling factor for forward swept blades reflects the limitation

of the current far-wake BEM model. It may be favourable to use the vortex cylinder model as the far-wake model instead. If so,30

a new method to couple the near-wake model and the far-wake model with a new definition of the coupling factor is needed.

Thirdly, it could be useful to have the model further modified for the application of blades with both in-plane and out-of-plane

shapes. This will also require the use of the vortex cylinder model as the far-wake model, which has the potential to model the
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aerodynamic effects of the blade out-of-plane shapes. Finally, it is beneficial to investigate further possible improvements to

the lifting-line method for the application of curved wind turbine blades. Then, the coupled near- and far-wake model can be

improved according to it. One example is the modelling of the radial viscous drag force, especially for the swept blades.

Data availability. A repository (Li et al., 2021) contains the influence coefficients with double-precision floating point accuracy for the

calculation of the convective correction. In addition, a version with reduced digits is in Appendix D1.5

Appendix A: Nomenclature

aĥ, aψ̂ intermediate coefficients for the convective correction

A1, A2, b1, b2 coefficients for the indicial functions

∆d sweep magnitude

D̃X , D̃Y factors for the fast and slow response in the indicial function10

G indefinite integral of the normalized induction function

h distance between calculation point and trailing point

h̃ relative position

ĥ equivalent relative position

I influence coefficient tensor15

kΦ convective correction factor

r radius of the trailing point

rcp radius of the calculation point

r̄s sweep ratio

ds elementary trailed vortex filament20

∆t elapsed time

U∞ wind speed

V tprel relative velocity of the trailing point

voop out-of-plane velocity

vip in-plane velocity25

dwx, dwy elementary axial and tangential induced velocity

Wx, Wy axial and tangential near-wake induced velocity

W̃x, W̃y approximated axial and tangential near-wake induced velocity

W normalized near-wake induced velocity

x relative position vector, pointing from the elementary trailed vorticity to the calculation point30

X̃w, Ỹw fast and slow response term of the normalized induced velocity
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Greek letters

β azimuthal angle of trailed vorticity

β∗ generalized azimuthal angle

∆β∗ change of generalized azimuthal angle in a time step

∆Γ trailed vorticity strength5

ε relative error

Λtip tip sweep angle

ϕ helix angle

Φ normalized steady-state near-wake induction

ψ sweep angle10

ψ̃ normalized sweep angle

ψ̂ modified normalized sweep angle

Ω rotor speed

Subscripts

I the base value of the axial induction15

II the base value of the tangential induction

x in the axial direction

y in the tangential direction

X the fast response term

Y the slow response term20

ip in-plane

oop out-of-plane

s straight vortex

ss stand-still condition

C with the root correction25

i, j indices of the coefficients

Superscripts

∗ the value after convective correction

i at time step i

tp trailing point30

a axial direction

t tangential direction
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Appendix B: The analytical solution of trailed functions

The analytical solutions for the two special conditions of in-plane trailed vorticity and straight trailed vorticity are derived.

They correspond to the lower and upper limit of the helix pitch angle ϕ, which are 0 and π
2 .

B1 In-plane trailed vorticity

For the special condition of in-plane trailed vorticity (ϕ= 0), the elementary trailed vortex length ds is then:5

ds= rdβ∗ = rdβ (B1)

Inserting Eq. (B1) together with the condition of ϕ= 0 into the base trailing function in Eqs. (36) and (37), we have the base

trailing function for the condition of in-plane trailed vorticity. Here the subscript of ip represent in-plane trailed vorticity.

dwI,ip =
∆Γ
4πr

1− (1− h
r )cos(β+ψ)

[
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ)

] 3
2

dβ (B2)

dwII,ip =
∆Γ
4πr

1− h
r − cos(β+ψ)−β sin(β+ψ)

[
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ)

] 3
2

dβ (B3)10

The integrals of the base induction functions in Eqs. (38) and (39) with β from 0 to π
2 , which corresponds to the near-wake

steady-state induction, are as follows.

WI,ip =
∆Γr

4πh|h|

π
2∫

0

h|h|
r2

1− (1− h
r )cos(β+ψ)

[
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ)

] 3
2

dβ (B4)

WII,ip =
∆Γr

4πh|h|

π
2∫

0

h|h|
r2

1− h
r − cos(β+ψ)−β sin(β+ψ)

[
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ)

] 3
2

dβ (B5)

For the simplicity of the notation, the steady-state base inductions are normalized and are as follows.15

W I,ip =
WI,ip

∆Γr
4πh|h|

= ΦI,ip

(
A1

b1
+
A2

b2

)
(B6)

W II,ip =
WII,ip

∆Γr
4πh|h|

=−ΦII,ip

(
A1

b1
+
A2

b2

)
(B7)

The indefinite integral corresponding to the definite integral of W I,ip and W II,ip are noted as GI,ip and GII,ip. The two

indefinite integrals are derived to be in the form of incomplete elliptic integrals.

GI,ip(
h

r
,ψ,β) =

(hr )2

2− h
r

E

(
β+ψ

2
| −4(1− h

r )
(hr )2

)
+
h

r
F

(
β+ψ

2
| −4(1− h

r )
(hr )2

)

+
2
∣∣∣hr
∣∣∣(1− h

r )

2− h
r

sin(β+ψ)√
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ)

+C (B8)20
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GII,ip(
h

r
,ψ,β) =− (hr )2

(1− h
r )(2− h

r )
E

(
β+ψ

2
| −4(1− h

r )
(hr )2

)
−

h
r

1− h
r

F

(
β+ψ

2
| −4(1− h

r )
(hr )2

)

+

h|h|
r2

(
β

1−hr
− 2 sin(β+ψ)

(2−hr )hr

)

√
1 + (1− h

r )2− 2(1− h
r )cos(β+ψ)

+C (B9)

In Eqs. (B8) and (B9), F (x |m) and E(x |m) are the incomplete elliptic integrals of the first and the second kind which are

defined as follows:

F (x |m) =

x∫

0

1√
1−msin2(x)

dx (B10)5

E(x |m) =

x∫

0

√
1−msin2(x)dx (B11)

The advantage of the derived analytical equations in the form of elliptic integrals over the original form is because of the

existence of fast approximation methods, such as the work by Bulirsch (1965) and Fukushima (2012). With these computation

efficient estimations, results with high accuracy can be obtained with a small fraction of the computational cost compared to

using direct numerical integration with Euler method or Runge–Kutta methods.10

The analytical steady-state results for the special condition of in-plane trailed vorticity can then be calculated with low

computational efforts. The normalized steady-state value of the base near-wake induction is:

W I,ip =GI,ip

(
h

r
,ψ,

π

2

)
−GI,ip

(
h

r
,ψ,0

)
(B12)

W II,ip =GII,ip

(
h

r
,ψ,

π

2

)
−GII,ip

(
h

r
,ψ,0

)
(B13)

To be noted, for this special condition of in-plane trailed vorticity, the near-wake which is the first quarter revolution of the15

wake of the own blade, is equivalent to one-quarter of a vortex ring.

The reason of defining the first quarter revolution as near-wake possibly origins from the introducing of the near-wake model

by Beddoes (1987), which was for the application of helicopter aerodynamics. The ordinary helicopters are equipped with four

blades, and one blade will encounter the wake of the previous blade with about 90◦ of azimuthal angle. The definition of

the near-wake part can be adjusted to other values. For the ordinary wind turbines which are equipped with three blades, the20

reader may argue that the definition could then be adjusted to 120◦. If so, the steady-state value of the newly defined near-wake

induction could be calculated using Eqs. (B12) and (B13) with the integral calculated until 2
3π. And of course, the influence

coefficient tensors for the convective correction in Sect. 5 need to be updated accordingly. However, it is not possible to argue

that using the value of 120◦ is more physical comparing to using the value of 90◦ as in the current implementation. The

definition of the near-wake should not be connected to the number of blades. Instead, it is only an arbitrary split of the vortex25

wake domain and should ensure the near-wake part contains the near-wake effects. For example, the changed trailed vorticity
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starting position due to blade sweep should be in the near-wake part. In a test that is not reported in this work, the results from

the coupled method with either definition of the near-wake are very similar.

B1.1 Relationship between inductions

Comparing the steady-state value of the axial and tangential near-wake base induction in Eqs. (B12) and (B13), the relationship

between them is as follows.5

W II,ip

(
h

r
,ψ

)
=

1
1− h

r


−W I,ip

(
h

r
,ψ

)
+
h|h|
r2

π

2
√

1 + (1− h
r )2− 2(1− h

r )sinψ


 (B14)

It has been proposed by Pirrung et al. (2016) to use the same value of Φ for the axial and tangential induction. With the new

definition of Φ explained in Sect. 4, it is equivalent to assume WI,ip and −WII,ip are equal (the negative sign is inherited from

the definition of the coordinate system). According to Pirrung et al. (2016), this assumption introduces only a small error for

straight blades when
∣∣∣hr
∣∣∣ is small but will gradually deviate from the analytical results with the increase of

∣∣∣hr
∣∣∣. This conclusion10

can also be obtained analytically according to Eq. (B14). For the straight blade, the value of ψ is zero, Eq. (B14) is simplified

as follows:

W II,ip

(
h

r
,ψ = 0

)
=

1
1− h

r

(
−W I,ip

(
h

r
,ψ = 0

)
+
π

2
h

r

)
(B15)

According to Eq. (B15), when the value of
∣∣∣hr
∣∣∣ is small, WI,ip is approximately equal to −WII,ip.

B2 Straight trailed vorticity15

For the special condition of straight trailed vorticity (ϕ= π
2 ), the base trailing function could be expressed using the relationship

of ds= rdβ∗. To be noted, now dβ = dβ cosϕ= 0.

dwI,ss =
∆Γr

4πh|h|
h|h|
r2

1− (1− h
r )cosψ

[
1 + (1− h

r )2− 2(1− h
r )cosψ+β∗2

] 3
2

dβ∗ (B16)

dwII,ss =
∆Γr

4πh|h|
h|h|
r2

1− h
r − cosψ

[
1 + (1− h

r )2− 2(1− h
r )cosψ+β∗2

] 3
2

dβ∗ (B17)

Integrating the base trailing function in Eqs. (B16) and (B17) with β from 0 to π
2 is equivalent to integrating with β∗ from 020

to infinity.

WI,ss =

β=π
2∫

β=0

dwI,ss =
∆Γr

4πh|h|

∞∫

0

h|h|
r2

1− (1− h
r )cosψ

[
1 + (1− h

r )2− 2(1− h
r )cosψ+β∗2

] 3
2

dβ∗ (B18)

WII,ss =

β=π
2∫

β=0

dwII,ss =
∆Γr

4πh|h|

∞∫

0

h|h|
r2

1− h
r − cosψ

[
1 + (1− h

r )2− 2(1− h
r )cosψ+β∗2

] 3
2

dβ∗ (B19)
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The definite integrals are derived as follows. They correspond to the base induction of a semi-infinite line vortex.

WI,ss =
∆Γr

4πh|h|
h|h|
r2

1− (1− h
r )cosψ

1 + (1− h
r )2− 2(1− h

r )cosψ
(B20)

WII,ss =
∆Γr

4πh|h|
h|h|
r2

1− h
r − cosψ

1 + (1− h
r )2− 2(1− h

r )cosψ
(B21)

So, the normalized based axial and tangential induction for this special condition of straight trailed vorticity are:

ΦI,ss =
1

A1
b1

+ A2
b2

h|h|
r2

1− (1− h
r )cosψ

1 + (1− h
r )2− 2(1− h

r )cosψ
(B22)5

ΦII,ss =
−1

A1
b1

+ A2
b2

h|h|
r2

1− h
r − cosψ

1 + (1− h
r )2− 2(1− h

r )cosψ
(B23)

The derived analytical equations are further analyzed. Firstly, for the condition of ϕ= π
2 , the steady-state values of the axial

and tangential induction will have the following value:

Wx,ss =WI,ss cosϕ= 0 (B24)

Wy,ss =WII,ss sinϕ=WII,ss (B25)10

Secondly, the relationship between the normalized base induction of ΦI,ss and ΦII,ss are derived as follows.

ΦI,ss
ΦII,ss

=−1− (1− h
r )cosψ

1− h
r − cosψ

(B26)

For the special condition that the blade is straight without sweep, which means ψ = 0, the two normalized base inductions

are equal. This corresponds to using the same base axial and tangential induction of Φs for the straight blade as in the previous

work of Pirrung et al. (2017b).15
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Appendix C: Results of the distributed load

C1 backward swept blades

The difference of the loads of the backward swept blades (Blade-2 to Blade-4) compared to the baseline straight blade.
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Figure C1. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the backward swept Blade-2

with respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).
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Figure C2. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the backward swept Blade-3

with respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).
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Figure C3. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the backward swept Blade-4

with respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).
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C2 Forward swept blades

The difference of the loads of the forward swept blades (Blade-6 to Blade-8) compared to the baseline straight blade.
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Figure C4. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the forward swept Blade-6 with

respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).
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Figure C5. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the forward swept Blade-6 with

respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).
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Figure C6. Comparison of the difference between the out-of-plane load (left) and the in-plane load (right) of the forward swept Blade-8 with

respect to the baseline blade calculated from the Navier-Stokes solver (CFD), the lifting-line method (LL), the proposed coupled method

(NW) and the blade element momentum method (BEM).

Appendix D: Influence coefficient tensor

The influence coefficient tensor in double-precision floating-point format with full digits can be found in the online supplement

(Li et al., 2021). The coefficients shown here are rounded to six to eight decimals with slightly reduced accuracy. The relative

error of the convective correction with the full digits and the reduced digits using the following coefficients are summarized in

the following table.5

Table D1. The relative error of the convective correction using the influence coefficients with full digits or reduced digits.

Name Influence coefficient Maximum error using full digits Maximum error with reduced digits

Region a1 Ia1 0.78% 0.78%

Region a2 Ia2 1.10% 1.10%

Region a3 Ia3 1.34% 1.43%

Region t1 It1 0.54% 0.54%

Region t2 It2 0.95% 0.96%
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D1 Influence coefficient tensors for axial induction

Ia1(1, :, :) =




−30.2629953 −44.0123379 −4.8091034 6.6816625 −1.8728117

209.4691684 342.2487285 96.4620698 −5.7254494 13.6705749

−290.1750741 −466.0937921 −181.7678232 −53.0768773 −33.3088719

83.8736848 110.3440879 43.9267968 26.7977770 16.8236210

172.3498017 197.0336475 40.8145840 2.7259789 7.9637918

−287.1461269 −409.7263812 −148.6834315 −57.3376482 −33.2609586

84.2660443 106.2805603 41.6369816 27.4446775 16.7602353




(D1)

Ia1(2, :, :) =




53.1550561 82.7950371 11.8470979 −2.5812529 12.4529125

−418.9619277 −741.0768866 −285.1483971 −79.7753292 −72.2472370

587.9307272 1017.3608691 491.3189773 241.8729167 142.5305922

−137.1825739 −200.3207669 −107.8391565 −95.5704421 −70.4028947

−375.7864254 −416.3134514 −191.2711984 −97.3931617 −40.4700946

603.2260980 873.7974991 406.5491994 252.9426783 135.4379812

−140.6835481 −188.9546718 −101.1232811 −98.1065552 −69.6831846




(D2)

5

Ia1(3, :, :) =




−24.4634404 −49.1773459 −15.2835165 −18.7602840 −20.2094150

257.8948363 528.3100345 298.1358374 186.0849450 109.0304987

−371.0131449 −740.4358281 −483.9445448 −364.1513924 −200.5487163

45.2643636 72.7402636 72.2423835 128.0351116 106.8599904

267.5458324 277.6881446 258.8159075 168.7618522 57.0927392

−408.5386036 −612.6519838 −409.0961438 −368.8174390 −185.3398947

51.0719807 61.6212110 65.5878879 130.9154917 105.4798178




(D3)

Ia1(4, :, :) =




0.9777967 8.7243693 9.2512766 19.2782525 11.0076639

−47.3025925 −129.3430362 −116.4275187 −117.7402703 −57.1884276

73.7522569 195.6121511 195.7705625 212.9970038 108.3347082

9.3193829 8.5832630 −23.5309335 −81.8175506 −71.0052089

−67.4079250 −56.4117165 −114.5683550 −71.9868045 −25.8741364

98.6913683 149.3325565 169.7441677 210.0891275 97.6306099

5.8410702 13.0063375 −20.9015181 −82.9690385 −70.1169804




(D4)

Ia1(5, :, :) =




0.3905372 0.0863371 0.0809883 −1.8632991 −0.3010930

0.5059303 5.3663399 6.7255071 13.3051729 5.0750717

−2.5363161 −14.3742774 −19.8092364 −30.4294738 −13.6991207

−0.1478574 8.1063946 19.9638191 31.0576061 21.0751565

4.9304429 −1.0082621 10.6365516 3.2151968 3.0734356

−8.4771690 −7.3161932 −17.9411512 −29.4501544 −10.7083398

0.6641002 7.4457629 19.5451515 31.2496327 20.9271491




(D5)10

Ia1(6, :, :) =




−0.0507499 0.0558777 0.0317971 −0.0089532 0.0002913

0.1286709 −0.3151871 0.0018811 0.0985785 −0.0865264

−0.0172141 0.6809711 −0.1988941 −0.2182092 0.2773425

−0.1313101 −0.5705022 0.2361800 0.2094688 −0.6421827

−0.1675725 0.2054625 −0.3660916 0.3618960 −0.0859911

0.4346966 −0.1987679 0.6714691 −0.8470430 0.2767341

−0.1938734 −0.5281251 0.2743414 0.1859921 −0.6412762




(D6)

Ia2(1, :, :) =




14.1443428 −3.4200336 −8.6632766 −3.2512917 1.6673927

−14.3379998 −42.4526269 44.8844649 1.8129803 2.9789316

−34.0068718 143.5109416 −83.6124141 6.9214482 −16.4443492

12.7301783 −60.5729910 23.6875815 3.0630625 10.5710667

−11.7085861 −20.3817370 10.6563746 15.1727425 4.6042797

9.3462571 69.2676499 −32.9332761 −20.4817802 −14.2982153

9.3111198 −53.6979766 17.2284326 8.9936123 9.3346192




(D7)
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Ia2(2, :, :) =




−39.3288761 17.7574352 18.7182283 10.1844694 −8.5144460

47.6559011 80.3132512 −106.3400261 −10.1038357 6.3197326

72.4404153 −333.6400291 221.1504756 −30.6689736 27.4295624

−21.8083886 117.2183132 −47.3949105 0.7193395 −19.6817720

54.9226623 26.9319933 −35.3166109 −35.3811073 −8.2273724

−68.9432298 −109.4456982 85.0824950 35.4281485 26.4170866

−7.2598922 91.9682848 −28.2137310 −13.8716215 −17.0665052




(D8)

Ia2(3, :, :) =




39.2147049 −29.0669181 −9.4187881 −11.5897887 13.0003672

−54.9123080 −30.4177512 74.2365320 18.2797806 −25.9860317

−51.2327615 243.2741899 −184.7819962 34.7735741 0.3193281

12.0319589 −53.5018994 12.2342678 −5.4489537 6.8592144

−83.1932889 19.0080018 32.4884520 33.5003977 −0.2699424

118.5264133 −9.2291737 −51.9070516 −23.4928839 −3.5990547

−8.9078459 −20.0167245 −9.2091721 7.7736824 4.9798854




(D9)

5

Ia2(4, :, :) =




−16.6247282 17.1322393 0.6646976 3.7853652 −7.1490439

26.6945298 −9.4634984 −20.9011874 −5.9400662 20.8141528

11.6620329 −62.4467128 72.6537901 −27.6371035 −14.4197743

−2.5014749 1.9771639 −5.1332573 17.6369316 −0.9305895

52.4970277 −35.2171443 −16.6820337 −12.2574820 5.4664956

−79.6740851 64.2142021 22.5005971 −5.9624868 −9.9836695

10.2663768 −16.9965935 4.9866977 12.5326197 −0.3982437




(D10)

Ia2(5, :, :) =




2.1680909 −1.9325002 −1.4598676 0.9013355 1.0045864

−3.6267041 1.3746512 7.1708105 −3.3173219 −4.3791033

−1.4309188 8.1720898 −20.9017965 14.7674750 3.2422534

1.6288906 −3.7561081 13.0588432 −15.3645870 3.5123401

−12.2546955 11.8229409 6.7489696 0.7852945 −1.5344478

19.8474127 −19.7529300 −16.9628675 10.8830814 1.1630907

−1.5910305 0.6576136 11.2469182 −14.6630860 3.4684830




(D11)

Ia2(6, :, :) =




0.2486922 −0.8554398 1.0648231 −0.4566182 −0.0001123

−0.7408567 2.4571284 −3.0863117 1.1621515 0.1275147

1.1255059 −3.7190413 5.3021715 −2.7304257 0.1847216

−0.9427155 3.2675639 −5.3772642 3.5408975 −1.1829603

0.2071953 −0.2041765 −1.6546668 −0.0699594 0.1263416

−0.5694562 −1.2096613 6.0023983 −1.8571029 0.1871016

−0.6754359 2.9189806 −5.2705428 3.5298212 −1.1843152




(D12)10

Ia3(1, :, :) =




9.11665188 29.79222047 43.86616973 32.40470861 11.09564270

−26.09418131 −155.76996750 −205.31734409 −95.53860789 −49.42888125

17.18011985 321.09112364 440.56740600 134.73797533 79.23027899

1.78046701 −235.24443181 −354.35998617 −100.81604882 −45.41461529

−27.27974290 −160.15698589 −194.90945090 −60.95849006 −26.56400855

55.19661745 429.90429486 542.61100878 160.40424204 77.17323077

−2.99560189 −249.51706273 −368.53902302 −104.58605057 −44.83785553




(D13)

Ia3(2, :, :) =




−28.19478766 −88.29006039 −135.04025383 −112.21215802 −44.11700442

66.96477017 379.25990135 508.07689753 283.97781693 176.57597505

17.66091431 −634.74312353 −945.13710121 −312.12785403 −248.40124366

−82.78952352 402.54894986 750.61182255 222.12300396 125.19654785

71.21588008 400.15306970 479.60405330 159.55305390 88.70259352

−107.50498855 −986.13956564 −1267.70442454 −391.90258276 −243.62046718

−66.59092597 449.80615250 796.55179975 234.22262799 123.53525679




(D14)
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Ia3(3, :, :) =




32.04325775 94.31136564 151.89716069 145.88015244 65.69149913

−41.92639331 −289.17519494 −453.44136049 −340.49327439 −229.24935079

−170.30486123 215.16871649 648.01599624 302.01030822 259.55461252

245.82143715 11.51095552 −482.77494741 −196.51499653 −96.26782702

−48.71461830 −325.02218908 −426.10623881 −172.15231906 −102.70304777

−13.09916989 644.38829988 1029.98579041 395.51384357 257.36267246

224.39180264 −48.81548796 −539.49667228 −211.33054661 −94.66534389




(D15)

Ia3(4, :, :) =




−16.73843958 −44.56433162 −75.42026032 −85.39941222 −43.76287003

−14.70745503 44.77891622 172.30670573 200.56405072 128.25861363

233.25304850 271.12617385 −101.20880449 −163.39550356 −94.03984994

−264.95000244 −365.04228466 22.89248374 90.84475815 0.62328159

−9.84311242 69.08022171 158.74599828 97.55666592 47.05250048

140.04161225 26.26812272 −309.83694548 −214.97805164 −95.91885365

−251.04680957 −327.70311499 56.48247681 99.70072067 0.14671554




(D16)

5

Ia3(5, :, :) =




4.50261103 10.40079158 16.02776422 19.92248023 11.41551847

19.08956817 27.19876620 −18.83043604 −48.79174767 −26.44677059

−115.15085794 −212.28073597 −71.37815649 31.05294396 2.57760514

116.42073298 226.69126139 97.46889829 −5.07507500 17.02834139

18.31219088 23.89526985 −12.19577177 −22.95750203 −6.20474382

−89.27812582 −147.60473128 −19.25411563 44.26364549 3.53714562

111.92063809 215.18207328 87.51679466 −7.88527165 16.94297940




(D17)

Ia3(6, :, :) =




−0.73071849 −1.65270094 −1.33216874 −0.59618790 −0.32276422

−3.32244087 −6.71096091 −3.48162012 0.37331021 0.62710277

17.37007235 41.01276696 31.35433242 7.45124387 0.42793410

−16.30032357 −41.58074598 −35.61364526 −10.36033165 −1.61111293

−3.69169305 −8.37718404 −5.83095458 −0.95126151 0.05345689

14.65722437 34.56697920 26.41672645 6.42924353 0.81554890

−15.69702678 −40.06982556 −34.29089544 −9.92025766 −1.56710772




(D18)

D2 Influence coefficient tensors for tangential induction

It1(1, :, :) =




−10.950183 −8.461191 4.898831 −0.274851 −2.163785

73.495139 91.960394 21.537951 17.291370 12.936439

−110.228670 −151.928768 −61.034637 −54.434259 −25.629843

42.002623 53.451397 19.189837 25.672729 13.793905

56.614278 56.724787 19.428838 17.362819 8.835412

−114.732203 −131.581665 −53.717208 −57.978611 −26.616543

43.141667 51.648530 19.382676 26.443906 14.043129




(D19)10

It1(2, :, :) =




23.949901 14.778852 −11.888094 2.752459 8.202003

−172.382067 −223.146941 −82.226496 −64.009011 −46.870889

261.465264 389.567442 216.370674 174.558054 90.985548

−90.416434 −132.858435 −82.922090 −88.970970 −54.008049

−137.165438 −142.967414 −89.290104 −69.621141 −28.857329

277.999420 331.402610 192.070864 189.634603 90.450645

−94.163160 −127.374361 −81.733697 −92.222698 −54.397761




(D20)

It1(3, :, :) =




−16.458425 −5.233017 6.562594 −10.476138 −11.684835

133.610420 180.884019 114.983093 103.098665 64.356335

−207.804511 −344.267998 −282.408473 −238.886879 −123.527042

60.831235 109.376515 119.761288 131.154016 81.095594

112.486039 123.270583 129.753159 91.206345 34.958736

−227.936935 −288.904927 −256.603938 −251.524286 −117.483340

65.084160 103.807907 117.344461 134.914057 80.907908




(D21)
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It1(4, :, :) =




3.712240 −1.698233 0.689174 9.357443 5.915291

−37.247274 −53.083017 −63.043242 −66.669945 −34.242303

61.592618 120.349330 152.800477 144.112769 68.456084

−13.907175 −39.307187 −77.574138 −93.356087 −55.044777

−35.216502 −39.157094 −69.722510 −43.639326 −17.534227

72.268870 99.566991 142.017545 145.864151 62.263219

−16.012744 −37.054272 −76.259003 −94.838522 −54.602871




(D22)

It1(5, :, :) =




−0.255738 0.571123 −0.194635 −1.438571 −0.295277

2.643824 3.613584 8.299555 10.505772 3.820332

−5.306676 −13.998280 −24.701326 −25.716357 −10.470962

1.663405 9.461890 20.835279 25.597187 14.453228

3.583366 1.928772 10.154802 4.368168 1.977129

−8.286969 −10.041223 −23.923139 −25.670827 −7.835865

2.184772 9.070745 20.557907 25.805052 14.333351




(D23)

5

It1(6, :, :) =




−0.055049 0.035890 0.032544 −0.000811 0.000342

0.145594 −0.246526 −0.007581 0.068080 −0.091463

−0.068985 0.542979 −0.215523 −0.162468 0.306337

−0.080029 −0.460504 0.256993 0.150341 −0.705551

−0.171522 0.270405 −0.379745 0.352277 −0.090620

0.400601 −0.349407 0.632882 −0.772935 0.305331

−0.148020 −0.414416 0.299683 0.122614 −0.704614




(D24)

It2(1, :, :) =




−5.7258055 4.6742091 3.9009208 −3.6012671 1.6494929

22.2232546 −36.6333746 5.7078416 6.8000797 −8.0609420

−12.3848827 67.0809077 −58.2052203 6.0215690 18.9447639

−13.8146709 −28.7098857 63.3541108 −15.2928387 −14.8005194

−1.9457799 −21.0008695 36.6230667 −6.9262636 −5.9263411

12.2705756 50.2206921 −106.6422066 23.5785134 20.4626135

−18.7356724 −24.7651457 70.5192355 −17.3834529 −15.7073488




(D25)

It2(2, :, :) =




10.3949253 −1.7986434 −13.5540153 6.0950126 −5.2899093

−50.4535447 68.6347658 −5.9411855 −1.4965935 23.5785440

29.8238964 −130.9277484 124.4186812 −47.2728909 −48.6232937

39.5765002 32.8957644 −136.0211033 66.2260029 31.8846485

0.6015098 42.7988005 −89.0992084 31.0752719 15.4963826

−25.5482064 −82.3969757 250.9121459 −97.9814698 −50.0053027

50.8318678 22.3567994 −154.2821458 72.4640619 34.1845044




(D26)

10

It2(3, :, :) =




−2.5395506 −13.1033176 18.0894175 −1.4842956 5.2035291

31.8741772 −24.6952234 −7.2920794 −21.9824970 −21.7548434

−11.7055962 52.6048792 −77.0772833 89.8101815 36.1605500

−50.7802429 30.2485514 89.8583938 −102.6158206 −11.9793828

0.9231891 −17.8464718 73.4366291 −47.5554496 −12.4124918

28.6677816 −3.4839939 −196.3401020 143.0821824 33.8401851

−59.2778989 40.9278679 106.2721634 −109.4699299 −13.9627139




(D27)

It2(4, :, :) =




−3.5396780 13.7008953 −10.3989969 −2.2204264 −1.4992357

−1.7337036 −12.3340251 8.6906327 25.7705289 5.6675673

−9.9735983 20.0932861 10.2548742 −69.4769647 −2.4577836

30.6922787 −43.8152447 −20.2337737 73.5698952 −12.7866025

0.3073784 −8.1967548 −23.8569770 31.5902276 2.1205812

−18.4228389 52.2703527 60.1799648 −93.0749226 0.9251449

32.7731899 −48.8178908 −26.2751530 76.9444402 −12.1444514




(D28)
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It2(5, :, :) =




1.5827856 −3.5265698 1.7437259 1.3796397 −0.0692422

−2.6055764 5.2706415 −0.4417942 −9.7260849 0.5830398

5.7375263 −9.6398019 −1.0522954 22.6003694 −4.4651553

−6.8976806 10.1399490 4.4808343 −23.3338246 7.8224448

−0.2557835 5.0101740 3.7705422 −8.6121159 1.0503852

4.2707170 −18.8232433 −11.0601730 25.6977633 −6.1702348

−6.7868106 11.1837059 5.2291191 −24.0665130 7.7724456




(D29)

It2(6, :, :) =




−0.0679784 −0.0541334 0.1144018 −0.1140784 0.0014493

0.1998278 0.2681714 −0.2238743 0.3689901 −0.0702087

−0.2359921 −0.5382265 0.3799151 −0.9913595 0.5354574

0.0606999 0.4776227 −0.2504437 0.8046238 −0.7737097

−0.1206340 −0.2412165 −0.3751788 0.1596029 −0.0669662

0.2997150 0.5702797 1.3827055 −0.4581764 0.5331981

−0.0108322 0.4032303 −0.2316729 0.8488675 −0.7734641




(D30)
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