
In this document, the reviewer’s comments are in black, the authors’ responses are in red. 
 
The authors thank the reviewer for their thoughtful and productive comments. 
 
The paper presents a study of how well the ERA-5 reanalysis dataset and a WRF-based dataset 
can represent the wind conditions at two locations in North America for one year and an assessment 
of whether ERA-5 is sufficiently good for estimating wind resources in simple terrain, or whether 
mesoscale modeling is required.      
The paper is well written and introduces the problem and the state-of-the-art well too, but misses 
references to a few recent studies that are relevant (see one specific example in general comments 
below). The figures in the paper and the accompanying descriptions of the results are easy to read 
and understand.  The scope of the study is quite narrow, representing just two specific locations. 
However, both sites are of high relevance for wind energy and represent two distinct and relevant 
wind climates. Although no clear-cut answer is given to the question in the title of the paper, 
important results and their implications are discussed.     
Four metrics based on wind speed are used to judge the model’s performances: bias, centered root-
mean-square error (cRMSE), Pearson correlation coefficient, and Earth Movers Distance (EMD). 
I believe the paper could benefit from including additional wind-energy-relevant metrics, for 
example, wind direction metrics, such as directional RMSE or directional EMD, and/or wind 
power metrics (power density or power production estimate). 
All in all, I found the paper interesting and valuable and would recommend accepting it with minor 
revisions. 
 
Specific comments 
 

• P1L10 - I wonder if it actually is surprising that ERA-5 has a higher correlation, for hourly 
averages, than WTK-LED, perhaps choose a more neutral statement or expand on why it 
is surprising. From my experience, when looking at one point, reanalysis datasets and 
coarse mesoscale data often have a higher correlation than high-resolution mesoscale data 
due to higher variance (temporally and spatially) and phase errors 
We have replaced the word “surprisingly” with “on the other hand”. 
 

• P3L60-63 - I think you should reference previous comparisons between ERA-5 and WRF-
based datasets for wind resource assessment accuracy, such as Dörenkämper et al. (2020), 
which you cited earlier in the introduction, which evaluated the models against a large 
number of masts in varying levels of terrain complexity in Europe and found significant 
underestimation of wind resources by ERA-5 
We have added the following sentence: “A similar analysis was performed for the WRF-
based New European Wind Atlas by Dörenkämper et al. (2020), who found a significant 
negative bias for ERA-5.” 
 

• P8 table 1 - If possible, it would be good to provide the references to the different datasets 
and WRF physics options 
We have added the following comment: “All the main setups that have been shown to have 
a major impact on modeled wind speed (e.g., the choice of the planetary boundary layer 
scheme and of the atmospheric forcing) are the same between the offshore and land-based 



domains. For some other setups, different choices were made between the two domains in 
order to optimize and tailor the numerical simulations to the specific needs of each 
domain.”. Papers dedicated to the presentation of the new WRF datasets and their setups 
will follow as soon as all the planned regions are completed. 
 

• P8L150-151 -  "Confirmed" sounds as if it matches expectations or confirms previous 
studies showing that, is that the case? I am not convinced that nearest-neighbor 
interpolation has been shown to definitely be better in most cases 
We have changed this to “showed”. 
 

• P14-15 Figure 8-9 - Why was the blue-to-red colormap flipped for the correlation 
coefficient subplot? I found it a bit confusing 
The colormap was flipped compared to panels c and e because for cRMSE and EMD, a 
negative value for the difference between the metric from WRF and ERA-5 will indicate 
that WRF outperforms ERA-5, whereas for the correlation coefficient the opposite is true. 
In other words, we wanted to be consistent with the idea that red colors in all three panels 
will show that ERA-5 outperforms WRF, and vice versa for blue colors.  
 

• P16L261 - Is wind power plant wakes represented at all by WTK-LED? if not I would 
change it accordingly, now it sounds as if partly represents wakes. In the last line, the 
conclusions (P17L295) leads me to believe that wakes are not resolved (yet) in WTK-LED 
Thanks for letting us notice this was not clear. We have rephrased the sentence as “This 
result suggests how wind power plant wakes, which are not represented by WTK-LED, 
might contribute to its strong overestimation of wind speed during stable conditions.” 
 

• P17L274 - If possible please also offer an explanation, or perhaps just a speculation of the 
potential explanation, for the exaggerated average diurnal cycle. Perhaps it stems from the 
PBL and SL schemes used? 
Unfortunately, we do not have a potential explanation at the moment. At the offshore site, 
we have seen the same behavior also when considering different WRF setups (in terms of 
different reanalysis product, PBL scheme, SST product, and SL scheme). We have 
currently in progress an analysis of a similar validation in complex terrain, which might 
help finding the reasons for the observed variability. 
 

• P17L285 - Bias correction techniques are indeed valuable, but I think it is important to 
stress that they require observations or another reference dataset, known to do well at the 
site. Part of the motivation in your paper is  that ERA-5 and WRF can serve as a cheap 
alternative to observations 
We have added the following comment: “With this in mind, we can expect that the worse 
ERA-5 performance in terms of bias would be easier to accommodate when compared to 
the WTK-LED underperformance in terms of random error (cRMSE) and correlation, with 
the caveat that observations of the wind resource, which might be challenging and/or 
expensive to obtain, are needed for a successful bias correction.” 
 

• P17 data availability - Please state whether WTK-LED data can be obtained, and if so from 
where 



We have added the following statement: “The WTK-LED data for the offshore domain are 
publicly available at https://maps.nrel.gov/wind-prospector/. The WTK-LED data for the 
land-based site will be available to the public in the future.” 
 

Technical corrections 
 

• P4L92 - I would suggest using a consistent minus-sign throughout the paper, $-$21 dB 
instead of -21 dB, etc   
Changed. 
 

• P5 Figure 2 and P5L108 - I would suggest 24 $\times$ 12, e.g. using latex \$\textbackslash 
times\$ 
Changed. 
 

• P5L105 - friction velocity and temperature flux units seem to have too much space between 
letters 
Changed. 
 

• P9L173 - question mark in cite parenthesis, perhaps a reference was not compiled 
correctly? 
Fixed. 
 

• P14-15 Figure 8-9 - Subplot letters missing 
Added. 



In this document, the reviewer’s comments are in black, the authors’ responses are in red. 
 
The authors thank the reviewer for their thoughtful and productive comments. 
 
Summary 
 
This study investigates the question whether a current state-of-the-art re-analysis product ERA-5 
is sufficiently good to replace mesoscale models for wind resource assessments in simple terrain. 
Although the study doesn’t provide a definite answer to the question, it provides a good 
contribution to the scientific community dealing with these type questions. The manuscript is well 
written and well structured. The figures shown are well prepared highlighting the most important 
results. Overall I recommend publishing this manuscript with some minor revisions. 
 
Comments 
 
I find the methods used appropriate for this type of study. However, part of the analysis could be 
summarized in a Taylor diagram (using the cRMSE). This has the benefit of adding the standard 
deviation to the evaluation in a format which is easily evaluated graphically. This metric is 
otherwise not analysed. So I would like to see either adding the standard deviation to the analysis 
separately or included in a Taylor diagram. 
While we agree that Taylor diagrams are an effective way of summarizing multiple metrics on a 
single plot, the fact we are analyzing the performance of WRF and ERA-5 with height would 
require a large number of Taylor diagrams, so we prefer to stick with the vertical profiles of each 
error metric as in Figures 5 and 6. 
Instead, we have added the standard deviation as an additional performance metric as suggested. 
We have updated Figures 5 and 6 (and the corresponding ones in the SI), and the text in many 
parts of the paper. In summary, WTK-LED outperforms ERA-5 at the offshore site, whereas no 
clear winner is observed at SGP, with similar considerations holding in all stability conditions. 
 
The authors study the diurnal cycle in more detail and shows that the WRF simulations yields a 
larger diurnal variability compared to observations, whereas ERA-5’s diurnal variation is 
underestimated. Variations on additional time scales could also be added to the analysis by e.g. 
computing the Fourier spectrum for the time series for the three different datasets and the two sites. 
Please consider this in the revision. 
The following plot shows the spectrum at the E05 lidar location. The peaks that are statistically 
significant are the 24-hour one (already analyzed in the paper), and a region corresponding to 4-6 
day timeframe, which might be connected to the impact of weather systems. As such, it would be 
hard to calculate an “average weather-related cycle” from the various data sources to build a new 
plot parallel to Figures 7 and 10.  



 
 
Minor comments 
 
L42, Molina reference lacks year 
We have added the year (2021) to the reference. 
 
L47, Please add a few sentences commenting the Sheridan (2020) results here. Similar studies has 
also been performed for the North Sea and the Baltic Sea (Kalverla et al 2019, Wind Energy Sci. 
2019, 4, 193–209, Hallgren et al. 2020, Energies, 13, 3670; doi:10.3390/en13143670). 
We have added the following sentences: “Sheridan et al. (2020) recently validated three reanalysis 
products using data at one single height from a floating lidar in the U.S. Eastern Seaboard, and 
found that ERA-5 had the best performance out of the four considered reanalysis products. Similar 
validations have been performed in Northern Europe, especially focusing on low-level jet events 
(Kalverla et al., 2019; Hallgren et al., 2020).” 
 
L93, Please elaborate on the sensitivity of assuming w=0 for the horizontal wind sped estimate 
using this assumption? Will this be significant e.g. during strong convection? 
Thanks for catching this. As shown in Werner et al. 2005, assuming w = 0 is actually not necessary 
in this context, so we have removed that sentence. On the other hand, assuming horizontal 
homogeneity is necessary, but this is expected to mostly impact wind speed retrievals in complex 
terrain (see for example Bingöl et al. 2008), and not offshore or in flat terrain as considered in our 
analysis. 
 

- Werner C. (2005) Doppler Wind Lidar. In: Weitkamp C. (eds) Lidar. Springer Series in 
Optical Sciences, vol 102. Springer, New York, NY. https://doi.org/10.1007/0-387-25101-
4_12 

- Bingöl, F., Mann, J., & Foussekis, D. (2009). Conically scanning lidar error in complex 
terrain. Meteorologische Zeitschrift, 18(2), 189-195. https://doi.org/10.1127/0941-
2948/2009/0368 

 
L95, Not sure I understand the details here. Is it correct that you get 1 wind speed sample from the 
lidar every 15 minutes? The hourly estimate is then an average of 4 15 minutes estimates? 
Yes, this is correct. 
 



L107, definition of near neutral: with your definition this leaves near neutral to L=0 or L>200 or 
L<-200. Normally, you would define a range around z/L=0 (see e.g. Sorbjan and Grachev. 
Boundary-Layer Meteorol 135, 385–405 (2010). https://doi.org/10.1007/s10546-010-9482-3). 
Please comment and revise 
We have now included L=0m in the stable classification (however, that never occurred in the 
datasets, so the analysis itself did not change). For the rest of the classification, this is consistent 
with the “range around z/L=0” you pointed out. 
 
L113, What type of lidars where deployed at the offshore location and how was the wind speed 
evaluated from these? Did you also here get hourly average? 
We have added the following information: “The New York State Energy Research and 
Development Authority (NYSERDA) recently deployed ZephIR ZX300M lidars and made their 
data publicly available \citep{nyserda2020}.” and “The lidars measure at a nominal 50-Hz 
resolution, and observations are provided as hourly averages, after proprietary quality checks are 
applied to the data.” 
 
L134, Please comment on the different model setup for the land and offshore location 
We have added the following comment: “All the main setups that have been shown to have a major 
impact on modeled wind speed (e.g., the choice of the planetary boundary layer scheme and of the 
atmospheric forcing) are the same between the offshore and land-based domains. For some other 
setups, different choices were made between the two domains in order to optimize and tailor the 
numerical simulations to the specific needs of each domain.” 
 
L263, strictly, the conclusions part is more written as “summary and conclusion”. 
We have changed the title of this section as suggested. 
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Abstract. Mesoscale numerical weather prediction (NWP) models are generally considered more accurate than reanalysis

products in characterizing the wind resource at heights of interest for wind energy, given their finer spatial resolution and more

comprehensive physics. However, advancements in the latest ERA-5 reanalysis product motivate an assessment on whether

ERA-5 can model wind speeds as well as a state-of-the-art NWP model—the Weather Research and Forecasting (WRF)

model. We consider this research question for both simple terrain and offshore applications. Specifically, we compare wind5

profiles from ERA-5 and the preliminary WRF runs of the Wind Integration National Dataset (WIND) Toolkit Long-term

Ensemble Dataset (WTK-LED) to those observed by lidars at site in Oklahoma, United States, and in a U.S. Atlantic offshore

wind energy area. We find that ERA-5 shows a significant negative bias (∼−1 m s−1) at both locations, with a larger bias

at the land-based site. WTK-LED-predicted wind speed profiles show a slight negative bias (∼−0.5 m s−1) offshore and a

slight positive bias (∼ +0.5 m s−1) at the land-based site. Surprisingly
::
On

:::
the

:::::
other

:::::
hand, we find that ERA-5 outperforms10

WTK-LED in terms of the centered root-mean-square error (cRMSE) and correlation coefficient, for both the land-based and

offshore cases, in all atmospheric stability conditions. We find that WTK-LED’s higher cRMSE is caused by its tendency to

overpredict the amplitude of the wind speed diurnal cycle both onshore and offshore
::
at

::::
both

::::::::
locations.
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1 Introduction

Wind energy development requires an accurate characterization of the wind resource at the heights swept out by commercial

wind turbine rotor blades (Brower, 2012). Directly measuring the wind speed aloft for the extensive periods of time required

for an accurate wind resource assessment can be challenging from both a technical and financial point of view. For land-based

sites, there are several major factors that can pose limitations to the installation of tall meteorological towers or remote sensing25

devices, including complex topography, road access, availability of electrical power, and excessive cost. When considering

offshore regions, where an unprecedented growth in installed wind capacity is currently taking place worldwide (Musial et al.,

2016; Bureau of Ocean Energy Management, 2018), the challenges connected to having direct observations of hub-height

wind speed are even more severe. Floating lidars represent a state-of-the-art source of offshore wind speed observations aloft

(Carbon Trust Offshore Wind Accelerator, 2018; OceanTech Services/DNV GL); however, their prohibitive cost still severely30

limits their availability worldwide. As a result of this constrained scenario, numerical weather prediction (NWP) models at the

mesoscale and reanalysis products are frequently used (Draxl et al., 2015; Hahmann et al., 2020; Dörenkämper et al., 2020;

Optis et al., 2020b) to characterize the wind resource at the heights of interest for wind energy development, for both land-based

and offshore locations.

Reanalysis products are convenient to use given their global coverage and publicly available data. In general, reanalysis35

products incorporate global measurements of atmospheric variables to produce a 3D-gridded, hindcast, best estimate of the

state of the atmosphere. Reanalysis products typically provide multiple decades of data and are regularly updated (Schwartz

et al., 1999; Compo et al., 2011; Gelaro et al., 2017; Bloomfield et al., 2018). While very convenient for wind resource stud-

ies, the coarse spatial (∼1 degree) and temporal resolution (usually 6 hours) can produce inaccurate estimates of the wind

resource. Specifically, previous validation studies at land-based sites have led to a wide variety of uncertainties associated40

with the product used, the location, the vertical level, and the vertical and horizontal spatial approximation technique used

(Kubik et al., 2013; Rose and Apt, 2015; Ramon et al., 2019; ?)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kubik et al., 2013; Rose and Apt, 2015; Ramon et al., 2019; Molina et al., 2021)

. Offshore, reanalysis products generally have better skills, and they have been used to create atlases of either wind resource or

wind energy potential. Zheng et al. (2018) quantified the global offshore wind resource using the ERA-interim reanalysis prod-

uct (Dee et al., 2011), while Soares et al. (2020) recently evaluated the global offshore wind energy potential using the more45

recent ERA-5 product (Hersbach et al., 2020). However, validating such reanalysis predictions against hub-height observations

has rarely been done because of the scarcity of offshore wind speed observations at the heights of interest for commercial

wind development. Sheridan et al. (2020) recently validated three reanalysis products using data at one single height from

a floating lidar in the U.S. Eastern Seaboard. ,
::::
and

:::::
found

::::
that

::::::
ERA-5

::::
had

:::
the

::::
best

:::::::::::
performance

:::
out

::
of

:::
the

::::
four

::::::::::
considered

::::::::
reanalysis

::::::::
products.

::::::
Similar

::::::::::
validations

::::
have

::::
been

:::::::::
performed

::
in

::::::::
Northern

:::::::
Europe,

:::::::::
especially

:::::::
focusing

:::
on

::::::::
low-level

::
jet

::::::
events50

:::::::::::::::::::::::::::::::::::
(Kalverla et al., 2019; Hallgren et al., 2020)

:
.

By comparison, NWP models generally provide more accurate estimates of the wind resource but are much more expensive

to run. NWP models use a large-scale atmospheric product, such as a reanalysis product, as external forcing, while using higher

spatial and temporal resolution to simulate more comprehensive physics. Several studies have applied NWP models to wind
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resource assessment (an extensive review can be found in Al-Yahyai et al. (2010)), at a variety of temporal and spatial scales.55

Draxl et al. (2015) developed an NWP model-based wind speed atlas for the continental United States, and similar efforts have

been completed for the European continent (Hahmann et al., 2020; Dörenkämper et al., 2020). Recently, NWP models have

also been used to create offshore wind resource assessment data sets (Rybchuk et al., 2021). By providing high-resolution wind

speed data, NWP models are beneficial for assessing the wind resource at specific sites of interest for wind energy development.

However, the development of NWP-based wind resource data sets is computationally expensive, especially when considering60

the fine horizontal, vertical, and temporal resolutions, as well as long-term periods of record.

Within this context, the latest reanalysis product, ERA-5 (Hersbach et al., 2020), comes with significant advancements

compared to previous products, in terms of both spatial (∼32-km horizontally) and temporal (1 hour) resolutions. These

improvements motivate an analysis on whether ERA-5 is capable of modeling wind speeds with an accuracy comparable if

not superior to the state-of-the-art mesoscale NWP model—the Weather Research and Forecasting (WRF) model (Skamarock65

et al., 2019), as part of the initial runs for the WIND Toolkit Long-term Ensemble Dataset (WTK-LED). For this
::
A

::::::
similar

::::::
analysis

::::
was

:::::::::
performed

:::
for

:::
the

::::::::::
WRF-based

::::
New

::::::::
European

:::::
Wind

:::::
Atlas

::
by

::::::::::::::::::::::
Dörenkämper et al. (2020),

::::
who

::::::
found

:
a
:::::::::
significant

:::::::
negative

:::
bias

:::
for

:::::::
ERA-5.

:::
For

:::
our evaluation, we consider vertical profiles of wind speed up to 200 m and focus on two sites that

represent typical conditions for present and future wind energy development in the United States. As an example of land-based

site, we consider the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP)70

measurement site near Lamont, Oklahoma. Offshore, we focus on two floating lidars recently developed by the New York

State Energy Research and Development Authority (NYSERDA) along the U.S. Eastern Seaboard. We describe the data sets

in Section 2, where we also introduce the performance metrics we adopt in the analysis. The results of the evaluation of both

WTK-LED and ERA-5 are presented in Section 3, where we also focus on the variability of the assessed performance with

height and atmospheric stability. Finally, we conclude our analysis and suggest future work in Section 4.75

2 Data and Methods

While complex terrain likely remains too challenging for an accurate wind speed representation by ERA-5 and will be the

subject of future work, here we focus our analysis on simple terrain. More in detail, we perform a reanalysis and mesoscale

model validation at two locations—one on land and one offshore. At both sites, publicly available hub-height wind speed

observations are used.80

For our land-based test case, we focus on the ARM SGP Central Facility (C1) site near Lamont, Oklahoma (Figure 1). The

SGP Central Facility site is located in a fairly flat area with an elevation ranging from just ∼270 meters (m)–390-m above sea

level in the area surrounding the site. As a result, the land is used primarily for agricultural purposes. Several wind power plants

were built in the area in the last decade, as shown in the map in Figure 1. For our analysis, we consider data from January 01,

2018 to December 31, 2018. While both ERA-5 and lidar observations at the site cover a much longer time period, preliminary85

WTK-LED data for the region are available only for this one-year period.
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Figure 1. Map of the two sites considered in our validation analysis. Digital Elevation Model data courtesy of the U.S. Geological Survey.

Offshore, we use wind speed observations from two floating lidars along the U.S. Eastern Seaboard, where several wind

energy lease areas have been planned (of Ocean Energy Management, 2021) for future offshore wind energy development

(Figure 1). We consider data from September 01, 2019, to August 31, 2020 (lidar data are not available before this period and

WTK-LED was not run after it).90

2.1 Observations

At the SGP Central Facility site, we consider observations from a Halo Streamline lidar (Newsom, 2012). We obtained hori-

zontal wind speed data from full 360◦ conical scans by the lidar, which were performed approximately every 15 minutes, with

1 minute needed to complete each scan. To obtain the horizontal wind speed from the line-of-sight velocity from these scans,

we used the velocity-azimuth-display approach from Frehlich et al. (2006). In doing this, the horizontal wind field is assumed95

to be homogeneous over the scan volume , and the average vertical velocity is assumed to be zero (Browning and Wexler,

1968). As in Bodini and Optis (2020), we discard any measurements that have a signal-to-noise ratio lower than -21
::::
−21 dB

or higher than +5 dB, and any measurements from time periods with precipitation that may significantly lower the accuracy of

the measurements. The wind speed data are then averaged to obtain hourly average data. For our study, we consider data from
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(a) 

(c) (d) 

(b) 

Figure 2. (a) Wind rose showing the distribution of wind speeds at 91-m AGL for 2018, using lidar observations at the SGP Central Facility

site. (b) 24-x-12
:::::

24×12 heat map of the frequency of stable conditions at the site, classified in terms of the surface Obukhov length. (c)

Same, but for unstable and (d) neutral conditions.

6 range gates, which correspond to heights of 65-, 91-, 117-, 143-, 169-, and 195-m above sea level. Data at lower heights were100

not used because of poor data quality. The analysis of the lidar data reveals how the site experiences winds mainly from the

south (see 91-m wind rose in Figure 2a), with more variability observed in winter months. Many wind plants were built around

the SGP site in the last decade. At the Central Facility site, the closest wind turbines are about 3.5 km away, and Bodini et al.

(in review) showed how the site is impacted by wind plant wakes for southerly flow, especially in nighttime stable conditions.

We classify atmospheric stability using near-surface (4-m above ground level (AGL)) observations from a sonic anemometer105

at the C1 site. We calculate the Obukhov length as:

L = − Tv ·u3∗
k · g ·w′T ′v

(1)
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where k = 0.4 is the von Kármán constant; g = 9.81 m s−2 is the acceleration due to gravity; Tv is the virtual tempera-

ture (K); u∗ = (u′w′
2

+ v′w′
2
)1/4 is the friction velocity (m s−1

:::::
m s−1); and w′T ′v is the kinematic virtual temperature flux

(K m s−1
:::::::
K m s−1). All Reynolds decompositions are calculated with a 30-minute averaging period (De Franceschi and110

Zardi, 2003; Babić et al., 2012). We consider stable conditions for 0 m< L≤ 200
:::::::::::::
0 m ≤ L≤ 200 m, unstable conditions

for −200 m ≤ L < 0 m, near-neutral otherwise. Figures 2b, c, and d show 24-x-12
:::::
24×12

:
heat maps of the frequency of

stable, unstable, and neutral conditions, respectively. A clear diurnal pattern emerges, with stable conditions being typical of

the nighttime hours, and unstable conditions occurring in daytime convective periods. Also, summer shows more extended

unstable cases compared to winter months. On the other hand, near-neutral conditions are relatively rare at the site, occurring115

most often during morning and evening transitions.

Offshore, we consider observations of wind speed from two floating lidars off the coast of New Jersey. The New York State

Energy Research and Development Authority (NYSERDA) recently deployed these
::::::
ZephIR

::::::::
ZX300M lidars and made their

data publicly available (OceanTech Services/DNV GL). The lidar on buoy E05 is located at 39.97◦N, 72.72◦W; the buoy E06

lidar is located at 39.55◦N, 73.43◦W.
::::
The

:::::
lidars

:::::::
measure

::
at
::
a
:::::::
nominal

::::::
50-Hz

:::::::::
resolution,

::::
and

::::::::::
observations

::::
are

:::::::
provided

:::
as120

:::::
hourly

::::::::
averages,

::::
after

::::::::::
proprietary

::::::
quality

::::::
checks

::
are

:::::::
applied

::
to

:::
the

::::
data. Wind speed and wind direction data for both lidars are

available every 20 m from 58-m to 198-m
::::
60-m

::
to

:::::
200-m

:
above sea level. At these sites, wind mainly flows from the southwest

and northwest, as is the case further east in this region (Bodini et al., 2019, 2020) and it is generally stronger than what was

observed at SGP, as shown in the wind rose at 98-m
::::::
100-m above sea level from lidar E05 in Figure 3a. Due to the lack

of observations from which atmospheric stability metrics can be calculated, we use WTK-LED data to classify atmospheric125

stability as a function of the bulk Richardson number from 0 m–200 m above the surface. The bulk Richardson number is

calculated as:

Rib =
g

θv

∆z∆θv
(∆U)2 + (∆V )2

(2)

where g is the gravitational acceleration, θv is the average absolute virtual potential temperature across the considered layer

of thickness ∆z, ∆θv is the virtual potential temperature difference across the layer, and ∆U and ∆V are the changes in the130

horizontal wind components across that same layer. We use values of Rib > 0.025 to classify stable conditions, Rib < -0.025

for unstable conditions, and all other values as near-neutral conditions. Figures 3b and c show the 24-x-12
::::::
24×12

:
heat maps

of the frequency of stable and unstable conditions, respectively. While a clear diurnal pattern emerged when looking at similar

plots at SGP, here we find little diurnal variability, but a strong seasonal cycle. Summer months show the most instances of

stable conditions, while winter months show primarily unstable conditions. Finally, near-neutral conditions account for up to135

half of the cases in certain times and show little variability across both the diurnal and annual scales.

2.2 NWP model setup

At SGP, we use WRF model data for 2018 from the preliminary National Renewable Energy Laboratory’s (NREL’s) Wind

Integration National Dataset (WIND) Toolkit Long-term Ensemble Dataset (WTK-LED), which will update the original WIND

Toolkit (WTK) [Lieberman-Cribbin et al. (2014); King et al. (2014); Draxl et al. (2015)]. The main WRF attributes in the WTK-140
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(c) (d) 

(b)  

Figure 3. (a) Wind rose showing the distribution of wind speeds at 98-m
:::::
100-m AGL for September 2019 to August 2020, using observations

from the E05 floating lidar. (b) 24-x-12
:::::
24×12 heat map of the frequency of stable conditions at the E05 lidar location, classified in terms of

the WTK-LED-based bulk Richardson number calculated between 0 m and 200 m ASL. (c) Same, but for unstable and (d) neutral conditions.

Results from the E06 lidar are included in the Supplementary Materials.

LED setup are summarized in Table 1. The simulations
:::
All

:::
the

::::
main

::::::
setups

::::
that

::::
have

::::
been

::::::
shown

::
to

::::
have

::
a
:::::
major

::::::
impact

:::
on

:::::::
modeled

:::::
wind

:::::
speed

::::
(e.g.,

::::
the

:::::
choice

:::
of

:::
the

::::::::
planetary

::::::::
boundary

:::::
layer

::::::
scheme

::::
and

::
of

:::
the

:::::::::::
atmospheric

:::::::
forcing)

:::
are

:::
the

:::::
same

:::::::
between

:::
the

:::::::
offshore

:::
and

:::::::::
land-based

::::::::
domains.

:::
For

:::::
some

::::
other

::::::
setups,

:::::::
different

:::::::
choices

::::
were

:::::
made

:::::::
between

:::
the

:::
two

::::::::
domains

::
in

::::
order

::
to

::::::::
optimize

:::
and

:::::
tailor

:::
the

::::::::
numerical

::::::::::
simulations

::
to

:::
the

::::::
specific

:::::
needs

:::
of

::::
each

:::::::
domain.

::
At

::::
both

:::::
sites,

:::
the

:::::::::
simulations

:
were

initialized every month, and each simulation was initialized 2 days prior to and run up to 1 day after the end of each month. The145

first day of each monthly run is used as spin-up time for the model, while the second and last days are used to combine monthly

runs. Model output is available at 5-minute resolution, and we average the data at hourly resolution to perform the validation

analysis. We consider data from the closest 2-km grid cell to the location of the lidar (the difference in terrain height between

this WRF grid cell and the actual lidar location is <3 m). To match the heights at which lidar observations are available, we
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linearly interpolate the WRF data from the two closest levels. Given the high near-surface resolution used (see Table 1), we150

expect this linear interpolation to introduce only a small additional error to the analysis.

Table 1. Key attributes of the WRF simulations in WTK-LED setup used in this study.

Feature
Specification

Offshore Land-based

WRF version 4.2.1

Grid spacing 6 km, 2 km (nested) 2 km

Output time resolution 5 minutes

Vertical levels 61

Near-surface-level heights (m) 12, 34, 52, 69, 86, 107, 134, 165, 200

Atmospheric forcing ERA-5 reanalysis

Atmospheric nudging Spectral nudging (6-km domain) Spectral nudging

applied every 6 hours applied every 3 hours

Planetary boundary layer scheme Mellor-Yamada-Nakanishi-Niino Level 2.5

Microphysics Ferrier Morrison double-moment

Longwave radiation Rapid radiative transfer model

Shortwave radiation Rapid radiative transfer model

Topographic database Global multiresolution terrain elevation data from the

U.S. Geological Survey and National Geospatial-Intelligence Agency

Land-use data Moderate Resolution Imaging Spectroradiometer 30 s

Cumulus parameterization Kain-Fritsch (6-km domain) None

Sea surface temperature product Operational Sea Surface Temperature None

and Sea Ice Analysis (OSTIA)

Offshore, we use WRF data from the offshore version of NREL’s WTK-LED. A summary of the model setup is provided in

Table 1. Similar to the land-based case, we select WTK-LED data from the closest grid cell to the location of each of the two

floating lidars and linearly interpolate the WRF vertical levels to match the heights of the lidar data.

2.3 ERA-5 reanalysis155

We use the state-of-the-art ERA-5 reanalysis product (Hersbach et al., 2020), to compare its skill in assessing wind resource

with that of the WTK-LED product. ERA-5 provides hourly average data at 137 vertical levels and an ∼31-km horizontal

resolution. In our analysis, we considered vertical levels corresponding to heights of 54-, 79-, 106-, 137-, 170-, and 205-m

above sea level. As done for WTK-LED, these heights are then linearly interpolated to match those of the lidar observations.

We use data from the ERA-5 grid point which is closest in space to the considered lidars. Sheridan et al. (2020) recently160

confirmed
::::::
showed that selecting the closest grid point generally leads to better reanalysis performance compared to a linear
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interpolation of the four surrounding grid points, while Livingston and Lundquist (2020) used a bilinear interpolation. The

coordinates of the selected ERA-5 grid point at SGP are 36.5◦N and 97.5◦W; offshore, we use data from the 40◦N, 72.75◦W

grid point to compare with the E05 lidar data, and at 39.5◦N, 73.5◦W to compare with the E06 lidar data.

2.4 Performance metrics165

To quantify the skills of WTK-LED and ERA-5 in predicting the observed wind resource, we calculate, at all of the considered

heights, four performance metrics, as recommended in Optis et al. (2020a)
:::
five

::::::::::
performance

:::::::
metrics.

In general, it is important to decompose a model error into bias, which quantifies the difference between modeled and

observed data; and random error, which quantifies the variability of the modeled data around the mean. We decompose the root-

mean-square error (RMSE) into a bias component and an "unbiased" or "centered" component of RMSE (cRMSE), following170

the approach in Taylor (2001). We calculate bias as:

Bias = p̄− ō (3)

where p̄ is the mean of the modeled (by either WTK-LED or ERA-5) estimates and ō is the mean of the lidar observations. A

perfect prediction would have a bias of 0. Next, we calculate the cRMSE as:

cRMSE =

[
1

N

N∑
n=1

[(pn − p̄)− (on − ō)]2

]1/2

(4)175

where N is the number of data points in the considered time series, and pn and on indicate the time series values of modeled

and observed wind speed, respectively. A perfect prediction would have a cRMSE of 0.

As a third performance metric, we calculate the square of the Pearson’s correlation coefficient between observed and modeled

wind. The correlation coefficient r measures how strong the correspondence between two variables is, and it is calculated as:

r =
1
N

∑N
n=1(pn − p̄)− (on − ō)

σpσo
(5)180

where σp and σo are the standard deviations of the modeled and observed data, respectively. A perfect prediction would have

a correlation coefficient of 1.

Last
::::
Next, we use the Earth-mover’s distance (EMD), also known as the Wasserstein distance (Vaseršteı̆; Hahmann et al.,

2020), which measures the difference between two distributions. EMD is calculated as the area between two cumulative dis-

tribution functions (here, modeled and observed wind speed). This metric is an improvement on the bias metric and will catch185

cases where bias may be zero, despite having different modeled and observed wind speed distributions. The distribution of a

perfect prediction would have an EMD of 0.

::::
Last,

:::
we

:::::::
compare

:::
the

:::::::
standard

::::::::
deviation

::
of

:::
the

::::::::
observed

:::::
wind

:::::
speed

::::
with

::::
what

::
is

::::::::
predicted

::
by

:::::
WTK

::::
and

::::::
ERA-5.

:
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(a) (b) 

Figure 4. Mean vertical wind speed profiles for all three data sources at (a) the land-based SGP site and (b) the offshore E05 floating lidar.

The shaded bands represent ± the standard deviation of the data.

3 Results

3.1 Mean performance190

In Figure 4, we compare the mean wind profiles from all three data sources at SGP and the NYSERDA E05 lidar. (Results

from the E06 lidar are included in the Supplementary Materials because no major differences between the results from the two

lidars were found.) In each panel, the solid lines indicate the mean wind profile and the shaded bands around them represent

± the standard deviation of the data. On average, the wind resource is stronger offshore. At both sites, the ERA-5 mean wind

profile underestimates the observed wind resource. Conversely, WTK-LED shows a slight overestimation of the mean wind195

profile at the land-based site and a slight underestimation offshore. However, in all cases, a large variability emerges so that a

more detailed investigation, beyond an annual average, is required.

We then consider the four
:::
five

:
mean performance metrics introduced in Section 2.4 for both WTK-LED and ERA-5 calcu-

lated at the two sites (Figure 5). The WTK-LED-predicted wind speed profiles show a slight positive bias (∼ +0.5 m s−1) at

the land-based location and a slight negative bias (∼−0.5 m s−1) offshore. However, ERA-5 shows a significant negative bias200

at both locations, especially at SGP, where the bias is ∼−1.5 m s−1. In general, we find little variability with height, with just

a slight degradation of the bias with height for both WTK-LED and ERA-5. When considering the cRMSE, however, we find

an opposite situation, with ERA-5 outperforming WTK-LED at both locations at all heights. We find satisfactory correlation

at both sites, once again with ERA-5 providing slightly better values. The offshore location shows larger values (r2 > 0.85 for

both ERA-5 and WTK-LED at all heights), likely because of the positive effects of the simpler topography on the skills of205

both data sources. Interestingly, we find a slight increase in r2 with height, especially at SGP. Finally, when
:::::
When

:
looking at

the EMD, WTK-LED significantly outperforms ERA-5 at both sites, once again with the offshore site showing better results

for both data sources compared to the land-based location.
::::::
Finally,

:::::
when

:::::::::
comparing

:::
the

:::::::
modeled

::::
and

::::::::
observed

:::::
wind

:::::
speed
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

SGP OFFSHORE (E05) 

(i) (j) 

Figure 5. Vertical profiles of mean bias, cRMSE, r2, and EMD
::
and

::::
wind

:::::
speed

::::::
standard

:::::::
deviation

:
at the SGP C1 site (left) and the E05 lidar

(right). Results from the E06 lidar are included in the Supplementary Materials.
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:::::::
standard

:::::::::
deviations,

:::
we

::::
find

::
no

:::::
clear

::::::
winner

:::::::
between

::::::::::
WTK-LED

:::
and

:::::::
ERA-5

::
at

::::
SGP,

:::::::
whereas

::::::::
offshore

:::::::::
WTK-LED

::::::::
provides

::::
more

:::::::
accurate

::::::
results.

:
Given the difference in relative performance between WTK-LED and ERA-5 when considering different210

metrics, we will investigate the impact of atmospheric stability, diurnal, and seasonal cycles in the next sections to investigate

the potential reasons for such variability.

3.2 Impact of atmospheric stability

To assess whether the relative performance between ERA-5 and WTK-LED holds in all atmospheric stability conditions, we

segregate the data at both sites. As detailed in Sections 2.1.1 and 2.2.1, we classify atmospheric stability at SGP based on the215

near-surface observed Obukhov length, while offshore we base our classification on the WTK-LED-modeled bulk Richardson

number, in absence of direct observations from which atmospheric stability parameters can be derived. We then calculate the

vertical profiles of the four
::
five

:
performance metrics for each stability class at the two sites (Figure 6). The relative performance

between ERA-5 and WTK-LED observed from the mean profiles with no data segregation still holds in all stability conditions:

WTK-LED outperforms ERA-5 for bias and EMD ,
:::::
EMD

::::
and,

::
at

:::
the

:::::::
offshore

::::
site,

:::::::
standard

:::::::::
deviation, while ERA-5 shows a220

better performance when considering cRMSE and r2. When analyzing how the performance of each data source varies with

atmospheric stability, interesting considerations emerge.

At SGP, WTK-LED shows the best agreement with observations in unstable conditions, with a near-zero bias and EMD at all

considered heights, and its lowest values of cRMSE. However, stable cases seem the most challenging to model for WTK-LED,

as also noticed by Smith et al. (2018, 2019) with respect to the challenges for WRF to accurately model the frequent nocturnal225

low-level jets in the region. ERA-5 also performs well in unstable conditions, but ERA’s stable cases outperform neutral

conditions, which show worse performance in terms of bias, cRMSE, and EMD. Little variability with stability emerges when

considering the r2 metric.

At the offshore site, slightly different considerations apply. While unstable conditions still show the best performance in

terms of cRMSE, stable and neutral cases outperform unstable conditions when considering bias and EMD, with again little230

variability in terms of correlation. For ERA-5, unstable cases show the best performance across all the considered metrics,

followed by neutral conditions and, last, stable periods.

3.3 Impact of diurnal and seasonal variability

To further investigate the reasons for WTK-LED displaying a worse performance in its cRMSE and r2 compared to ERA-5,

we analyze the average diurnal cycle at both locations (Figure 7). A clear diurnal variability emerges at both locations, with235

higher wind speeds occurring at night (SGP) or evening (offshore). At SGP, this variability is consistent with the frequent

nocturnal low-level jets that have been observed at the site (Song et al., 2005; Greene et al., 2009). We find that ERA-5 well

captures the amplitude of the observed diurnal cycle with a negative bias that remains nearly constant throughout the average

day. By contrast, WTK-LED overestimates the amplitude of the average diurnal cycle, especially at the land-based location. At

SGP, we find that WTK-LED significantly overestimates the nocturnal high wind speeds, whereas it well captures the daytime240

wind regime. Offshore, a nearly opposite situation occurs as WTK-LED exhibits skill in predicting the strong nocturnal winds,
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

SGP OFFSHORE (E05) 

(i) (j) 

Figure 6. Vertical profiles of performance metrics segregated by atmospheric stability at the SGP C1 site (left) and at the location of the E05

lidar (right). Results from the E06 lidar are included in the Supplementary Materials.
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(a) (b) 

Figure 7. Average diurnal cycle of the ∼120-m wind speed from lidar, WRF, and ERA-5 at (a) the SGP C1 site and (b) the location of the

E05 lidar. Results from the E06 lidar are included in the Supplementary Materials.

but slightly underestimates the weaker daytime winds. This exaggeration of the diurnal cycle by WTK-LED leads to its worst

performance, compared to ERA-5, when considering the cRMSE and correlation coefficient at both locations.

To further break down the temporal variability of the relative performance of WTK-LED and ERA-5, we look at the diurnal

and seasonal variability of the four performance metrics
::::
bias,

:::::::
cRMSE,

:::
r2,

::::
and

:::::
EMD

:
at both test sites. To do so, we build245

24-x-12
::::::
24×12 heat maps of the four metrics by partitioning data by both hour of day and month. We show results for the

land-based test case in Figure 8; the offshore test case is shown in Figure 9. We show results at 91-m AGL at SGP, at 98-m

:::::
100-m

:
offshore, considered as a proxy for wind turbine hub-height, and we note that no significant variability of the metrics

with height was found. At SGP, the analysis of bias confirms what was seen in Figure 7—that ERA-5 displays a negative

bias for all months and hours, whereas WTK-LED shows mostly a positive bias during the night and a negative bias during250

the daytime, thus confirming that WTK-LED overestimates the diurnal cycle throughout the year. While the daytime bias

performance of WTK-LED does not change significantly throughout the year, we find a larger positive bias in summer nights,

whereas in winter the bias is smaller. When looking at the differences in the cRMSE between WTK-LED and ERA-5, we

find more instances where WTK-LED shows higher cRMSE values than ERA-5 during the nighttime than the daytime. As

already noted for bias, we find a worse WTK-LED performance during nighttime in summer months also in terms of cRMSE,255

correlation, and EMD. In general, WTK-LED shows significantly better performance than ERA-5 in terms of EMD during

the daytime, whereas there are several instances during the nighttime, especially in the late spring and summer months, where

ERA-5 outperforms WTK-LED.

At the offshore lidar location, ERA-5 shows a negative bias for all months and hours, similar to what was seen at SGP.

WTK-LED displays more occurrences of positive biases in spring and summer months, especially at night, whereas a slightly260

negative bias is observed during the winter months at all hours. The overestimation of the observed diurnal cycle by WTK-LED

is therefore more typical of summer months. However, little variability emerges when considering the relative performance of
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(b) (a) 

(c) (d) 

(e) 

Figure 8. 24x12
:::::
24×12 heat maps at the SGP C1 site showing the diurnal and seasonal variability in the four performance metrics

::::
bias,

::::::
cRMSE,

:::
r2,

:::
and

::::
EMD

:
for the 91-m wind speed.

WTK-LED and ERA-5 in terms of the cRMSE, at both diurnal and annual scales. In fact, in the majority of cases, WTK-LED

displays a higher cRMSE than ERA-5, but without any clear seasonal or diurnal pattern, thus making the interpretation of

the results murkier compared to the land-based case. Looking at the heat map for the EMD, a consistent seasonal or diurnal265

pattern is not clear, either. However, WTK-LED generally outperforms ERA-5 in terms of EMD, with its best performance in

the spring.

Finally, we note how the land-based location, during 2018, is influenced by the presence of a large number of wind power

plants in the vicinity (see map in Figure 1). As shown by Bodini et al. (in review), wakes from wind plants in the vicinity

affect the lidar measurements at the C1 location, and wakes tend to be stronger in stable conditions. Because the WTK-LED270
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(b) (a) 

(c) (d) 

(e) 

Figure 9. 24-x-12
:::::
24×12 heat maps at the location of the E05 lidar showing the diurnal and seasonal variability in the four performance

metrics
:::
bias,

:::::::
cRMSE,

::
r2,

:::
and

:::::
EMD for the 98-m

:::::
100-m wind speed. Results from the E06 lidar are included in the Supplementary Materials.

predicts stronger winds at night than the lidar observes, some of the exaggerated diurnal cycle could be due to the fact that the

WTK-LED does not incorporate effects from wind power plants. To further investigate this possibility, Figure 10 shows the

hub-height wind speed average diurnal cycle at SGP for southerly flow (i.e., when the wind turbines are directly upwind of the

lidar, panel (a)) and northerly flow (i.e., when the lidar measurements are unaffected by the wind power plants, panel (b)). We

find that WTK-LED overestimates the hub-height wind speed especially for southerly flow, while only a slight overestimation is275

observed for the less frequent northerly flow. This result suggests how wind power plant wakes, which are not well represented

by WTK-LED, might contribute to its strong overestimation of wind speed during stable conditions.
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(a) (b) 

Figure 10. Average diurnal cycle of the 117-m wind speed from lidar, WRF, and ERA-5 at the SGP C1 site for (a) southerly (112◦ − 196◦)

and (b) northerly

4 Summary and Conclusions

Accurate characterization of the wind resource aloft is a necessity for wind energy development. At land-based locations,

direct observations of the wind resource at hub height are often challenging to collect due to a variety of reasons, including280

cost, complex topography, road access, and availability of electrical power. Offshore, collecting direct measurements of wind

speeds aloft is even more challenging. Thus, NWP models and reanalysis products are often used to characterize the wind

resource in the locations of interest for wind energy development.

Using one year of lidar data at both land-based and offshore test sites, we evaluated the WRF model as run in the WTK-

LED setup and the ERA-5 reanalysis product in their wind resource assessment skills. To evaluate each data product, we285

calculated four
:::
five model performance metrics—bias, cRMSE, r2, and EMD

:::::
EMD,

:::
and

::
a

::::::::::
comparison

:::::::
between

:::::::
modeled

::::
and

:::::::
observed

::::::::
standard

::::::::
deviation. WTK-LED shows a smaller bias than ERA-5 at both the considered locations for all of the

stability conditions. However, ERA-5 outperforms WTK-LED in terms of cRMSE for all stability cases both at the land-

based and offshore sites. A potential explanation for this underperformance of WTK-LED in terms of cRMSE is WTK-LED’s

exaggeration of the average diurnal cycle at both sites. In fact, when considering the diurnal variability of the WTK-LED bias,290

we find that WTK-LED generally shows a positive bias at night and more instances of negative biases during the daytime. ERA-

5 is capable of well capturing the amplitude of the daily cycle in hub-height wind speed at the considered locations, albeit with

a relatively constant negative bias throughout the diurnal cycle. Both WTK-LED and ERA-5 showed high correlation offshore,

while at the land-based site the correlation was slightly reduced, likely because of the increased complexity in modeling

the wind flow in conjunction with topographic effects. Analysis at both locations showed ERA-5 having a slightly stronger295

correlation than WTK-LED. Based on the analysis of the EMD, the wind speed distributions predicted by WTK-LED better

match the observed distributions compared to the ERA-5 data in all stability conditions.
::::
Also,

:::::::::
WTK-LED

::::::
better

:::::::
matches

:::
the
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:::::::
observed

:::::::
standard

::::::::
deviation

::
of

:::::
wind

:::::
speed

::
at

::
the

:::::::
offshore

::::
site,

:::::::
whereas

::::::::::
WTK-LED

:::
and

::::::
ERA-5

::::
have

:
a
::::::::::
comparable

:::::::::::
performance

:
at
:::::
SGP.

Our results show how there is not a clear and universal winner between WRF (in the WTK-LED setup) and ERA-5 when300

assessing their skills for wind resource assessment at these two locations, offshore and flat terrain on land. However, when

weighting the relative performance of the two data sources, it is worth noting how bias correction techniques have been

successfully applied in the wind energy sector (Stoffelen, 1998; Costoya et al., 2020), so that .
:::::

With
::::
this

::
in

:::::
mind,

:
we can

expect
:::
that

:::
the worse ERA-5 performance in terms of bias would be easier to accommodate when compared to the WTK-LED

underperformance in terms of random error (cRMSE) and correlation,
::::
with

:::
the

::::::
caveat

::::
that

::::::::::
observations

::
of

:::
the

:::::
wind

::::::::
resource,305

:::::
which

:::::
might

::
be

::::::::::
challenging

:::::
and/or

:::::::::
expensive

::
to

::::::
obtain,

::
are

::::::
needed

:::
for

:
a
:::::::::
successful

::::
bias

::::::::
correction. On the other hand, it is worth

emphasizing that WTK-LED offers data at a finer spatial and temporal resolution, which represents an essential advantage over

reanalysis products for specific wind energy related applications, such as grid integration analyses (Archer et al., 2017) and in

locations with complex terrain. Clearly, it is important to stress that the results we found are specific to the sites considered in

the analysis, which are both characterized by simple topography. Future work can replicate our proposed validation in more310

complex terrain, where the coarser resolution of the reanalysis products is likely to have a severe negative impact on their skills

in accurately representing the wind flow at hub height. Such analyses could provide additional understanding about why the

WTK-LED WRF setup struggled, in our analysis, in well representing the wind speed diurnal cycle aloft. Finally, follow-on

work will explore whether representing wind power plants in WRF improves the WRF performance in the vicinity of active

wind power plants (e.g., by using the WRF Wind Farm Parameterization (Fitch et al., 2012; Tomaszewski and Lundquist,315

2020)) .

Data availability. Observations at the SGP site are publicly available at https://www.arm.gov/capabilities/instruments/dl. The NYSERDA

lidar observations are publicly available at https://oswbuoysny.resourcepanorama.dnvgl.com. ERA-5 data are publicly available from the

ECMWF’s MARS archive. The WTK-LED data for the offshore domain are publicly available at https://maps.nrel.gov/wind-prospector/.

The WTK-LED data for the land-based site will be available to the public in the future. The open-source WRF model was used for the320

numerical weather prediction simulations.
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