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Abstract. Mesoscale numerical weather prediction (NWP) models are generally considered more accurate than reanalysis

products in characterizing the wind resource at heights of interest for wind energy, given their finer spatial resolution and more

comprehensive physics. However, advancements in the latest ERA-5 reanalysis product motivate an assessment on whether

ERA-5 can model wind speeds as well as a state-of-the-art NWP model—the Weather Research and Forecasting (WRF) model.

We consider this research question for both simple terrain and offshore applications. Specifically, we compare wind profiles5

from ERA-5 and the preliminary WRF runs of the Wind Integration National Dataset (WIND) Toolkit Long-term Ensemble

Dataset (WTK-LED) to those observed by lidars at site in Oklahoma, United States, and in a U.S. Atlantic offshore wind energy

area. We find that ERA-5 shows a significant negative bias (∼−1 m s−1) at both locations, with a larger bias at the land-based

site. WTK-LED-predicted wind speed profiles show a slight negative bias (∼−0.5 m s−1) offshore and a slight positive bias

(∼+0.5 m s−1) at the land-based site. Surprisingly, we find that ERA-5 outperforms WTK-LED in terms of the centered root-10

mean-square error (cRMSE) and correlation coefficient, for both the land-based and offshore cases, in all atmospheric stability

conditions. We find that WTK-LED’s higher cRMSE is caused by its tendency to overpredict the amplitude of the wind speed

diurnal cycle both onshore and offshore.
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1 Introduction

Wind energy development requires an accurate characterization of the wind resource at the heights swept out by commercial

wind turbine rotor blades (Brower, 2012). Directly measuring the wind speed aloft for the extensive periods of time required

for an accurate wind resource assessment can be challenging from both a technical and financial point of view. For land-based

sites, there are several major factors that can pose limitations to the installation of tall meteorological towers or remote sensing25

devices, including complex topography, road access, availability of electrical power, and excessive cost. When considering

offshore regions, where an unprecedented growth in installed wind capacity is currently taking place worldwide (Musial et al.,

2016; Bureau of Ocean Energy Management, 2018), the challenges connected to having direct observations of hub-height

wind speed are even more severe. Floating lidars represent a state-of-the-art source of offshore wind speed observations aloft

(Carbon Trust Offshore Wind Accelerator, 2018; OceanTech Services/DNV GL); however, their prohibitive cost still severely30

limits their availability worldwide. As a result of this constrained scenario, numerical weather prediction (NWP) models at the

mesoscale and reanalysis products are frequently used (Draxl et al., 2015; Hahmann et al., 2020; Dörenkämper et al., 2020;

Optis et al., 2020b) to characterize the wind resource at the heights of interest for wind energy development, for both land-based

and offshore locations.

Reanalysis products are convenient to use given their global coverage and publicly available data. In general, reanalysis35

products incorporate global measurements of atmospheric variables to produce a 3D-gridded, hindcast, best estimate of the

state of the atmosphere. Reanalysis products typically provide multiple decades of data and are regularly updated (Schwartz

et al., 1999; Compo et al., 2011; Gelaro et al., 2017; Bloomfield et al., 2018). While very convenient for wind resource studies,

the coarse spatial (∼1 degree) and temporal resolution (usually 6 hours) can produce inaccurate estimates of the wind resource.

Specifically, previous validation studies at land-based sites have led to a wide variety of uncertainties associated with the40

product used, the location, the vertical level, and the vertical and horizontal spatial approximation technique used (Kubik et al.,

2013; Rose and Apt, 2015; Ramon et al., 2019; Molina et al.). Offshore, reanalysis products generally have better skills, and

they have been used to create atlases of either wind resource or wind energy potential. Zheng et al. (2018) quantified the

global offshore wind resource using the ERA-interim reanalysis product (Dee et al., 2011), while Soares et al. (2020) recently

evaluated the global offshore wind energy potential using the more recent ERA-5 product (Hersbach et al., 2020). However,45

validating such reanalysis predictions against hub-height observations has rarely been done because of the scarcity of offshore

wind speed observations at the heights of interest for commercial wind development. Sheridan et al. (2020) recently validated

three reanalysis products using data at one single height from a floating lidar in the U.S. Eastern Seaboard.

By comparison, NWP models generally provide more accurate estimates of the wind resource but are much more expensive

to run. NWP models use a large-scale atmospheric product, such as a reanalysis product, as external forcing, while using higher50

spatial and temporal resolution to simulate more comprehensive physics. Several studies have applied NWP models to wind

resource assessment (an extensive review can be found in Al-Yahyai et al. (2010)), at a variety of temporal and spatial scales.

Draxl et al. (2015) developed an NWP model-based wind speed atlas for the continental United States, and similar efforts have

been completed for the European continent (Hahmann et al., 2020; Dörenkämper et al., 2020). Recently, NWP models have
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also been used to create offshore wind resource assessment data sets (Rybchuk et al., 2021). By providing high-resolution wind55

speed data, NWP models are beneficial for assessing the wind resource at specific sites of interest for wind energy development.

However, the development of NWP-based wind resource data sets is computationally expensive, especially when considering

the fine horizontal, vertical, and temporal resolutions, as well as long-term periods of record.

Within this context, the latest reanalysis product, ERA-5 (Hersbach et al., 2020), comes with significant advancements

compared to previous products, in terms of both spatial (∼32-km horizontally) and temporal (1 hour) resolutions. These im-60

provements motivate an analysis on whether ERA-5 is capable of modeling wind speeds with an accuracy comparable if not

superior to the state-of-the-art mesoscale NWP model—the Weather Research and Forecasting (WRF) model (Skamarock

et al., 2019), as part of the initial runs for the WIND Toolkit Long-term Ensemble Dataset (WTK-LED). For this evaluation,

we consider vertical profiles of wind speed up to 200 m and focus on two sites that represent typical conditions for present

and future wind energy development in the United States. As an example of land-based site, we consider the U.S. Department65

of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) measurement site near Lamont, Okla-

homa. Offshore, we focus on two floating lidars recently developed by the New York State Energy Research and Development

Authority (NYSERDA) along the U.S. Eastern Seaboard. We describe the data sets in Section 2, where we also introduce the

performance metrics we adopt in the analysis. The results of the evaluation of both WTK-LED and ERA-5 are presented in

Section 3, where we also focus on the variability of the assessed performance with height and atmospheric stability. Finally,70

we conclude our analysis and suggest future work in Section 4.

2 Data and Methods

While complex terrain likely remains too challenging for an accurate wind speed representation by ERA-5 and will be the

subject of future work, here we focus our analysis on simple terrain. More in detail, we perform a reanalysis and mesoscale

model validation at two locations—one on land and one offshore. At both sites, publicly available hub-height wind speed75

observations are used.

For our land-based test case, we focus on the ARM SGP Central Facility (C1) site near Lamont, Oklahoma (Figure 1). The

SGP Central Facility site is located in a fairly flat area with an elevation ranging from just ∼270 meters (m)–390-m above sea

level in the area surrounding the site. As a result, the land is used primarily for agricultural purposes. Several wind power plants

were built in the area in the last decade, as shown in the map in Figure 1. For our analysis, we consider data from January 01,80

2018 to December 31, 2018. While both ERA-5 and lidar observations at the site cover a much longer time period, preliminary

WTK-LED data for the region are available only for this one-year period.

Offshore, we use wind speed observations from two floating lidars along the U.S. Eastern Seaboard, where several wind

energy lease areas have been planned (of Ocean Energy Management, 2021) for future offshore wind energy development

(Figure 1). We consider data from September 01, 2019, to August 31, 2020 (lidar data are not available before this period and85

WTK-LED was not run after it).
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Figure 1. Map of the two sites considered in our validation analysis. Digital Elevation Model data courtesy of the U.S. Geological Survey.

2.1 Observations

At the SGP Central Facility site, we consider observations from a Halo Streamline lidar (Newsom, 2012). We obtained hori-

zontal wind speed data from full 360◦ conical scans by the lidar, which were performed approximately every 15 minutes, with

1 minute needed to complete each scan. To obtain the horizontal wind speed from the line-of-sight velocity from these scans,90

we used the velocity-azimuth-display approach from Frehlich et al. (2006). In doing this, the horizontal wind field is assumed

to be homogeneous over the scan volume, and the average vertical velocity is assumed to be zero (Browning and Wexler,

1968). As in Bodini and Optis (2020), we discard any measurements that have a signal-to-noise ratio lower than -21 dB or

higher than +5 dB, and any measurements from time periods with precipitation that may significantly lower the accuracy of the

measurements. The wind speed data are then averaged to obtain hourly average data. For our study, we consider data from 695

range gates, which correspond to heights of 65-, 91-, 117-, 143-, 169-, and 195-m above sea level. Data at lower heights were

not used because of poor data quality. The analysis of the lidar data reveals how the site experiences winds mainly from the

south (see 91-m wind rose in Figure 2a), with more variability observed in winter months. Many wind plants were built around

the SGP site in the last decade. At the Central Facility site, the closest wind turbines are about 3.5 km away, and Bodini et al.
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Figure 2. (a) Wind rose showing the distribution of wind speeds at 91-m AGL for 2018, using lidar observations at the SGP Central Facility

site. (b) 24-x-12 heat map of the frequency of stable conditions at the site, classified in terms of the surface Obukhov length. (c) Same, but

for unstable and (d) neutral conditions.

(in review) showed how the site is impacted by wind plant wakes for southerly flow, especially in nighttime stable conditions.100

We classify atmospheric stability using near-surface (4-m above ground level (AGL)) observations from a sonic anemometer

at the C1 site. We calculate the Obukhov length as:

L =− Tv ·u3
∗

k · g ·w′T ′v
(1)

where k = 0.4 is the von Kármán constant; g = 9.81 m s−2 is the acceleration due to gravity; Tv is the virtual temperature

(K); u∗ = (u′w′
2
+v′w′

2
)1/4 is the friction velocity (m s−1); and w′T ′v is the kinematic virtual temperature flux (K m s−1).105

All Reynolds decompositions are calculated with a 30-minute averaging period (De Franceschi and Zardi, 2003; Babić et al.,

2012). We consider stable conditions for 0 m< L≤ 200 m, unstable conditions for−200 m≤ L < 0 m, near-neutral otherwise.

Figures 2b, c, and d show 24-x-12 heat maps of the frequency of stable, unstable, and neutral conditions, respectively. A clear
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diurnal pattern emerges, with stable conditions being typical of the nighttime hours, and unstable conditions occurring in

daytime convective periods. Also, summer shows more extended unstable cases compared to winter months. On the other110

hand, near-neutral conditions are relatively rare at the site, occurring most often during morning and evening transitions.

Offshore, we consider observations of wind speed from two floating lidars off the coast of New Jersey. The New York

State Energy Research and Development Authority (NYSERDA) recently deployed these lidars and made their data publicly

available (OceanTech Services/DNV GL). The lidar on buoy E05 is located at 39.97◦N, 72.72◦W; the buoy E06 lidar is located

at 39.55◦N, 73.43◦W. Wind speed and wind direction data for both lidars are available every 20 m from 58-m to 198-m above115

sea level. At these sites, wind mainly flows from the southwest and northwest, as is the case further east in this region (Bodini

et al., 2019, 2020) and it is generally stronger than what was observed at SGP, as shown in the wind rose at 98-m above sea

level from lidar E05 in Figure 3a. Due to the lack of observations from which atmospheric stability metrics can be calculated,

we use WTK-LED data to classify atmospheric stability as a function of the bulk Richardson number from 0 m–200 m above

the surface. The bulk Richardson number is calculated as:120

Rib =
g

θv

∆z∆θv

(∆U)2 + (∆V )2
(2)

where g is the gravitational acceleration, θv is the average absolute virtual potential temperature across the considered layer

of thickness ∆z, ∆θv is the virtual potential temperature difference across the layer, and ∆U and ∆V are the changes in the

horizontal wind components across that same layer. We use values of Rib > 0.025 to classify stable conditions, Rib < -0.025

for unstable conditions, and all other values as near-neutral conditions. Figures 3b and c show the 24-x-12 heat maps of the125

frequency of stable and unstable conditions, respectively. While a clear diurnal pattern emerged when looking at similar plots

at SGP, here we find little diurnal variability, but a strong seasonal cycle. Summer months show the most instances of stable

conditions, while winter months show primarily unstable conditions. Finally, near-neutral conditions account for up to half of

the cases in certain times and show little variability across both the diurnal and annual scales.

2.2 NWP model setup130

At SGP, we use WRF model data for 2018 from the preliminary National Renewable Energy Laboratory’s (NREL’s) Wind

Integration National Dataset (WIND) Toolkit Long-term Ensemble Dataset (WTK-LED), which will update the original WIND

Toolkit (WTK) [Lieberman-Cribbin et al. (2014); King et al. (2014); Draxl et al. (2015)]. The main WRF attributes in the WTK-

LED setup are summarized in Table 1. The simulations were initialized every month, and each simulation was initialized 2

days prior to and run up to 1 day after the end of each month. The first day of each monthly run is used as spin-up time for135

the model, while the second and last days are used to combine monthly runs. Model output is available at 5-minute resolution,

and we average the data at hourly resolution to perform the validation analysis. We consider data from the closest 2-km grid

cell to the location of the lidar (the difference in terrain height between this WRF grid cell and the actual lidar location is <3

m). To match the heights at which lidar observations are available, we linearly interpolate the WRF data from the two closest

levels. Given the high near-surface resolution used (see Table 1), we expect this linear interpolation to introduce only a small140

additional error to the analysis.
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Figure 3. (a) Wind rose showing the distribution of wind speeds at 98-m AGL for September 2019 to August 2020, using observations

from the E05 floating lidar. (b) 24-x-12 heat map of the frequency of stable conditions at the E05 lidar location, classified in terms of the

WTK-LED-based bulk Richardson number calculated between 0 m and 200 m ASL. (c) Same, but for unstable and (d) neutral conditions.

Results from the E06 lidar are included in the Supplementary Materials.

Offshore, we use WRF data from the offshore version of NREL’s WTK-LED. A summary of the model setup is provided in

Table 1. Similar to the land-based case, we select WTK-LED data from the closest grid cell to the location of each of the two

floating lidars and linearly interpolate the WRF vertical levels to match the heights of the lidar data.

2.3 ERA-5 reanalysis145

We use the state-of-the-art ERA-5 reanalysis product (Hersbach et al., 2020), to compare its skill in assessing wind resource

with that of the WTK-LED product. ERA-5 provides hourly average data at 137 vertical levels and an ∼31-km horizontal

resolution. In our analysis, we considered vertical levels corresponding to heights of 54-, 79-, 106-, 137-, 170-, and 205-m above

sea level. As done for WTK-LED, these heights are then linearly interpolated to match those of the lidar observations. We use
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Table 1. Key attributes of the WRF simulations in WTK-LED setup used in this study.

Feature
Specification

Offshore Land-based

WRF version 4.2.1

Grid spacing 6 km, 2 km (nested) 2 km

Output time resolution 5 minutes

Vertical levels 61

Near-surface-level heights (m) 12, 34, 52, 69, 86, 107, 134, 165, 200

Atmospheric forcing ERA-5 reanalysis

Atmospheric nudging Spectral nudging (6-km domain) Spectral nudging

applied every 6 hours applied every 3 hours

Planetary boundary layer scheme Mellor-Yamada-Nakanishi-Niino Level 2.5

Microphysics Ferrier Morrison double-moment

Longwave radiation Rapid radiative transfer model

Shortwave radiation Rapid radiative transfer model

Topographic database Global multiresolution terrain elevation data from the

U.S. Geological Survey and National Geospatial-Intelligence Agency

Land-use data Moderate Resolution Imaging Spectroradiometer 30 s

Cumulus parameterization Kain-Fritsch (6-km domain) None

Sea surface temperature product Operational Sea Surface Temperature None

and Sea Ice Analysis (OSTIA)

data from the ERA-5 grid point which is closest in space to the considered lidars. Sheridan et al. (2020) recently confirmed that150

selecting the closest grid point generally leads to better reanalysis performance compared to a linear interpolation of the four

surrounding grid points, while Livingston and Lundquist (2020) used a bilinear interpolation. The coordinates of the selected

ERA-5 grid point at SGP are 36.5◦N and 97.5◦W; offshore, we use data from the 40◦N, 72.75◦W grid point to compare with

the E05 lidar data, and at 39.5◦N, 73.5◦W to compare with the E06 lidar data.

2.4 Performance metrics155

To quantify the skills of WTK-LED and ERA-5 in predicting the observed wind resource, we calculate, at all of the considered

heights, four performance metrics, as recommended in Optis et al. (2020a).

In general, it is important to decompose a model error into bias, which quantifies the difference between modeled and

observed data; and random error, which quantifies the variability of the modeled data around the mean. We decompose the root-

mean-square error (RMSE) into a bias component and an "unbiased" or "centered" component of RMSE (cRMSE), following160
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the approach in Taylor (2001). We calculate bias as:

Bias = p̄− ō (3)

where p̄ is the mean of the modeled (by either WTK-LED or ERA-5) estimates and ō is the mean of the lidar observations. A

perfect prediction would have a bias of 0. Next, we calculate the cRMSE as:

cRMSE =

[
1
N

N∑

n=1

[(pn− p̄)− (on− ō)]2
]1/2

(4)165

where N is the number of data points in the considered time series, and pn and on indicate the time series values of modeled

and observed wind speed, respectively. A perfect prediction would have a cRMSE of 0.

As a third performance metric, we calculate the square of the Pearson’s correlation coefficient between observed and modeled

wind. The correlation coefficient r measures how strong the correspondence between two variables is, and it is calculated as:

r =
1
N

∑N
n=1(pn− p̄)− (on− ō)

σpσo
(5)170

where σp and σo are the standard deviations of the modeled and observed data, respectively. A perfect prediction would have

a correlation coefficient of 1.

Last, we use the Earth-mover’s distance (EMD), also known as the Wasserstein distance (?Hahmann et al., 2020), which

measures the difference between two distributions. EMD is calculated as the area between two cumulative distribution functions

(here, modeled and observed wind speed). This metric is an improvement on the bias metric and will catch cases where bias175

may be zero, despite having different modeled and observed wind speed distributions. The distribution of a perfect prediction

would have an EMD of 0.

3 Results

3.1 Mean performance

In Figure 4, we compare the mean wind profiles from all three data sources at SGP and the NYSERDA E05 lidar. (Results180

from the E06 lidar are included in the Supplementary Materials because no major differences between the results from the two

lidars were found.) In each panel, the solid lines indicate the mean wind profile and the shaded bands around them represent

± the standard deviation of the data. On average, the wind resource is stronger offshore. At both sites, the ERA-5 mean wind

profile underestimates the observed wind resource. Conversely, WTK-LED shows a slight overestimation of the mean wind

profile at the land-based site and a slight underestimation offshore. However, in all cases, a large variability emerges so that a185

more detailed investigation, beyond an annual average, is required.

We then consider the four mean performance metrics introduced in Section 2.4 for both WTK-LED and ERA-5 calculated

at the two sites (Figure 5). The WTK-LED-predicted wind speed profiles show a slight positive bias (∼+0.5 m s−1) at the

land-based location and a slight negative bias (∼−0.5 m s−1) offshore. However, ERA-5 shows a significant negative bias at
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(a) (b) 

Figure 4. Mean vertical wind speed profiles for all three data sources at (a) the land-based SGP site and (b) the offshore E05 floating lidar.

The shaded bands represent ± the standard deviation of the data.

both locations, especially at SGP, where the bias is ∼−1.5 m s−1. In general, we find little variability with height, with just a190

slight degradation of the bias with height for both WTK-LED and ERA-5. When considering the cRMSE, however, we find

an opposite situation, with ERA-5 outperforming WTK-LED at both locations at all heights. We find satisfactory correlation

at both sites, once again with ERA-5 providing slightly better values. The offshore location shows larger values (r2 > 0.85

for both ERA-5 and WTK-LED at all heights), likely because of the positive effects of the simpler topography on the skills

of both data sources. Interestingly, we find a slight increase in r2 with height, especially at SGP. Finally, when looking at the195

EMD, WTK-LED significantly outperforms ERA-5 at both sites, once again with the offshore site showing better results for

both data sources compared to the land-based location. Given the difference in relative performance between WTK-LED and

ERA-5 when considering different metrics, we will investigate the impact of atmospheric stability, diurnal, and seasonal cycles

in the next sections to investigate the potential reasons for such variability.

3.2 Impact of atmospheric stability200

To assess whether the relative performance between ERA-5 and WTK-LED holds in all atmospheric stability conditions, we

segregate the data at both sites. As detailed in Sections 2.1.1 and 2.2.1, we classify atmospheric stability at SGP based on the

near-surface observed Obukhov length, while offshore we base our classification on the WTK-LED-modeled bulk Richardson

number, in absence of direct observations from which atmospheric stability parameters can be derived. We then calculate the

vertical profiles of the four performance metrics for each stability class at the two sites (Figure 6). The relative performance205

between ERA-5 and WTK-LED observed from the mean profiles with no data segregation still holds in all stability conditions:

WTK-LED outperforms ERA-5 for bias and EMD, while ERA-5 shows a better performance when considering cRMSE and r2.

When analyzing how the performance of each data source varies with atmospheric stability, interesting considerations emerge.
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

SGP OFFSHORE (E05) 

Figure 5. Vertical profiles of mean bias, cRMSE, r2, and EMD at the SGP C1 site (left) and the E05 lidar (right). Results from the E06 lidar

are included in the Supplementary Materials.

At SGP, WTK-LED shows the best agreement with observations in unstable conditions, with a near-zero bias and EMD at all

considered heights, and its lowest values of cRMSE. However, stable cases seem the most challenging to model for WTK-LED,210

as also noticed by Smith et al. (2018, 2019) with respect to the challenges for WRF to accurately model the frequent nocturnal

low-level jets in the region. ERA-5 also performs well in unstable conditions, but ERA’s stable cases outperform neutral

conditions, which show worse performance in terms of bias, cRMSE, and EMD. Little variability with stability emerges when

considering the r2 metric.
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

SGP OFFSHORE (E05) 

Figure 6. Vertical profiles of performance metrics segregated by atmospheric stability at the SGP C1 site (left) and at the location of the E05

lidar (right). Results from the E06 lidar are included in the Supplementary Materials.
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(a) (b) 

Figure 7. Average diurnal cycle of the ∼120-m wind speed from lidar, WRF, and ERA-5 at (a) the SGP C1 site and (b) the location of the

E05 lidar. Results from the E06 lidar are included in the Supplementary Materials.

At the offshore site, slightly different considerations apply. While unstable conditions still show the best performance in215

terms of cRMSE, stable and neutral cases outperform unstable conditions when considering bias and EMD, with again little

variability in terms of correlation. For ERA-5, unstable cases show the best performance across all the considered metrics,

followed by neutral conditions and, last, stable periods.

3.3 Impact of diurnal and seasonal variability

To further investigate the reasons for WTK-LED displaying a worse performance in its cRMSE and r2 compared to ERA-5,220

we analyze the average diurnal cycle at both locations (Figure 7). A clear diurnal variability emerges at both locations, with

higher wind speeds occurring at night (SGP) or evening (offshore). At SGP, this variability is consistent with the frequent

nocturnal low-level jets that have been observed at the site (Song et al., 2005; Greene et al., 2009). We find that ERA-5 well

captures the amplitude of the observed diurnal cycle with a negative bias that remains nearly constant throughout the average

day. By contrast, WTK-LED overestimates the amplitude of the average diurnal cycle, especially at the land-based location. At225

SGP, we find that WTK-LED significantly overestimates the nocturnal high wind speeds, whereas it well captures the daytime

wind regime. Offshore, a nearly opposite situation occurs as WTK-LED exhibits skill in predicting the strong nocturnal winds,

but slightly underestimates the weaker daytime winds. This exaggeration of the diurnal cycle by WTK-LED leads to its worst

performance, compared to ERA-5, when considering the cRMSE and correlation coefficient at both locations.

To further break down the temporal variability of the relative performance of WTK-LED and ERA-5, we look at the diurnal230

and seasonal variability of the four performance metrics at both test sites. To do so, we build 24-x-12 heat maps of the four

metrics by partitioning data by both hour of day and month. We show results for the land-based test case in Figure 8; the

offshore test case is shown in Figure 9. We show results at 91-m AGL at SGP, at 98-m offshore, considered as a proxy

for wind turbine hub-height, and we note that no significant variability of the metrics with height was found. At SGP, the
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Figure 8. 24x12 heat maps at the SGP C1 site showing the diurnal and seasonal variability in the four performance metrics for the 91-m

wind speed.

analysis of bias confirms what was seen in Figure 7—that ERA-5 displays a negative bias for all months and hours, whereas235

WTK-LED shows mostly a positive bias during the night and a negative bias during the daytime, thus confirming that WTK-

LED overestimates the diurnal cycle throughout the year. While the daytime bias performance of WTK-LED does not change

significantly throughout the year, we find a larger positive bias in summer nights, whereas in winter the bias is smaller. When

looking at the differences in the cRMSE between WTK-LED and ERA-5, we find more instances where WTK-LED shows

higher cRMSE values than ERA-5 during the nighttime than the daytime. As already noted for bias, we find a worse WTK-240

LED performance during nighttime in summer months also in terms of cRMSE, correlation, and EMD. In general, WTK-LED
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Figure 9. 24-x-12 heat maps at the location of the E05 lidar showing the diurnal and seasonal variability in the four performance metrics for

the 98-m wind speed. Results from the E06 lidar are included in the Supplementary Materials.

shows significantly better performance than ERA-5 in terms of EMD during the daytime, whereas there are several instances

during the nighttime, especially in the late spring and summer months, where ERA-5 outperforms WTK-LED.

At the offshore lidar location, ERA-5 shows a negative bias for all months and hours, similar to what was seen at SGP.

WTK-LED displays more occurrences of positive biases in spring and summer months, especially at night, whereas a slightly245

negative bias is observed during the winter months at all hours. The overestimation of the observed diurnal cycle by WTK-LED

is therefore more typical of summer months. However, little variability emerges when considering the relative performance of

WTK-LED and ERA-5 in terms of the cRMSE, at both diurnal and annual scales. In fact, in the majority of cases, WTK-LED

displays a higher cRMSE than ERA-5, but without any clear seasonal or diurnal pattern, thus making the interpretation of
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(a) (b) 

Figure 10. Average diurnal cycle of the 117-m wind speed from lidar, WRF, and ERA-5 at the SGP C1 site for (a) southerly (112◦− 196◦)

and (b) northerly (315◦− 45◦) wind flow.

the results murkier compared to the land-based case. Looking at the heat map for the EMD, a consistent seasonal or diurnal250

pattern is not clear, either. However, WTK-LED generally outperforms ERA-5 in terms of EMD, with its best performance in

the spring.

Finally, we note how the land-based location, during 2018, is influenced by the presence of a large number of wind power

plants in the vicinity (see map in Figure 1). As shown by Bodini et al. (in review), wakes from wind plants in the vicinity

affect the lidar measurements at the C1 location, and wakes tend to be stronger in stable conditions. Because the WTK-LED255

predicts stronger winds at night than the lidar observes, some of the exaggerated diurnal cycle could be due to the fact that the

WTK-LED does not incorporate effects from wind power plants. To further investigate this possibility, Figure 10 shows the

hub-height wind speed average diurnal cycle at SGP for southerly flow (i.e., when the wind turbines are directly upwind of the

lidar, panel (a)) and northerly flow (i.e., when the lidar measurements are unaffected by the wind power plants, panel (b)). We

find that WTK-LED overestimates the hub-height wind speed especially for southerly flow, while only a slight overestimation is260

observed for the less frequent northerly flow. This result suggests how wind power plant wakes, which are not well represented

by WTK-LED, might contribute to its strong overestimation of wind speed during stable conditions.

4 Conclusions

Accurate characterization of the wind resource aloft is a necessity for wind energy development. At land-based locations,

direct observations of the wind resource at hub height are often challenging to collect due to a variety of reasons, including265

cost, complex topography, road access, and availability of electrical power. Offshore, collecting direct measurements of wind

speeds aloft is even more challenging. Thus, NWP models and reanalysis products are often used to characterize the wind

resource in the locations of interest for wind energy development.
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Using one year of lidar data at both land-based and offshore test sites, we evaluated the WRF model as run in the WTK-LED

setup and the ERA-5 reanalysis product in their wind resource assessment skills. To evaluate each data product, we calculated270

four model performance metrics—bias, cRMSE, r2, and EMD. WTK-LED shows a smaller bias than ERA-5 at both the

considered locations for all of the stability conditions. However, ERA-5 outperforms WTK-LED in terms of cRMSE for all

stability cases both at the land-based and offshore sites. A potential explanation for this underperformance of WTK-LED in

terms of cRMSE is WTK-LED’s exaggeration of the average diurnal cycle at both sites. In fact, when considering the diurnal

variability of the WTK-LED bias, we find that WTK-LED generally shows a positive bias at night and more instances of275

negative biases during the daytime. ERA-5 is capable of well capturing the amplitude of the daily cycle in hub-height wind

speed at the considered locations, albeit with a relatively constant negative bias throughout the diurnal cycle. Both WTK-LED

and ERA-5 showed high correlation offshore, while at the land-based site the correlation was slightly reduced, likely because of

the increased complexity in modeling the wind flow in conjunction with topographic effects. Analysis at both locations showed

ERA-5 having a slightly stronger correlation than WTK-LED. Based on the analysis of the EMD, the wind speed distributions280

predicted by WTK-LED better match the observed distributions compared to the ERA-5 data in all stability conditions.

Our results show how there is not a clear and universal winner between WRF (in the WTK-LED setup) and ERA-5 when

assessing their skills for wind resource assessment at these two locations, offshore and flat terrain on land. However, when

weighting the relative performance of the two data sources, it is worth noting how bias correction techniques have been

successfully applied in the wind energy sector (Stoffelen, 1998; Costoya et al., 2020), so that we can expect worse ERA-5285

performance in terms of bias would be easier to accommodate when compared to the WTK-LED underperformance in terms

of random error (cRMSE) and correlation. On the other hand, it is worth emphasizing that WTK-LED offers data at a finer

spatial and temporal resolution, which represents an essential advantage over reanalysis products for specific wind energy

related applications, such as grid integration analyses (Archer et al., 2017) and in locations with complex terrain. Clearly, it is

important to stress that the results we found are specific to the sites considered in the analysis, which are both characterized by290

simple topography. Future work can replicate our proposed validation in more complex terrain, where the coarser resolution of

the reanalysis products is likely to have a severe negative impact on their skills in accurately representing the wind flow at hub

height. Such analyses could provide additional understanding about why the WTK-LED WRF setup struggled, in our analysis,

in well representing the wind speed diurnal cycle aloft. Finally, follow-on work will explore whether representing wind power

plants in WRF improves the WRF performance in the vicinity of active wind power plants (e.g., by using the WRF Wind Farm295

Parameterization (Fitch et al., 2012; Tomaszewski and Lundquist, 2020)) .

Data availability. Observations at the SGP site are publicly available at https://www.arm.gov/capabilities/instruments/dl. The NYSERDA

lidar observations are publicly available at https://oswbuoysny.resourcepanorama.dnvgl.com. ERA-5 data are publicly available from the

ECMWF’s MARS archive. The open-source WRF model was used for the numerical weather prediction simulations.
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