
Response to Referee 2

We greatly appreciate the time taken by the referee to read our manuscript. We have taken into
consideration and addressed all comments, questions, and suggestions from the reviewer, and we
feel that the revised manuscript is now substantially stronger as a result. Changes made to the
text at the request of the reviewer have been highlighted in blue in the revised manuscript. In the
following, reviewer comments are repeated in italics and our responses are provided in the bulleted
sections of text.

Comments
1) The paper is well written and explores an idea worth considering. My main concern is the
omission of discussions surrounding accuracy.

• In an effort to include greater discussions surrounding accuracy, we included material to assess
the accuracy of the AEP approximation, as well as the accuracy of the final solution with
respect to the imposed constraints. This material is described in the next two bullet points.

• We have included convergence analysis of the Monte Carlo and quadrature approximation in
the Application in Figure 2 P10L221-230 in an effort to directly compare the accuracy of the
deterministic and stochastic approaches in computing AEP.

• We also included analysis of how well the constraints are satisfied in the Results in Figures
11 and P17L323-P18L333. The left panel of Figure 11 shows the relationship between final
scheduled learning rate and the constraint violations of the final solution. The right panel
of Figure 11 shows the trade-offs between the AEP and constraint violation of the solutions
associated with different initial and final learning rates.

2) - operating on continuous PDFs isn’t so much of an advantage as it is made out to be. And
really pretty much any of the UQ methods could be thought of acting on a continuous input (the
discretization can be considered part of the method, in the same way that random sampling is part
of the method of MC).

• We have removed references to the benefits of the continuous formulation in the abstract and
future work section of the conclusions.

• We still believe that this method will scale favorably as more atmospheric conditions (shear,
stability, etc.) are considered, as noted on in the conclusions on P19L330-341.

3) - the literature review on SGD has good detail, but the lit review is light on other topics that this
paper is based on. Namely, the proposed approach is a gradient-based one and there is no discussion
of any prior work in this regard, other than the reference to the review paper by Herbert-Accero
(which is a somewhat ironic choice as that review paper shows very few gradient-based approaches
and is pretty dismissive of the approach in general).

• We added additional review of work that uses gradients in the introduction on P2L48-P3L62
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

• We added references to give a greater perspectives on this rich topic on P1L14 [22, 23].

4) - Algoirthm 1 could use more introduction. Although I am already familiar with SGD, as noted
by the authors it is not in regular use by the wind farm optimization community and so needs more
explanation than just an algorithm dump.
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• We agree that this is a good idea. We added an introductory paragraph before Algorithm 1
in the Methodology on P4L97-107 to provide context to the algorithm and explain why our
formulation is novel.

5) - The SGD method notes a mix of AD and finite difference, but in the determinisitic approach it
is not stated how you compute the derivatives and of course this will affect the time performance.

• This is an important point to consider. Since submitting the manuscript, we have imple-
mented the SGD algorithm in TOPFARM (which is now noted on P2L49), which also has an
SLSQP implementation through the OpenMDAO package.

• We have updated the manuscript to reflect the latest benchmarking results using TOPFARM,
where the gradients of the constraints are computed analytically (which is noted on P9L217-
218).

• This is in contrast to the original manuscript, where constraints were computed via finite
difference. The TOPFARM implementation substantially speeds up the SLSQP algorithm.
However, as larger wind farms are examined, the same overall trend emerges – the computa-
tional cost of SGD scales more favorably than SLSQP.

6) - Nowhere is the accuracy of the method shown. Undoubtedly MC can be much faster than a
dense rectangule rule, but of course the real question is at what level of accuracy? One would like
to see how many random samples are required to achieve the same accuracy.

• We added analysis and discussion of the accuracy and expense of computing AEP and the
associated gradients in the Application in Figure 2 and P10L221-230.

7) - I realize this is somewhat difficult to directly compare as you are using a stochastic gradient and
so allowing for inaccuracy is built into the method, but this is still a topic that one should be more
transparent on. Especially since the main comparison is a very dense rectangle rule combined with
SLSQP. I don’t have a problem with that choice, but lots of things are faster than that combination.
It shows promise, but must be careful on concluding anything more than that.

• We agree that it is best to be as transparent as possible regarding the accuracy of these
methods. We also agree that it is difficult to compare accuracy of the methods, as the SGD
approach is designed to expect significant errors in the gradient evaluation, using a moving
average to find the optimum.

• We included some discussion of the convergence of the AEP using quadrature and Monte
Carlo approaches on P10L221-230/Figure 2. These additional data show that the quadrature
rule is more computationally efficient than Monte Carlo simulation at accurately determining
the AEP.

• We included a note in the previously mentioned paragraph that the advantage of the SGD
formulation is that it allows for random samples in each iteration, and the average error is
zero.

8) - The plots on different learning rates, and the discussion on how hyperparameters were selected
are appreciated.

• We have added a dedicated sensitivity analysis to the results.
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