
Stochastic Gradient Descent for Wind Farm Optimization
Julian Quick1, Pierre-Elouan Rethore1, Mads Mølgaard Pedersen1, Rafael Valotta Rodrigues1, and
Mikkel Friis-Møller1

1Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Frederiksborgvej 399, 4000 Roskilde,
Denmark

Correspondence: Julian Quick (juqu@dtu.dk)

Abstract. It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this optimization,

atmospheric conditions, such as the inflow speed and direction, are assigned probability distributions according to measured

data, which are propagated through engineering wake models to estimate the annual energy production (AEP). This study

presents stochastic gradient descent (SGD) for wind farm optimization, which is an approach that estimates the gradient of the

AEP using Monte Carlo simulation, allowing for the consideration of an arbitrarily large number of atmospheric conditions.5

SGD is demonstrated using wind farms with square and circular boundaries, considering cases with 100, 144, 225, and 325

turbines, and the results are compared to a deterministic optimization approach. It is shown that SGD finds a larger optimal

AEP in substantially less time than the deterministic counterpart as the number of wind turbines is increased.

1 Introduction

Wind farms are groups of wind turbines that harness the power in the atmospheric boundary layer to provide renewable10

energy. When a wind turbine absorbs energy from the air, the air downstream of the wind turbine has reduced power, which

often reduces the power production of downstream turbines. This is known as the wake effect (Sanderse, 2009; Hasager

et al., 2013). When a new wind power plant is to be constructed, optimal turbine locations are determined using engineering

wind farm models (Samorani, 2013; Ning. et al., 2020; Annoni et al., 2018). Turbine positions are optimized to exploit the

benefits of the local wind resource while avoiding energy losses from turbine wakes. In the wind turbine placement problem,15

atmospheric conditions, such as the inflow speed and direction, are assigned probability distributions according to measured

data. By propagating these probability distributions through the engineering wake model, the annual energy production (AEP)

can be estimated. The AEP is often computed using rectangular quadrature, dividing the relevant speeds and directions into

equal-sized bins, then computing the expected AEP as the product of the power and probability of each bin, added together,

then multiplied by the number of hours per year. The cost of wind farm optimization generally increases with the number of20

atmospheric conditions considered during AEP computation, and this expensive become more extreme as more complex wake

models (e.g., RANS) are considered. For example, there are some memory limitations when computing AEP gradients using

automatic differentiation with very large wind farms. This has given rise to studies seeking convergence of the AEP, proposing

methods such as polynomial chaos expansion (Padrón et al., 2019; Murcia et al., 2015) or Bayesian quadrature (King et al.,

2020), to avoid discretizing the input distributions into evenly spaced intervals. In this study, we present an approach for wind25

1

farm optimization that estimates the gradient of the AEP using Monte Carlo simulation. This does not require that the input be

discretized at all, and allows for the consideration of an arbitrarily large number of atmospheric conditions.

Stochastic gradient descent (SGD) is an optimization algorithm commonly used in machine learning when selecting neural

network weights (Ketkar, 2017). The algorithm samples the gradient of a stochastic objective, following the mean gradient by

a specified distance, then repeating the process, which amounts to optimizing the expected value of the objective. The SGD30

algorithm is often enhanced to avoid oscillations caused by large changes in the gradient of the objective (Ruder, 2016). This

includes methods to reuse previous gradient information (Qian, 1999), dampen oscillations (Riedmiller and Braun, 1993), or

incorporate an estimate of the Hessian matrix (Moritz et al., 2016; Byrd et al., 2016; Liu et al., 2018; Najafabadi et al., 2017).

Kingma and Ba (2014) introduced the Adam SGD algorithm, which reuses gradient evaluations and dampens oscillations, and

is the basis of the SGD method we propose in this study.35

Interestingly, SGD is not often applied to problems with nonlinear constraints, although it can be fruitful to include nonlinear

constraints in the context of training a machine learning algorithm. For example, when recognizing three-dimensional pictures

of people, it can be useful to impose a constraint that any person’s left arm should be close to the same length as their right arm

(Márquez-Neila et al., 2017). Many frameworks have been proposed for constrained SGD, including the log-barrier function

(Kervadec et al., 2019), penalty functions (Márquez-Neila et al., 2017), blending barrier and penalty functions (Kervadec et al.,40

2019), and Riemannian geometry (Roy and Harandi, 2017). In this study, we use a penalty term to transform the constrained

problem into an unconstrained optimization.

The wind farm layout optimization problem presents a setting where the objective (annual energy production) can be formu-

lated as being stochastic (e.g., the AEP is derived from a probability density function), while the constraints (e.g., boundaries

and minimum turbine spacing) are firmly deterministic. This manuscript explores the potential benefits of formulating the wind45

farm layout optimization problem in this way. As part of this, the Adam algorithm is extended to optimize a stochastic objective

with deterministic constraints. To the best of the authors’ knowledge, this exact algorithm has not been published before.

This study benchmarks the performance of the proposed SGD approach when compared to conventional gradient-based

optimization within the TOPFARM framework (DTU Wind Energy Systems, 2023b), considering wind farms with different

shapes and sizes. We examine the open-source SLSQP algorithm (Kraft, 1988), which is employed in many engineering50

frameworks (King et al., 2017; Allen et al., 2020; Wu et al., 2020; Zhang et al., 2022; Zilong and Wei, 2022; Kölle et al., 2022;

Clark et al., 2022; Simley et al., 2023) and has been used in previous comparisons of optimization algorithms (Lam et al.,

2018; Li and Zhang, 2021; Fleming et al., 2022). The TOPFARM framework has been used with SLSQP in several wind farm

optimization studies (Riva et al., 2020; Ciavarra et al., 2022; Criado Risco et al., 2023). In future work, this approach can be

extended to co-optimize layout and control strategy—the SGD framework can naturally incorporate uncertainty quantification55

when modeling the potential control strategies for potential layouts [similar to the work in Gebraad et al. (2017); Quick et al.

(2020); Howland et al. (2022)].

While there are some wind plant optimization studies that resemble our approach, we are not aware of any studies that

have applied SGD to the wind farm optimization problem [although SGD has been applied to other problems in engineering

optimization, e.g., De et al. (2020); Sivanantham and Gopalakrishnan (2022)]. Several wind farm optimization studies make60

2

use of gradient-based optimization techniques (Herbert-Acero et al., 2014; Guirguis et al., 2016; Graf et al., 2016; Gebraad

et al., 2017; Baker et al., 2019; Riva et al., 2020; Stanley et al., 2021; Croonenbroeck and Hennecke, 2021). Feng and Shen

(2015) present a random search approach, moving the wind turbines one by one using a greedy algorithm. Some studies have

employed neural networks to forecast power production (Godinho and Castro, 2021), estimate local atmospheric conditions

(Stengel et al., 2020), suggest control strategies (Najd et al., 2020), or optimize engineering wake models (Zhang et al., 2021;65

Zhang and Zhao, 2022; Hussain et al., 2022), which all use SGD algorithms to the train parameters of the neural networks.

The remainder of the manuscript is the following. Section 2 outlines the SGD and deterministic optimization approaches

used in this study. Section 3 details the wind farm optimization application cases examined. Section 4 discusses the results of

these optimization comparisons. Section 5 provides conclusions and future research directions.

2 Methods70

When deciding where to put wind turbines, the typical strategy is to maximize wind farm annual energy production (AEP)

while ensuring turbines are within the prospective site and are not spaced too closely together. In this study, we examine square

and circular wind farms, where the corresponding optimization problems are posed as

maximize
xxx;yyy

AEP(xxx;yyy)

subject to (x i � x j)2 + (yi � yj)2 � (ND D)2; 8i 6= j

x l � x i � xu

yl � yi � yu

(1)

and75

maximize
xxx;yyy

AEP(xxx;yyy)

subject to (x i � x j)2 + (yi � yj)2 � (ND D)2; 8i 6= j
q

x2
i + y2

i � R ;

(2)

respectively, wherexxx andyyy are the turbine horizontal and vertical locations,x l andxu are the lower and upper horizontal square

wind farm boundaries,yl andyu are the lower and upper square wind farm vertical boundaries,R is the radius of the circular

wind farm,D is the rotor diameter, andND is the minimum allowable spacing between turbines measured in rotor diameters.

From this point forward, we will use a single variable to represent the x- and y-locations,sss = f xxx;yyyg. When optimizing square80

wind farms,x l , xu , yl , andyu are constant.

The AEP is de�ned as

AEP(sss) = 8760

2�Z

0

1Z

0

P(sss;u1 ; �)� (u1 ; �)du1 d� ; (3)

3

whereP is power,� is probability,u1 is the freestream velocity, and� is the freestream direction. The 8,760 factor re�ects

the number of hours per year, converting from units of power to units of energy.85

The AEP is typically estimated through rectangular quadrature, where the freestream velocity and direction are discretized

using evenly spaced intervals,

AEP (sss) � 8760
DX

d=1

UX

u=1

P(sss;Uu ; � d)� (Uu ; � d) (4)

whereUUU is a vector of evenly spaced wind speeds,��� is a vector of evenly spaced wind directions, and� (Uu ; � d) is a probability

mass function.90

The AEP can also be estimated through Monte Carlo integration,

AEP (sss) � 8760
1
K

KX

k=1

P(sss;u(k)
1 ; � (k)) ; (5)

whereu(k)
1 and� (k) represent draw k of the probability distribution� (u1 ; �).

The associated AEP gradient can also be approximated through Monte Carlo simulation:

d
dsss

AEP � 8760
1
K

KX

k=1

d
dsss

P(sss;u(k)
1 ; � (k)) (6)95

2.1 Stochastic Gradient Descent

SGD is built upon the steepest descent algorithm. Early SGD algorithms added a moving average term (sometimes referred to

as “momentium”) to avoid spurious oscillations (Tian et al., 2023). The conventional Adam SGD algorithm uses two moving

averages: one of the gradient and one of the squared gradient. The ratio of these moving averages is used to determine the

search direction. SGD algorithms are often combined with a learning rate scheduler, where the step size of the gradient descent100

is gradually decreased, allowing the optimization algorithm to hone in on the best solution. While the Adam algorithm is already

designed to dynamically change the step size, including a learning rate can further improve the performance. The conventional

Adam algorithm is designed for unconstrained optimization algorithms. In the following, we extend the algorithm to allow

for deterministic constraints, which is a case that is common in mechanical engineering and unusual in the context of training

neural networks. The basic idea is to aggregate the constraints to a penalty term with units that are consistent with the objective.105

The penalty term is designed so that, initially, the penalty gradients are of similar magnitude to the AEP gradients, and so that

the penalty gradients overwhelm the AEP gradients as the optimization continues.

The SGD algorithm is shown in Algorithm 1, wheresss0 are the initial turbine positions,i is the iteration number,� i is referred

to as the constraint multiplier,
 (sss) is a penalty function,P(sss;u(k)
1 ; � (k)) is the wind farm power associated with in�ow speed

u(k)
1 and� (k) , K is the number of samples employed in each SGD iteration,� 1 and� 2 are constants,T is the number of SGD110

iterations,S is the learning rate scheduler, and� i is the learning rate. By default, the early stopping option is false.

4

Algorithm 1 TOPFARM Stochastic Gradient Descent Implementation

mmm 000, vvv 000, sss sss0

for i in [0;1;2; : : : ;T � 1]

do

if early_stopping and� i =� 0 � threshold:

jjj = � i
@

@sss

if jjjj j � 0:

break

else:

jjj = � 8760
K

P K
k =1

@
@sss P(sss;u(k)

1 ; � (k)) + � i
@

@sss

mmm = � 1mmm � (1 � � 1)jjj

vvv = � 2vvv � (1 � � 2)jjj 2

m̂mm = mmm
1� (� 1) i

v̂vv = vvv
1� (� 2) i

sss = sss � � i m̂mm=
p

v̂vv

� i = S(� 0 ; �; i)

� i = � 0
� 0
� i

The spacing between turbines is enforced using a penalty term,

 s =
X

8i; j>i

min
�
(x i � x j)2 + (yi � yj)2 � (ND D)2;0

�
: (7)

Similarly, the distance outside of boundaries is enforced using a penalty term. When considering square wind farms this

penalty term is de�ned as115

 b =
N tX

i =1

h
max(x i � xub ;0)2 + max(x lb � x i ;0)2 + max(yi � yub ;0)2 + max(ylb � yi ;0)2

i
; (8)

and, in the case of circular boundaries, it is de�ned as

 b =
N tX

i =1

max
� q

x2
i + y2

i � R; 0
� 2

; (9)

whereN t is the number of wind turbines.

The total penalty,
 , is de�ned as the sum of these two penalty terms,120

 (sss) =
 s(sss) +
 b(sss) : (10)

5

The gradient of the penalty term,
 , is scaled before being added to the negative gradient of the AEP using the scaling factor,

� i .

In Algorithm 1, the learning rate (� i), constraint multiplier (� i), number of SGD iterations (T), and the samples per SGD

iteration (K) are all free parameters. These parameters can be optimized to perform well for individual wind farm optimization125

problems. But there is no guarantee that these particular parameters will perform well for other wind farm problems—and

this meta-optimization can be expensive. In the machine learning community, these parameters are sometimes optimized using

evolutionary, grid search, or Bayesian optimization approaches (Alibrahim and Ludwig, 2021). In addition, it is common to

schedule the learning rate to decay as the optimization proceeds (You et al., 2019; Denkowski and Neubig, 2017).

We propose a method for setting free parameters to ensure that all units are consistent. The only free parameters we manually130

set are the number of optimization iterations and the number of power samples per iteration. The optimization generally

becomes more accurate and more expensive as these parameters increase, and users are free to balance this tradeoff as they

see �t. Our formulation does not guarantee that all intermediate solutions satisfy the constraints, especially in the beginning of

the optimization. The constraint multiplier begins on a comparable scale to the AEP, and is scheduled to increase so that the

constraint gradients overwhelm the AEP gradients as the optimization progresses. The number of iterations,T, can be based135

on a prescribed computational budget.

We initially attempted this approach using the widely used default parameter values in the original Adam algorithm,� 1 = 0 :9

and� 2 = 0 :999. The parameters can be thought of as adding momentum to the moving averages of the gradient and squared

gradient,mmm andvvv. We found that these default values gave too much emphasis to gradients from the penalty function, launching

the turbines away from the boundaries in a dramatic fashion. Instead, we suggest the parameters� 1 = 0 :1 and� 2 = 0 :2, which140

encode a shorter memory of the presence of the penalty. With these new default parameters, and the learning rate de�ned below,

we observed successful convergence for a wide variety of test cases.

The learning rate,� i , can be interpreted as convertinĝmmm=
p

v̂vv (with unity units) to distance (units of m). In this study, the

learning rate is scheduled to decay according to

S(t = 0) = � 0

S(t = T � 1) = � T ;
(11)145

whereT is the number of optimization iterations,� 0 is the initial learning rate, and� T is the scheduled �nal learning rate. This

�nal learning rate can be thought of as a solution tolerance for the design variables. In this study, we set� T = 0 :1m.

The initial learning rate,� 0, is based on a length scale parameter,L , which corresponds to a reasonable initial step size for

the optimization. By setting the initial learning rate according to

� 0 = L = D=5; (12)150

whereD is the turbine rotor diameter, we encourage the turbines to move at mostL every optimization iteration.

The learning rate is scheduled to decay as

S(� 0; �; t) = � 0

tY

i =0

1
1 + i�

; (13)

6

where� is a parameter that controls the learning rate length, such that the �nal learning rate is� T . The parameter� is numeri-

cally set as155

� (� 0; � T ;T) = argmin
�

j� T � S(� 0; �;T)j : (14)

The constraint multiplier,� i , can be interpreted as converting the gradient of constrained square distances (in units of m) to

AEP gradients. The initial constraint multiplier,� 0, is set as the mean absolute AEP gradient divided by the length scale,L , so

that the separation constraint has a similar scale to AEP gradients,

� 0 =
mean[jr AEP (sss0)j]

L
; (15)160

wheremean[jr AEP (sss0)] is the mean of the absolute AEP gradient of the initial guess with respect to each component of the

gradient. During each iteration, the constraint multiplier,� i , is scheduled to increase based on the inverse of the learning rate,

� i = � 0
� 0

� i
: (16)

The wind rose samples,(u(i)
1 ; � (i)) � � (u1 ; �), are randomly selected based on the direction frequency and direction-

speci�c Weibull shape and scale parameters. Note that the tilde (�) denotes a shared probability distribution. After a direction165

is sampled, the wind speed is sampled as a continuous weibull distributed random variable,

u1 (�) � W [u1 ;A(�);k(�)] ; (17)

where the probability density of the Weibull distribution,W, is given by

W(u1 ;A;k) =
k
A

� u1

A

� k � 1
exp

�
�

� u1

A

� k
�

: (18)

2.2 Deterministic Approach170

The SLSQP algorithm (Kraft, 1988) is selected to be the deterministic optimization algorithm to act as a benchmark to the

SGD approach. SLSQP is a conventional deterministic optimization approach. It is employed in many open-source engineering

design codes (Allen et al., 2020; Wu et al., 2020; Ciavarra et al., 2022) and has been used in other previous comparisons of

optimization algorithms (Lam et al., 2018; Li and Zhang, 2021; Fleming et al., 2022).

The spacing and boundary constraints are passed to the optimizer as individual inequality constraints. The spacing constraints175

are de�ned as

Cij = (x i � x j)2 + (yi � yj)2 � (ND D)2 8i; j > i ; (19)

whereCCC is an upper triangular matrix of nonlinear inequality constraints.

7

Square wind farm boundaries are represented using four inequality constraints per turbine,

D i 1 = x i � xu

D i 2 = x l � x i

D i 3 = yi � yu

D i 4 = yl � yi ; (20)180

and the circular wind farm boundaries are represented with one inequality constraint per turbine,

D i =
p

x2 + y2 � R ; (21)

whereDDD is a matrix of boundary constraints that must be less than or equal to zero.

3 Application

We apply the optimization approaches discussed above to optimize wind power plants of various sizes using the TOPFARM185

framework (DTU Wind Energy Systems, 2023b). Each farm consists of turbines with 70-meter hub heights, 80-meter rotor

diameters, and 2-megawatt rated powers. Power is computed using PyWake (Pedersen et al., 2019), which is an open-source

wake modeling tool that has been used in several related studies (Riva et al., 2020; Rodrigues et al., 2022; Ciavarra et al.,

2022; van der Laan et al., 2022; Fischereit et al., 2022). Power gradients are computed directly from PyWake using automatic

differentiation. The power of each turbine is estimated by a combination of velocity de�cits predicted by the Bastankhah190

Gaussian wake model (Bastankhah and Porté-Agel, 2014) using the default parameters in the PyWake tool and the squared sum

superposition (Pedersen et al., 2019; DTU Wind Energy Systems, 2023a). We require each turbine to be spaced at minimum

two rotor diameters apart (ND = 2). This is imposed as an optimization constraint. We considered wind farms with square and

circular boundaries. The square wind farm boundaries are determined as

x l = 0

yl = 0

xu = D(
p

N t � 1)�

yu = D(
p

N t � 1)� ;

: (22)195

and, in cases with circular wind farm boundaries, the radius is determined as

R = D(
p

N t � 1)� ; (23)

where the� parameter control the average spacing of the turbines. In this study,� = 5 .

We use the pyoptsparse driver (Wu et al., 2020) SLSQP (Kraft, 1988) implementation (Virtanen et al., 2020) in TOPFARM.

The optimizer was set to run for 300 maximum iterations with a tolerance of10� 1. The TOPFARM “expected_cost” parameter200

8

is set to 10. The turbine coordinates are normalized from 0 to 1. In each optimization iteration, the AEP, and the corresponding

gradient, is computed using rectangular quadrature as described in Equation 4, using 360 wind direction bins and 23 wind

speed bins, resulting in 8280 power evaluations.

The wind rose, visualized in Figure 1, is based on PyWake's Lillgrund example site. A probability mass function is assigned

to different direction bins. Each direction bin is associated with Weibull scale and shape parameters describing the distributions205

of wind speeds within the sector. This probability mass is derived from seven months of measured data used in a previous

study (Göçmen and Giebel, 2016). Each direction bin is 30 degree wide. The reasoning behind this is similar that behind

the IEC 614400 power curve standard (International Electrotechnical Commission, 2005)—it is crucial that the reference

data consider a statistically signi�cant amount of data in each bin. This coarse direction discretization results in a faster

convergence of the estimated probability mass function than a �ner discretization would. The continuous probability density210

function � (u1 ; �) is approximated as� (�)� (u1 j�), where� is the previously mentioned probability mass function, linearly

interpolated across one-degree bins, and� (u1 j�) is parameterized by direction-speci�c Weibull shape and scale parameters

that are also linearly interpolated from the provided data. With this formulation, the likelihood of different wind directions

is provided as a probability mass function,� (�). This probability mass is used as weights passed to the Numpy “choice”

function (Harris et al., 2020), allowing the wind direction to be sampled as a discrete random variable. We note that this215

formulation could be extended to a fully continuous formulation by drawing the direction samples from the inverse of an

empirical cumulative direction density function.

Figure 1. Lillgrund wind speed and direction probability mass function with 360 direction bins and �ve wind speed bins, where the proba-

bility mass function is a linear interpolation of coarser measurements.

9

In all wind farm optimization problems considered, constraint gradients, and the associated penalty function gradients, are

computed analytically. The AEP gradient is computed via automatic differentiation. The directions are discretized from 0 to

360 degrees, with one-degree increments. In the deterministic formulation, the discretized wind speed ranges from 3-25 m/s220

and is divided using increments of 1 m/s.

While each Monte Carlo estimate of AEP has signi�cant error, the average error will be close to zero throughout the course

of the SGD optimization. We compare the accuracy of the Monte Carlo approach (Equation 5) and the quadrature approach

(Equation 4) to estimate the AEP and the L-2 norm of the AEP gradient. The true values are estimated with a very �ne

discretization of speed and direction, 0.2 m/s and 0.2 degrees. These are used as reference values to assess the accuracy of225

the Monte Carlo and quadrature approaches by comparing the errors associated with both approaches as functions of the

number of samples and the discretization level, respectively, when analyzing a 100-turbine farm with square boundaries. This

convergence analysis is shown in Figure 2. While some realizations of the Monte Carlo approach yield more accurate results

than the quadrature approach, the quadrature approach is generally more accurate than Monte Carlo sampling. The Monte Carlo

approach requires on average around ten times as many power evaluations to obtain the same accuracy as the deterministic230

approach.

Figure 2. Convergence of AEP (left) and L-2 norm of the AEP gradient (right) with respect to the number of samples used in the quadrature

and Monte Carlo techniques. The grey cloud shows the 90 percent con�dence interval associated with the Monte Carlo approach, using 50

samples. The dashed black line shows the average error associated with the Monte Carlo approach. The solid black line shows the error

associated with the deterministic approach.

In this study, we select 50 samples for every SGD iteration. Figure 3 shows the measured computational cost of computing

AEP gradients using the circular wind farm described in this study, with different wind farm sizes. The minimum measured time

is reported as the minimum of thirty identical runs on the DTU Sophia supercomputer (Technical University of Denmark, 2019).

The computational time generally scales logarithmically with the number of turbines. This is to be expected, as there are more235

interaction terms in the wake model as more turbines are considered. The computational time does not scale logarithmically

10

with the number of wind rose samples. For small numbers of turbines, evaluating 10 wind rose samples is about as expensive

as evaluating 50 samples. This scaling changes as the wind farm grows in size, and it gradually becomes more expensive to

sample the wind rose. The evaluation time appears to converge to a logarithmic scaling for large numbers of wind rose samples.

These scaling results are likely in�uenced by memory limitations.240

Figure 3.Computational time associated with computing the gradient for various wind farm sizes and wind rose sampling strategies. The left

panel compares the cost of computing AEP gradients when using different numbers of Monte Carlo samples with the cost of the full factorial

wind rose (8,280 samples) for farms with various numbers of wind turbines. The right panel compares the cost of Monte Carlo estimates of

the AEP gradient for different numbers of samples of the atmospheric conditions and turbines in the wind farm.

The optimization algorithms are timed based on the time elapsed between the �rst and �nal optimization gradient evaluations.

Each optimization case is run on �rst generation AMD EPYC 7351 processors.

4 Results and Discussion

In the following subsections, the performance of SGD and SLSQP are compared for wind farms with square and circular

boundaries, and the sensitivity of the SGD algorithm is assessed.245

4.1 Square Wind Farm

The performance of SGD is compared to the deterministic counterpart, considering wind farms with 100, 144, 225, and 324

turbines, with square boundary constraints, using 20 different initial starting conditions to obtain statistically signi�cant results.

The AEP, constraint violation (
), and time elapsed associated with each optimization solution are plotted in Figure 4. The

SGD approach consistently yields higher AEPs than the SLSQP approach when the number of scheduled SGD iterations,T, is250

2,000. There is a large range of computational times associated with the SLSQP approach, though the computational expense

of SLSQP generally grows much larger than SGD as the number of turbines is increased. This is largely due to the nature

of the turbine spacing constraint, the size of which grows as the number of turbines squared. SLSQP takes requires about

11

