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Abstract. It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this
optimization, atmospheric conditions, such as the inflow speed and direction, are assigned probability distribu-
tions according to measured data, which are propagated through engineering wake models to estimate the annual
energy production (AEP). This study presents stochastic gradient descent (SGD) for wind farm optimization,
which is an approach that estimates the gradient of the AEP using Monte Carlo simulation, allowing for the
consideration of an arbitrarily large number of atmospheric conditions. SGD is demonstrated using wind farms
with square and circular boundaries, considering cases with 100, 144, 225, and 325 turbines, and the results are
compared to a deterministic optimization approach. It is shown that SGD finds a larger optimal AEP in substan-
tially less time than the deterministic counterpart as the number of wind turbines is increased.

1 Introduction

Wind farms are groups of wind turbines that harness the
power in the atmospheric boundary layer to provide renew-
able energy. When a wind turbine absorbs energy from the
air, the air downstream of the wind turbine has reduced5

power, which often reduces the power production of down-
stream turbines. This is known as the wake effect (Sanderse,
2009; Hasager et al., 2013). When a new wind power plant
is to be constructed, optimal turbine locations are determined
using engineering wind farm models (Samorani, 2013; Ning.10

et al., 2020; Annoni et al., 2018). Turbine positions are opti-
mized to exploit the benefits of the local wind resource while
avoiding energy losses from turbine wakes. In the wind tur-
bine placement problem, atmospheric conditions, such as the
inflow speed and direction, are assigned probability distribu-15

tions according to measured data. By propagating these prob-
ability distributions through the engineering wake model, the
annual energy production (AEP) can be estimated. The AEP
is often computed using rectangular quadrature, dividing the
relevant speeds and directions into equal-sized bins, then20

computing the expected AEP as the product of the power
and probability of each bin, added together, then multiplied
by the number of hours per year. The cost of wind farm
optimization generally increases with the number of atmo-
spheric conditions considered during AEP computation, and25

this expense becomes more extreme as more complex wake
models (e.g., RANS) are considered. For example, there are
some memory limitations when computing AEP gradients
using automatic differentiation with very large wind farms.
This has given rise to studies seeking convergence of the 30

AEP, proposing methods such as polynomial chaos expan-
sion (Padrón et al., 2019; Murcia et al., 2015) or Bayesian
quadrature (King et al., 2020), to avoid discretizing the in-
put distributions into evenly spaced intervals. In this study,
we present an approach for wind farm optimization that esti- 35

mates the gradient of the AEP using Monte Carlo simulation.
This does not require the input to be discretized at all, and al-
lows for the consideration of an arbitrarily large number of
atmospheric conditions.

Stochastic gradient descent (SGD) is an optimization al- 40

gorithm commonly used in machine learning when selecting
neural network weights (Ketkar, 2017). The algorithm sam-
ples the gradient of a stochastic objective, following the mean
gradient by a specified distance, then repeating the process,
which amounts to optimizing the expected value of the objec- 45

tive. The SGD algorithm is often enhanced to avoid oscilla-
tions caused by large changes in the gradient of the objective
(Ruder, 2016). This includes methods to reuse previous gra-
dient information (Qian, 1999), dampen oscillations (Ried-
miller and Braun, 1993), or incorporate an estimate of the 50

Hessian matrix (Moritz et al., 2016; Byrd et al., 2016; Liu
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et al., 2018; Najafabadi et al., 2017). Kingma and Ba (2014)
introduced the Adam SGD algorithm, which reuses gradient
evaluations and dampens oscillations, and is the basis of the
SGD method we propose in this study.

Interestingly, SGD is not often applied to problems with5

nonlinear constraints, although it can be fruitful to include
nonlinear constraints in the context of training a machine
learning algorithm. For example, when recognizing three-
dimensional pictures of people, it can be useful to impose
a constraint that any person’s left arm should be close to the10

same length as their right arm (Márquez-Neila et al., 2017).
Many frameworks have been proposed for constrained SGD,
including the log-barrier function (Kervadec et al., 2019),
penalty functions (Márquez-Neila et al., 2017), blending bar-
rier and penalty functions (Kervadec et al., 2019), and Rie-15

mannian geometry (Roy and Harandi, 2017). In this study,
we use a penalty term to transform the constrained problem
into an unconstrained optimization.

The wind farm layout optimization problem presents a set-
ting where the objective (AEP) can be formulated as be-20

ing stochastic (e.g., the AEP is derived from a probabil-
ity density function), while the constraints (e.g., boundaries
and minimum turbine spacing) are firmly deterministic. This
manuscript explores the potential benefits of formulating
the wind farm layout optimization problem in this way. As25

part of this, the Adam algorithm is extended to optimize
a stochastic objective with deterministic constraints. To the
best of the authors’ knowledge, this exact algorithm has not
been published before.

This study benchmarks the performance of the proposed30

SGD approach when compared to conventional gradient-
based optimization within the TOPFARM framework (DTU
Wind Energy Systems, 2023b), considering wind farms with
different shapes and sizes. We examine the open-source
SLSQP algorithm (Kraft, 1988), which is employed in many35

engineering frameworks (King et al., 2017; Allen et al., 2020;
Wu et al., 2020; Zhang et al., 2022; Zilong and Wei, 2022;
Kölle et al., 2022; Clark et al., 2022; Simley et al., 2023)
and has been used in previous comparisons of optimization
algorithms (Lam et al., 2018; Li and Zhang, 2021; Fleming40

et al., 2022). The TOPFARM framework has been used with
SLSQP in several wind farm optimization studies (Riva et al.,
2020; Ciavarra et al., 2022; Criado Risco et al., 2023; Ro-
drigues et al., 2023). In future work, this approach can be ex-
tended to co-optimize layout and control strategy—the SGD45

framework can naturally incorporate uncertainty quantifica-
tion when modeling the potential control strategies for po-
tential layouts [similar to the work in Gebraad et al. (2017);
Quick et al. (2020); Howland et al. (2022)].

While there are some wind plant optimization studies that50

resemble our approach, we are not aware of any studies that
have applied SGD to the wind farm optimization problem
[although SGD has been applied to other problems in en-
gineering optimization, e.g., De et al. (2020); Sivanantham
and Gopalakrishnan (2022)]. Several wind farm optimization55

studies make use of gradient-based optimization techniques
(Herbert-Acero et al., 2014; Guirguis et al., 2016; Graf et al.,
2016; Gebraad et al., 2017; Baker et al., 2019; Riva et al.,
2020; Stanley et al., 2021; Croonenbroeck and Hennecke,
2021). Feng and Shen (2015) present a random search ap- 60

proach, moving the wind turbines one by one using a greedy
algorithm. Some studies have employed neural networks to
forecast power production (Godinho and Castro, 2021), es-
timate local atmospheric conditions (Stengel et al., 2020),
suggest control strategies (Najd et al., 2020), or optimize en- 65

gineering wake models (Zhang et al., 2021; Zhang and Zhao,
2022; Hussain et al., 2022), which all use SGD algorithms to
the train parameters of the neural networks.

The remainder of the manuscript is the following. Sec-
tion 2 outlines the SGD and deterministic optimization ap- 70

proaches used in this study. Section 3 details the wind farm
optimization application cases examined. Section 4 discusses
the results of these optimization comparisons. Section 5 pro-
vides conclusions and future research directions.

2 Methods 75

When deciding where to put wind turbines, the typical strat-
egy is to maximize wind farm AEP while ensuring turbines
are within the prospective site and are not spaced too closely
together. In this study, we examine square and circular wind
farms, where the corresponding optimization problems are 80

posed as

maximize
xxx,yyy

AEP(xxx,yyy)

subject to (xi −xj)
2
+(yi − yj)

2 ≥ (NDD)2, ∀i ̸= j

xl ≤ xi ≤ xu

yl ≤ yi ≤ yu

(1)

and

maximize
xxx,yyy

AEP(xxx,yyy)

subject to (xi −xj)
2
+(yi − yj)

2 ≥ (NDD)2, ∀i ̸= j√
x2
i + y2i ≤R,

(2)

respectively, where xxx and yyy are the turbine horizontal and 85

vertical locations, xl and xu are the lower and upper horizon-
tal square wind farm boundaries, yl and yu are the lower and
upper square wind farm vertical boundaries, R is the radius
of the circular wind farm, D is the rotor diameter, and ND is
the minimum allowable spacing between turbines measured 90

in rotor diameters. From this point forward, we will use a sin-
gle variable to represent the x- and y-locations, sss= {xxx,yyy}.
When optimizing square wind farms, xl, xu, yl, and yu are
constant.
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The AEP is defined as

AEP(sss) = 8760

2π∫
0

∞∫
0

P (sss,u∞,θ)π(u∞,θ)du∞dθ , (3)

where P is power, π is probability, u∞ is the freestream ve-
locity, and θ is the freestream direction. The 8,760 factor re-
flects the number of hours per year, converting from units of5

power to units of energy.
The AEP is typically estimated through rectangular

quadrature, where the freestream velocity and direction are
discretized using evenly spaced intervals,

AEP (sss)≈ 8760

D∑
d=1

U∑
u=1

P (sss,Uu,θd)ρ(Uu,θd) (4)10

where UUU is a vector of evenly spaced wind speeds, θθθ is a
vector of evenly spaced wind directions, and ρ(Uu,θd) is a
probability mass function.

The AEP can also be estimated through Monte Carlo inte-
gration,15

AEP (sss)≈ 8760
1

K

K∑
k=1

P (sss,u(k)
∞ ,θ(k)) , (5)

where u
(k)
∞ and θ(k) represent draw k of the probability dis-

tribution π(u∞,θ).
The associated AEP gradient can also be approximated

through Monte Carlo simulation:20

d

dsss
AEP ≈ 8760

1

K

K∑
k=1

d

dsss
P (sss,u(k)

∞ ,θ(k)) (6)

2.1 Stochastic Gradient Descent

SGD is built upon the steepest descent algorithm. Early
SGD algorithms added a moving average term (sometimes
referred to as “momentum”) to avoid spurious oscillations25

(Tian et al., 2023). The conventional Adam SGD algorithm
uses two moving averages: one of the gradient and one of
the squared gradient. The ratio of these moving averages is
used to determine the search direction. SGD algorithms are
often combined with a learning rate scheduler, where the step30

size of the gradient descent is gradually decreased, allowing
the optimization algorithm to hone in on the best solution.
While the Adam algorithm is already designed to dynami-
cally change the step size, including a learning rate sched-
uler can further improve the performance. The conventional35

Adam algorithm is designed for unconstrained optimization
algorithms. In the following, we extend the algorithm to al-
low for deterministic constraints, which is a case that is com-
mon in mechanical engineering and unusual in the context

of training neural networks. The basic idea is to aggregate 40

the constraints to a penalty term with units that are consis-
tent with the objective. The penalty term is designed so that,
initially, the penalty gradients are of similar magnitude to the
AEP gradients, and so that the penalty gradients overwhelm
the AEP gradients as the optimization continues. 45

The SGD algorithm is shown in Algorithm 1, where sss0

Algorithm 1 TOPFARM Stochastic Gradient Descent Im-
plementation

mmm← 000, vvv← 000, sss← sss0
for i in [0,1,2, . . . ,T − 1]
do

if early_stopping and ηi/η0 ≤ threshold:
jjj = αi

∂γ
∂sss

if |jjj| ≡ 0:
break

else:
jjj =− 8760

K

∑K
k=1

∂
∂sss

P (sss,u
(k)
∞ ,θ(k))+αi

∂γ
∂sss

mmm= β1mmm− (1−β1)jjj
vvv = β2vvv− (1−β2)jjj

2

m̂mm= mmm
1−(β1)i

v̂vv = vvv
1−(β2)i

sss= sss− ηim̂mm/
√
v̂vv

ηi = S(η0, δ, i)
αi = α0

η0
ηi

are the initial turbine positions, i is the iteration number, αi

is referred to as the constraint multiplier, γ(sss) is a penalty
function, P (sss,u

(k)
∞ ,θ(k)) is the wind farm power associated

with the inflow speed and direction, u(k)
∞ and θ(k), K is the 50

number of samples employed in each SGD iteration, β1 and
β2 are constants, T is the number of SGD iterations, S is
the learning rate scheduler, and ηi is the learning rate. By
default, the early stopping option is false.

The spacing between turbines is enforced using a penalty 55

term,

γs =
∑

∀i, j>i

min
[
(xi −xj)

2 +(yi − yj)
2 − (NDD)2,0

]
.

(7)

Similarly, the distance outside of boundaries is enforced
using a penalty term. When considering square wind farms
this penalty term is defined as 60

γb =

Nt∑
i=1

[
max(xi −xub,0)

2
+max(xlb −xi,0)

2
+

max(yi − yub,0)
2
+max(ylb − yi,0)

2
]
,
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and, in the case of circular boundaries, it is defined as

γb =

Nt∑
i=1

max

(√
x2
i + y2i −R,0

)2

, (8)

where Nt is the number of wind turbines.
The total penalty, γ, is defined as the sum of these two

penalty terms,5

γ(sss) = γs(sss)+ γb(sss) . (9)

The gradient of the penalty term, γ, is scaled before being
added to the negative gradient of the AEP using the scaling
factor, αi.

In Algorithm 1, the learning rate (ηi), constraint multi-10

plier (αi), number of SGD iterations (T ), and the samples per
SGD iteration (K) are all free parameters. These parameters
can be optimized to perform well for individual wind farm
optimization problems. But there is no guarantee that these
particular parameters will perform well for other wind farm15

problems—and this meta-optimization can be expensive. In
the machine learning community, these parameters are some-
times optimized using evolutionary, grid search, or Bayesian
optimization approaches (Alibrahim and Ludwig, 2021). In
addition, it is common to schedule the learning rate to decay20

as the optimization proceeds (You et al., 2019; Denkowski
and Neubig, 2017).

We propose a method for setting free parameters to en-
sure that all units are consistent. The only free parameters we
manually set are the number of optimization iterations and25

the number of power samples per iteration. The optimiza-
tion generally becomes more accurate and more expensive
as these parameters increase, and users are free to balance
this tradeoff as they see fit. Our formulation does not guaran-
tee that all intermediate solutions satisfy the constraints, es-30

pecially in the beginning of the optimization. The constraint
multiplier begins on a comparable scale to the AEP, and is
scheduled to increase so that the constraint gradients over-
whelm the AEP gradients as the optimization progresses. The
number of iterations, T , can be based on a prescribed com-35

putational budget.
We initially attempted this approach using the widely used

default parameter values in the original Adam algorithm,
β1 = 0.9 and β2 = 0.999. The parameters can be thought of
as adding momentum to the moving averages of the gradient40

and squared gradient, mmm and vvv. We found that these default
values gave too much emphasis to gradients from the penalty
function, launching the turbines away from the boundaries
in a dramatic fashion. Instead, we suggest the parameters
β1 = 0.1 and β2 = 0.2, which encode a shorter memory of45

the presence of the penalty. With these new default param-
eters, and the learning rate defined below, we observed suc-
cessful convergence for a wide variety of test cases.

The learning rate, ηi, can be interpreted as converting
m̂mm/

√
v̂vv (with unity units) to distance (units of m). In this50

study, the learning rate is scheduled to decay according to

S(t= 0) = η0

S(t= T − 1) = ηT ,
(10)

where T is the number of optimization iterations, η0 is the
initial learning rate, and ηT is the scheduled final learning 55

rate. This final learning rate can be thought of as a solution
tolerance for the design variables. In this study, we set ηT =
0.1m.

The initial learning rate, η0, is based on a length scale pa-
rameter, L, which corresponds to a reasonable initial step size 60

for the optimization. By setting the initial learning rate ac-
cording to

η0 = L=D/5 , (11)

where D is the turbine rotor diameter, we encourage the tur-
bines to move at most L every optimization iteration. 65

The learning rate is scheduled to decay as

S(η0, δ, t) = η0

t∏
i=0

1

1+ iδ
, (12)

where δ is a parameter that controls the learning rate length,
such that the final learning rate is ηT . The parameter δ is
numerically set as 70

δ(η0,ηT ,T ) = argmin
δ

|ηT −S(η0, δ,T )| . (13)

The constraint multiplier, αi, can be interpreted as convert-
ing the gradient of constrained square distances (in units of
m) to AEP gradients. The initial constraint multiplier, α0, is
set as the mean absolute AEP gradient divided by the length 75

scale, L, so that the separation constraint has a similar scale
to AEP gradients,

α0 =
mean[|∇AEP (sss0)|]

L
, (14)

where mean[|∇AEP (sss0)] is the mean of the absolute AEP
gradient of the initial guess with respect to each component 80

of the gradient. During each iteration, the constraint multi-
plier, αi, is scheduled to increase based on the inverse of the
learning rate,

αi = α0
η0
ηi

. (15)

The wind rose samples, (u(i)
∞ ,θ(i))∼ π(u∞,θ), are ran- 85

domly selected based on the direction frequency and
direction-specific Weibull shape and scale parameters. Note
that the tilde (∼) denotes a shared probability distribution.
After a direction is sampled, the wind speed is sampled as a
continuous weibull distributed random variable, 90
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u∞(θ)∼W [u∞,A(θ),k(θ)] , (16)

where the probability density of the Weibull distribution, W ,
is given by

W(u∞,A,k) =
k

A

(u∞

A

)k−1

exp

[
−
(u∞

A

)k
]
. (17)

2.2 Deterministic Approach5

The SLSQP algorithm (Kraft, 1988) is selected to be the de-
terministic optimization algorithm to act as a benchmark to
the SGD approach. SLSQP is a conventional deterministic
optimization approach. It is employed in many open-source
engineering design codes (Allen et al., 2020; Wu et al., 2020;10

Ciavarra et al., 2022) and has been used in other previous
comparisons of optimization algorithms (Lam et al., 2018;
Li and Zhang, 2021; Fleming et al., 2022).

The spacing and boundary constraints are passed to the
optimizer as individual inequality constraints. The spacing15

constraints are defined as

Cij = (xi −xj)
2 +(yi − yj)

2 − (NDD)2 ∀ i, j > i , (18)

whereCCC is an upper triangular matrix of nonlinear inequality
constraints.

Square wind farm boundaries are represented using four20

inequality constraints per turbine,

Di1 = xi −xu

Di2 = xl −xi

Di3 = yi − yu

Di4 = yl − yi , (19)

and the circular wind farm boundaries are represented with
one inequality constraint per turbine,

Di =
√
x2 + y2 −R, (20)25

whereDDD is a matrix of boundary constraints that must be less
than or equal to zero.

3 Application

We apply the optimization approaches discussed above to op-
timize wind power plants of various sizes using the TOP-30

FARM framework (DTU Wind Energy Systems, 2023b).
Each farm consists of turbines with 70-meter hub heights, 80-
meter rotor diameters, and 2-megawatt rated powers. Power
is computed using PyWake (Pedersen et al., 2019), which is
an open-source wake modeling tool that has been used in sev-35

eral related studies (Riva et al., 2020; Rodrigues et al., 2022;

Ciavarra et al., 2022; van der Laan et al., 2022; Fischereit
et al., 2022). Power gradients are computed directly from
PyWake using automatic differentiation. The power of each
turbine is estimated by a combination of velocity deficits pre- 40

dicted by the Bastankhah Gaussian wake model (Bastankhah
and Porté-Agel, 2014) using the default parameters in the
PyWake tool and the squared sum superposition (Pedersen
et al., 2019; DTU Wind Energy Systems, 2023a). We re-
quire each turbine to be spaced at minimum two rotor di- 45

ameters apart (ND = 2). This is imposed as an optimization
constraint. We considered wind farms with square and circu-
lar boundaries. The square wind farm boundaries are deter-
mined as

xl = 0

yl = 0

xu =D(
√
Nt − 1)∆

yu =D(
√

Nt − 1)∆ ,

. (21) 50

and, in cases with circular wind farm boundaries, the radius
is determined as

R=D(
√
Nt − 1)∆ , (22)

where the ∆ parameter control the average spacing of the
turbines. In this study, ∆= 5. 55

We use the pyoptsparse driver (Wu et al., 2020) SLSQP
(Kraft, 1988) implementation (Virtanen et al., 2020) in TOP-
FARM. The optimizer was set to run for 300 maximum
iterations with a tolerance of 10−1. The TOPFARM “ex-
pected_cost” parameter is set to 10. The turbine coordinates 60

are normalized from 0 to 1. In each optimization iteration,
the AEP, and the corresponding gradient, is computed using
rectangular quadrature as described in Equation 4, using 360
wind direction bins and 23 wind speed bins, resulting in 8280
power evaluations. 65

The wind rose, visualized in Figure 1, is based on Py-
Wake’s Lillgrund example site. A probability mass function
is assigned to different direction bins. Each direction bin is
associated with Weibull scale and shape parameters describ-
ing the distributions of wind speeds within the sector. This 70

probability mass is derived from seven months of measured
data used in a previous study (Göçmen and Giebel, 2016).
Each direction bin is 30 degree wide. The reasoning behind
this is similar that behind the IEC 614400 power curve stan-
dard (International Electrotechnical Commission, 2005)—it 75

is crucial that the reference data consider a statistically sig-
nificant amount of data in each bin. This coarse direction dis-
cretization results in a faster convergence of the estimated
probability mass function than a finer discretization would.
The continuous probability density function π(u∞,θ) is ap- 80

proximated as ρ(θ)π(u∞|θ), where ρ is the previously men-
tioned probability mass function, linearly interpolated across
one-degree bins, and π(u∞|θ) is parameterized by direction-
specific Weibull shape and scale parameters that are also lin-
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early interpolated from the provided data. With this formu-
lation, the likelihood of different wind directions is provided
as a probability mass function, ρ(θ). This probability mass
is used as weights passed to the Numpy “choice” function
(Harris et al., 2020), allowing the wind direction to be sam-5

pled as a discrete random variable. We note that this formu-
lation could be extended to a fully continuous formulation by
drawing the direction samples from the inverse of an empiri-
cal cumulative direction density function.

0°

45°

90°

135°

180°

225°

270°

315°

0.001

0.002

0.003

0.004

0.005

0.25-2.75 m/s
2.75-5.75 m/s
5.75-10.0 m/s
10.0-15.0 m/s
15.0-20.0 m/s

Figure 1. Lillgrund wind speed and direction probability mass
function with 360 direction bins and five wind speed bins, where the
probability mass function is a linear interpolation of coarser mea-
surements.

In all wind farm optimization problems considered, con-10

straint gradients, and the associated penalty function gradi-
ents, are computed analytically. The AEP gradient is com-
puted via automatic differentiation. The directions are dis-
cretized from 0 to 360 degrees, with one-degree increments.
In the deterministic formulation, the discretized wind speed15

ranges from 3-25 m/s and is divided using increments of 1
m/s.

While each Monte Carlo estimate of AEP has significant
error, the average error will be close to zero throughout the
course of the SGD optimization. We compare the accuracy20

of the Monte Carlo approach (Equation 5) and the quadra-
ture approach (Equation 4) to estimate the AEP and the L-
2 norm of the AEP gradient. The true values are estimated
with a very fine discretization of speed and direction, 0.2 m/s
and 0.2 degrees. These are used as reference values to assess25

the accuracy of the Monte Carlo and quadrature approaches
by comparing the errors associated with both approaches as
functions of the number of samples and the discretization
level, respectively, when analyzing a 100-turbine farm with
square boundaries. This convergence analysis is shown in30

Figure 2. While some realizations of the Monte Carlo ap-
proach yield more accurate results than the quadrature ap-
proach, the quadrature approach is generally more accurate
than Monte Carlo sampling. The Monte Carlo approach re-
quires on average around ten times as many power evalu- 35

ations to obtain the same accuracy as the deterministic ap-
proach.

In this study, we select 50 samples for every SGD iteration.
Figure 3 shows the measured computational cost of comput-
ing AEP gradients using the circular wind farm described 40

in this study, with different wind farm sizes. The minimum
measured time is reported as the minimum of thirty identical
runs on the DTU Sophia supercomputer (Technical Univer-
sity of Denmark, 2019). The computational time generally
scales logarithmically with the number of turbines. This is to 45

be expected, as there are more interaction terms in the wake
model as more turbines are considered. The computational
time does not scale logarithmically with the number of wind
rose samples. For small numbers of turbines, evaluating 10
wind rose samples is about as expensive as evaluating 50 50

samples. This scaling changes as the wind farm grows in size,
and it gradually becomes more expensive to sample the wind
rose. The evaluation time appears to converge to a logarith-
mic scaling for large numbers of wind rose samples. These
scaling results are likely influenced by memory limitations. 55

The optimization algorithms are timed based on the time
elapsed between the first and final optimization gradient eval-
uations. Each optimization case is run on first generation
AMD EPYC 7351 processors.

4 Results and Discussion 60

In the following subsections, the performance of SGD and
SLSQP are compared for wind farms with square and circu-
lar boundaries, and the sensitivity of the SGD algorithm is
assessed.

4.1 Square Wind Farm 65

The performance of SGD is compared to the determinis-
tic counterpart, considering wind farms with 100, 144, 225,
and 324 turbines, with square boundary constraints, using
20 different initial starting conditions to obtain statistically
significant results. The AEP, constraint violation (γ), and 70

time elapsed associated with each optimization solution are
plotted in Figure 4. The SGD approach consistently yields
higher AEPs than the SLSQP approach when the number
of scheduled SGD iterations, T , is 2,000. There is a large
range of computational times associated with the SLSQP ap- 75

proach, though the computational expense of SLSQP gener-
ally grows much larger than SGD as the number of turbines
is increased. This is largely due to the nature of the turbine
spacing constraint, the size of which grows as the number of
turbines squared. SLSQP takes about as much computational 80

time as the SGD approach with 500 scheduled iterations



Quick et al.: Stochastic Gradient Descent for Wind Farm Optimization 7

Figure 2. Convergence of AEP (left) and L-2 norm of the AEP gradient (right) with respect to the number of samples used in the quadrature
and Monte Carlo techniques. The grey cloud shows the 90 percent confidence interval associated with the Monte Carlo approach, using 50
samples. The dashed black line shows the average error associated with the Monte Carlo approach. The solid black line shows the error
associated with the deterministic approach.
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Figure 3. Computational time associated with computing the gradient for various wind farm sizes and wind rose sampling strategies. The
left panel compares the cost of computing AEP gradients when using different numbers of Monte Carlo samples with the cost of the full
factorial wind rose (8,280 samples) for farms with various numbers of wind turbines. The right panel compares the cost of Monte Carlo
estimates of the AEP gradient for different numbers of samples of the atmospheric conditions and turbines in the wind farm.

when there are 100 turbines in the square farm. As the num-
ber of turbines grows, the average time required by SLSQP
becomes more costly than SGD with 2,000 scheduled itera-
tions. The computational cost of SLSQP is a strong function
of the initial layout, and the variance of the SLSQP optimiza-5

tion time also increases with the wind farm size. This is due
to the complex interaction between the linear boundary con-
straints and nonlinear spacing constraints. As the proposed
SGD formulation does not offer an automatic way to set the
number of SGD iterations, T , results are shown for differ-10

ent values of T . When T is increased, the optimizer finds
solutions with larger AEPs, with a computational cost that
is approximately proportional to T . The SGD solution con-
sistently improves as more optimization iterations are sched-
uled (larger values of T ). Results associated with 1,000 SGD15

iterations tend to yield similar AEP to the SLSQP approach

and results with 2,000 SGD iterations tend yield higher AEPs
than the SLSQP designs.

The final layouts associated with one of the random initial
conditions used in the 324 turbine analysis, when T = 2,000 20

iterations, is shown in Figure 5. The SGD approach gener-
ally identifies solutions with the majority of turbines packed
into the side boundaries. The deterministic algorithm also
packed turbines into the edges of the farm, although not as
many turbines were packed into the East and West bound- 25

aries as in the SGD results. The layouts found using the SGD
approach tend to have interior turbines that generally appear
to be more aligned in the North-South direction than in the
deterministic solutions.

The results of the 100-, 144-, 225-, and 324-turbine wind 30

farm optimization cases are summarized in Table 1. The
mean time, mean constraint violation, and mean and stan-
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Figure 4. Optimization results associated with SGD and SLSQP for square wind farms with 100, 144, 225, and 324 turbines, using 20
random initial starting conditions. The AEP (top panel), constraint penalty (middle panel), and computational time (bottom panel) are plotted
as boxplots. The SGD results are plotted for T = 500, 1,000, and 2,000 iterations.
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Figure 5. The final layouts found using SGD (left) and SLSQP (right) using one of the random initial layouts examined in a 324-turbine
wind farm with square boundaries for T = 2,000 iterations. Each circle a radius of one rotor diameter.

dard deviation of the AEP are reported with respect to the
20 random initial starting conditions. The constraint viola-
tion is reported as

√
γ/Nt to quantify the mean length of

the constraint violations of each turbine. The final constraint
violations can be reduced by lowering the ηT parameter. In5

all of these cases, the SLSQP optimization resulted in solu-
tions with zero constraint violations. This is likely because
of the linear formulation of the boundary constraints—when
a solution satisfies the spacing constraint, any solutions that
satisfy the boundary constraints can quickly be found. SGD 10
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with 2,000 iterations generally yields solutions with AEP that
are 0.3-0.5% higher than the solutions found using SLSQP.
This is likely because the SGD algorithm is able to better ex-
plore the design space by initially relaxing the constraints,
allowing for some initial constraint violations.5

4.2 Circular Wind Farms

To ensure that the previously presented results are not spe-
cific to square wind farms, we performed a similar set of
analysis examining circular wind farms. The results yield10

similar trends to the analysis using square wind farms—SGD
becomes significantly less time-consuming that SLSQP as
the number of turbines increases and generally yields solu-
tions with slightly larger AEPs.

Circular winds farms were optimized using 20 random ini-15

tial layouts, examining different farm sizes, using the SGD
and SLSQP optimization algorithms. The results are summa-
rized in Figure 6. The circular wind farm optimization gen-
erally took longer than the square wind farm when using the
SLSQP optimizer. This is likely due to the more complicated20

nature of the circular boundary when using Cartesian coordi-
nates. These results are similar to the results in Section 4.1—
as the number of wind turbines and scheduled SGD iterations
increases, SGD tends to find solutions with larger AEPs in
less computational time.25

The results of the circular wind farm optimization are
compared between the SGD and SLSQP optimizers in Ta-
ble 2, where SGD is scheduled to run for 2,000 optimization
iterations. SGD generally results in about 0.5% more AEP
in significantly less time than SLSQP as the number of tur-30

bines is increased. The results area also compared in Figure
7. The SGD optimizer generally results in more turbines on
the boundary edge than the SLSQP optimizer.

4.3 Sensitivity Analysis35

There are several parameters in the SGD algorithm that
were tuned to perform reasonably well. In this section, we in-
vestigate the sensitivity of the SGD optimization results with
respect to the early stopping option in Algorithm 1, the num-
ber of Monte Carlo samples per optimization iteration, the40

learning rate schedule, as well as the initial and final learning
rates.

As the optimization progresses, the constraint multiplier,
αi, becomes large (approaching 10 as the learning rate ap-
proaches 0.1), and the gradients of the AEP are overwhelmed45

by the gradients of the penalty, which take very little time to
compute. This situation can be addressed by using the early
stopping option in Algorithm 1. The solution tends to termi-
nate quickly when the optimizer only follows the determin-
istic gradient (the optimization engine terminates when the50

constraint gradients are zero). Figure 8 shows the AEP, con-
straint violation, and computational time associated with five

random initial layouts, using threshold parameters of 0.01,
0.05, and 0.1, as well as the SGD algorithm as applied in
the previous sections, without the early stopping option acti- 55

vated. The use of each early stopping option results in layouts
without constraint violations. As the threshold parameter is
increased, the AEP is slightly reduced and the total compu-
tational time decreases. A threshold parameter of 0.1 results
in approximately 0.3% reduction in AEP and 44% reduction 60

in computation time.
The optimization results presented in this study used 50

power samples per iteration (K = 50). We found this to
produce high-quality results without incurring unacceptable
computational expense. Figure 9 shows the behavior of the 65

SGD approach associated with different different values of
K, considering 100 turbines with 2,000 scheduled optimiza-
tion iterations. As K increases, the optimization finds so-
lutions with larger AEPs. There is a small increase in time
elapsed and a large increase in the final AEP between the 70

K = 5 and K = 50 cases, while there is a large increase in
time elapsed and a small increase in the final AEP between
K = 50 and K = 200. As K increases, we expect the max-
imum AEP to reach a plateau and the time and memory re-
quired to increase indefinitely. In future work, we plan to ex- 75

plore scheduling K to change as the optimization progresses.
This study used an exotic learning rate scheduler. We tried

several schedulers, and observed this one to be the best at
finding sufficiently large AEP solutions that reasonably sat-
isfied the imposed constraints. Figure 10 shows the behavior 80

of the SGD algorithm associated with the presented learn-
ing rate scheduler, referred to here as the product scheduler;
as well as an exponential and a linear decay scheduler. The
exponential scheduler quickly diminishes the learning rate,
causing the SGD algorithm to become stuck in local min- 85

ima. The linear transition from large to lower learning rates
prevents the SGD algorithm from having sufficient time to
follow enlarged constraint gradients. It is possible that the
algorithm could be improved by using separate schedulers
for the learning rate and constraint multiplier. For instance, it 90

might be more effective to use a linear scheduler to decrease
the learning rate and an exponential scheduler to increase the
constraint multiplier. We leave this question for future work.

The initial and final learning rates, η0 and ηT , have units
of distance and correspond to the initial and final step size 95

of the optimization algorithm. The final learning rate can be
interpreted as the degree to which the constraints are to be
satisfied, since this will be the step size the optimization algo-
rithm uses when αi is large and the constraint gradients over-
whelm the AEP gradients. This is illustrated in the left panel 100

of Figure 11, which shows the results of several SGD opti-
mizations using different initial and final learning rates. On
average, there is a linear relationship between the constraint
violation of the solution and ηT , where the average final con-
straint violation is approximately two times ηT . The max- 105

imum observed constraint violation is approximately four
times ηT . In addition, there is a trade-off between the AEP
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Figure 6. Optimization results associated with SGD and SLSQP for wind farms with 100, 144, and 225 turbines, using 20 random initial
starting conditions. The AEP (top panel), constraint penalty (middle panel), and computational time (bottom panel) are plotted as box and
whisker plots. The SGD results are plotted for T = 500, 1,000, and 2,000 iterations.
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Figure 7. The final layouts found using SGD (left) and SLSQP (right) using one of the random initial layouts examined in the 225-turbine
wind farm with circular boundaries using T = 2,000 iterations. The final turbine layouts are shown as filled circles. Each circle has a radius
of one rotor diameter.

and constraint violation of the final solution. This tradeoff
is influenced by the initial and final learning rates. It is im-
portant to tune the initial learning rate. An initial learning
rate that is too low will result in very little exploration. Ini-
tial learning rates that are too high will result in a rapid influx5

of penalty violations that overwhelm AEP gradients through-

out the optimization. From our experiments, we found a step
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Figure 8. Results using different configurations of the “early stopping” option in TOPFARM, as well as the SGD optimization without early
stopping, considering the circular wind farm with 225 turbines, with T = 2,000, using five random initial layouts.

Figure 9. Optimization results associated with SGD for a square
100-turbine wind farm using 20 random initial starting conditions
and T = 2,000. The upper and lower bounds of the results are plot-
ted as a function of the optimization iteration number. The SGD
results associated with K = 5, 50, and 200 iterations are shown in
purple, blue, and yellow, respectively.

size of one fifth of the rotor diameter to produce satisfactory
results, as shown in the right panel of Figure 11.
5 Conclusions

SGD is a promising optimization tool for wind farm design.
Instead of evaluating all anticipated atmospheric conditions5

during every optimization iteration, SGD randomly samples
the defined distributions of atmospheric conditions, result-
ing in substantially reduced computational time required for
each optimization iteration. The total optimization time can
be scheduled according to a prescribed computational bud-10

get. The presented formulation allows for continuous resolu-
tion of uncertain variables, eliminating the need to choose a
discretization resolution of atmospheric conditions, such as
the wind speed and direction. This technique does not be-
come exponentially more expensive as a greater number of15

uncertain parameters is included, allowing for consideration
of other atmospheric conditions, such as turbulence intensity,
air density, veer, and shear (Saint-Drenan et al., 2020; Duc
et al., 2019).

The presented SGD approach was shown to become more 20

effective than a deterministic counterpart as the number
of wind turbines increased. SGD yielded slightly higher
AEPs than the deterministic approach in substantially re-
duced computational time. The time required to optimize
wind farm layouts can be a major bottleneck in corporate 25

workflows, and the time savings associated with the SGD ap-
proach allows engineers to access optimization results sooner
than a conventional approach. If the inflow conditions were
discretized using extremely small bins, or if several atmo-
spheric conditions were to be considered, we expect that the 30

SGD approach would perform the optimization even faster
and more effectively than the deterministic approach.

The SGD approach is a simple framework that is well
suited large-scale stochastic wind power plant design opti-
mization challenges. This framework is available in the open- 35

source TOPFARM package. Future work includes: exploring
separate schedulers for the constraint multiplier and learning
rate and scheduling the number of Monte Carlo samples, K,
to change as the optimization proceeds.
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Table 1. Results of SGD and deterministic optimizations for various square wind farm sizes. Each optimization case is run using 20 random
initial starting conditions, and the mean and standard deviation are reported with respect to these 20 initial points. The SGD results are
associated with T = 2,000 iterations.

Nt Case Mean Time (hours) Mean AEP (kWh) AEP Standard Deviation (kWh) Mean
√

γ/Nt (m)
Deterministic 0.34 5.667e+08 6.223e+05 0.000e+00

SGD 1.00 5.691e+08 5.347e+05 1.919e-03
Deterministic 1.18 8.059e+08 9.188e+05 0.000e+00

SGD 2.00 8.089e+08 7.727e+05 1.642e-03
Deterministic 4.79 1.241e+09 1.004e+06 0.000e+00

SGD 5.07 1.246e+09 1.110e+06 1.250e-03
Deterministic 18.69 1.768e+09 2.556e+06 0.000e+00

SGD 12.20 1.776e+09 1.810e+06 9.484e-04

100

144

225

324

Table 2. Results of SGD and deterministic optimizations for various circular wind farm sizes. Each optimization case is run using 20 random
initial starting conditions, and the mean and standard deviation are reported with respect to these 20 initial points. The SGD results are
associated with T = 2,000 iterations.

Nt Case Mean Time (hours) Mean AEP (kWh) AEP Standard Deviation (kWh) Mean
√

γ/Nt (m)
Deterministic 1.92 5.383e+08 1.193e+06 2.742e-02

SGD 0.98 5.407e+08 7.844e+05 2.203e-03
Deterministic 7.25 7.638e+08 1.512e+06 8.648e-02

SGD 1.96 7.676e+08 8.777e+05 1.726e-03
Deterministic 38.31 1.174e+09 1.573e+06 2.359e-01

SGD 4.98 1.180e+09 1.306e+06 1.280e-03

100

144

225
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Figure 10. Influence of the learning rate scheduler on the SGD optimization, considering a 100-turbine wind farm with a square boundary.
The product scheduler is shown in yellow. The exponential scheduler is shown in blue. The linear scheduler is shown in purple. The AEP
(upper left panel), constraint penalty function (bottom left panel), and the learning rate decay (right panel) are plotted as a function of the
number of optimization iterations. The optimization iteration is denoted as t in the legend of the right panel.
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Figure 11. (Left) The final constraint penalty plotted against the final learning rate. (Right) The final AEP plotted against the final constraint
penalty. The different colors represent different initial learning rates. The results of 20 initial starting positions are plotted as points. The
average results of the 20 initial starting conditions are connected as lines. These data are associated with 100-turbine wind farms with square
boundaries and T = 2,000 iterations.


