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Abstract. It is important to optimize wind turbine positions to mitigate potential wake losses. To perform this optimization,

atmospheric conditions, such as the inflow speed and direction, are assigned probability distributions according to measured

data, and these conditions are propagated through engineering wake models to estimate the annual energy production (AEP).

This study presents stochastic gradient descent (SGD) for wind farm optimization, which is an approach that estimates the

gradient of the AEP using Monte Carlo simulation, allowing for the consideration of an arbitrarily large number of atmospheric5

conditions. This method does not require that the atmospheric conditions be discretized, in contrast to the typical rectangular

quadrature approximation of AEP. SGD is demonstrated using wind farms with square boundaries, considering cases with 25,

64, and 100 turbines, and the results are compared to a deterministic optimization approach. It is shown that SGD finds a larger

optimal AEP in substantially less time than the deterministic counterpart as the number of wind turbines is increased.

1 Introduction10

Wind farms are groups of wind turbines that harness the power in the atmospheric boundary layer to provide renewable energy.

When a wind turbine absorbs energy from the air, the air downstream of the wind turbine has reduced power, which often

reduces the power production of downstream turbines. This is known as the wake effect (Sanderse, 2009; Hasager et al., 2013).

When a new wind power plant is to be constructed, optimal turbine locations are determined using engineering wind farm

models (Annoni et al., 2018). Turbine positions are optimized to exploit the benefits of the local wind resource while avoiding15

energy losses from turbine wakes. In the wind turbine placement problem, atmospheric conditions, such as the inflow speed

and direction, are assigned probability distributions according to measured data. By propagating these probability distributions

through the engineering wake model, the annual energy production (AEP) can be estimated. The AEP is often computed using

rectangular quadrature, dividing the relevant speeds and directions into equal-sized bins, then computing the expected AEP as

the product of the power and probability of each bin, added together, then multiplied by the number of hours per year. It can20

be costly to compute the power associated with each speed and direction combination, as the number of these combinations

can be large. This has given rise to studies seeking convergence of the AEP, proposing methods such as polynomial chaos

expansion (Padrón et al., 2019; Murcia et al., 2015) or Bayesian quadrature (King et al., 2020), to avoid discretizing the input

distributions into evenly spaced intervals. In this study, we present an approach for wind farm optimization that estimates the

gradient of the AEP using Monte Carlo simulation. This does not require that the input be discretized at all, and allows for the25

consideration of an arbitrarily large number of atmospheric conditions.
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Stochastic gradient decent (SGD) is an optimization algorithm, commonly used in machine learning when selecting neural

network weights (Ketkar, 2017). The algorithm approximates the gradient of the objective from a stochastic subset of the

training data, following the gradient by a specified distance, then repeating the process.

The SGD algorithm is often enhanced to avoid oscillations caused by large changes in the gradient of the objective (Ruder,30

2016). This includes methods to reuse previous gradient information (Qian, 1999), dampen oscillations (Riedmiller and Braun,

1993), or incorporate an estimate of the Hessian matrix (Moritz et al., 2016; Byrd et al., 2016; Liu et al., 2018; Najafabadi

et al., 2017). Kingma and Ba (2014) introduced the Adam SGD algorithm, which reuses gradient evaluations and dampens

oscillations, and is the SGD method we employ in this study. Interestingly, SGD is not often applied to problems with nonlinear

constraints, although it can be fruitful to include nonlinear constraints in the context of training a machine learning algorithm.35

For example, when recognizing three-dimensional pictures of people, it can be useful to impose a constraint that any person’s

left arm should be close to the same length as their right arm (Márquez-Neila et al., 2017). Many frameworks have been

proposed for constrained SGD, including the log-barrier function (Kervadec et al., 2019), penalty functions (Márquez-Neila

et al., 2017), blending barrier and penalty functions (Kervadec et al., 2019), and Riemannian geometry (Roy and Harandi,

2017). In this study, we use a penalty term to transform the constrained problem into an unconstrained optimization. This term40

introduces sudden steep gradients in the optimization space, necessitating the use of smaller momentum parameters than are

typically employed in the Adam SGD algorithm.

This study benchmarks the performance of the proposed SGD approach when compared to conventional gradient-based

optimization. As a proxy for conventional gradient-based optimization, we examine the Scipy Sequential Least Squares Pro-

gramming (SLSQP) optimization algorithm (Virtanen et al., 2020). This algorithm is based on a FORTRAN code written in45

1994, and it could easily be argued that it would be more fair to compare SGD with a more modern deterministic optimization

algorithm. We plan to explore this question in future work. We chose Scipy SLSQP because it is a widely used approach that is

employed in many open-source wind farm optimization codes. The algorithms are compared by examining their performance

when optimizing rectangular wind farm layouts of various sizes using the PyWake simulation software (Pedersen et al., 2019;

Riva et al., 2020; Rodrigues et al., 2022; Ciavarra et al., 2022). PyWake uses automatic differentiation (Martins and Ning,50

2021) to compute gradients using the autograd package (Maclaurin et al., 2015). Wind farms with 25, 64 and 100 turbines

are used to benchmark the SGD approach when compared to a deterministic approach, and explore the effects of varying the

length of the SGD optimization.

While there are some wind plant optimization studies that resemble our approach, we are not aware of any studies that

have applied stochastic gradient descent to the wind farm optimization problem [although stochastic gradient descent has55

been applied to other problems in engineering optimization, e.g., De et al. (2020); Sivanantham and Gopalakrishnan (2022)].

Several wind farm optimization studies make use of gradient-based optimization techniques (Herbert-Acero et al., 2014). Feng

and Shen (2015) present a random search approach, moving the wind turbines one by one using a greedy algorithm. Some

studies have employed neural networks to forecast power production (Godinho and Castro, 2021), estimate local atmospheric

conditions (Stengel et al., 2020), suggest control strategies (Najd et al., 2020), or optimize engineering wake models (Zhang60
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et al., 2021; Zhang and Zhao, 2022; Hussain et al., 2022), which all use SGD algorithms to the train parameters of the neural

networks.

The remainder of the manuscript is the following. Section 2 outlines the SGD and deterministic optimization approaches

used in this study. Section 3 details the wind farm optimization application cases examined. Section 4 discusses the results of

these optimization comparisons. Section 5 provides conclusions and future research directions.65

2 Methods

When deciding where to put wind turbines, the typical strategy is to maximize wind farm annual energy production (AEP)

while ensuring turbines are within the prospective site and are not spaced too closely together. In this study, the corresponding

optimization problem is posed as

minimize
xxx,yyy

AEP(xxx,yyy)

subject to (xi−xj)
2 + (yi− yj)

2 ≥ (NDD)2, ∀i ̸= j

xl ≤ xi ≤ xu

yl ≤ yi ≤ yu ,

(1)70

where xxx and yyy are the turbine horizontal and vertical locations, xl and xu are the lower and upper horizontal boundaries, yl and

yu are the lower and upper vertical boundaries, D is the rotor diameter, and ND is the minimum allowable spacing between

turbines measured in rotor diameters. From this point forward, we will use a single variable to represent the x- and y-locations,

sss = {xxx,yyy}.

The AEP is defined as75

AEP(sss) = 8760

2π∫

0

∞∫

0

P (sss,u∞,θ)π(u∞,θ)du∞dθ , (2)

where P is power, π is probability, u∞ is the freestream velocity, and θ is the freestream direction.

The AEP is typically estimated through rectangular quadrature, where the freestream velocity and direction are discretized

using evenly spaced intervals,

AEP (sss)≈ 8760
D∑

d=1

U∑

u=1

P (sss,Uu,θd)ρ(Uu,θd) (3)80

whereUUU is a vector of evenly spaced wind speeds, θθθ is a vector of evenly spaced wind directions, and ρ(Uu,θd) is a probability

mass function.
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The AEP can also be estimated through Monte Carlo integration,

AEP (sss)≈ 8760
1
K

K∑

k=1

P (sss,u(k)
∞ ,θ(k)) , (4)

where u
(k)
∞ and θ(k) represent draw k of the probability distribution π(u∞,θ).85

The associated AEP gradient can also be approximated through Monte Carlo simulation:

d

dsss
AEP ≈ 8760

1
K

K∑

k=1

d

dsss
P (sss,u(k)

∞ ,θ(k)) (5)

2.1 Stochastic Gradient Descent

The SGD algorithm is shown in Algorithm 1,

Algorithm 1 Stochastic Gradient Descent

mmm← 000

vvv← 000

sss← sss0

for i in [1,2, . . . ,T ]

do

jjj =− 8760
K

∑K
k=1

∂
∂sss

P (sss,u
(k)
∞ ,θ(k))+ αi

∂γ
∂sss

mmm = β1mmm− (1−β1)jjj

vvv = β2vvv− (1−β2)jjj
2

m̂mm = mmm
1−(β1)i

v̂vv = vvv
1−(β2)i

sss = sss− ηim̂mm/
√

v̂vv

ηi = S(η0, δ, i)

αi = α0
η0
ηi

where sss0 are the initial turbine positions, i is the iteration number, αi is referred to as the constraint multiplier, γ(sss) is a penalty90

function, P (sss,u(k)
∞ ,θ(k)) is the wind farm power associated with inflow speed u

(k)
∞ and θ(k), K is the number of samples

employed in each SGD iteration, β1 and β2 are constants, T is the number of SGD iterations, and ηi is the learning rate.

We initially attempted this approach using the widely used default parameter values β1 = 0.9 and β2 = 0.999. The parame-

ters can be thought of as adding momentum to the moving averages of the gradient and squared gradient, mmm and vvv. We found

that these default values gave too much emphasis to gradients from the penalty function, launching the turbines away from the95

boundaries in a dramatic fashion. Instead, we suggest the parameters β1 = 0.1 and β2 = 0.2, which encode a shorter memory

of the presence of the penalty. With these new default parameters, and the learning rate defined below, we observed successful

convergence for a wide variety of test cases.
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The spacing between turbines is enforced using a penalty term,

γs =
∑

∀i, j>i

min
[
(xi−xj)2 + (yi− yj)2− (NDD)2,0

]
. (6)100

Similarly, the distance outside of boundaries is enforced using a penalty term,

γb =
Nt∑

i=1

[
max(xi−xub,0)2 + max(xlb−xi,0)2 + max(yi− yub,0)2 + max(ylb− yi,0)2

]
, (7)

where Nt is the number of wind turbines.

The total penalty, γ, is defined as the sum of these two penalty terms,

γ(sss) = γs(sss) + γb(sss) . (8)105

The gradient of the penalty term, γ, is scaled before being added to the negative gradient of the AEP using the scaling

factor, αi. The gradients of γ are computed using finite differences while the gradient of the AEP is computed using automatic

differentiation.

In Algorithm 1, the learning rate (ηi), constraint multiplier (αi), number of SGD iterations (T ), and the samples per SGD

iteration (K) are all free parameters. These parameters can be optimized to perform well for individual wind farm optimization110

problems. But there is no guarantee that these particular parameters will perform well for other wind farm problems—and

this meta-optimization can be expensive. In the machine learning community, these parameters are sometimes optimized using

evolutionary, grid search, or Bayesian optimization approaches (Alibrahim and Ludwig, 2021). In addition, it is common to

schedule the learning rate to decay as the optimization proceeds (You et al., 2019; Denkowski and Neubig, 2017).

We propose a method for setting free parameters to ensure that all units are consistent. The only free parameters we manually115

set are the number of optimization iterations and the number of power samples per iteration. The optimization generally

becomes more accurate and more expensive as these parameters increase, and users are free to balance this tradeoff as they

see fit. Our formulation does not guarantee that all intermediate solutions satisfy the constraints, especially in the beginning of

the optimization. The constraint multiplier begins on a comparable scale to the AEP, and is scheduled to increase so that the

constraint gradients overwhelm the AEP gradients as the optimization progresses. The number of iterations, T , can be based120

on a prescribed computational budget.

The learning rate, ηi, can be interpreted as converting m̂mm/
√

v̂vv (with unity units) to distance (units of m). In this study, the

learning rate is scheduled to decay according to

S(t = 0) = η0

S(t = T ) = ηT

, (9)
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where T is the number of optimization iterations, η0 is the initial learning rate, and ηT is the scheduled final learning rate. This125

final learning rate can be thought of as a solution tolerance for the design variables. In this study, we set ηT = 0.01m.

The initial learning rate, η0, is based on a length scale parameter, L, which corresponds to a reasonable initial step size for

the optimization. By setting the intial learning rate according to

η0 = L = D/5 , (10)

where D is the turbine rotor diameter, we encourage the turbines to move at most L every optimization iteration.130

The learning rate is scheduled to decay as

S(η0, δ, t) = η0

t∏

i=1

1
1 + iδ

, (11)

where δ is a parameter that controls the learning rate length, such that the final learning rate is ηT . The parameter δ is numeri-

cally set as

δ(η0,ηT ,T ) = argmin
δ

|ηT −S(η0, δ,T )| , (12)135

The constraint multiplier, αi, can be interpreted as converting the gradient of constrained square distances (in units of m) to

AEP gradients. The initial constraint multiplier, α0, is set as the mean absolute AEP gradient divided by the length scale, L, so

that the separation constraint has a similar scale to AEP gradients,

α0 =
mean[|∇AEP (sss0)|]

L
, (13)

where mean[|∇AEP (sss0)] is the mean of the absolute AEP gradient of the initial guess with respect to each component of the140

gradient. During each iteration, the constraint multiplier, αi, is scheduled to increase based on the inverse of the learning rate,

αi = α0
η0

ηi
. (14)

The wind rose samples, (u(i)
∞ ,θ(i))∼ π(u∞,θ), are randomly selected based on the direction frequency and direction-

specific Weibull shape and scale parameters. Note that the tilde (∼) denotes a shared probability distribution. After a direction

is sampled, the wind speed is sampled as a continuous weibull distributed random variable,145

u∞(θ)∼W [u∞,A(θ),k(θ)] , (15)

where the probability density of the Weibull distribution, W , is given by

W(u∞,A,k) =
k

A

(u∞
A

)k−1

exp
[
−

(u∞
A

)k
]

. (16)
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2.2 Deterministic Approach

A deterministic SLSQP optimization was selected to act as a benchmark to the SGD approach. The upper and lower boundaries150

of the farm are passed to the optimizer as bounds. The spacing between each set of turbines are passed to the optimizer as

individual inequality constraints,

Cij = (xi−xj)2 + (yi− yj)2− (2D)2 ∀ i, j > i . (17)

We used the Scipy implementation of the algorithm (Virtanen et al., 2020), with 200 maximum iterations and a tolerance of

10−3, optimizing the AEP in units of kWh subject to the spacing constraint in Equation 17 in units of m2. In each optimization155

iteration, the AEP, and the corresponding gradient, is computed using rectangular quadrature as described in Equation 3, using

360 wind direction bins and 23 wind speed bins, resulting in 8280 power evaluations.

3 Application

We applied the optimization approaches discussed above to optimize wind power plants of various sizes. Each farm consists of

turbines with 70-meter hub heights, 80-meter rotor diameters, and 2-megawatt rated powers. Power gradients were computed160

directly from PyWake using automatic differentiation. The power of each turbine is estimated by a combination of velocity

deficits predicted by the Bastankhah Gaussian wake model (Bastankhah and Porté-Agel, 2014) using the default parameters in

the PyWake tool and the squared sum superposition (Pedersen et al., 2019; DTU Wind Energy Systems, 2022). We require each

turbine to be spaced at minimum two rotor diameters apart (ND = 2). All power plants considered in this study have square

boundaries so that, in a grid, the turbines would be spaced five rotor diameters apart (∆ = 5), such that the edge turbines are165

placed on the boundaries of the wind farm. The boundaries are determined as

xl = 0

yl = 0

xu = D
√

Nt∆

yu = D
√

Nt∆

. (18)

The wind rose, visualized in Figure 1, is based on PyWake’s Lillgrund example site. A probability mass function is assigned

to different direction bins. Each direction bin is associated with Weibull scale and shape parameters describing the distributions

of wind speeds within the sector. Each direction bin is 30 degree wide. The continuous probability density function π(u∞,θ)170

is approximated as ρ(θ)π(u∞|θ), where ρ is the previously mentioned probability mass function, linearly interpolated across

one-degree bins, and π(u∞|θ) is parameterized by direction-specific Weibull shape and scale parameters that are also linearly

interpolated from the provided data. With this formulation, the likelihood of different wind directions is provided as a probabil-

ity mass function, ρ(θ). This probability mass is used as weights passed to the Numpy choice function (Harris et al., 2020),
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allowing the wind direction to be sampled as a discrete random variable. We note that this formulation could be extended to a175

fully continuous formulation by drawing the direction samples from the inverse of an empirical cumulative direction density

function.

Figure 1. Lillgrund wind speed and direction probability mass function with 360 direction bins.

In all wind farm optimization problems considered, the directions are discretized from 0 to 360 degrees, with one-degree

increments. In the deterministic formulation, the discretized wind speed ranges from 3-25 m/s and is divided using increments

of 1 m/s.180

Figure 2 shows the measured computational cost of computing AEP gradients, using the rectangular wind farm described

in this study, with different wind farm sizes, using grid layouts with an average spacing of five rotor diameters between each

turbine. The minimum measured time was reported from five identical runs on the DTU Sophia supercomputer (Technical

University of Denmark, 2019). For small numbers of turbines, evaluating 100 wind rose samples is about as expensive as

evaluating 5 samples. This scaling changes as the wind farm grows in size, and it gradually becomes more expensive to sample185

the wind rose. In our study, we selected 50 samples for every SGD iteration.

The optimization algorithms were timed based on the time elapsed between the first and final optimization gradient evalu-

ations. Each optimization case was run on second generation AMD EPYC 7302 processors. Each optimization case was run

sequentially for the sake of simplicity, although we acknowledge that there are several opportunities for parallelization in future

work.190

4 Results and Discussion

The performance of SGD is compared to the deterministic counterpart, considering wind farms with 25, 64 and 100 turbines,

using 20 different initial starting conditions to obtain statistically significant results. The AEP and constraint violation of each

optimization solution are plotted as a function of time elapsed during the optimization in Figure 3. Note that these plots show the
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Figure 2. Computational time associated with computing the gradient for various wind farm sizes and wind rose sampling strategies. The left

panel compares the cost of computing AEP gradients when using different numbers of Monte Carlo samples with the cost of the full factorial

wind rose (8,280 samples) for farms with various numbers of wind turbines. The right panel compares the cost of Monte Carlo estimates of

the AEP gradient for different numbers of samples of the atmospheric conditions and turbines in the wind farm.

optimization history by plotting the deterministic AEP associated with each gradient evaluation called for by each optimization195

case. Since the time is measured relative to the first gradient evaluation, the first gradient evaluation is associated with a time of

zero, which is not shown in the logarithmic time axis. When considering 25 wind turbines, the solutions found using SGD and

deterministic approaches are comparable. When considering larger wind farms (with 64 and 100 turbines), the SGD approach

finds optimum AEP in considerably less time than the deterministic counterpart; and the AEPs found using SGD tend to be

larger than those found using the deterministic approach. As the proposed SGD formulation does not offer an automatic way to200

set the T parameter, results are shown for different values of T . When T is increased, the optimizer finds solutions with larger

AEPs, with a computational cost that is approximately proportional to T . As the optimization progresses, αi becomes large

(approaching 100 as the learning rate approaches 0.01), and the gradients of the AEP, which are time-consuming to compute,

are overwhelmed by the gradients of the penalty, which take very little time to compute. In production runs of this approach, it

could be useful to alter Algorithm 1 to remove the AEP gradients from the formulation for sufficiently large αi.205

The final layouts associated with one of the random initial conditions used in the 100 turbine analysis, when T = 5,000

iterations, is shown in Figure 4. The SGD approach generally identifies solutions with the majority of turbines packed into the

side boundaries and a somewhat regular grid in the interior of the farm. The deterministic algorithm also packed turbines into

the edges of the farm, although not as many turbines were packed into the East and West boundaries as in the SGD results.

The layouts found using the SGD approach tend to have interior turbines that generally appear to be more aligned in the210

North-South direction than in the deterministic solutions.

The results of the 25-, 64-, and 100-turbine wind farm optimization cases are summarized in Table 1. The mean time, mean

constraint violation, and mean and standard deviation of the AEP are reported with respect to the 20 random initial starting
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1.2 × 108

1.25 × 108

1.3 × 108

1.35 × 108

1.4 × 108

1.45 × 108

1.5 × 108

AE
P 

(k
W

h)

25 Turbines

SGD, T=5000
SGD, T=2000
SGD, T=1000
SLSQP 3.1 × 108

3.2 × 108

3.3 × 108

3.4 × 108

3.5 × 108

3.6 × 108

3.7 × 108

64 Turbines

4.8 × 108

5 × 108

5.2 × 108

5.4 × 108

5.6 × 108

100 Turbines

10 3 10 2 10 1 100 101

Time (hours)

10 3

10 2

10 1

100

101

102

N
 (m

)

10 3 10 2 10 1 100 101

Time (hours)

10 3

10 2

10 1

100

101

102

10 3 10 2 10 1 100 101

Time (hours)

10 3

10 2

10 1

100

101

102

Figure 3. Optimization results associated with SGD and SLSQP for a 25-turbine wind farm, using 20 random initial starting conditions. The

AEP (top panel) and penalty (bottom panel) are plotted as a function of the time elapsed during the optimization. The SLSQP results are

shown in black. The SGD results associated with T = 1,000, 2,000, and 5,000 iterations are shown in purple, blue, and yellow, respectively.

conditions. The constrain violation is reported as
√

γ/Nt to quantify the mean length of the constraint violations of each

turbine. The final constraint violations can be reduced by lowering the ηT parameter. The SGD approach takes considerably215

less time to find a solution than the deterministic approach for the larger wind farms considered. With T =2,000 iterations,

the SGD approach yielded an average of 0.2% AEP improvement in the 100-turbine case and the computational time of the

optimization is reduced by factors of 7 and 20 in the 64- and 100-turbine cases, respectively, when compared to the deterministic

counterparts.

The optimization results presented in this study used 50 power samples per iteration (K = 50). We found this to produce220

high-quality results without incurring unacceptable computational expense. Figure 5 shows the behavior of the SGD approach

associated with different different values of K, considering 100 turbines with 5,000 scheduled optimization iterations. As K

increases, the optimization finds solutions with larger AEPs. There is a small increase in time elapsed and a large increase in

the final AEP between the K = 5 and K = 50 cases, while there is a large increase in time elapsed and a small increase in

the final AEP between K = 50 and K = 200. As K increases, we expect the maximum AEP to reach a plateau and the time225
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SGD. AEP=5.71e+08 kWh
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SLSQP. AEP=5.67e+08 kWh

Figure 4. The final layouts found using SGD (left) and SLSQP (right) using one of the random initial layouts examined in the 100-turbine

wind farm case for T = 5,000 iterations. The wind farm boundaries are shown as grey lines. The initial turbine layouts are shown as grey

points. The final turbine layouts are shown as filled circles, where brighter fill colors indicate larger annual power production of the individual

turbines. The spacing constraint is visualized using hollow circles with dashed lines and a radius of one rotor diameter.

Table 1. Results of SGD and deterministic optimizations for various wind farm sizes. Each optimization case is run using 20 random initial

starting conditions, and the mean and standard deviation are reported with respect to these 20 initial points. The SGD results are associated

with T = 2,000 iterations.

Nt Case Mean Time (minutes) Mean AEP (kWh) AEP Standard Deviation (kWh) Mean
√

γ/Nt (m)

Deterministic 2 1.496e+08 3.069e+05 0.000e+00

SGD 4 1.500e+08 4.462e+05 3.170e-03

Deterministic 110 3.691e+08 5.633e+05 0.000e+00

SGD 15 3.699e+08 4.901e+05 2.396e-03

Deterministic 608 5.674e+08 9.975e+05 0.000e+00

SGD 30 5.686e+08 7.720e+05 2.742e-03

25

64

100

and memory required to increase indefinitely. In future work, we plan to explore scheduling K to increase as the optimization

progresses.
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Figure 5. Optimization results associated with SGD for a 100-turbine wind farm using 20 random initial starting conditions. The upper and

lower bounds of the results are plotted as a function of the optimization iteration number. The SGD results associated with K = 5, 50, and

200 iterations are shown in purple, blue, and yellow, respectively.

This study used an exotic learning rate scheduler. We tried several schedulers, and observed this one to be the best at

finding sufficiently large AEP solutions that reasonably satisfied the imposed constraints. Figure 6 shows the behavior of the

SGD algorithm associated with the presented learning rate scheduler, referred to here as the product scheduler; as well as an230

exponential and a linear decay scheduler. The exponential scheduler quickly diminishes the learning rate, causing the SGD

algorithm to become stuck in local minima. The linear transition from large to lower learning rates prevents the SGD algorithm

from having sufficient time to follow enlarged constraint gradients. It is possible that the algorithm could be improved by

using separate schedulers for the learning rate and constraint multiplier. For instance, it might be more effective to use a linear

scheduler to decrease the learning rate and an exponential scheduler to increase the constraint multiplier. We leave this question235

for future work.

5 Conclusions

SGD is a promising optimization tool for wind farm design. Instead of evaluating all anticipated atmospheric conditions

during every optimization iteration, SGD randomly samples the defined distributions of atmospheric conditions, resulting in

substantially reduced computational time required for each optimization iteration. The total optimization time can be sched-240

uled according to a prescribed computational budget. The presented formulation allows for continuous resolution of uncertain

variables, eliminating the need to choose a discretization resolution of atmospheric conditions, such as the wind speed and

direction. This technique does not become exponentially more expensive as a greater number of uncertain parameters is in-

cluded, allowing for consideration of other atmospheric conditions, such as turbulence intensity, air density, veer, and shear

(Saint-Drenan et al., 2020; Duc et al., 2019).245
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Figure 6. Influence of the learning rate scheduler on the SGD results. The product scheduler is shown in yellow. The exponential scheduler

is shown in blue. The linear scheduler is shown in purple. The AEP (upper left panel), constraint penalty function (bottom left panel), and

the learning rate decay (right panel) are plotted as a function of the number of optimization iterations. The optimization iteration is denoted

as t in the legend of the right panel.

The presented SGD approach was shown to become more effective than a deterministic counterpart as the number of wind

turbines increased. SGD yielded slightly higher AEPs than the deterministic approach in substantially reduced computational

time. The time required to optimize wind farm layouts can be a major bottleneck in corporate workflows, and the time savings

associated with the SGD approach allows engineers to access optimization results sooner than a conventional approach. If the

inflow conditions were discretized using extremely small bins, or if several atmospheric conditions were to be considered, we250

expect that the SGD approach would perform the optimization even faster and more effectively than the deterministic approach.

The SGD approach is a simple framework that is well suited large-scale stochastic wind power plant design optimization

challenges. Future work includes: exploring separate schedulers for the constraint multiplier and learning rate, scheduling the

number of Monte Carlo samples, K, to increase as the optimization proceeds, and examining the impacts of discretizing the

atmospheric conditions.255
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