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Abstract. In this paper, the coupled dynamics of the floating platform and the wind turbine rotor are analysed. In particular,

the damping is explicitly derived from the coupled equations of rotor and floating platform. The analysis of the damping leads

to the study of the instability phenomena obtaining the explicit conditions that lead to the Non Minimum Phase Zero (NMPZ).

Two NMPZs are analysed, one related to the rotor dynamics and the other one to the platform pitch dynamics. The latter

introduces a novelty and an explicit condition is provided in this work for its verification. In the second part of the paper,5

from the analysis of the damping of the floating platform, a new strategy for the control of Floating Offshore Wind Turbines

(FOWTs) is proposed. This strategy allows one to impose to the controller an explicit level of damping in the platform pitch

motion that adapts with wind speed and operating conditions without changing the period of platform pitching. Finally the

new strategy is compared to one without compensation and one with a non-adapting compensation by performing aero-hydro-

servo-elastic numerical simulations of a reference FOWT. Generated power, motions, blade pitch and tower base fatigue are10

compared showing that the new control strategy can reduce fatigue in the structure without affecting the power production.

1 Introduction

Wind energy is an important source of renewable energy and it has a very high potential both onshore and offshore. In terms of

installed capacity, onshore wind is still the largest contribution. However, in the next years, the new annual offshore installed

capacity is estimated to exceed 30 GW by 2030, in order to stay on-track for a netzero/1.5◦ C pathway (Lee et al., 2022).15

In offshore, there is a growing interest in floating foundations. In fact, FOWTs would allow access to good wind resource

locations that are not suitable for fixed-bottom foundations.

In that context, the levelized cost of energy (LCOE) of offshore wind farms needs to be decreased to be competitive with

respect to onshore wind. This is especially true for the FOWTs. One effective way to achieve this objective is to investigate

different strategies for the control of the FOWTs. As explained in (Bianchi et al., 2007), the minimisation of the LCOE involves20

a series of partial objectives, energy capture, mechanical loads and power quality. These objectives are actually closely related

and sometimes conflicting and they should not be pursued separately. Hence, the question is to find a well balanced compromise

among them. Considering FOWTs, this optimization problem increases in complexity since the motions of the floating platform

1



interact with the feedback control loop. Moreover, the coupling between the platform motions, the rotor dynamics and the blade

pitch control can lead to oscillating ( not damped) steady-state or even to unstable conditions (Larsen et al., 2007).25

Those phenomena can be classified in two families: one is related to undesired motions of the platform, even if the system

is still stable. Those are the Non Minimum Phase Zeros (NMPZs). They are associated to the zeros of the transfer function

describing the system. The other family is associated to the damping of the system which is related to the poles of the transfer

function and can affect the system stability.

The nature and the set of control parameters leading to those phenomena can vary from one platform design to another one,30

e.g., barge, spar, semi-sub or tension-leg platform. However, for each of the platforms, there exist sets of design and control

parameters leading to undesired behaviours (Fleming et al., 2014).

Bottom-fixed control strategies normally consider a squared law for the electrical torque control (below-rated wind speeds)

and a set of integral and proportional coefficients (the pitch scheduling) to control the rotational speed by the blade pitch and

operate the wind turbine at the desired steady-state conditions (above-rated wind speeds) (Lopez-Queija et al., 2022). This35

control strategy allows to operate the wind turbine in steady-state conditions for a large set of wind speeds, typically from 3 to

25ms−1.

To adapt this control strategy to FOWTs, a first compensation is considered in this work. It aims at solving the NMPZ effects

caused by the blade pitch on the rotor rotational dynamics. This solution is already introduced in (Fischer, 2013) (Stockhouse

et al., 2021) and it is, in this work, analytically developed. The study of the NMPZs brings to a new NMPZ phenomenon,40

described for the first time in this work. This is the NMPZ caused by the blade pitch on the platform dynamics. This new

phenomenon is analytically developed leading to the explicit condition to verify it. However, the compensations proposed in

literature and adopted in this work can’t correct it.

A second compensation considered in this work aims at solving the issue of the coupling between the platform motions

and the rotor dynamics leading to non-damped oscillations of the systems. This phenomenon can be even amplified when the45

bottom-fixed pitch control is considered for a floating wind turbine. The issue comes from the fact that in above-rated wind

speed, the blade pitch regulates the speed by increasing the angle of attack to feather. For a FOWT, when the platform has a

forward motion, the rotor experiences an increasing wind speed. Consequently, the blade pitch control increases the angle of

attack to feather and, hence, reduces the aerodynamic torque and regulates the rotor speed. However, it also reduces the rotor

thrust that induces a further forward motion. So the blade pitch control amplifies the original forward motion of the platform50

because the floating platform surge and pitch natural frequencies are in the bandwidth of the blade pitch controller.

Solutions exist to avoid this phenomenon. The first one and the most common in literature is to reduce the blade pitch control

proportional and integral gains in order to reduce its bandwidth and exclude the platform pitch and surge natural frequencies

(Jonkman et al., 2008; Larsen et al., 2007). However, this solution does not completely solve the problem and, moreover, the

price to pay is to have a less reactive blade pitch control that allows important over-speeds of the rotor. Alternative methods use55

additional sensing, such as nacelle fore-aft acceleration measurements or platform gyroscopes, to improve the performance of

the pitch controller. In (Abbas et al., 2022), authors introduce a correction of the blade pitch control proportional to the platform

pitch velocity in order to decouple the rotor dynamics from the platform pitch motions. An explicit form for the compensating
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parameter is proposed to obtain this decoupling, considering the first order linear expression of the rotor dynamics variation

with respect to the platform pitch. Here, we also propose a correction of the blade pitch control proportional to the platform60

pitch velocity. However, differently from (Abbas et al., 2022), we propose to take advantage of the coupling between platform

dynamics and rotor dynamics in order to define an explicit value of the platform pitch damping, obtained by compensating

the blade pitch. The two strategies arrive to different expressions of the proportional coefficients. This difference leads to

coefficients with opposite signs.

The control strategy proposed in this work shares some similarities to the ones introduced in (Lackner et al., 2009) and65

(Lenfest et al., 2020). In (Lenfest et al., 2020) the platform pitch damping and the compensation parameter are investigated

with a purely numerical approach. Here, we propose a mathematical frame and an explicit formulation for the compensation

parameter related to this damping which depends on the system properties. As introduced in (Lackner et al., 2009), we also use

the platform pitch velocity to adjust the rated speed set-point in order to reduce platform motions. The rated generator speed is

no longer a constant value but a function of the platform pitch velocity and the blade pitch is used to damp the floating platform70

pitch. However, differently from (Lackner et al., 2009), the ratio between proportional and integral gains of the correction can

be considered different for the platform pitch motion and the rotor speed.

Higher order controllers, such as a linear quadratic regulator (LQR) are applied and evaluated in (Ma et al., 2018). A

disturbance accommodating controller (DAC) is evaluated in (Menezes et al., 2018) and it is coupled with individual pitch

control (IPC) in (Namik et al., 2011). A nonlinear pitch and torque controller using wind preview is designed in (Sarkar et al.,75

2020) and (Schlipf et al., 2013), giving promising results.

The novelty of this work is related to the FOWT damping analysis, i.e., the damping obtained by coupling the rotor and the

platform pitch dynamics. This damping is explicitly derived from the coupled equations of rotor and floating platform. This

analysis leads to the study of the instability phenomena underlining the conditions leading to the NMPZ. One new NMPZ,

never discussed in literature, is discovered and analysed in this work. The domain of the instability of the platform is explicitly80

derived from the coupled system of equations. The control strategy proposed relies on this analysis and it allows to impose an

explicit level of damping in the platform pitch motion to the controller without changing the period of platform pitching. This

explicit form of the damping in the platform pitch dynamics is a novelty of this work.

The chosen strategy is, then, compared to one without platform pitch compensation (with detuning) and one that considers

a single value of the compensation parameter for every wind speed and operating condition.85

The document is organized as follows. In Section 2, the equations of the FOWT system are described with the considered

degrees of freedom and their coupling terms. Section 2.1 presents the controller model considered in this work. The closed loop

feedback system is then analysed in Section 2.3, leading to the definition of the conditions for the NMPZs. For this controller,

a new control strategy dedicated to FOWTs, named ζplt-fixed is presented and analytically derived in Section 2.4 and Section

2.5. Some numerical tests are presented and commented in Section 3.90
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2 Floating Offshore Wind Turbine and its controller

The floating offshore wind turbine (FOWT) is represented by a system of two degrees of freedom, namely the rotor speed Ω

and the platform pitch angle, Φ as reported in Figure 1.

Figure 1. A scheme of the considered system with two degrees freedom, Ω around the rotor shaft and Φ around the center of gravity (CoG)

of the system.

The surge degree of freedom is not considered in this model. In fact, the surge speed of the FOWT can be neglected with

respect to the speed at nacelle generated by the pitch motion of the platform. This is already mentioned in (Sarkar et al., 2020b),95

where the authors remarked that the dynamics of the surge motion are much slower than those of the pitch. Hence, the surge

can be considered as a static offset in the position of the wind turbine without any effects on the controller.

Two control parameters, B (blade pitch) and τg (generator torque), and two external disturbances, V (wind speed) and W

(wave elevation) are considered. For all the values that form a given operating point (namely Ω,Φ,B,Tg,V,W ), the notation

X = x̄+x is adopted, with x being the small perturbation of a steady-state operating point x̄.100

The model is, then, based on the two fundamental equations:

Ω̇g =
Ng

Jr
(Ta −NgTg) (1)

JtΦ̈+DtΦ̇+KtΦ= htFa + τwave (2)

where Ωg is the generator speed, hereafter noted Ω, Ta and Tg are the aerodynamic and electric torque, Ng is the gearbox ratio105

and Jr is the rotor inertia. Jt is the total system moment of inertia about the pitch rotation, Dt is the natural damping coefficient

(assumed constant), Kt is a spring-like restoring coefficient (mainly given by the mooring lines of the floating platform), ht is

the height of the rotor (approximately the tower length), Fa is the aerodynamic force flowing from the rotor to the system and

Twave is the overturning moment given by the waves.

Once a steady-state operating point x̄ is reached, the same two equations can be applied to any small variations x around110

this operating point. Equations (1) and (2) applied on X can be written:
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ω̇ =
Ng

Jr
(τa −Ngτg) (3)

Jtϕ̈+Dtϕ̇+Ktϕ= htdFa + τwave (4)

The infinitesimal thrust and torques satisfy (using the same notation X = x̄+x): Tg = τ̄g + τg , Ta = τ̄a + τa, Twave =

τ̄w + τwave and Fa = F̄a+dFa (notice that we do not use the notation X = x̄+x for Fa). By considering small perturbations115

of a steady-state operating point (given by Ω,Φ,B,Tg,V,W ), it allows one to use the following linear forms:

τa =
∂τa
∂ω

ω+
∂τa
∂v

vr +
∂τa
∂β

β (5)

dFa =
∂Fa

∂ω
ω+

∂Fa

∂v
vr +

∂Fa

∂β
β (6)

τwave =
∂τwave

∂w
w (7)

The hypothesis of ϕ being small allows one to remove the terms ∂τa
∂ϕ ϕ, ∂Fa

∂ϕ ϕ and ∂τwave

∂ϕ ϕ.120

The relative wind vr is the wind velocity in rotor reference frame, it is computed from v by:

vr = v−htϕ̇ (8)

Under the assumption of ϕ being small, htϕ̇ represents the rotor fore-aft velocity in a fixed global reference frame.

Equations (1) and (2) applied to small perturbations of a steady-state point can therefore be expressed in the linear form:

ω̇ =
Ng

Jr

(
∂τa
∂ω

ω+
∂τa
∂v

(v−htϕ̇)+
∂τa
∂β

β−Ngτg

)
(1’)125

Jtϕ̈+Dtϕ̇+Ktϕ= ht

(
∂Fa

∂ω
ω+

∂Fa

∂v
(v−htϕ̇)+

∂Fa

∂β
β

)
+

∂τwave

∂w
w (2’)

Those coupled second order equations yield the following four dimensional state-space model:

ẋ=A0x+Bcuc +Bdud (9)

Where x= (θ, θ̇,ϕ, ϕ̇)T , θ =
∫
ω (i.e. θ̇ = ω), uc = (β,τg)

T and ud = (v,w)T , and:130

A0 =


0 1 0 0

0
Ng

Jr

∂τa
∂ω 0 −ht

Ng

Jr

∂τa
∂v

0 0 0 1

0 ht

Jt

∂Fa

∂ω −Kt

Jt
− 1

Jt
(Dt +h2

t
∂Fa

∂v )

 Bc =


0 0

Ng

Jr

∂τa
∂β −N2

g

Jr

0 0

ht

Jt

∂Fa

∂β 0

Bd =


0 0

Ng

Jr

∂τa
∂v 0

0 0

ht

Jt

∂Fa

∂v
1
Jt

∂τwave

∂w

 (10)
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2.1 Control model description

The pitch controller model is described in this section.

The present control model considers ωr as the reference for ω and 0 as the reference for ϕ̇. It is based on several SISO

(single-input-single-output) feedback loops. It can be seen as a multi-SISO:135

– Proportional: βP = kP (Ω−Ωr)

– Integral: βI = kI
∫
(Ω−Ωr)

– Blade pitch (β) platform pitch compensation: βcomp = kβ(Φ̇r − Φ̇)

– Generator torque (τg) platform pitch compensation: τg,comp = kτg (Φ̇r − Φ̇)

Controllers described by the literature considering the same compensations (Abbas et al., 2022; Stockhouse et al., 2021) aim140

at maintaining ω steady near its rated value by acting on the blade pitch β to vary the aerodynamic torque τa with the opposite

sign with respect to the rotor infinitesimal speed ω =Ω−Ωr , where the final goal is to obtain the same operative conditions

of a bottom-fixed wind turbine. However, this strategy neglects the following phenomenon: the blade feather modifies the

aerodynamic thrust Fa. Thus, a part of the opposing force on the platform is neglected. The strategy developed in this paper

aims at minimizing ϕ variations with the constraint of maintaining a constant ω. Such a control strategy should reduce the145

loads on the structures (nacelle, tower and floater). Section 3 considers a full aero-hydro-servo-elastic model to verify this

assumption. The performance of the control strategy is analysed in a FOWT realistic environment reproduced by a numerical

twin.

2.2 Global State-Space description

For a FOWT, the objective ot the pitch control is to remain in the equilibrium operating point. It translates in: ω̄ =Ωr and150
¯̇
ϕ= Φ̇r = 0. This objective allows one to justify the linear form of the global equations (1’) and (2’). For constant inputs v̄ and

w̄, this operating point is reached by the appropriated pitch (β̄) and electric torque (τ̄g).

The controller model is, here, introduced into the wind turbine state space description. For small perturbations of this steady-

state operating point, the PI controller described previously becomes:

– Proportional:155

βP = kPω (11)

– Integral:

βI = kI

∫
ω = kIθ (12)
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– Blade pitch (β) platform pitch compensation:

βcomp =−kβϕ̇ (13)160

– Generator torque (τg) platform pitch compensation:

τg,comp =−kτg ϕ̇ (14)

Figure 2 shows the entire picture of the controller model. This control strategy acts on the two dynamic systems, platform

and rotor. Hence, one can appreciate how the bottom-fixed scheme acting on the rotor speed (ω) with a proportional integral

scheme is then corrected by the βcomp (13) and the τg (14) that depend on the platform pitch speed error.165

Figure 2. Block diagram of the controller model

The linear expression of uc = (β,τg)
T as a function of x= (θ, θ̇,ϕ, ϕ̇)T is uc =K0x+uc,ol where:

K0 =

kI kP 0 −kβ

0 0 0 −kτg

 (15)

is the matrix of the control gains and uc,ol is an optional additional control (open loop) that can be considered. This is useful

to analyse the NMPZ in the next section. By replacing it in eq. (9), it leads to:

ẋ= (A0 +BcK0)x+Bcuc,ol +Bdud (16)170
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Which leads to define the global matrix of the closed loop system of equations:

A= (A0 +BcK0) =


0 1 0 0

kI
Ng

Jr

∂τa
∂β

Ng

Jr
(∂τa∂ω + kP

∂τa
∂β ) 0

Ng

Jr
(−ht

∂τa
∂v − kβ

∂τa
∂β + kτgNg)

0 0 0 1

kI
ht

Jt

∂Fa

∂β
ht

Jt
(∂Fa

∂ω + kP
∂Fa

∂β ) −Kt

Jt

−1
Jt

(Dt +h2
t
∂Fa

∂v + kβht
∂Fa

∂β )

 (17)

The time domain system can be rewritten in the Laplace complex domain. Using the following notation, L {x(t)}=X , eq.

(16) translates into:

X = (sI −A)−1(BcU c,ol +BdUd). (18)175

By defining:

B =
[
Bc | Bd

]
, u=


βol

τg,ol

v

w

 (19)

and

G(s) = (sI −A)−1B =
1

det(sI −A)
Com(sI −A)TB =

1

χA(s)
N(s), (20)

it leads to:180

χA(s)X(s) =N(s)U(s) (21)

G(s) is a 4× 4 matrix. Every component of which can be written as the quotient of a polynomial in s and χa(s).

2.3 Non minimum phase zeros analysis and resolution (negative damping on the control)

This section analyzes the problem of negative damping by addressing the positions of the zeros of each component of G in the

complex plane, i.e. the points where eq. (21) is well defined but becomes:185

χA XT
0 ·X = 0. (22)

This translates the fact that s is a NMPZ if there exists a specific XT
0 , such as, for any value of U(s), the linear combination

XT
0 N(s)U(s) gives XT

0 = 0. Here, s is formally the complex Laplace variable, so that formally, s ∈ {x+ iy, x > 0}. Even

though eq. (22) can be defined on the whole complex plane, only zeros with a strictly positive real part are NMPZs. The reader

is referred to (Hoagg and Bernstein, 2007) for a complete description of NMPZs.190

Physically a XT
0 is equivalent to an infinitesimal shifting along a specific direction of a steady-state point that can not be

obtained with any infinitesimal shifting of the input. This phenomenon is better illustrated case by case.
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For the rest of the section, an open loop control on β is considered in order to highlight the NPMZ. Hence, βol is added

to the multiple SISO as already described in eq. (16). Since the feedback control on β can not erase the NMPZ condition, to

lighten the formulas, the notation β will be used instead of βol in this section.195

2.3.1 ϕ-NMPZ: negative damping on ϕ control by β

The gain equation in the Laplace domain for β → ϕ control is obtained by projecting eq. (21) on the x= (0,0,ϕ,0) axis and

considering only a β perturbation, i.e. an input u= (β,0,0,0). The resulting equation is:

χA(s)ϕ(s) =N3,1(s)β(s), (23)

N3,1(s) =
Jr
Ng

∂Fa

∂β
s2 +

(
∂τa
∂β

∂Fa

∂ω
− ∂Fa

∂β

∂τa
∂ω

)
s (24)200

The condition for the NMPZ on β → ϕ control is that N3,1 has a root with a real part strictly positive. Assuming that β = βf ,

the fine pitch, the previous derivatives are all negative. Hence, the root research of N3,1 leads to:

∂τa
∂ω

/
∂τa
∂β

<
∂Fa

∂ω
/
∂Fa

∂β
(25)

Intuitively, this corresponds to an operating point where τa is rather influenced by β and Fa is rather influenced by ω. This

NMPZ does not depend on parameters of the platform, it is only related to Wind Turbine Generator (WTG) performances.205

However, the importance of the phenomenon is related to the platform properties. It is to be noted that this NMPZ has never

been highlighted in literature and the controller model (with compensations of the platform motions) introduced in Section 2.1

in the feedback control loop does not prevent it. It results only from the characteristic of the FOWT system. Further works

should focus on this phenomenon and introduce corrections to prevent it for any FOWT system.

In absence of NMPZ, i.e. eq. (25) being false, increasing β from a steady-state operating point (i.e. setting dβ̈ > 0, dβ̇ > 0210

and dβ > 0) will always imply a reduction of ϕ. In presence of NMPZ, i.e. if eq. (25) is true, the reduction or the increase of ϕ

(with respect to the operating point) depends on the ratio between β̈ and β̇.

When eq. (25) is verified, it means that: τa is more sensitive to blade pitch (β) than rotational speed (ω) and Fa is more

sensitive to ω than β. Therefore, by increasing β, ω increases and then, it occasions Fa to decrease. Then, ϕ increases. If eq.

(25) is not verified, increasing blade pitch β from a steady-state operating point always reduces platform pitch ϕ. In practice,215

this effect can become an issue for a control algorithm mainly focused on ω stabilization since it generates unexpected platform

dynamics. For a more detailed approach of the initial undershoot phenomenon, the reader is referred to (Hoagg and Bernstein,

2007).

Figure 3 reproduces in the time domain ϕ and ω responses to a β-step input (at t= 10s): values (resumed in Table 1) are

chosen arbitrarily. so that eq. (25) is false: ϕ decreases. On the right, values are chosen so that the eq. (25) is true: ϕ increases220
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even though β has step up. The chose values are not intended to simulate a real turbine, but only illustrate the described

phenomena. Section 3 focuses on more realistic FOWT tests.

Table 1. The set of parameters to show the NMPZ of eq. (25). They are not intended to simulate a real turbine.

eq. (25) false eq. (25) true
∂τa
∂v

2980.9 kN.s 3079 kN.s

∂Fa
∂v

354.8 kN.s.m−1 355.6 kN.s.m−1

∂τa
∂ω

−58597.1 kN.m.s.rad−1 −55499.5 kN.m.s.rad−1

∂Fa
∂ω

−5658.0 kN.s.rad−1 −5820.4 kN.s.rad−1

∂τa
∂β

−152347.8 kN.m.rad−1 −160140.5 kN.m.rad−1

∂Fa
∂β

−16052.2 kN.rad−1 −15260 kN.rad−1

Figure 3. Platform pitch ϕ and rotor speed ω responses to a blade pitch β-step input (at t= 10s): on the left, values (Table 1) are chosen so

that eq. (25) is false: ϕ decreases. On the right, values (Table 1) are chosen so that eq. (25) is true: ϕ increases even though β has step up.

2.3.2 ω-NMPZ: negative damping on ω control by β

Gain equation in the Laplace domain for β → ω control is given by:

χA(s) ω(s) =N2,1(s) β(s) (26)225

N2,1(s) =
Jt
ht

∂τa
∂β

s3 +

[
Dt

ht

∂τa
∂β

+ht

(
∂τa
∂β

∂Fa

∂v
− ∂Fa

∂β

∂τa
∂v

)
+ kτgNg

∂Fa

∂β

]
s2 +

Kt

ht

∂τa
∂β

s (27)

Hence the condition for NMPZ on β → ω control is:
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h2
t

(
∂Fa

∂v
−
(
∂τa
∂v

− kτg
Ng

ht

) ∂Fa

∂β

∂τa
∂β

)
<−Dt (28)

This corresponds with an operating point where τa is rather influenced by v and Fa is rather influenced by β. In presence of230

NMPZ, i.e. if eq. (28) is true, the sign of dω depends on the choice of dβ̈, dβ̇ and dβ. Intuitively, the latter only happens when

eq. (28) is verified: increasing blade pitch will reduce Fa more than it increases τa (because Fa is rather influenced by β), thus

ϕ̇ will decrease and cause relative wind vr = v−htϕ̇ to increase. As τa is rather influenced by v, this will reduce ω in the end.

In practice, this effect can become an issue if a ω control algorithm obtains the opposite result than what was expected.

In absence of NMPZ, i.e. eq. (28) being false, increasing β from a steady-state operating point will always imply reducing235

ω. In order to visualize this NMPZ, Figure 4 shows ω responses to a β-step input (at t= 10s). On the left, parameters (Table

2) are chosen so that the condition eq. (28) is false: ω decreases. On the right, parameters are chosen so that condition eq. (28)

is true: at first ω increases even though β has step up.

Table 2. The set of parameters chosen to show the NMPZ of eq. (28). They are not intended to simulate a real turbine.

eq. (28) false eq. (28) true
∂τa
∂v

2980.9 kN.s 2838 kN.s

∂Fa
∂v

354.8 kN.s.m−1 303.0 kN.s.m−1

∂τa
∂ω

−58597.1 kN.m.s.rad−1 −59428.7 kN.m.s.rad−1

∂Fa
∂ω

−5658.0 kN.s.rad−1 −6282.9 kN.s.rad−1

∂τa
∂β

−152347.8 kN.m.rad−1 −133058.7 kN.m.rad−1

∂Fa
∂β

−16052.2 kN.rad−1 −18247.0 kN.rad−1
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Figure 4. Rotor speed (ω) responses to a blade pitch (β)-step input (at t= 10s). On the left, parameters (Table 2) are chosen so that the

condition eq. (28) is false: ω decreases. On the right, parameters are chosen so that condition eq. (28) is true: at first ω increases even though

β has step up.

2.3.3 NMPZs and stability analysis

Comparison between Figures 3 and 4 enlightens what really happens after a step input, with and without NMPZ: at the begin-240

ning both ω and ϕ̇ always decrease just after the step. However, when both NMPZ conditions eq. (25) and eq. (28) are false,

those tendencies do not change. Conversely, when eq. (25) is true, we observe that |ω̇| is so big that ϕ̇ jumps into positive

values. Similarly, when eq. (28) is true, we observe that |ϕ̇| is so big that ω jumps (only for a short time) into positive values.

NMPZ, as we have seen in the examples, can cause important shifts and unexpected behaviors for both ω and ϕ.

The NMPZ β → ϕ does not depend on above defined parameters. Consequently, the model in Section 2.1 does not prevent it245

. However condition eq. (25) forecasts which operating points it affects. On the other hand, a wise choice of τg avoids β → ω

NMPZ, which is the main reason why this compensation has already been introduced by Stockhouse et al. (2021) and in the

controller model introduced in Section 2.1.

In order to complete the analysis of NMPZ phenomena related to FOWT system, a hypothetical situation where both con-

ditions eq. (25) and eq. (28) are true has been simulated and reported in Figure 5. At first, the dynamics are always the same:250

both ϕ̇ and ω decrease, but soon they both diverge because of the NMPZ phenomena (combined with the closed loop control).

The Pole-Zero plots in Figure 6 will lead to a better understanding of this instability. It is to be noted that, kP /kI corrections

(without compensations τg and kβ) can delay this divergence but can not avoid it.
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Table 3. The set of parameters chosen to show the instability given by NMPZs of eq. (25) and eq. (28) . They are not intended to simulate a

real turbine.

eq. (25) and eq. (28) true
∂τa
∂v

3105.0 kN.s

∂Fa
∂v

293.0 kN.s.m−1

∂τa
∂ω

−51356.5 kN.m.s.rad−1

∂Fa
∂ω

−7150.0 kN.s.rad−1

∂τa
∂β

−148063.0 kN.m.rad−1

∂Fa
∂β

−16543.6 kN.rad−1

Figure 5. an hypothetical situation where both conditions eq. (25) and eq. (28) are true. At first, both platform pitch rotational velocity ϕ̇ and

rotor speed ω decrease, but soon they both diverge because of the negative damping (kP /kI corrections can delay this divergence but can not

avoid it).

A Pole-Zero plot is a commonly used synthesis of both NMPZ and stability issues. The above case by case analysis high-

lighted the drawback of allowing a zero of the transfer function in the right half of the complex plane. Similarly, the stability255

of a system can be well synthesized by the position of the poles of the transfer function. Poles of the transfer function situated

in the right half of the plane result in a global instability such as the one observed in Figure 5.
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Figure 6. Pole-Zero analysis of the systems described in tables 1, 2, and 3: the upper-left plot corresponds to an hypothetical situation where

both equations (25) and (28). are false, the upper-right to a situation where only eq. (25) is true, the lower-left to a situation where only eq.

(28) is true and the lower-right to a situation where both equations (25) and (28) are true.

Figure 6 shows, for every hypothetical situation described above (see tables 1, 2, and 3), the position of poles and zeros of the

transfer functions G3,1, describing ϕ control by β (see Section 2.3.1) and G2,1 describing ω control by β (see Section 2.3.2).

G3,1 and G2,1 have the same denominator, which is the complex polynomial χA, see eq. (20). Thus, they have the same poles.260

Their numerators are respectively N3,1 and N2,1. In the upper-left plot, both equations (25) and (28) are false. There are no

NMPZ: indeed, all the zeros are in the left half of the complex plane. In the upper-right plot, only eq. (25) is true. All the zeros

of N2,1 are in the left half of the complex plane while one zero of N3,1 is in its right half: there is one NMPZ corresponding

to the ϕ control by β. Similarly, in the lower-left plot, only eq. (28) is true. Only two zeros of N2,1 are in its right half of the

complex plane: those are NMPZs corresponding to the ω control by β. Finally, in the lower-right plot both equations (25) and265

(28) are true: there are zeros of N3,1 and of N2,1 in the right half of the complex plane. Moreover, in this case, we also find two

poles of the transfer function in the right half of the complex plane: this is consistent with the time evolution plotted in Figure

5, where one can observe an instability.
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2.3.4 compensation of the ω-NMPZ

The issue related to the ω-NMPZ has been presented in Section 2.3.2. Literature has addressed this NMPZ phenomenon and270

suggested several control corrections. Due to the nature of this phenomenon, any correction concerning β control, introduced

in eq. (13) as dβcomp =−kβϕ̇, cannot prevent completely this NMPZ. However, detuning the PI controller (by lowering kP

and kI gains) or using the β platform pitch compensation as suggested in (Abbas et al., 2022), can mitigate the effect of NMPZ

when eq. (28) is true.

The complete prevention of the problem can be obtained by several sets of parameters that involve the WTG, the floating275

platform and the control set-up. In fact, for this NMPZ, eq. (14) of the controller model described in Section 2.1 allows one

to avoid the NMPZ by choosing a well-suited value of kτg . This compensation has been already introduced by Fischer (2013)

and Stockhouse et al. (2021) with the formula:

kτg =mτg

ht

Ng

∂τa
∂v

, mτg ∈ [0,1] (29)

It is to be noted that, usually, it needs to be saturated because of turbine generator design constraints concerning the generator280

torque. Pole-Zero plots are useful to get a better understanding about the choice of the parameter kτg , and more precisely the

effect of varying the coefficient mτg .

Figure 7. Pole-Zero analysis of the systems described in tables 1 and 3, with the parameter mτg varying from 0 to 1. According to the value

of mτg , zeros and poles of the system move from the right to the left half of the complex domain. The left plot corresponds to an hypothetical

situation where, supposing mτg = 0, eq. (25) would be true and eq. (28) would be false (Pole-Zero plot reported in the upper-right of Figure

6). The right plot corresponds to a situation where supposing mτg = 0, both equations (25) and (28) would be true (Pole-Zero plot reported

in the lower-right of Figure 6).

In the left plot, positions of poles and zeros of the transfer function vary with mτg . Both zeros, initially (i.e. with mτg = 0)

in the right half of the complex plane, end up in its left half: the NMPZ issue is solved. One should also notice that the poles

are also displaced but remain in the left half of the complex plane. The stability margin, however, might change. Thus, while285
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choosing an explicit value of mτg , one should take into account not only the position of the zeros but also the poles of the

transfer function. Here, the stability margin is not maximized by the value chosen as example, mτg = 0.311.

The right plot corresponds to an instability situation: initially (i.e. with mτg = 0) not only both zeros are in the right half of

the complex plane, also two poles are there. Again, both the zeros and the poles are displaced as mτg varies from 0 to 1. For a

wisely chosen value of mτg (here mτg = 0.44) they both end up in the left half of the complex plane and the stability margin290

can be maximized. In general, the choice of a value for mτg should also take into account a possible saturation due to turbine

generator design constraints.

2.4 Damping analysis

In Section 2.3 the issue of NMPZ, i.e. the issue of negative damping in the control/input side of the equation, is analysed. The

influence of the gains kP , kI , kβ and kτg on the damping of the system (cf. Section 2.3) is investigated within the analytical295

framework set in the previous sections. The goal is to optimize (or tune) the stability of ω and ϕ responses to an external (v and

w) disturbance. In other words, the goal is to obtain an explicit expression of the damping of the FOWT system with respect to

the control parameters, kP , kI , kβ and kτg , such that, for an imposed level of damping, one can obtain a value of the control

parameters. This is a powerful result for the floating wind community and a novelty of this work with respect to the existing

literature.300

Considering the whole system, with both degrees of freedom ω and ϕ and their coupling, in the complex domain, leads to

the eq. (21). The study of the damping is related to χA(s) = det(sI −A), defined in eq. (20). The explicit form of χA is:

χA(s) = χrot(s)χplt(s)+
Nght

JrJt
s

[
(kps+ kI)

∂Fa

∂β
ht

∂τa
∂v

−
(
Jr
Ng

∂Fa

∂β
(kP s+ kI)+

∂Fa

∂ω

)(
kβ

∂τa
∂β

+ kτgNg

)]
(30)

where:

χrot(s) = s2 − Ng

Jr

∂τa
∂ω

s− Ng

Jr

∂τa
∂β

(kP s+ kI)

χplt(s) = s2 +
1

Jt
(Dt +h2

t

∂Fa

∂v
+ kβht

∂Fa

∂β
)s+

Kt

Jt (31)305

The term in square parenthesis represents the coupling term between the dynamics of the platform (ϕ) and the dynamics of

the rotor (ω).

In this coupled form, it is complicated to explicitly determine the damping of the system. In the next paragraph, under some

hypothesis, the coupled system can be separated in two second order systems, one related to the rotor dynamics ω and the other

one related to the floating dynamics ϕ. In particular, for the latter, it is possible to define a damping for the floating platform310

and obtain an explicit form for the compensation term kβ related to the imposed damping.
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2.4.1 Simplified analysis of rotor dynamics:

Defining a damping coefficient (or a damping ratio) requires to reduce the global system to a second order oscillatory system.

Equations (16) and (17) couple rotor and platform pitch dynamics, they hence involve a 4th order polynomial expression. In

order to deal with rotor dynamics independently of the platform, it is supposed:315

htϕ̇ ≪ v (32)

For large FOWT systems, this hypothesis is, generally, respected. It implies:

Ngkτg ϕ̇≪ ∂τa
∂v

v

∂τa
∂β

kβϕ̇≪ ∂τa
∂v

v
(33)

Under such assumptions, the linear form of eq. (1) becomes:

ω̇ =
Ng

Jr

(
∂τa
∂ω

ω+
∂τa
∂v

v+
∂τa
∂β

β− τg

)
(1”)320

and the control is described by the PI controller: β̇ = kP ω̇+ kIω, so that the resulting Laplace transform equation is

ω(s) =Grot(s)v(s) (34)

where, considering a kI > 0,

Grot(s) =
∂τa
∂v s

s2 − Ng

Jr

∂τa
∂ω s− Ng

Jr

∂τa
∂β (kP s+ kI)

,

i.e. Grot(jν) =
1

1+ j
2ζrot

(
ν

νrot
− νrot

ν

) −∂τa
∂v

Ng

Jr

∂τa
∂ω +

Ng

Jr

∂τa
∂β kP

(35)

with:325

νrot =

√
−Ng

Jr

∂τa
∂β

kI , ζrot =−
Ng

Jr

∂τa
∂ω +

Ng

Jr

∂τa
∂β kP

2
√
−Ng

Jr

∂τa
∂β kI

(36)

Thus, when all interactions with platform pitch are neglected, the rotor behaves like a second order oscillatory system. The

corresponding filter Grot is a second order band-pass filter with cutoff angular frequency νrot
1.

The above formulas enable one to obtain explicitly kI and kP .

They are well known: several controllers, such as (Abbas et al., 2022), suggest to define:330

|kI |=

∣∣∣∣∣ ν2rot
Ng

Jr

∂τa
∂β

∣∣∣∣∣ and |kP |=

∣∣∣∣∣∣
(

Ng

Jr

∂τa
∂ω +2ζrotνrot

)
Ng

Jr

∂τa
∂β

∣∣∣∣∣∣ (37)

1In case kI ≤ 0, νrot and ζrot would be imaginary according to the formulas above. Grot would be no longer a band-pass filter.
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2.4.2 Simplified analysis of platform dynamics:

Similarly to what is done in the previous paragraph, here the global system of equations (1, 2) is reduced to a second order

oscillatory system that allows us to have a better understanding of platform dynamics.

Considering kP = kI = 0 and assuming:335

∂Fa

∂ω
ω <<

∂Fa

∂v
vr +

∂Fa

∂β
β (38)

The latter is the condition to decouple the global system. It enables to consider ϕ response independently of ω, and as a second

order oscillatory system’s degree of freedom. The resulting Laplace transform equation is:ϕ

ϕ̇

(s) =Gplt(s)ud(s) (39)

ud =

v

w

: the input array is reduced because only the damping in the output side is analysed and it is not necessary for this340

to consider any additional control input.

Gplt(s) = (sI −Aplt)
−1Bd (40)

Aplt =

 0 1

−Kt

Jt

−1
Jt

(Dt +h2
t
∂Fa

∂v + kβht
∂Fa

∂β )

 (41)

Aplt is the bottom-right part of A defined in eq. (17).345

Looking at the ϕ degree of freedom, eq. (39) gives:

ϕ(s) =Gplt,1,1(s)v(s)+Gplt,1,2(s)w(s), (42)

with:

(Gplt,1,1,Gplt,1,2)(s) =

(
ht
Jt

∂Fa
∂v

s2+ 1
Jt

(Dt+h2
t

∂Fa
∂v +kβht

∂Fa
∂β )s+

Kt
Jt

,
1
Jt

∂τwave
∂w

s2+ 1
Jt

(Dt+h2
t

∂Fa
∂v +kβht

∂Fa
∂β )s+

Kt
Jt

)
, (43)

i.e.:350

(Gplt,1,1,Gplt,1,2)(jν) =
1

1−
(

ν
νplt

)2
+2jζplt

ν
νplt

(
ht

Kt

∂Fa

∂v , 1
Kt

∂τwave

∂w

)
, (44)

νplt =

√
Kt

Jt
, ζplt =

1

2
√
KtJt

(
Dt +h2

t

∂Fa

∂v
+ kβht

∂Fa

∂β

)
(45)

Thus, when all interactions with rotor dynamics are neglected, the platform behaves like a second order oscillatory system.

The corresponding filter Gplt is a second order low-pass filter with cutoff angular frequency defined by νplt and damping ratio

defined by ζplt.355
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2.5 Artificial damping of the platform: ζplt-fixed strategy

By knowing the features of the FOWT, one can impose a given level of damping and obtain an explicit expression for the kβ :

kβ =
1

ht
∂Fa

∂β

(
2
√
KtJtζplt −Dt −h2

t

∂Fa

∂v

)
(46)

The strategy is such that kβ is a negative number instead of what is proposed in the literature 2. In (Stockhouse et al., 2021),

βcomp =−kβϕ̇ is introduced in order to erase at first order the coupling between platform and rotor dynamics, and therefore360

kβ is positive, defined by:

kβ =−ht
∂τa
∂v

/
∂τa
∂β

(47)

In Lackner et al. (2009), a platform pitch control involving a parameter equivalent to kβ is assessed, and a numerical approach

leads to defining a kβ < 0, as for eq. (46), but unique. Here, eq. (46) provides the reader with an explicit value of kβ that is

different for any turbine and floater characteristics and operating point.365

2.5.1 Expected effect on platform dynamics

Figure 8 shows Bode diagram of the second order low-pass filter Gplt. In other words, it shows how ζplt value can affect the

damping of platform oscillations.

It can be observed that ζplt has a significant effect on the damping of platform oscillations only for angular frequencies

ν ≈ νplt,natural. The yellow vertical band in Figure 8 shows the interval of angular frequencies Idamped, arbitrarily defined by:370

Idamped =

[
νplt,natural√

2
,
√
2νplt,natural

]
(48)

that are directly damped when ζplt increases. Therefore, it is to be expected that ζplt-fixed strategy will be well fit to reduce

platform motion and tower loads when their variations happen at an angular frequency ν ∈ Idamped.

2In (Abbas et al., 2022), βcomp is defined as in (Stockhouse et al., 2021) but with the convention βcomp = kfloatϕ̇ so that kfloat =−kβ = ht
∂τa
∂v

/ ∂τa
∂β

is negative. It would be positive with the convention used in this work and in (Stockhouse et al., 2021).
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Figure 8. Bode diagram of second order low-pass filter Gplt

2.5.2 Expected effect on rotor dynamics375

In this part the first order effect of ζplt-fixed strategy on the rotor dynamics is analysed. The state space representation of the

FOWT dynamics is given by eq. (16). By considering a disturbance and open-loop input equal to 0 (i.e. uc,ol = ud = 0), this

leads to the following linear equation, truncated at first order:

ω̇ = θ̈ =A2,1θ+A2,2θ̇+A2,4ϕ̇, (49)

where380

A2,4 =
Ng

Jr

(
−ht

∂τa
∂v

− kβ
∂τa
∂β

+ kτgNg

)
=

Ng

Jr

(
−ht

∂τa
∂v

+

∂τa
∂β

ht
∂Fa

∂β

(
Dt +h2

t

∂Fa

∂v
− 2
√

KtJtζplt

)
+ kτgNg

)
.

(50)

Moreover, the following inequalities are verified for an above-rated operating point:

ht
∂τa
∂v

− kτgNg ≥ 0 (51a)

∂τa
∂β

∂Fa

∂β

> 0 (51b)385
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1

2
√
KtJt

(
Dt +h2

t

∂Fa

∂v

)
≤ ζplt (51c)

First inequality comes from eq. (29) (notice that in Section 3, it is considered τg = 0). Third inequality is a consequence of

the assumption that ζplt-fixed strategy aims at increasing the damping of the platform. This implies that:

∂

∂ζplt
|A2,4|> 0 (52)390

meaning that the first order coupling between platform dynamics and rotor dynamics will increase when ζplt increases if

ζplt-fixed strategy is applied. Thus, if the characteristic time of platform dynamics is small enough, the equation truncated at

first order is valid and it is to be expected that, at least for some tunings of the PI controler, ζplt-fixed strategy would increase

rotor speed variations.

3 Numerical tests with time domain simulations395

In this section, it is analysed how the new control strategy described in the previous section affects platform and rotor dynamics,

and especially the impact on tower loads and rotational speed. The reference is the control strategy without compensation, with

kβ = 0.

The ζplt-fixed strategy has been implemented in the ROSCO environment (ROSCO, 2021), replacing the existing pitch

control. The rest of the controller remains basically the same. In the next sections, ζplt-fixed strategy is compared to the one400

without compensation, named reference. The only difference between the two terms of comparison concerns the kβ . For the

ζplt-fixed strategy, it is given by eq. (46). For the reference, it is kβ = 0. Several values of platform damping are analyzed for

the ζplt-fixed strategy.

It should be noticed that, in all of the following simulations, the blade pitch saturation defined in ROSCO is switched off in

order to better observe the effect of the platform pitch control strategies.405

Moreover, τg-compensation is not assessed in this section, as it has already been studied by Stockhouse et al. (2021). Hence,

kτg = 0 hereafter. The interactions between blade pitch saturation, or τg-compensation, and the proposed blade pitch controller

strategy should be investigated in future works.

3.1 Test cases

The simulation tool used is OpenFast v2.4.0 (https://github.com/OpenFAST/openfast) and the FOWT model considered is the410

IEA 15 MW wind turbine mounted over the UMaine VolturnUS-S semi-submersible floater (Allen et al., 2020). Initially simple

constant wind and monochromatic waves are tested in order to verify the analytical developments of the previous section. Then

a test case more representative of the industrial design of FOWT is considered by testing a DLC1.1. For the latter, simulation

consider only 1 seed of 3600 seconds with aligned wind and irregular waves. For this time simulation, this is statistically

equivalent to 600 seconds and 6 seeds.415
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3.2 Tuning of the PI controller

Values of kP , kI , kβ are continuously updated following the explicit expression given in equations (36) and (45), then low-pass

filtered. This means that globally, for each of these test cases and each set of parameters, kP , kI , kβ have almost fixed values.

After some tests, for all the considered simulations, ζrot = 0.6 and νrot = 0.01 are chosen for the PI controller’s tuning. This

choice ensures that most of the wave spectrum (which peaks at T ≈ 11 s, i.e. ν ≈ 0.57 rads−1) and platform dynamics natural420

angular frequency (νplt ≈ 0.22 rad.s−1) fall outside of Grot pass-band. This strategy is known in literature as a detuning

strategy. We used here a very simplified version of the detuning strategy since the tuning of the PI controller is not the main

object of this article. Since the platform pitch control (βcomp) has a damping effect mainly on the frequencies close to the

natural frequency of the platform, its tuning can reasonably be considered as independent from the tuning of the PI controller,

which is already well assessed in literature.425

3.3 Still wind and monochromatic wave

For the still wind and monochromatic wave condition, two ζplt are tested: ζplt = 0.1 and ζplt = 0.25 3. Thus, the platform is

expected to behave like an under-damped second order oscillatory system. Table 4 states external conditions for test cases with

still wind and monochromatic wave. The platform is subjected to a monochromatic wave of period 11s (a representative value

for the fundamental period of a wave spectrum) and 28.75s (the natural period of the platform). The wave height is the same but430

in the corresponding linear model the resulting input’s (τwave) amplitude is different (as it also depends on the wave period).

Hereafter, results are plotted over time are drawn for a 100 seconds time interval in a simulation on a long period of time, so

that the operating point is reached. When necessary for a better understanding, results are reported for a longer interval.

Table 4. Environmental conditions for the numerical test cases.

case wind speed V (ms−1) wave period Tp (s) wave height Hw (m)

(1) 11 11 1.5

(2) 11 28.75 1.5

(3) 22 11 1.5

(4) 22 28.75 1.5

Table 5 gives the mean value of kβ for test cases (1) to (4). Cases (1), (2) and cases (3), (4) are gathered together as they use

the same mean value of kβ .435

3For the readers more used to quality factors, the corresponding values are: Q= 5 and Q= 2, respectively
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Table 5. compensation gain (kβ) corresponding to Table 4.

case ζplt = 0.10 ζplt = 0.25 reference

(1) and (2) kβ =−8.6 kβ =−42.7 kβ = 0.0

(3) and (4) kβ =−7.4 kβ =−34.8 kβ = 0.0

Figure 9. Platform pitch Φ (deg) for a monochromatic wave of period 11s (test case (1) on the left and (3) on the right).

Figure 10. Platform pitch Φ (deg) for a monochromatic wave of period 28.75s (test case (2) on the left and (4) on the right).

Figures 9 and 10 show the forced oscillations of the platform when it is subjected to several test cases (see Table 4) Increasing

ζplt reduces platform oscillations, especially when the wave period is close to the natural period of the platform. Even though

the system is much more complex in those simulations, this general behavior was forecast (see Section 2.5.1 and Figure 8)

by the damping analysis on the two-dimensional linear model described in Section 2.4.2 . This is also shown in Figures 11440

and 12 where the tower base reaction moment is plotted over time. For the monochromatic wave with period 11s the damping
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of the ζplt-fixed strategy is not evident, while it becomes easily observable as soon as the input’s frequency gets close to the

platform’s natural frequency. More floating wind test cases are reported in the next section.

Figure 11. Tower base moment (MN.m) evolution over time for test case (1) on the left and (3) on the right.

Figure 12. Tower base moment (MN.m) evolution over time for test case (2) on the left and (4) on the right.
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Figure 13. Rotor speed (rpm) evolution over time for test cases (1) on the left and (3) on the right

Figure 14. Rotor speed (rpm) evolution over time for test cases (2) on the left and (4) on the right.

ζplt-fixed strategy’s effect on rotor dynamics is not easily described by a second order linear equation: it involves the coupling

between platform and rotor dynamics, which is analysed at first order in Section 2.5. From this analysis, ζplt-fixed strategy445

was expected to increase the coupling between platform and rotor dynamics for a short characteristic time. In Figures 13 and

14 it can be observed that for a short characteristic time (11s) ζplt-fixed strategy increases rotor speed variations, but not for a

longer characteristic time, such as 28.75s (for which it behaves slightly better than kβ = 0 strategy).

To conclude this part of the tests: β-compensation strategies perform very differently depending on the oscillatory frequency

of the platform:450

– For angular frequencies ν ∈ Idamped =
[
νplt,natural√

2
,
√
2νplt,natural

]
, ζplt-fixed strategy is very effective when it comes

to the damping of platform oscillations, as seen in Section 2.5 (cf. figure 8). The tests highlight that ζplt-fixed strategy is

reducing both tower loads and rotor speed variations in turbulent wind conditions.

25



– For angular frequencies outside the previous set, ζplt-fixed strategy is less effective for damping platform oscillations.

Tower loads reduction by ζplt-fixed strategy is therefore barely visible, whereas rotor speed variations are actually am-455

plified, especially when comparing this strategy to reference strategy.

3.4 DLC1.2 tests

The tests presented hereafter are more representative of what is typically done during the design or verification of offshore

wind structure. They are inspired by DLC 1.2, for normal power production in normal turbulence and normal sea state, as

described in the IEC standards. This kind of load case aims at assessing the fatigue design criteria.460

Kaimal’s turbulence model is considered following IEC 61400 v.3 for a wind turbine of turbulence type B, for average wind

speeds ranging from 4 ms−1 to 24 ms−1, as described in Table 6. The wind box is generated by the TurbSim tool developed

by NREL. For the waves, JONSWAP distributions are considered with a significant wave height of Hs= 1.5 m, wave period

Tp= 11.0 s and γ = 2.0. Wind and waves are considered to be aligned in the same direction. All the degrees of freedom of

the floating platform are allowed, including the surge motion. In other words, the numerical twin reproduces the actual motion465

of the FOWT, according to the accuracy of the chosen model. Tower and blades are fully deformable. As with the previous test

cases, the ζplt-fixed strategy is compared to the detuning strategy, i.e. kβ = 0.

The ζplt-fixed strategy considers a kβ that adapts to the wind and evolves during the simulation. This is different from

what is implemented in ROSCO controller (ROSCO, 2021) which considers one kβ , tuned only once for a given FOWT

and applied for every wind speed. This strategy is considered in this section as a second term of comparison. For the latter,470

the kβ value is set to −9.35, i.e. the value tuned for this FOWT in https://github.com/NREL/ROSCO/blob/main/Test_Cases/

IEA-15-240-RWT-UMaineSemi/DISCON-UMaineSemi.IN .

The level of damping imposed to the platform is ζplt-fixed = 0.1. This value is found to be the most interesting to be tested

for this floater and WTG configuration. Other tests with higher values of imposed damping show less interesting results. The

choice of the right ζplt for each FOWT system is important and may require several iterations before a conclusion can be475

reached.

Table 6. Environmental conditions for DLC 1.2.

Time sim [s] w.speed [m.s−1] w. condition Tp [s] Hs [m] γ waves dir.

3600 4.0− 24.0 Normal turbulence B 11.0 1.5 2.0 co-linear

Figure 15 shows how kβ evolves for some cases of the simulation pool. The behaviour in below-rated wind speeds is more

dynamic than in above-rated wind speeds, where the floating feedback is more stable. As remarked in Section 2.5, the kβ for

the ζplt-fixed is a negative value. The platform pitch compensation takes place also for the under rated wind speeds, where it is

the only source of pitch control.480

26

https://github.com/NREL/ROSCO/blob/main/Test_Cases/IEA-15-240-RWT-UMaineSemi/DISCON-UMaineSemi.IN
https://github.com/NREL/ROSCO/blob/main/Test_Cases/IEA-15-240-RWT-UMaineSemi/DISCON-UMaineSemi.IN
https://github.com/NREL/ROSCO/blob/main/Test_Cases/IEA-15-240-RWT-UMaineSemi/DISCON-UMaineSemi.IN


Figure 15. evolution of kβ for some of the simulations.

From the time series of the tower bottom moment, a rainflow algorithm is used to count the cycles following ASTM norma-

tive (ASTM, 2017). The Design Equivalent Load (DEL) is obtained by using a Wohler’s curve with a single slope of exponent

m= 3.0. Platform pitch, power, rotor speed, blade pitch, tower load and tower DEL results of the simulations for the com-

parison are resumed in Figure 16. The ζplt-fixed strategy reduces platform pitch motion for all wind speeds when compared

to the detuning strategy, and it gives comparable or better results with respect to the kβ-constant strategy. The three strategies485

give comparable results when looking at power generation, rotational speed and mean values of blade pitch. However, for the

20 ms−1 wind speed, kβ-constant shows an over-speed in the rotor (max rotor speed) and an higher value in the platform

pitch standard deviation. This coupling among platform pitch motion, rotor speed and blade pitch affects the DEL at the tower

base. It helps show the benefit of considering a kβ that adapts to the wind speed and the different wind turbine operations. By

considering a single kβ , specifically for the FOWT system, has the potential to result in irregular performances.490

Around rated wind speed, the ζplt-fixed strategy reduces loads in the tower and fatigue DEL when compared to the other two

strategies. For high wind speeds, the gain is less evident, especially when comparing to the kβ-constant strategy, which has a

lower DEL for 24 ms−1. In average there is a gain around 15 % of the DEL with respect to the detuning strategy. This gain is

less evident when compared to the kβ-constant strategy. Nevertheless ζplt-fixed strategy seems to perform better around rated

wind speeds and it gives a more homogeneous performance than kβ-constant strategy. Table 7 shows, for the 10 ms−1 case, a495

deeper comparison by reporting the statistics of the quantities of interest extracted from this simulation. For this wind speed,

an extract of time-series for some outputs of interest is shown in Figure 17. It is intended to give a better view of the damping

effect given by the ζplt-fixed strategy.

Figure 18 reports a deeper analysis of the fatigue damage. In fact, the stress in the tower bottom section is obtained by

considering the design proposed by UMaine in (Allen et al., 2020). Then, an offshore Wohler’s curve is considered with two500

slopes in the log-log domain: m= 3.0 for loads with less than 1.0 million cycles and m= 5.0 for loads with higher number
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of cycles. Those are typical values proposed by DNV for offshore steel structures. This analysis leads to obtain an estimation

of the 25 years damage at the tower bottom. The gain is much more evident than the DEL. This is due to the second slope,

m= 5.0, which amplifies the changes in the load amplitudes. Offshore WTG in production are mostly subjected to a very high

number of cycles of small amplitudes. This figure shows also the effect of the turbulence on the fatigue. In fact, looking at the505

detuning strategy, up to 12 ms−1, the shape of the damage distribution follows the one of the thrust curve. However, since

the turbulence is a percentage of the average wind speed, from 16 ms−1, the damage starts increasing again. In general, the

ζplt-fixed strategy is more adapted than the other two strategies for the fatigue of the structures. It demonstrates a reduction of

approximately 20 % in overall cumulative damage compared to kβ-constant strategy, and of approximately 30% compared to

the detuning strategy.510

Figure 16. Comparison results for the DLC1.2 for the UMaine floater with IEA15MW WTG. The imposed level of damping in the platform

dynamics for the ζplt-fixed strategy is 0.10. Outputs show statistics for platform pitch (average and std); blade pitch; tower bending moment,

max and damage equivalent load; rotor speed (average and max) and generator power (average and max).
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Table 7. Statistics for results concerning the case with mean wind speed at 10 ms−1. For each quantity of interest, there is the comparison

of the minimum, maximum, mean and standard deviation values produced by the ζplt-fixed, kβ-constant and detuning control strategies.

ζplt = 0.1 kβ = 0 kβ =−9.35 ζplt = 0.1 kβ = 0 kβ =−9.35 ζplt = 0.1 kβ = 0 kβ =−9.35 ζplt = 0.1 kβ = 0 kβ =−9.35

min min min mean mean mean max max max st.d. st.d st.d.

PtfmPitch [deg] 2.84 1.09 2.87 4.55 4.56 4.56 5.62 5.91 5.69 0.51 0.52 0.51

TwrBsMyt [MNm] 165 81 167 366 371 368 494 505 502 43.2 46.8 42.0

GenPwr [MW] 7.85 5.49 8.05 12.1 12.0 12.1 15.2 15.2 15.1 1.29 1.47 1.31

BldPitch [deg] 0.0 0.0 0.0 0.218 0.176 0.178 6.65 8.33 6.90 0.394 0.729 0.424

RotSpeed [rpm] 5.23 5.34 5.24 6.90 6.92 6.90 7.90 8.00 7.93 0.61 0.60 0.59

Figure 17. Extract of the time series concerning the case with mean wind speed at 10 ms−1. The ζplt-fixed, kβ-fixed and the detuning

control strategies are compared in platform pitch; rotor speed; generator power; blade pitch; and tower bending moment .

A specific fatigue analysis of the pitch bearing is realized by following (Shan et al., 2021), where three methods to evaluate

the fatigue of the pitch bearing are compared leading to comparable results. The second method is implemented here in order to

quantify the ratio of usage in the pitch bearing fatigue of the ζplt-fixed and kβ-constant strategies with respect to the detuning

strategy.
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Figure 18. Fatigue cumulative damage at tower bottom by using rainflow counting and linear Miner’s rule. The damage is obtained consider-

ing the tower base design proposed by the UMaine, a Wohler’s curve bi-linear with m= 3.0 up to 106 cycles and m= 5.0 after, as proposed

by DNV for Offshore steel. The probability of occurrence of each wind is equal, without any weibull distribution. ζplt = 0.1 reduces for

about 20% the overall cumulative damage when compared to kβ-constant strategy and about 30% with respect to detuning strategy.

The bearing life is inversely proportional to the cube of the bearing loading. From the overturning moment acting on the515

bearing, the equivalent loading at N revolutions of the pitch bearing is given by:

Meq =

(∑
i

∆βi M
3
i

N

)1/3

(53)

where i is the time step of the simulation. The discrete integral considers the product of the time series of the overturning

moment Mi and the blade pitch variation ∆βi, over the entire simulation. To take into account the fact that, for each wind

speed, the mean blade pitch is different, the 90 degrees of the pitch range are divided in 30 sectors, each one corresponding to520

a different zone of the bearing. This corresponds to consider a tooth function in the integral of eq. (53) and it is well explained

in Figure 11 of (Shan et al., 2021). Figure 19 reports the ratio of Meq given by the ζplt-fixed and kβ-constant strategies with

respect to the detuning strategy. In overall, the fatigue of the bearing is reduced by the ζplt-fixed strategy when compared to the

other two, included kβ-constant strategy. For the latter, the instability problem taking place at 20 ms−1 between blade pitch

and platform dynamics is underlined by a strong increase in the fatigue of the pitch bearing.525
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Figure 19. Ratio in the use of the pitch bearing given by the ζplt-fixed strategy with respect to the detuning strategy. The ratio is expressed

in terms of % of the equivalent loading at N revolutions of the pitch bearing (Meq), defined in eq. (53).

4 Conclusions

The first part of this paper presents the analysis of the NMPZ related to the system of equations describing the dynamics of a

floating offshore wind turbine (FOWT). The equation of the rotor dynamics and the one of the platform dynamics are analysed

in the complex domain to explicitly derive the conditions leading to their respective NMPZs. One of those NMPZs, i.e. the

instability given by the blade pitch on the rotor dynamics, is already known in literature and a compensation already exists to530

avoid it. The other one, i.e. the instability given by the blade pitch to the platform dynamics, is a novelty in the community.

The effects of the NMPZs are analysed on two analytical examples: at the beginning both ω and ϕ̇ always converge to the right

solutions just after the first steps. When both NMPZ conditions are not verified, those tendencies do not change. However, when

the ϕ̇-NMPZ is verified, |ω| becomes so big that ϕ̇ jumps into unexpected values without converging to the expected solution.

Similarly, when the ω-NMPZ condition is verified, |ϕ̇| becomes so big that ω oscillates before converging to the expected535

solution. NMPZs can cause important shifts and unexpected behaviors for both ω and ϕ. For those examples, the position of

poles and zeros of the transfer function in the complex domain is analyzed. The beneficial effect of the compensation for the

ω-NMPZ is shown by plotting the displacements of the poles and zeros from the right to the left part of the complex domain.

In the second part of the paper, the damping analysis is further investigated while proposing a new strategy control for

FOWT, named ζplt-fixed. This strategy is based on a compensation parameter kβ , which is proportional to the platform pitch540

velocity. It considers the coupling between the rotor dynamics and the floating platform dynamics. The idea behind this control

strategy is to activate the blade pitch to damp the platform motions. An explicit expression linking kβ to ζplt (damping ratio

imposed to the platform) is obtained by deriving a second order filter from the equation of the platform dynamics.

31



This is different with respect to existing platform pitch compensation strategies which aim to decouple rotor and platform

dynamics. The difference is underlined by the values of kβ , which is negative for the new control strategy, while it is positive for545

the ones existing in literature. For each FOWT system, some iterations are necessary in order to find the optimum value for ζplt.

The performances of the ζplt-fixed strategy are tested analytically and numerically by considering an OpenFAST numerical

twin of the Umaine IEA15MW FOWT. For a test representative of the DLC1.2, the ζplt-fixed strategy allows to reduce the loads

at the tower foundation interface for all the considered wind speeds, without significant losses in terms of power production.

When compared to a strategy considering a constant platform pitch compensation, it reduces fatigue damage for about 20 %,550

underlining the benefit of considering a kβ that adapts to the wind speed and the different wind turbine operations. The damage

analysis shows a remarkable gain in terms of fatigue lifetime of the structure and the blade pitch bearing.

This work highlights the importance of defining proper controller strategies for FOWT in order to reduce loads on the

structure or improve the performance. Accordingly, it is useful in helping the industry to achieve the objective in terms of

LCOE reduction.555
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