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Response to reviewers

General comments of the authors

Dear Editor and the Reviewers,
We sincerely thank you for your constructive comments. Under the review-

ers’ comments and suggestions, the manuscript has been significantly strength-
ened both in contents and clarity. Below, you can see the changes that we made
in response to each reviewer’s comment.

The editor and reviewers found the paper of interest, yet they felt that sev-
eral issues needed to be improved and clarified before the paper could be ac-
cepted for publication. In the revised manuscript:

• The changes made in response to Reviewer 1 are marked in blue.

• The changes made in response to Reviewer 2 are marked in red.

• The changes made in response to Reviewer 3 are marked in brown.

Reviewer 1

The manuscript entitled “Anomaly-Based Fault Detection in Wind Turbine Main
Bearings” deals with a very interesting topic, which is perfectly adequate for
the scientific objectives of the journal.

In a nutshell, the authors propose a PCA-based alarm raising method for di-
agnosing incoming damages to the main bearing of wind turbines. The method
is based on SCADA data mining.

The work is well written and well presented. The workflow is very clear
and presented in detail, such that it can be replicated by scholars.

The peculiarity of the work is that only exogenous variables (environmen-
tal) and the temperature of the component of interest (main bearing) are em-
ployed.

Therefore, in general I have a very positive opinion on this work. Never-
theless, there are some aspects which could be discussed more in deep.
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Author’s reply: Thank you for the positive feedback on the manuscript en-
titled ”Anomaly-Based Fault Detection in Wind Turbine Main Bearings”. We
are grateful to hear that you consider the topic to be both interesting and well-
suited to the scientific objectives of the journal. We also appreciate your com-
ments regarding the clarity and replicability of the workflow, as well as the use
of exogenous variables and temperature exclusively in the proposed method.
Finally, we acknowledge your suggestions for discussing certain aspects of the
work in greater detail. We will address them in this point-by-point answer to
the suggestions given for improvement.

1. A considerable number of studies has been recently devoted to this topic.
Therefore, I recommend that the authors highlight more clearly the innovative
contribution and the points of strength of their work.

Author’s reply: We appreciate your suggestion to highlight the innovative
contribution and strengths of our work. In particular, the following paragraph
has been added in the Introduction Section.

Although the topic of fault detection in main bearings of wind tur-
bines has been the focus of numerous studies, as can be seen from
the aforementioned references, in this paper a novel approach to
this problem is presented based on principal component analysis
(PCA) and data mining of only SCADA data. It should be empha-
sized that the stated methodology relies only on exogenous vari-
ables (ambient temperature and wind speed) and the temperature
of the main bearing (internal variable most related to the target
component, the main bearing), facilitating to isolate the faults that
influence that one internal variable. In addition, all variables used
in the strategy are readily available in all industrial-size wind farms
(both older and newer), making it a practical and cost-effective so-
lution for early fault detection.

2. The authors employ almost three years of data for model training. For
the necessities of real-time wind farm monitoring, it is not obvious that such
amount of healthy data is available. Could the authors discuss their models’
performance with shorter training data sets? I suggest the following reference:
Turnbull, A., Carroll, J., & McDonald, A. (2022). A comparative analysis on the
variability of temperature thresholds through time for wind turbine generators
using normal behaviour modelling. Energies, 15(14), 5298

Author’s reply: We appreciate your suggestion to examine the performance
of our method with shorter training data sets. In response to this comment, the
following paragraph has been added to Section 3.1 in the revised manuscript.

It is acknowledged that the availability of almost three years of data
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may not always be feasible. However, a data length of this magni-
tude was deemed necessary to fully capture the normal operating
behavior of the main bearing and to establish a reliable baseline for
fault detection. It was observed that when using one year of train-
ing data, the results were similar, but when the training data was
reduced to only six months, the method was incapable of learning
a normality model robust to all wind turbine operating scenarios,
see Turnbull et al. (2022). Therefore, for the proposed approach,
a minimum of one year of data is strongly recommended, and the
methodology will significantly benefit from two or three years of
available data.

Furthermore, the results for one year of training data, and only six months
of training data are shown in Figures 1 and 2. These figures have not been
incorporated into the manuscript, given that their inclusion would not suffice
to provide a comprehensive analysis of the impact of distinct training periods.
On the other hand, such analysis falls beyond the scope of the paper.

Figure 1: Results for WT1 to WT6 using one year of trainig data.
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Figure 2: Results for WT1 to WT6 using six months of training data.
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3. The authors obtain a result similar to that obtained, for example, in the
recent paper Murgia, A., Verbeke, R., Tsiporkova, E., Terzi, L., & Astolfi, D.
(2023). Discussion on the Suitability of SCADA-Based Condition Monitoring
for Wind Turbine Fault Diagnosis through Temperature Data Analysis. Ener-
gies, 16(2), 620. The main bearing temperature is the most adequate target to
monitor for raising an alarm, but there is an issue related to the capability of
the model in locating adequately the fault. In this work, using the main bear-
ing temperature, a fault regarding the main bearing itself and a fault regarding
the gearbox are diagnosed similarly. This occurs also in the paper which I have
indicated. Therefore, I am wondering if the authors have ideas for further de-
velopments regarding the issue of precise fault location.

Author’s reply: Thank you for drawing our attention to the excellent re-
cent paper ”Discussion on the Suitability of SCADA-Based Condition Moni-
toring for Wind Turbine Fault Diagnosis through Temperature Data Analysis”
by Murgia et al. In this work, as well as in our study, the main bearing temper-
ature was found to be a suitable indicator for detecting faults in wind turbines.
However, we acknowledge the issue you raised regarding the capability of the
model in precisely locating the fault. As not being able to adequately locat-
ing the fault is a clear limitation of the proposed methodology, in the revised
manuscript we added the following paragraph in the Conclusions Section to-
gether with a reference to Murgia et al. paper.

While the main bearing temperature was found to be a suitable
indicator for detecting faults in wind turbines, as also stated in
a recent paper by Murgia et al. (2023), another limitation of the
proposed approach is that it cannot precisely locate the fault or
its severity. Further developments could be pursued in this di-
rection, for instance, by incorporating high-sampling data and/or
additional sensors to improve the precision of the fault location.
However, this may come at the cost of increased complexity and
expense, which is trying to be avoided in this work where the main
objective is to contribute a cost-effective solution where all variables
used are readily available in all industrial-size wind farms (both
older and newer).

Finally, we would like to thank the reviewer for the valuable feedback and
the time to review the paper.
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Christian TUTIVÉN
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Reviewer 2

General comments
In my opinion, the publication represents a useful contribution to scien-

tific progress in the context of WES. It is of interest to the entire wind power
community. The main objective of the work is anomaly detection using simple
Principal Component Analysis (PCA). The topic of artificial intelligence and
machine learning is one of the hot topics of the moment. Therefore, it is also
important to examine how these methods can lead to improvements in the con-
text of wind turbines.

Author’s reply: We appreciate your positive remarks on the contribution of
the work to the scientific progress of wind energy systems and the importance
of exploring the application of artificial intelligence and machine learning in
the field of wind turbines.
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It is important to the authors to show a simple solution that does not require
additional sensors. The approach using PCA and the SCADA data is interest-
ing here. However, I wonder whether, given the value of the turbines and
the maintenance costs that may be necessary, additional sensors and higher-
quality ML methods would not be more effective. The state of the art is that
PCA is not particularly suitable for anomaly detection.

Author’s reply: Thank you for this comment, for which we have improved
the explanation of the real and practical utility of the proposed methodology
in the revised manuscript. For this reason, we have added the following para-
graph in the Introduction Section.

Cost is a critical factor in the renewable energy industry, and wind
turbines are no exception. While advanced sensors and machine
learning methods can provide more accurate and comprehensive
data on wind turbine health, they also come with a higher price
tag. In contrast, the proposed approach aims to offer a more afford-
able solution that can be easily adopted by wind farms that lack
condition monitoring systems. This approach may be particularly
beneficial for older wind turbines that lack the built-in sensors and
monitoring capabilities of newer models. By extending the oper-
ation of wind turbines close to their expected service lifetime, the
proposed approach can help wind farms generate more electricity
and revenue over time. This not only improves the profitability of
the wind park, but also increases the overall efficiency of the renew-
able energy sector. The longer a wind turbine operates, the more
energy it generates, and the more emissions it can help offset. Fur-
thermore, the proposed approach could help reduce the environ-
mental impact of the renewable energy industry. Manufacturing
new wind turbines requires significant amounts of energy and re-
sources, so extending the life of existing turbines can help to reduce
the need for additional production, promoting a more sustainable
and circular economy for wind energy.

Regarding the concern about the suitability of using Principal Component
Analysis (PCA) for anomaly detection in wind turbines, we agree that this
method may have some limitations, but it is well-suited for anomaly detec-
tion. In particular, PCA is a widely used technique for identifying patterns
and trends in large data sets. By reducing the dimensionality of the data, PCA
allows for the extraction of the most important information and the identifi-
cation of the most significant factors contributing to the variance in the data.
In the context of anomaly detection, this can help identify the most relevant
features that contribute to the anomalous behavior. In our paper, the proposed
approach using PCA (and SCADA data) has demonstrated promising results
in detecting faults in the main bearings of wind turbines, as shown in the re-
sults obtained with real SCADA data.
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Specific comments
Data preprocessing is not sufficiently described in the paper. If I under-

stand it correctly, a range is specified for the real data and outliers are adjusted
accordingly to the damage-free training data. This has several problems: Weak
signals are filtered out, the model is only valid for the system under consid-
eration, and the model assumes that the system under consideration is at the
bottom of the bathtub curve, i.e. entirely error-free. Overall, due to the low
sampling rate, the 10-minute intervals and the averaging over a week, the data
appear to me to be very smoothed, which makes it difficult to find anoma-
lies. Since we are dealing here with time series, a simple Pearson correlation is
only of limited help (a Spearman’s rank correlation should at least be examined
here).

Author’s reply: We apologize for the insufficient description of the data
preprocessing in the initial submission. In the revised manuscript, we provide
a more thorough and clear description of the data preprocessing. In particu-
lar, the following paragraph has been added, that also answers the reviewer
comments about the problem of weak signals filtering out.

In our study, extreme values (outliers) were not systematically re-
moved since doing so could lead to a loss of information related
to fault detection, as stated in Encalada et al. (2021). Instead, a
strategy of defining ranges based on realistic values that can be
obtained by different sensors was adopted. This approach, which
allows potentially useful information to be retained while still ad-
dressing the issue of outliers, was chosen. To ensure appropriate
definition of the ranges, non-restrictive criteria were used that were
wide enough to encompass the majority of the observed data. By
adopting this approach, it is almost ensured that the only outliers
removed are those related to non-working sensors (not well cali-
brated or with faults) and/or due to problems with the commu-
nication of the data, rather than outliers related to the underlying
physical process being monitored.

Thank you for raising the issue of the model’s limited applicability beyond
the specific system studied in our paper. The reviewer is correct that this is a
potential limitation of the proposed approach. One way to address this limi-
tation is through the use of transfer learning, which involves training a model
on one dataset and then fine-tuning it on a new, related dataset. This can help
to generalize the model to new datasets with different characteristics, and it is
an area of active research in the field of machine learning. However, this is be-
yond the scope of this paper, as our goal was to develop and evaluate a model
for each individual wind turbine based on its own data. We will consider ex-
ploring the use of transfer learning in future work, and this was added in the
Conclusions Section with the following paragraph.

Finally, while our approach has shown promising results, there are
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several areas for future research. One limitation of our approach
is its applicability to new datasets with different characteristics, as
each WT depends on its own model trained with its own data. In
future work, we plan to explore the use of transfer learning to over-
come this limitation and develop models that can generalize to new
datasets.

Regarding the comment about the correlation study, we agree that the Spear-
man’s rank correlation is a useful tool for analyzing time series data, particu-
larly when the relationship between variables may not be strictly linear. In re-
sponse to the suggestion, we have re-examined our data using the Spearman’s
rank correlation, and we found that the results are consistent with our previous
findings using the Pearson correlation. In the revised manuscript, the results
obtained with the Spearman’s rank correlation have been added, together with
the addition of the following paragraph.

Both Pearson and Spearman correlation coefficients are measures
of the strength and direction of a linear relationship between two
variables. The Pearson correlation coefficient is used when both
variables are continuous and have a linear relationship. It measures
the degree to which two variables are linearly related, and ranges
from -1 (perfect negative correlation) to 1 (perfect positive corre-
lation), with 0 indicating no correlation. The Pearson correlation
coefficient assumes that the data are normally distributed. On the
other hand, the Spearman correlation coefficient is preferred when
the variables are not normally distributed or are ordinal (ranked).
It measures the degree to which two variables are monotonically
related, meaning that they move in the same direction but not nec-
essarily at a constant rate. Like the Pearson coefficient, Spearman
correlation coefficient ranges from -1 to 1, with 0 indicating that
there is no correlation.

Finally, in regard to the comment about the low sampling rate, we agree
that this issue was not clearly stated in the original version of the paper. The
revised manuscript now includes the following added paragraph in the Results
Section.

It is significant that the proposed approach is designed specifically
to detect (using only standard SCADA data, which are usually 10-
minute averaged) the possible heat generated from an initial failure
mode, such as the initiation or propagation of the crack, friction,
electrical discharge and other failure modes associated with heat
release. These types of failure typically result in a gradual and sus-
tained increase in temperature (while they evolve), rather than sud-
den spikes or drops, which makes them detectable even with low
sampling rates, as temperature variables have a low dynamic and
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still contain the information of the fault after being 10-minute aver-
aged. With respect to the use of the weekly average, it is intended
to reduce false positives by smoothing out transient fluctuations
in the data that are not indicative of actual anomalies. Although
this averaging may limit the resolution of the approach, as it could
smooth out subtle changes in the data that could be indicative of
early-stage anomalies, this trade-off is necessary to minimize false
alarms and ensure practical utility of the methodology (and avoid
alarm fatigue).

The data show a clear seasonal component. The question arises why this
was not removed by decomposition, especially since the model is only based
on individual data sets. After peaks (Figure 11), the signal drops sharply again
for longer periods. What is the reason for this? Since the level seems to be
significantly lower in the period from May to November, it is questionable
whether incipient damage could be detected here at all.

Author’s reply: Regarding your question about the seasonal component
in the data, we agree that this is an important consideration, and we did take
steps to address it in our analysis. Specifically, we subtracted the ambient tem-
perature to all variables related to temperature and used a rolling window ap-
proach to train our model on a subset of the data, which helped to capture
the seasonality and other temporal patterns in the data. We acknowledge that
there are other methods for removing seasonality from time series data, such as
seasonal decomposition, and we will consider these approaches in our future
work.

Finally, thank you very much for your comment regarding the after peaks
signal dropping sharply again for longer periods. The reason for this has been
explained in the revised manuscript, in the Results Section, where the follow-
ing paragraph has been added.

Note that after peaks (Figure 11, WT5), the signal drops sharply
again for a long period. This is because the heat created from an
initial failure mode (heating from an initial crack, friction, wear,...)
is detected by the methodology, but its appearance is not contin-
uous over time until the final breakdown. In contrast, when the
failure mode advances, for example, when a crack propagates, the
generated heat appears. When the crack remains still, no further
heat is generated; thus, the alarm is set off. However, cracks are al-
ready present and can advance at any time, leading to the possible
failure of the component. Thus, in this methodology, whenever the
alarm is on (even when it is set off after a few weeks), it is highly
recommended to check the specific WT.
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Overall, despite the previously mentioned criticisms, the work is important
because it helps to further advance the topic of machine learning and discuss
the benefits and methods.

Author’s reply: We are pleased to hear that you recognize the importance
of our work in advancing the topic of machine learning for fault detection in
wind turbines.

The anomalies also do not allow any statement on the type of damage
present and the severity of the error. At the same time, there is no statement
about the historical data and any false alarms. For a scientific consideration, a
hit rate AND an error rate must be given.

Author’s reply: We acknowledge the issue regarding the capability of the
model in detecting the type of damage present and the severity of the error.
We believe that further developments could be pursued in this direction, for
instance, by incorporating high-sampling rate data and/or additional sensors
to improve the precision of the fault location. However, we also recognize that
this may come at the cost of increased complexity and expense, that we are
trying to avoid in our contribution. While our method may not provide de-
tailed information on the type of damage or its severity, it can still provide
valuable insights into the system’s performance and indicate the need for fur-
ther investigation or maintenance actions. As not being able to adequately
locating the fault is a clear limitation of the proposed methodology, in the re-
vised manuscript we added the following paragraph in the Conclusions Sec-
tion (highlighted in blue color as Reviewer 1 also commented on this issue).

While the main bearing temperature was found to be a suitable
indicator for detecting faults in wind turbines, as also stated in
a recent paper by Murgia et al. (2023), another limitation of the
proposed approach is that it cannot precisely locate the fault or
its severity. Further developments could be pursued in this di-
rection, for instance, by incorporating high-sampling data and/or
additional sensors to improve the precision of the fault location.
However, this may come at the cost of increased complexity and
expense, which is trying to be avoided in this work where the main
objective is to contribute a cost-effective solution where all variables
used are readily available in all industrial-size wind farms (both
older and newer).

In regard to the proposal to incorporate a hit and error rate, we thank the re-
viewer for taking this into our attention. The revised manuscript incorporates
the following paragraph in the Results Section.

In summary, 18 wind turbines were examined, of which 16 were
considered healthy and correctly classified as such. One turbine
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had the fault of interest and was correctly classified as faulty. An-
other turbine had a fault (that was not the fault of interest) and was
classified as faulty, which could be considered a false alarm. How-
ever, in practice, the fact that an alarm was raised for a fault in a
different component could still be useful, as it indicates the need for
maintenance or further inspection. Therefore, in addition to the hit
rate and error rate, the practical implications of false alarms should
also be taken into account.

The metrics in Table 4 need to be explained.

Author’s reply: Thanks for bringing this issue to our attention. The metrics
in Table 4 are now detailed in the revised manuscript.

Line 133 and Figure 3: It is not described what kind of damage is typically
involved here (lack of lubrication, wear, pitting, ...). Each defect should pro-
duce certain characteristics in the measured variables.

Author’s reply: We agree that each type of damage could produce unique
characteristics in the measured variables. However, in our case, the only in-
formation available regarding the fault is the work order information stating
”Replacing Main Bearing.” This limited information makes it difficult to deter-
mine the exact type of damage involved.

The structural, linguistic and graphic quality of the publication is very good.
The work is clearly structured and the tables, graphs and pictures are easily
recognizable and informative.

Author’s reply: We believe that clear presentation and effective commu-
nication are essential in scientific publications, and we are delighted that our
work meets these standards. We appreciate your review and will continue to
strive for high-quality presentation and communication in our future work.

Technical corrections
Figure 16 with WT16 should be placed closer to line 326 where it is ad-

dressed.

Author’s reply: We appreciate your attention to detail and your effort to
provide constructive feedback that can improve the readability and clarity of
our work. We placed the figure closer to line 326 in the revised manuscript.

Finally, we would like to thank the reviewer for the valuable feedback and
the time to review the paper.
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Reviewer 3

The authors developed a method to detect wind turbine main bearing failures
in an early stage, hence the work fits good to the scope of the journal. They
used an anomaly detector based on principal component analysis to detect fail-
ures of a main bearing with the help of SCADA data. To train the model and
to evaluate the results they used the data of 18 turbines.

The structure is clear, and the steps are described in detail. The overall
quality is very good, some minor suggestions in the technical comments may
help to improve it a little bit.

It is perfectly fine that the focus is on the model, the selection of data and
data processing. Nevertheless, in my opinion the technical background could
be highlighted more.

Author’s reply: Thank you for taking the time to review our paper. We
are glad to hear that you find our work relevant to the scope of the journal
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and that the structure and description of the steps are clear. We also appreciate
your positive comments on the overall quality of our work.

Regarding your suggestion to highlight the technical background more, we
agree that it is an important aspect of our work. We revised the manuscript to
better explain the underlying concepts and methodologies.

We acknowledge your suggestions for discussing certain aspects of the work
in greater detail. We will address them in this point-by-point answer to the
suggestions given for improvement.

Special comments
E.g. the work of Carrol et. al. (DOI: 10.1002/we.1887) could help to under-

line the importance to prevent failures and downtimes.

Author’s reply: Thanks for bringing this issue to our attention. In our re-
vised manuscript, we included in the Introduction Section a discussion of the
importance of early detection of wind turbine main bearing failures in reduc-
ing downtime and maintenance costs. We referenced the work of Carrol et
al. as an example of related research in the field. In particular, the following
paragraph has been added to the revised manuscript.

Early detection of main bearing failures of wind turbines is crucial
to guarantee the reliability of the element, as well as a safer and
more efficient operation in wind farms. The main bearing is one of
the most critical components in a WT, and a failure in it can cause
significant damage to other components, such as the gearbox, gen-
erator, and blades, and result in downtime and expensive repairs,
see Carrol et al. (2016). Early detection of main bearing failures
enables predictive maintenance, giving maintenance crews time to
plan and schedule repairs during low wind periods, minimizing
the impact on energy production.

To give technical details of a WT is not necessary. In my opinion the power
curve in figure 1 does not give any contribution to this work. The lines from
97 to 102 could be deleted. Here a reference to other publications like Hansen
would be possible as well. However, the authors do not give information about
main bearings. Possible questions are: Which kind of suspension do the tur-
bines have? Why do I need a bearing and what are possible bearing types?
Maybe its not necessary to explain it in detail, but at least a reference would be
welcome (Wenske 2022 DOI: 10.1049/PBPO142F or Hau . . . .). A cross reference
to figure 2 can be done, too.

Author’s reply: We appreciate your suggestion that the power curve may
not be necessary for this work and agree that a reference to other publications
may be more appropriate. Therefore, we removed the lines from 97 to 102 of the
original manuscript and referenced Hansen’s work in our revised manuscript.
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We understand the importance of streamlining the manuscript to focus on the
core contributions of our research and appreciate your input in this matter. In
particular, the following paragraph was added in Section 2.

Technical details of the wind turbines under study are out of the
scope for the analysis presented in this paper. However, it should
be noted that wind turbine design and operation can impact the
performance of fault detection methods. The book of Hansen (2015),
on the aerodynamics of wind turbines, provides a comprehensive
overview of wind turbine design and operation, including factors
that can impact the accuracy of fault detection methods. Therefore,
we encourage readers who are interested in the technical details of
wind turbine design to refer to this resource.

In regard to the main bearing given information, we appreciate your sug-
gestion that additional information or a reference to relevant literature would
be beneficial. In response to your feedback, the following paragraph has been
added in Section 2.

Regarding the drivetrain configuration, three-point and four-point
suspensions, which refer to one or two main bearings, respectively,
are the most common wind turbine drivetrain architectures. In the
three-point suspension configuration, which is the one used in the
wind farm under study, the rotor is rigidly connected to the main
shaft, which is supported by a single main bearing near the rotor.
A shrink disk typically connects the downwind side of the shaft
to the low-speed stage of the gearbox. The gearbox is supported
by two torque arms that are connected to the bedplate elastically.
These two torque arms, along with the single main bearing, provide
a total of three points of support. Furthermore, there are different
types of state-of-the-art main bearings, as fully explained in Wenske
(2022). In particular, the turbines of this park are equipped with the
so-called spherical roller bearing (SRB) type. SRBs are characterized
by their outer raceways being a portion of a sphere. The rollers, in
turn, are shaped so that they closely conform to the inner and outer
raceways. This results in a bearing that is internally self-aligning
and has a high radial load carrying capacity, please see Hart et al.
(2019) for a more detailed explanation.

There are plenty of possible bearing damages (fatigue, wear cracks. . . they
can occur at the rings, raceways, rollers or at the cage) which can have an ef-
fect on the bearing lifetime. This is not considered. Here I can recommend
e.g. the work of Hard like DOI: 10.1002/we.2386. As a reference about bear-
ing damages e.g. the work from Harris and Kotzalas could be used. The fact
that just one main bearing failure occurs in the data, may raise the question if
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other main bearing failures can be detected. At least in the discussion or in the
outlook I would expect a discussion on that.

Author’s reply: Thank you for your comments on the potential different
types of bearing damage and locations. In response to your feedback, we in-
cluded a brief discussion in the manuscript on the possible bearing damage
modes, such as fatigue, wear, and cracks, and their impact on the bearing life-
time. We referenced the works of Hard (DOI: 10.1002/we.2386) and Harris and
Kotzalas to provide additional information on these topics. In particular, the
following paragraph has been added to the Introduction Section.

Bearing damage in wind turbines can occur in different locations,
including the rings, raceways, rollers, and cage. The most common
types of bearing damage are related to heat release, which can re-
sult from friction, wear, and cracks, see Harries et al. (2006). All
of these damage modes can significantly impact the lifetime of the
bearing, which in turn can cause significant downtime and main-
tenance costs. Early detection of bearing damage through mon-
itoring and detection of heat release can allow for timely repairs
and maintenance, minimizing the impact on the bearing and other
components, and reducing downtime and maintenance costs. The
methodology proposed in this work aims to detect heat release in
the bearings, allowing for early detection and diagnosis of potential
bearing damage.

Furthermore, in the Results Section the following paragraph has also been
added (highlighted in red color as Reviewer 2 also commented on this issue).

It is significant that the proposed approach is designed specifically
to detect (using only standard SCADA data, which are usually 10-
minute averaged) the possible heat generated from an initial fail-
ure mode, such as the initiation or propagation of the crack, fric-
tion, electrical discharge and other failure modes associated with
heat release. These types of failure typically result in a gradual and
sustained increase in temperature (while they evolve), rather than
sudden spikes or drops, which makes them detectable even with
low sampling rates, as temperature variables have a low dynamic
and still contain the information of the fault after being 10-minute
averaged.

Regarding the occurrence of only one main bearing failure in our dataset,
we acknowledge that this may raise questions about the generalizability of our
approach in detecting other main bearing failures. We addressed this concern
in the revised manuscript by including the following paragraph in the Conclu-
sions Section.

The results demonstrate that the stated approach is effective in de-
tecting a main bearing fault that resulted in a significant increase
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in temperature. Although only one failure was available in the in-
vestigated wind park data, which is insufficient for statistical anal-
ysis, any bearing fault leading to heat release might be detectable
by the proposed strategy. However, to more extensively investigate
the performance of the model, it is necessary to apply the model
to other wind parks with main bearing failure issues. Therefore,
future work will test the model on a larger dataset to assess its per-
formance in different scenarios and draw more generalizable con-
clusions.

The mentioned counteractions to prevent a bearing failure after detection
stay very vague.

Author’s reply: Thank you for your comment about the counteractions to
prevent a bearing failure after detection. In response to your comment, the
following paragraph was added (in red color as this issue was also commented
by Reviewer 2) to the Results Section of the revised manuscript.

Note that after peaks (Figure 11, WT5), the signal drops sharply
again for a long period. This is because the heat created from an
initial failure mode (heating from an initial crack, friction, wear,...)
is detected by the methodology, but its appearance is not contin-
uous over time until the final breakdown. In contrast, when the
failure mode advances, for example, when a crack propagates, the
generated heat appears. When the crack remains still, no further
heat is generated; thus, the alarm is set off. However, cracks are al-
ready present and can advance at any time, leading to the possible
failure of the component. Thus, in this methodology, whenever the
alarm is on (even when it is set off after a few weeks), it is highly
recommended to check the specific WT.

Technical comments
In Table5 and figure 5 units are missing.

Author’s reply: Thank you for pointing out that units are missing in Table
5 and Figure 5. We apologize for this oversight. We ensured that the missing
units are included in the revised manuscript.

In figures 11, 12, and 13 a same y-axis scale would make it easier to compare
the individual turbines.

Author’s reply: We appreciate your feedback and understand your sugges-
tion of using a consistent y-axis scale for comparison. However, we decided to

5



use different y-axis scales for each figure as the models were trained on data
with different characteristics and had different ranges of normal and faulty
data. Using a consistent y-axis scale could potentially cause misleading visual
comparisons of the data.

We have, however, kept the threshold value in the same position in each
figure to provide a clear comparison between the actual and predicted values
of each turbine, making it easier to see whether a turbine is operating normally
or has a fault. The position of the threshold value is independent of the y-axis
scale and is used to classify the data points, making it a crucial reference for
the reader.

We hope that this explanation clarifies our reasoning for using different y-
axis scales but maintaining the same position for the threshold value in each
figure. If you have any further suggestions or comments, please let us know.

To reduce the number of plots it could be a good idea to summarize a few
turbines in one plot. Different colors could be used.

Author’s reply: Thank you for your suggestion to summarize multiple tur-
bines in one plot and use different colors. While we appreciate your idea, we
would like to keep one plot per wind turbine for the sake of clarity and ease
of interpretation. Our aim is to provide a clear and detailed presentation of
each turbine’s performance, and we believe that this would be better achieved
through individual plots. By doing so, readers can easily compare the perfor-
mance of each turbine and identify any differences or patterns that may arise.

Sometimes shorter sentences would increase the legibility. As one example
would separate the sentence (in line 326) after the first date.

Author’s reply: Thank you for your suggestion to use shorter sentences for
improved legibility, and for highlighting the sentence in line 326 as an exam-
ple. We will separate the proposed sentence and also thoroughly review the
entire manuscript to identify and address similar issues to ensure that the text
is presented in a clear and concise manner.

Finally, we would like to thank the reviewer for the valuable feedback and
the time to review the paper.

6


