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Abstract. Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead

to energy losses; hence, there is a need for numerical models that can properly simulate wind farm interaction. This work

proposes a Reynolds-averaged Navier-Stokes (RANS) method to efficiently simulate the effect of neighboring wind farms

on wind farm power and annual energy production. First, a novel steady-state atmospheric inflow is proposed and tested for

the application of RANS simulations of large wind farms. Second, a RANS-based wind farm parametrization is introduced,5

the actuator wind farm (AWF) model, which represents the wind farm as a forest canopy and allows to use of coarser grids

compared to modeling all wind turbines as actuator disks (ADs). When the horizontal resolution of the RANS-AWF model is

increased, the model results approach the results of the RANS-AD model. A double wind farm case is simulated with RANS

to show that replacing an upstream wind farm with an AWF model only causes a deviation less than 1% in terms of wind

farm power of the downstream wind farm. Most importantly, a reduction in CPU hours of 75.1% is achieved, provided that10

the AWF inputs are known, namely, wind farm thrust and power coefficients. The reduction in CPU hours is further reduced

when all wind farms are represented by AWF models; namely 92.3% and 99.9%, for the double wind farm case and for a wind

farm cluster case consisting of three wind farms, respectively. If the wind farm thrust and power coefficient inputs are derived

from RANS-AD simulations then the CPU-time reduction is still 82.7% for the wind farm cluster case. For the double wind

farm case, the RANS models predict different wind speed flow fields compared to output from simulations performed with15

the mesoscale Weather Research and Forecasting model, but the models are in agreement with the inflow wind speed of the

downstream wind farm. The RANS-AD-AWF model is also validated with measurements in terms of wind farm shape; the

model captures the trend of the measurements for a wide range of wind directions, although the measurements indicate more

pronounced wind farm wake shapes for certain wind directions.

1 Introduction20

The growth of offshore wind energy has led to wind farm clustering, where wind farm interaction is unavoidable. Recently,

the Danish government released a report with plans for a new 10 GW offshore wind farm cluster situated around an artificial

energy island hub in the North Sea (COWI, 2020). This wind farm cluster consists of ten 1 GW wind farms with a wind farm
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inter-distance of only 8 km using a non-optimized wind farm cluster layout. More examples of wind farm clusters can be found

in other parts of the North Sea, the Baltic Sea and the East China Sea (4coffshore.com). To our best knowledge, there are25

currently no International Electrotechnical Commission (IEC) standards regarding recommended minimal distances between

wind farms to avoid losses due to wind farm wakes and wind farm owners do not have any control over potential newly built

neighboring wind farms. Hence, there is need for improved numerical models that can estimate wind farm wake losses (and

potential gains due to speed up effects) in order to establish standards for wind farm placement in wind farm clusters.

Low-fidelity engineering wind turbine wake models (Göçmen et al., 2016) can be used to model wind farm interaction;30

however, large model uncertainties exist due assumptions on wake shape and wake superposition methods. The performance

of these models is case dependent and can be poor (Fischereit et al., 2022) or reasonable (Nygaard et al., 2020), which often

depends on how the models are calibrated. The current state-of-the-art numerical models employed to simulate wind farm

clusters are based on mesoscale models, e.g., the Weather Research and Forecasting (WRF) model (Skamarock et al., 2019).

The WRF model is normally run with nested domains, where the finest domain has a typical horizontal cell length of 1 km.35

The effect of a wind farm is modeled by a simple wind farm parametrization, where a drag force is added to the momentum

equation (Fitch et al., 2012; Volker et al., 2015; Abkar and Porté-Agel, 2015), and its magnitude is based on the wind turbine

thrust curve. Fitch et al. (2012) also included a source of turbulent kinetic energy based on the wind turbine extracted kinetic

energy that is not converted to electricity. A turbulent kinetic energy source term was also motivated byAbkar and Porté-Agel

(2015) based on dispersive Reynolds-stresses due to under resolving the wind farm induced turbulent kinetic energy. Volker40

et al. (2015) did not include such a source term but takes into account sub-grid-scale vertical wake expansion within one grid

cell.

It is not trivial to verify the wind farm parametrizations in mesoscale models because, e.g., in the WRF model the wind farm

parametrizations are implemented within 1D planetary boundary layer (PBL) schemes (Peña et al., 2022). These schemes are

not scale aware and become horizontal resolution-dependent when decreasing the grid size below ≈ 1 km. Only until recently,45

a new fully 3D PBL scheme was implemented in the WRF model (Kosović et al., 2020) and the Fitch parametrization was

also already configured to run with it (Rybchuk et al., 2022). In this work, we propose a Reynolds-averaged Navier-Stokes

(RANS) based wind farm model, the actuator wind farm model (AWF), which can be used to verify mesoscale wind farm

parametrizations in a microscale environment because the minimal horizontal spacing is not limited. The AWF represents a

wind farm as a forest canopy using distributed drag forces. The use of a forest canopy model to represent a single wind turbine50

wake has been employed by Réthoré (2009), although the model performed poorly compared to a high-fidelity turbulence

resolving simulation. In the present work, we will show that the use of a forest canopy model for the entire wind farm can work

quite well, as long as the correct wind farm drag force magnitude and distribution is applied. This is achieved by applying

a pre-calculated wind farm drag force magnitude that is both wind speed and wind direction dependent, and by employing

a horizontal drag force distribution as a superposition of two-dimensional Gaussian functions centered at the wind turbine55

locations. The latter represents a smoothed number of wind turbines per cell as opposed to counting the number of wind

turbines per cell as commonly used in WRF’s wind farm parametrization, in order to overcome aliasing effects that can lead

to artificial wind farm wake shapes. It is common to use Gaussian functions to distribute forces of simplified wind turbine
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models in Computational Fluids Dynamics (CFD), as performed for actuator line (Sørensen and Shen, 2002), sector (Storey

et al., 2015) and disk (AD) (Mikkelsen, 2003; Wu and Porté-Agel, 2011) models. The AWF model can also be used to calculate60

the annual energy production of a large wind farm cluster, which would become computationally very expensive if all wind

turbines are modeled by ADs that require a horizontal cell size in the order of D/8, where D is the rotor diameter. If the effect

of neighboring wind farms on a single wind farm needs to be simulated, the wind farm of interest can be modeled as ADs using

a fine horizontal spacing, while all the other wind farms can be modeled as AWFs using a much coarser horizontal spacing; we

refer to this model as RANS-AD-AWF. Such a numerical setup is only slightly more expensive in terms of computational costs65

compared to simulating the wind farm of interest without the neighboring wind farms. A further reduction in computational

effort can be achieved by modeling all wind farms as AWFs, hereafter known as the RANS-AWF model.

Wind farm (cluster) modeling with RANS is challenging when an inflow model with an atmospheric boundary layer (ABL)

height is employed together with a large horizontal domain in the order of 200 km and more (van der Laan et al., 2017).

This is because the eddy viscosity above the ABL height is very small and numerical instabilities can appear if the domain is70

large enough. These numerical instabilities could be interpreted as numerical gravity waves because a solution with standing

waves can be obtained when flow is solved with an unsteady RANS method. One could employ a more robust inflow model

representing a neutral surface layer inflow; however, such a model is not very realistic for large wind turbines that are expected

to operate outside the surface layer and neither for a wind farm cluster where the effect of the Coriolis force can become

important (van der Laan and Sørensen, 2017b). An ABL inflow model can be obtained when using the global turbulence length75

scale limiter of Apsley and Castro (1997), since it does not require a temperature equation and the ABL height is determined by

setting a maximum turbulence length scale. In addition, the model is only dependent on two non-dimensional numbers (van der

Laan et al., 2020), which eases getting the desired inflow profile from a library of pre-calculated ABL profiles. However, the

global turbulence length scale limiter also limits all turbulence length scales in the three-dimensional domain, as wind farm

wake turbulence length scales. The latter can lead to a wind farm wake that stops recovering with downstream distance, which80

is a non-physical result. Furthermore, the effective inversion strength is implicit in this model, and is relatively strong, which

can escalate the problem of numerical instabilities in large horizontal domains. In the present work, we propose an alternative

inflow model for wind farm cluster simulations in RANS for neutral conditions near the ground but with a stable inversion

layer, such a model reflects a conventional neutral ABL as commonly applied in large eddy simulations (Allaerts and Meyers,

2018; Kelly et al., 2019; Liu et al., 2021). The model does not use the global turbulence length scale limiter of Apsley and85

Castro (1997). Instead, the ABL height is set by a prescribed analytical temperature profile that includes an inversion height

and strength. A temperature equation is not solved in order to maintain a steady-state inflow. Note that the use of an active

temperature equation leads to an unsteady RANS model and we are interested in a steady-state RANS model.

The wind farm cluster validation case and the corresponding supervisory control and data acquisition (SCADA) measure-

ments are discussed in Sect. 2. The numerical setup of the RANS simulations using ADs, the proposed AWF model and the90

new RANS inflow model are discussed in Sects. 3.1.1, 3.1.2 and 3.1.3, respectively. The numerical setup of the WRF simula-

tions and engineering wake model calculations are presented in Sects. 3.2 and 3.3, respectively. The AWF model is verified and

compared with the AD model in Sect. 4.1. In Sect. 4.2, the AWF model is compared with outputs from real-time simulations
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using the WRF model (and a wind farm parametrization) and the TurbOPark engineering wake model (Nygaard et al., 2020;

Pedersen et al., 2022), and validated with SCADA measurements of a wind farm cluster consisting of three wind farms; two95

are operated by Equinor, the other one by Ørsted.

2 Wind farm cluster validation case
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Figure 1. Wind farm cluster site.

Figure 1 depicts the investigated offshore wind farm cluster, which is located in the North Sea near the East coast of the

United Kingdom. There are four wind farms located in an area of about 70×30 km2. SCADA measurements are made available

for the most Eastern wind farm, Dudgeon, and wind turbine power data from the front row wind turbines are employed to probe100

the wind farm wakes of Sheringham Shoal and Race Bank, for wind directions around 235 and 270◦, at wind farm interspacings

of 16 and 26 km, respectively. The most Western wind farm, located 54 km away from Dudgeon, consists of several smaller

wind farms (Inner Dowsing, Lynn and Lincs), which are not included in the present study. More details on the investigated

wind farms are listed in Table 1, where Awf is wind farm area, computed by a concave hull method, Nwt is the number of wind

turbines, and D and zH are wind turbine rotor diameter and hub height, respectively. The mean wind turbine interspacing is105

calculated following Sørensen and Larsen (2021):
√
Awt/(D[

√
Nwt−1]). The wind turbines are propriety to Siemens Gamesa

Renewable Energy (SGRE) and details on the thrust coefficient and power curves cannot be published. In the present work,
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we investigate a below-rated inflow wind speed and the thrust curves of both wind turbines have typical below-rated thrust

coefficient values.

Wind farm Operator Layout type Awf [km2] Min/Mean spacing [D] Nwt Turbine D zH

Dudgeon Equinor irregular 49.9 5.1/6.4 67 SGRE 6 MW 154 102

Race Bank Ørsted irregular 57.1 4.8/5.7 91 SGRE 6 MW 154 102

Sheringham Shoal Equinor regular 32.3 6.1/6.3 88 SGRE 3.6 MW 107 80
Table 1. Wind farm cluster definition.

2.1 Measurements110

This study uses three years of SCADA data from Dudgeon, from 2018-01-01 to 2021-01-01. For each turbine, the data are

first averaged to ten minute periods and then, each period is kept only if it does not contain any: missing data, non-production

or curtailment periods, low power values (< 100 kW) or low wind speed values (< 3 ms-1). Following the filtering for each

turbine, the ten minute period is kept if at least 64 out of 67 turbines remain, leading to a final availability of 56% of the data

for the whole period.115

In parallel, ERA5 data interpolated from the nearest ERA5 grid points to the wind farm location, for the same three-year

period, is used to estimate the Obukhov length, L, from the wind speed at a height of 10 m, the temperature at a height of 2 m,

and the sea surface temperature, applying an iterative method following Ott and Nielsen (2014). The data is divided into three

atmospheric stability classes, namely unstable (−200 m < L< 0 m), neutral (|L|>= 200 m), and stable (0 m <= L < 200

m). This classification is then applied to the production data to get three data sets. The data of each stability class is then binned120

by 1 m s-1 and 5◦ based on a reference wind speed and direction calculated by averaging the front row wind turbines for a

specific sector. The latter is performed due to a lack of concurrent inflow measurements. The fact that we use the same wind

turbine row to define the freestream and to probe the wake of an upstream wind farm means that is not possible to use the data

set to validate the simulations results for the magnitude of wind farm wake losses. Therefore, the validation in Sect. 4.2 is only

performed for the wind farm wake shape where the wind speed of the front row wind turbines are normalized with the wind125

speed averaged over the same turbines.

3 Simulation methodology

3.1 RANS

The wind farm simulations are performed with PyWakeEllipSys v3.0 (DTU Wind Energy, 2022b), which is a Python wrapper

of the in-house flow solver EllipSys3D. EllipSys3D is a finite volume CFD code that has initially been developed by Michelsen130

(1992) and Sørensen (1994). The RANS model of EllipSys3D is used to simulate the steady-state wind farm flow under

neutral atmospheric conditions including an ABL height, Coriolis forces, and a rough wall boundary with uniform roughness,
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representing homogeneous terrain. The wind turbine forces are represented by two different methods. The baseline approach

is an AD model (Réthoré et al., 2014) and is used to verify the proposed AWF method. Each method is discussed separately in

Sects. 3.1.1 and 3.1.2, respectively.135

xy
z

(a) RANS-AD (b) RANS-AWF
+

(c) RANS-AD-AWF

Figure 2. Sketch of different RANS domain types. Cyan and magenta boxes contain refined cells to resolve the wind turbine and farm wakes.

Blue disks and boxes represent AD and AWF models, respectively.

In this work, different RANS flow domains are used to model wind farm clusters containing single, double and triple wind

farms. A sketch of the flow domain types of the different applied actuator methods is depicted in Fig. 2. All flow domains are

Cartesian grids where the inflow direction at the reference height is aligned with the x-axis and different wind directions are

modeled by rotating the wind farm cluster, while maintaining the grid and the global inflow direction. The RANS-AD method

(Fig. 2a) represents all wind turbines in a wind farm by ADs. Each wind turbine is treated as a single AD model, which has140

its own polar grid that is connected to the flow domain, and is also controlled independently. The cells around the ADs, as

marked by the cyan box in Fig. 2a, are uniformly spaced in the horizontal plane using a fine resolution in order to resolve the

wind turbine wakes. The RANS-AWF method (Fig. 2b follows a similar flow domain as the RANS-AD method; however, each

wind farm is considered as a single AWF model that uses its own force controller. The wind turbine forces are distributed in

a Cartesian grid that encapsulates the entire wind farm and this Cartesian grid is then connected to the flow domain grid. The145

refined area in the RANS-AWF method can be an order of magnitude coarser compared to the refined area for the RANS-AD

model, which is investigated in detail in Sect. 4.1. The third domain type is depicted in Fig. 2c and represents the RANS-AD-

AWF method, where both AD and AWF models are present. Since the AWF model does not require the fine spacing of the AD

models, a second region in the flow domain is defined, as marked by the magenta box in Fig. 2c, where the cells are expanded

in the horizontal direction while moving away from the cyan box, up to a maximum set spacing. It should be noted that the150

three methods as depicted in Fig. 2 can also be applied to simulate multiple wind farms. In this case, the size of the refined

inner domain(s) are adjusted to resolve all wind turbine and farm wakes. An overview of the all the applied domains for the

validation cases, as well as the computational effort is provided in Tab. 4.3.
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Figure 3. RANS grid and boundary conditions (BC) for the wind farm cluster validation case. Horizontal (a), vertical (b) and a zoomed view

around Dudgeon (c) are shown for every 32nd cell.

Figure 3 depicts a detailed description of the wind farm cluster validation case, where Dudgeon is modeled by ADs and the

other two wind farms, Sheringham Shoal and Race Bank, are modeled as AWFs (the RANS-AD-AWF flow domain type of155

Fig.2c). The domain includes two areas with a refined horizontal spacing as marked by the cyan and magenta rectangles, as

shown in Fig. 3a. The cyan rectangle represents a uniform horizontal spacing of Dref/8 around the Dudgeon wind farm (van der

Laan et al., 2015c) and includes a sufficiently large area to resolve the wind farm flow for the wind directions of interests,

namely, 185–200◦. Here, Dref is the reference rotor diameter used to scale the grid and it is set to the smallest rotor diameter of

all the wind turbines (107 m). The magenta rectangle includes cells that are stretched towards the boundary and the maximum160

horizontal cell size is limited to 2Dref , which is the same as the horizontal resolution of the AWF model. The size of this area

is set to cover both Sheringham Shoal and Race Bank for the wind directions of interest. Outside the magenta rectangle, the

cells are further stretched with a maximum expansion ratio of 1.2 covering a distance of 500Dref (53.5 km). The total number

of cells in the x and y directions are 1920 and 2048, respectively. In the vertical, as depicted in Fig. 3b, the cells are stretched

while moving away from the ground and the first cell height is set to Dref/200 (0.54 m). The maximum cell size in the first165

layer (up to z = 3Dref ) is set to Dref/6, however, the cells in the rotor area and below are smaller than Dref/8. The height of
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the domain is set to 10Dref and a total number of 64 cells are used in the vertical direction. This results in 252 million cells,

which we divide into 960 blocks using a block edge size of 64 cells. We would have preferred to set a taller domain to avoid

numerical blockage, however, there is a convergence issue when a tall domain height is applied together with an ABL inflow

model that includes a low mixing region above the ABL height, which is further discussed in Sect. 3.1.3.170

Figure 3a-b also depicts the boundary conditions, where inlet conditions are enforced over the inflow and upper domain

faces; consequently the flow is lid-driven. Periodic boundary conditions are used at the lateral boundaries to be able to include

wind veer. An outlet boundary condition is used at the outflow boundary, at which all gradients in the normal direction are

assumed to be zero. The ground is modeled by a rough wall boundary condition following Sørensen et al. (2007).

3.1.1 AD model175

The RANS-AD wind farm simulation setup is similar to the one used in previous work (van der Laan et al., 2015b). The

wind turbines are modeled as ADs and each AD is represented by a polar grid using 10× 32 cells in the radial and azimuthal

directions, respectively. Each cell of the polar grid is connected to a set flow domain cells as discussed in detail by Réthoré

et al. (2014). For each iteration, the thrust and tangential forces are calculated on the polar grid and are then injected in the flow

domain grid as momentum sinks. The local velocities from the flow domain grid are returned to the polar grid to recalculate the180

AD forces and evaluate the wind turbine power. The magnitude of the thrust and tangential forces are controlled by a look-up

table of alternative thrust and power coefficients that are based on a disk-averaged velocity to avoid the need for a freestream

wind speed that is typically not known for interacting wind turbines; more details can be found in previous work (van der

Laan et al., 2015a, 2019). For the model verification (Sect. 4.1), a general wind turbine model (van der Laan et al., 2022) is

used with the same rotor diameter and hub height as the wind turbine from Dudgeon (SGRE 6 MW) but with a typical below185

rated thrust coefficient of 0.8, a power coefficient of 0.45 and a tip speed ratio of 8, which are all kept constant up to a rated

wind speed of 10 m s-1. The AD force distribution is modeled by the analytical AD force model from Sørensen et al. (2020).

For the model validation (Sect. 4.2), we use an AD with a prescribed normalized thrust force distribution that is rescaled to

obtain the desired thrust force magnitude (van der Laan et al., 2015a). For the SGRE 3.6 and 6 MW turbines, we use the thrust

force distributions of the NREL-5MW (Jonkman et al., 2009) and DTU-10MW (Bak et al., 2013) reference wind turbines,190

respectively, calculated with previously performed detached eddy simulations (Réthoré et al., 2014; Bak et al., 2013), for a

below rated wind speed of 8 m s-1. This is because we lack information on the rotational speed of the SGRE wind turbines,

which is a required input for the analytical rotor model of Sørensen et al. (2020) and we are lacking the corresponding airfoil

data that is needed for a higher fidelity AD model based on a blade element momentum method. However, we do not expect

a large influence on the wind turbine/farm wakes when using the AD model based on normalized thrust force distribution, as195

opposed to using AD models based on the analytical rotor model or airfoil data, because the prescribed normalized thrust force

distribution takes into account a realistic radial force distribution and it employs the provided thrust coefficient curves of the

SGRE wind turbines.
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3.1.2 AWF model

The AWF model represents each wind farm as a single entity and its effect on the flow is modeled by a distributed thrust force:200

Fwf (x,y,z) =
1

2
ρCT,wfA(x,y,z)|U |Ui, (1)

where ρ is the air density, CT,wf is the wind farm thrust coefficient, A(x,y,z) is the wind farm force distribution, representative

of the wind turbine density and Ui is the local velocity vector. Equation (1) is the same as that used to model a forest canopy drag

force using Cd = CT,wf/2. In fact we employ the forest canopy model from EllipSys3D as used in previous work (Boudreault,

2015; Dellwik et al., 2019) but here we employ the same turbulence model as in the RANS-AD setup as opposed to the205

turbulence model developed for forest canopies (Sogachev et al., 2012; Boudreault, 2015; Dellwik et al., 2019).

One could employ additional terms in the turbulence model equations to account for the effect of under-resolving the wind

farm layout in the AWF model when using large horizontal cells (Abkar and Porté-Agel, 2015). However, the literature is

divided about whether this extra term should be zero (Volker et al., 2015), act as a source (Fitch et al., 2012; Abkar and Porté-

Agel, 2015) or sink of turbulence kinetic energy (Sogachev et al., 2012). Investigating this is not in the scope of this study and210

so we do not use a source term of turbulence, partly because we already get reasonable results with only a momentum sink

(Eq. 1).

AWF model force distribution A(x,y,z)

The drag force of the AWF model, A(x,y,z), is distributed over a Cartesian grid encapsulating the wind farm. The vertical drag

force distribution represents the rotor area slices following Abkar and Porté-Agel (2015). The horizontal drag force distribution215

represents the wind turbine density. Currently, when running the wind farm parametrization in the WRF model, the user sets

the number of turbines per grid cell (for idealized cases) or inputs the turbine locations (real-time forcing cases) and so the

number of turbines within the same grid cell are counted. Such counting can lead to grid-dependent results, particularly for

large horizontal grid spacing and artificial velocity deficit shapes due to aliasing effects of the wind farm layout, as the WRF

model is typically run at a horizontal grid spacing larger than 1 km. An example of this issue is illustrated in Sect. 4.1. To220

overcome this issue, we propose an alternative method to determine the horizontal drag force distribution of the wind farm by

representing each wind turbine position as two-dimensional Gaussian functions, f(x,y), instead of points:

f(x,y) = exp

(
− [x−xwt]

2

2σ2
x

− [y− ywt]
2

2σ2
y

)
, (2)

with xwt and ywt as the wind turbine positions and σx and σy as the standard deviations in the streamwise, x, and lateral, y

directions, respectively. We use σx = 2∆ and σy =max(2∆,D/4), with ∆ as the horizontal grid spacing in the AWF model.225

The AWF horizontal grid spacing, ∆, does not have to be the same as the horizontal spacing in the CFD grid, δ. The use of

2∆ is motivated in Sect. 4.1 and the max limiter is used in order to approach an AD model and avoid a too concentrated force;

the latter could otherwise cause numerical problems. The AWF horizontal force distribution for each cell in the AWF model

is obtained by superposing Eq. (2) for all wind turbines. This means that for a particular cell in the AWF grid, (i, j), the wind
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turbines outside this cell can also contribute to the drag force and cells that do not include a turbine can have non-zero force. In230

general, a smoothed wind farm layout is obtained as a smoothed wind farm force distribution and the individual wind turbines

positions are resolved when a fine enough horizontal spacing is set. Another property of the Gaussian method is that a regular

wind farm layout will always have a uniform thrust force distribution in the middle of the farm, which is not guaranteed when

binning the number of wind turbines per cell. The magnitude of the drag distribution, A(x,y,z), is not relevant because we

calibrate the wind farm thrust coefficient to get the desired total wind farm thrust force as discussed in the following section.235

The vertically integrated AWF horizontal force distribution of Race Bank and Sheringham Shoal are depicted in Fig. 4 for two

different horizontal resolutions; ∆=D and ∆= 2D. Figure 4 shows how the regular wind farm layout of Sheringham Shoal

results in a uniformly distributed drag force when ∆ is coarsened from D to 2D by comparing Figs. 4b and 4d. In addition,

values below 0.01 of the maximum force distribution are set to zero for numerical efficiency. The distributed drag forces are

stored in a separate Cartesian grid for each AWF model. The drag force of a CFD cell that lies within an AWF model is obtained240

by trilinear interpolation.

(a) RB,
 ∆ =D (b) ShS, ∆ =D

(c) RB,
 ∆ = 2D (d) ShS, ∆ = 2D

0.01 1.00∫
A(x, y, z)dz/max

(∫
A(x, y, z)dz

)

Figure 4. AWF horizontal drag force distribution integrated over the height for Race Bank (RB) (a, c) and Sheringham Shoal (ShS) (b, d)

using different horizontal resolutions.
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AWF model force magnitude CT,wf

Equation (1) depends on the local velocity and a local wind farm thrust coefficient, while a single wind turbine modeled

as an AD with fixed forces can be set by a known thrust coefficient based on the freestream wind speed. Dellwik et al.

(2019) calibrated the drag coefficient of a single tree numerically using a measured drag force as input. A related method245

was introduced by Abkar and Porté-Agel (2015), where the thrust force was multiplied by a correction parameter obtained by

large-eddy simulations to correct the cell wind speed in a wind farm parametrization model to account for different wind farm

layouts. For the AWF model, we follow a similar approach as Dellwik et al. (2019), where CT,wf is calibrated using simulations

of a single AWF model in order to obtain the wind farm thrust force determined by precursor RANS-AD simulations of the

same wind farm. The wind farm thrust force depends on both the inflow wind speed through the wind turbine thrust coefficient250

curves and the inflow wind direction because of wind turbine interaction. Hence, CT,wf is a function of both inflow wind speed

and wind direction. For wind farm cluster simulations, the freestream wind direction and wind speed are undefined. Therefore,

we employ a force controller for each AWF model, where CT,wf is updated every solver iteration based on an interpolation of

a look-up table where CT,wf is a function of the AWF volume averaged wind speed and wind direction obtained from the AWF

volume averaged velocity vector, UAWF,i:255

UAWF,i =

∫
AUidV∫
AdV

. (3)

UAWF,i is weighted by the drag force distribution, A, so it does not include the buffer zone around the forest canopy and

accounts only for the volume around the wind turbine position for fine spacing AWF models. Without the drag force distribution

weighting, UAWF,i is typically over predicted. A similar approach was followed by Churchfield et al. (2017) for the application

of the effective wind speed calculation for an actuator line model. The force control look-up table is created from the single260

AWF model calibration simulations used to determine CT,wf from a desired total wind farm thrust force. The simulation steps

necessary to perform the wind farm cluster validation case simulations are summarized below.

1. For each wind farm modeled as an AWF:

(a) RANS-AD simulations are performed to calculate the total wind farm thrust force for a range of wind speed and

directions (U = 7,8,9 m s-1, ϕ= 175− 310◦ with a 5◦ interval).265

(b) RANS-AWF simulations are performed using the same flow cases as step (a) in order to calculate CT,wf and CP,wf

as a function of the AWF volume averaged wind speed and wind direction.

2. RANS-AD-AWF or RANS-AWF cluster simulations.

In steps 1 and 2, we neglect the influence of inhomogeneous inflow conditions on the wind farm thrust and power, as for

example partial wind farm wake effects of the neighboring wind farms. However, the AWF model (as applied in Step 2 with270

a force controller) can partly respond to inhomogeneous conditions because the local thrust forces dependent on the local

velocity, although variations in wind turbine thrust coefficients are not captured due to the use of a global wind farm thrust
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coefficient. The impact of this assumption is investigated in Sect. 4.2.1. Step 1a is computationally expensive, especially when

many different wind farms in a wind farm cluster are modeled as AWFs and each of them requires input from precursor RANS-

AD wind farm simulations. The computational costs of step 1a could be alleviated by running RANS-AD wind farm simulations275

more efficiently (van der Laan et al., 2022). For example, one could run consecutive wind direction cases (applicable to

homogeneous terrain) and consecutive wind speed cases (applicable to inflow models that include Reynolds-number similarity)

both to save solver iterations, and employ wind farm layout symmetry to reduce the number of wind direction cases. In addition,

one could also employ a fast engineering wake model to calculate the total wind farm thrust force, although this would most

likely introduce a higher model uncertainty. The AWF model input can also be calculated with a RANS-based surrogate wind280

farm model, which is currently investigated in a follow up work (van der Laan et al., 2023).

3.1.3 Atmospheric inflow and turbulence models

We employ a two equation turbulence model in the form of a k-ε model (Launder and Spalding, 1974):

νT = CµfP
k2

ε
, (4)

Dk

Dt
=

∂

∂xj

[(
ν+

νT
σk

)
∂k

∂xj

]
+P − ε+B+Sk,amb, (5)285

Dε

Dt
=

∂

∂xj

[(
ν+

νT
σε

)
∂ε

∂xj

]
+(Cε,1P −Cε,2ε+Cε,3B)

ε

k
+Sε,amb, (6)

with xj as the Cartesian coordinates, ν = 1.78406× 10−5 m2s-1 as the molecular viscosity of air, νT as the turbulent eddy

viscosity, k as the turbulent kinetic energy, and ε as the dissipation of k. In addition, P is the mechanical production of

turbulence, B buoyant turbulence production or destruction, and Sk,amb and Sε,amb are ambient turbulence sources. The re-

maining unknowns in Eqs. (4)-(6) (except fP ) are turbulence model coefficients, here set as constants (Cµ,σk,σε,Cε,2) =290

(0.03,1.01.3,1.92), Cε,1 = Cε,2 −κ2/(σε

√
Cµ) is used to enforce a balance with a logarithmic wind profile with κ= 0.4 as

the von Kármán constant, and Cε,3 is discussed later. In addition, the well known Boussinesq (1897) hypothesis is applied to de-

fine the relationship between the Reynolds-stresses and the strain-rate tensor. In absence of the buoyancy and without ambient

sources, the model represents the k-ε-fP turbulence model, which has been developed for wind turbine wake simulation sub-

jected to a neutral atmospheric surface layer (van der Laan et al., 2015c). The model includes a scalar function, fP , which acts295

as a local turbulence length scale limiter in regions with high velocity gradients; i.e. the near wake. In previous works (van der

Laan and Sørensen, 2017b; van der Laan et al., 2017), the k-ε-fP model was combined with an atmospheric boundary layer

inflow model employing a constant pressure gradient, Coriolis forces and the global turbulence length scale limiter of Apsley

and Castro (1997) in order to simulate the effect of an idealized ABL on a wind farm. In addition, ambient turbulence sources

were used to avoid zero turbulence quantities above the ABL. This ABL model does not require a temperature equation nor300

a buoyancy source term and can represent stable conditions by setting a low value of the maximum turbulence length scale,

ℓmax, by replacing Cε,1 with C∗
ε,1 = Cε,1 +(Cε,2 −Cε,1)ℓ/ℓmax, as introduced by Apsley and Castro (1997). Note that the

turbulence length scale is a model parameter defined as ℓ≡ C
3/4
µ k3/2/ε. When the global turbulence length scale limiter of

Apsley and Castro (1997) is applied to three-dimensional flows containing turbulence length scales larger than the maximum
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values set by ℓmax, one can observe non-physical behavior in the solution and also numerical problems (van der Laan et al.,305

2017). This can occur for flow over complex terrain with large hills, for large wind farms and clusters of wind farms, as in-

vestigated in the present work. The non-physical behavior typically leads to an artificially slow wake recovery. Therefore, we

propose an alternative atmospheric inflow that sets the boundary layer height by an inversion layer using a prescribed potential

temperature profile in combination with a non-zero B instead of using the global turbulence length scale limiter of Apsley

and Castro (1997). The new model does not employ an active temperature equation in order to maintain a steady-state model310

because the use of an active temperature equation in combination with a non-linear temperature profile results in an unsteady

inflow model, where the boundary layer height keeps growing with time.

We employ an analytically prescribed potential temperature profile, θ, by defining a zero and a constant temperature gradient

at the ground and above the inversion height, zi, respectively, including a smooth transition in between the two regions:

∂θ

∂z
=

1

2

[
1+ tanh

(
z/zi − 1

zT /zi

)]
∂θ

∂z

∣∣∣∣
c

, (7)315

where ∂θ/∂z|c is the constant temperature gradient above zi and zT is half the width of the transition zone around zi. The latter

is clear when taking a first order Taylor expansion of Eq. 7: ∂θ/∂z ≈ 1/2[1+(z−zi)/zT ] ∂θ/∂z|c and setting z = zi±zT . A

temperature profile can be obtained by integrating over the height z and using θ(z = 0) = θ0 as the surface temperature:

θ

θ0
= 1+

1

2θ0

∂θ

∂z

∣∣∣∣
c

z+ zT ln

cosh
(

z−zi
zT

)
cosh(zi/zT )

 . (8)

There is a numerical issue with cosh(z) going to infinity for large z, which can be addressed by rewriting cosh(z) as320

(1+ e−2x)/(2e−x):

θ = θ0 +

(
z− zi +

zT
2

ln

[
1+ e2(zi−z)/zT

1+ e−2zi/zT

])
∂θ

∂z

∣∣∣∣
c

. (9)

We set zT /zi equal to 0.2; larger values would result in more smoothing (wider transition) and other values could be investi-

gated in future work, though.

The effect of the prescribed temperature is represented by a buoyancy source term in the k and ε transport Eqs. (5)-(6):325

B =−νT
σθ

g

θ

∂θ

∂z
, (10)

with σθ = 0.74 as the Prandtl number for temperature and g = 9.81 ms-2 as the gravitational acceleration constant. We do not

use a buoyancy source term in the momentum equation and a constant air density of 1.225 kg m-3 is employed in the present

work as we only simulate wind farms in flat terrain. The buoyancy source term in the ε equation, (Eq. 6): is multiplied by a

constant Cε,3:330

Cε,3 = 1+Cε,1 −Cε,2, (11)

which is based on the transient ABL model of Sogachev et al. (2012) without the global turbulence length scale limiter ℓmax

(or using ℓmax =∞). In addition to the buoyancy sources, we also add ambient sources terms (Spalart and Rumsey, 2007),
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Sk,amb and Sε,amb to the k and ε transport Eqs. (5)-(6), respectively, in order to prevent zero values of k and ε above the ABL,

similar to van der Laan et al. (2020), but replacing ℓmax with zi:335

Sk,amb = εamb, Sε,amb = Cε,2
ε2amb

kamb
, (12)

ℓamb = Cambzi kamb =
3

2
I2ambG

2, εamb = C3/4
µ

k
3
2

amb

ℓamb
,

with kamb, εamb, ℓamb and Iamb as the ambient values for k, ε, the turbulence length scale and turbulence intensity above the

ABL, respectively. We set Camb = 10−7 and Iamb = 10−5, which are lower values compared to previous work (van der Laan

et al., 2020), but are necessary in order to get numerically stable results and are still low enough to not have an influence the340

inflow profiles.

Since we lack measurements of the freestream, we need an alternative source to determine the input parameters for the

inflow model. The New European Wind Atlas (NEWA) database (Dörenkämper et al., 2020) comprises 30 years (1989–2018)

of simulated output of the WRF model for Europe. We extended the simulated period to cover 2019 and 2020 using the same

model configuration of NEWA but only within NEWA’s Great Britain subdomain. We extract data for a three year time period:345

01-01-2018–01-01-2021 at the grid point closest to the wind farm cluster center at latitude and longitude of 53.21647 and

1.10947◦. The grid point is only 1.12 km from the cluster center. The data is filtered for the same criteria as the measurements;

a wind speed bin of 7–9 m s-1 (at z = 100 m) and a Obukhov length range of |L| ≥ 200 m. Based on the WRF model output

for these three years, the boundary layer height is 512 m, the wall temperature (skin temperature) is 285 K and the turbulence

intensity based on k, Iref , at z = 100 is 4.4%. For the RANS ABL inflow model, we use the same wall temperature and Iref at350

z = 102 m, and an inversion height of zi = 1000 m and a inversion strength of 0.005 K m-1. This results in a wind speed ABL

height of about 700 m, as depicted in Fig. 5, where results of a precursor simulation are shown employing EllipSys1D (van der

Laan and Sørensen, 2017a). Fig. 5 also includes the selected NEWA data simulated by the WRF model (only data up to

500 m was extracted) and a neutral atmospheric surface layer (ASL) using the same Iref and Uref . The result from the WRF

model and the prescribed temperature predict a similar wind speed, wind veer and turbulence intensity around rotor area,355

but the inflow profiles are quite different above the wind turbine. The potential temperature profile from the WRF model

only matches near the ground and indicates stable conditions above 75 m or a very shallow inversion height. Setting a lower

zi in the prescribed temperature model in order to obtain an ABL height closer to that output by the WRF simulations is

possible. However, numerical convergence problems can occur when such a shallow ABL inflow is applied for wind farms

with large wind turbines, as discussed in more detail in Appendix B. The Coriolis parameter is set to 1.168× 10−4 s-1 based360

on the latitude of the wind farm cluster center. The geostrophic wind speed and roughness length are found by an optimization

procedure employing the previously mentioned parameters and using a reference wind speed, Uref of 8 m s-1 at z = 102 m.

The input and derived parameters are summarized in Tab. 2.

In the present work, we only use one inflow profile for all simulations for simplicity, and also when the inflow wind speed

cases are not equal to 8 m s-1. For example, the ADs are controlled using a look-up table based on force calibration simula-365

tions (van der Laan et al., 2015a), for which the entire wind speed range of the operational regime is computed for a single
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Figure 5. Atmospheric inflow model precursor results employing a prescribed temperature profile compared to a neutral ASL solution and

results from the WRF model. Results are shown in terms of wind speed (a), relative wind direction (b), turbulence intensity (c), turbulence

length scale (d) and potential temperature (e). Horizontal dashed black lines depict the swept rotor area of the 6 MW wind turbine.

Input parameters Derived parameters

Iref Uref [m s-1] zref [m] fc [s-1] zi [m] θ0 [K] ∂θ/∂z|c [K m-1] G [m s-1] z0 [m]

0.044 8 102 1.168× 10−4 1000 285 5× 10−3 8.50 3.25× 10−5

Table 2. Summary of input and derived parameters for the ABL inflow model.

wind turbine by using different CT values while keeping the inflow constant. This means that we assume Reynolds-number

similarity, which is not valid for the prescribed temperature inflow model because it follows a Rossby- and Zilitinkevich num-

ber similarity, as shown in Appendix A. However, since the AD controller is only applied for wind farm flows around a wind

speed of 8 m s-1, we neglect the effect of small variations in these dimensionless numbers.370

The new inflow model still includes a low eddy viscosity region above the ABL height similar to the ABL model based

on ℓmax, as shown by the small turbulence length scale in Fig. 5d for z > 7zref . If this region is included in the inflow for a

three-dimensional simulation of a large wind farm cluster (e.g. in order of 200×200 km2 or larger), then numerical instabilities

can occur (van der Laan et al., 2017). Here, the largest horizontal domain is 169×208 km2, which is just small enough to avoid

numerical instabilities if the domain height is set to 10Dref (about 1 km). Furthermore, if the prescribed temperature model375

is employed with an inversion height that results in a shallow ABL, where the wind turbines are (partially) operating in the

low eddy viscosity region then numerical problems can occur as well. Appendix B illustrates the issue of employing shallow

ABL inflows to wind farm cluster simulations and the new prescribed temperature inflow model is also compared with the

inflow model based on ℓmax. We find that the use of Rayleigh damping in a steady-state method as RANS, does not remove

the numerical instabilities, possibly because Rayleigh damping methods have been developed for transient simulations (Durran380
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and Klemp, 1983). The numerical issues associated with the low eddy viscosity region above the ABL need to be further

investigated in future work.

3.2 WRF

Figure 6. Depiction of the WRF model domains (orange frames): outermost parent domain (9 km grid spacing) with two nested inner domains

(3 km and 1 km grid spacing, respectively). The location of the Dudgeon, Sheringham Shoal and Race Bank wind farms are indicated in

blue, green and red, respectively.

In the previous section, output from a mesoscale long run using the WRF model was used to derive input parameters for

the RANS inflow model. Another set of mesoscale simulations using the WRF model was performed on the Dudgeon wind385

farm area (including the Dudgeon, Sheringham Shoal and Race Bank wind farms) but using an implementation of the WRF

model version 3.7.1, in which the explicit wake parameterization (EWP) is included (Volker et al., 2015). The EWP represents

mesoscale wind farm effects on the atmospheric flow. Turbine induced drag forces are formulated as grid-cell averaged forces,

while wind turbine induced turbulence is treated via an explicit sub-grid scale turbulence diffusion formulation (Volker et al.,

2015). In contrast to WRF’s native wind farm parameterization (Fitch et al., 2012), no explicit source of turbulent kinetic390

energy (TKE) is added to the TKE equation by the EWP. The simulation uses a one-way nested domain setup with three

domains (Fig. 6). The innermost domain has a grid spacing of 1 km with 216 x 216 grid points. More details about model

configurations as well as initial and boundary conditions are provided in Appendix D. This simulation is aimed to be compared

with PyWakeEllipSys based modeling approaches of wind farm cluster wakes, which use idealized representations of the ABL

and does not include mesoscale effects. To provide a fair comparison, the simulation period (calendar year of 2018) has been395

screened for weather episodes that fulfill the following conditions at the WRF grid-cell center closest to the L02 turbine of

Dudgeon (Fig. 1): (1) inflow wind speed at hub-height of 7–9 m s−1, (2) inflow direction of 232.5–237.5◦ and (3) near-neutral

stability conditions (Obukhov Length |L|> 200 m). To avoid the inclusion of isolated cases, all conditions are required to
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persist for at least one hour. This resulted in a sample size of 31 ten minute temporal snapshots (instantaneous wind speeds)

from three distinct weather events in 2018. Furthermore, a reference simulation without wind farms covering the same calendar400

period is run and the same 31 ten minute temporal snapshots are extracted for normalization of the wind speed results from the

simulation with wind farms. This is performed to correct for the impact of the background mesoscale flow, e.g. coastal effects

or large-scale wind speed gradients in the horizontal wake profile.

3.3 TurbOPark engineering wake model

The TurbOPark model from Nygaard et al. (2020) and Pedersen et al. (2022) is an analytical wake model optimized for405

simulating large offshore wind farms and farm-to-farm interaction. It employs a Gaussian wake deficit profile, but differs in its

definition of the wake expansion from other analytical models by using non-linear streamwise wake expansion in contrast to the

more commonly used linear expansion. The non-linearity derives from assuming that the wake expansion rate is proportional

to the local turbulence intensity, which is assumed to be a combination of atmospheric and turbine’s added turbulence. In

combination with Frandsen’s model for the streamwise attenuation of turbulence intensity (Frandsen, 2007), the wake expands410

quickly near the rotor but progressively slower moving further downstream. This conserves wakes deficits over large distances

making the model suitable for assessing wake losses in large arrays or between farms.

The TurbOPark wake model is implemented in DTU Wind’s open-source wind farm simulation tool PyWake (DTU Wind

Energy, 2022a). PyWake is fully modular, so gives complete freedom how wake, blockage and other sub-models are combined

to define the engineering wind farm model for the AEP simulation. The local averaged disc velocity is used to determine415

thrust, power and deficits, whereas the freestream streamwise turbulence intensity of 5.5%, estimated from the turbulence

intensity based on the TKE as 4.4/0.8 (van der Laan et al., 2015c), is used at all turbines to determine wake expansion and

the superposition of wake added turbulence is not taken into account. A wind farm optimized version of the self-similar

single turbine blockage model (Troldborg and Meyer Forsting, 2017), derived from RANS simulations of multiple full-scale

turbines, accounts for wind farm blockage effects including speed-ups. A mirror plane models the ground effect for both420

wakes and blockage. Wake deficits are superposed by the root-sum-square, whereas blockage effects are linearly summed, as

they constitute small perturbations. The total wind farm flow field is obtained by summing blockage and wake contributions.

The flow solution is obtained iteratively, as deficit information needs to be passed up- and downstream. The computation is

accelerated by initializing the solution with a wakes-only simulation. Around cut-in and cut-off wind speed, the discontinuous

nature of the thrust curve may spoil convergence, as certain turbines switch on and off between iterations. This is avoided by425

identifying unstable turbines and switching them off permanently.

TurbOPark as implemented in PyWake is used with two different setups: one reflects the original model setup from Nygaard

et al. (2020) and Pedersen et al. (2022), and the other is a revised setup where the ground model for the wake deficit is

switched off and a wake expansion coefficient of 0.06 (instead of 0.04) is employed, as we find that the original model setup

overpredicts wind farm wake effects. The revised setup is one way of reducing these effects such that the results compare better430

with the simulated results from RANS and the WRF model for the investigated double wind farm case, as shown in Sect. 4.2.1.
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However, other setups, with linear wake summation for instance, could give as convincing predictions if tuned. An overview

of the PyWake setups are given in Appendix C.

4 Results and Discussion

4.1 Model verification435

4.1.1 Horizontal drag distribution: Binning vs Gaussian methods

Figure 7. The effect of different horizontal drag force distribution methods for a coarse AWF model (∆= 8D): Binning vs Gaussian, for a

rotated square wind farm. Contours of integrated canopy density (a-d), streamwise velocity (e-i) and turbulence intensity (j-n) at hub height.

AD results (e, j) are depicted as a reference.
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The horizontal drag distribution in the AWF model represents the wind turbine density per cell. If large horizontal cells are

used in the AWF model, e.g. in the order of the wind turbine interspacing in a wind farm, then the AWF grid orientation with

respect to the wind farm layout can have a large influence on the wind farm wake shape when counting or binning the number

wind turbines per cell. We refer to this method as the binning method. One can solve the issue by using a superposition of440

two dimensional Gaussian functions for the wind turbines to represent the number of wind turbines per cell. To illustrate the

difference between the binning and the Gaussian methods, a square wind farm with 8× 8 wind turbines using a spacing of 8D

is simulated for a wind direction aligned with the diagonal. In practice, we simply rotate a square wind farm layout by 45◦.

The wind farm is simulated using RANS-AD (as a reference) and five RANS-AWF models with a large horizontal grid spacing

in the drag distribution grid (∆= 8D); one using the binning method and four using the Gaussian method with smoothing445

by employing different standard deviations: σ = σx = σy = {∆/4,∆/2,∆,2∆}. The flow domain for the AWF models is

the same as the one used for AD model; namely a horizontal spacing of D/8 at the wind farm location and a maximum of

1D in the wind farm wake up to four wind farm lengths, LWF, downstream. Figure 7 shows results of these simulations in

terms of streamwise velocity normalized by the freestream (Figs. 7f-k) and added wake turbulence intensity (Figs. 7l-q), both

quantities are extracted at hub height. The vertically integrated drag distribution of the AWF models (after interpolation to the450

CFD grid) are shown in Figs. 7a-e. When the binning method is applied, the drag distribution becomes inhomogeneous due

to aliasing effects, see Fig. 7a. This results in artificial wind farm wake shapes, as depicted in Figs. 7g and 7m compared to

the AD simulation shown in Figs. 7f and 7l. The same problem occurs with the Gaussian method when not enough smoothing

is applied, e.g., the case for σ =∆/4 (Figs. 7b,h,n). However, when more smoothing is used, i.e., σ =∆/2 and σ =∆, the

horizontal drag force distribution becomes uniform, as shown in Figs. 7c-e (as expected for a regular layout), and the artificial455

wake shape disappears (Figs. 7i-k and 7o-q).

The results shown in Fig. 7 are also depicted in Fig. 8 but in terms of lateral profiles of streamwise velocity at hub height

and at three different downstream locations. It is clear that by using the binning and the Gaussian method without enough

smoothing, σ =∆/4, artificial wake shapes appear, which are not present in the simulations using ADs. The results using the

largest smoothing, σ = 2∆, reduces the accuracy with respect to the AD simulation because the effective resolution also reduces460

with an increased level of smoothing. However, using σ =∆ can lead to a checkerboard horizontal drag force distribution

for a particular setup, e.g., for a non-rotated square wind farm layout with 8× 8 wind turbines, 8D spacing and ∆= 2D.

This problem disappears when using σ = 2∆. From a numerical point of view, smoothing body forces with a Gaussian in a

numerical simulation should use a minimal value of σ = 2∆ in order to prevent wiggles in the solution. This is based on the

Gaussian smoothing used to represent the blade forces in actuator line models (Troldborg, 2008; Forsting and Troldborg, 2020).465

Therefore, we apply a smoothing of σ = 2∆ for all other simulations using the AWF model. If one would like to increase the

accuracy of the AWF model then it is recommended to refine ∆ with σ = 2∆ and not solely reducing σ.

4.1.2 Horizontal drag distribution: AWF grid and CFD grid spacing

The effect of the horizontal resolution in the AWF grid, ∆, is depicted in Fig. 9 using a wind farm with 8× 8 wind turbines,

a turbine spacing of 8D and a row aligned wind direction. Results of six AWF models with different ∆ values are shown and470
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Figure 8. The effect of different horizontal drag force distribution methods for a coarse AWF model (∆= 8D): Binning vs Gaussian,

for a rotated square wind farm. Lateral profiles of streamwise velocity (a-c) and turbulence intensity (d-f) at hub height, at three different

downstream distances are shown. AD results are depicted as a reference.

the results are compared with results from the AD model (using the same CFD grid spacing as the AD model, δ =D/8) in

terms of streamwise velocity normalized by the freestream (Figs. 9g-m) and added wake turbulence intensity (Figs. 9n-t), both

extracted at hub height. The vertically integrated drag distribution of the AWF models are shown in Figs. 9a-f. When refining

the horizontal spacing in the AWF model, the solution approaches the one of the AD model. However, there are still differences

between the AWF model with ∆/8 and the AD model mainly at the wind farm location, as shown in Figs. 9g-h and Figs. 9n-o.475

If a closer match is desired one would need to further refine ∆. The need for a finer AWF grid spacing in order to approach

an AD simulation results is not a surprise because the drag distribution in the AWF model is represented by a Cartesian grid

and thus more cells than 8 are required to represent a rotor disk area by square cells. This is also why our AD model uses a

polar grid for each wind turbine in the RANS-AD setup. When ∆≥D or ∆≥ s/8, with s as the wind turbine interspacing,

the individual wind turbines are no longer visible in the horizontal drag distribution of the AWF model, as shown in Fig. 9.480

The difference between the AD and the AWF simulation results are depicted in Fig. 10 in terms of horizontal velocity,

Figs. 10a-b, and turbulence intensity, Figs. 10c-d. A range of wind directions are simulated between 270–315◦ with an interval

of 5◦. For each wind direction, the mean and maximum absolute difference between the AD and AWF models is calculated

from cross planes centered at (y,z) = (0,zH) with a width LWF and a height D, for a range of downstream locations to

estimate the impact of ∆ on a potential downstream wind farm. Subsequently, the results are either averaged over the wind485

directions, Fig. 10a, c, or filtered for the maximum absolute difference, Fig. 10b,d. In addition, results are shown using the

same CFD grid as the AD model, δ =D/8, and when the AWF model spacing is the same as the CFD grid spacing, ∆= δ.

The first provides a more fair comparison while the latter is used in practice when applying the AWF model in a wind farm
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Figure 9. The effect of different horizontal spacing in the AWF model for a square wind farm. Contours of integrated canopy density (a-f),

streamwise velocity (g-m) and turbulence intensity (n-t) at hub height. AD results (g, n) are depicted as a reference.

cluster. As expected, the difference between the AWF and AD models increases with coarsening the horizontal AWF model

resolution, ∆. However, the difference is not much influenced by coarsening the CFD grid by using ∆= δ; the main effects490

are observed for the large AWF model spacing of ∆= 4D and 8D. The errors are the largest at the wind farm area, which is

not our area of interest when upstream wind farms are modeled as AWFs. One could select a value for ∆ depending on the

desired accuracy. For the present work, we select ∆= 2D, which results in a mean error in streamwise velocity and turbulence

intensity of ±0.4% and 0.3%, respectively, for the wind farm wake at x > 2LWF. The maximum absolute errors at x > 2LWF
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Figure 10. Difference between AD and AWF models in terms of streamwise velocity and turbulence intensity for a square wind farm layout

with 8D spacing. AWF models differ in horizontal spacing (∆) and CFD grid spacing (δ).
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Figure 11. Same as Fig.10 but for a smaller wind turbine spacing of 4D.

in streamwise velocity and turbulence intensity are in the order of 6% and 1%, respectively, but often only occur locally. A495

similar grid study has been performed for the same wind farm layout but with a wind turbine spacing of 4D; the results are

depicted in Fig. 11. In general, the differences between the AWF and AD models are larger compared to the lower density wind
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farm. However, the mean error in streamwise velocity for the chosen setup using ∆= 2D and ∆= δ is still only ±0.7% for

x > 2L.

4.2 Model validation500

4.2.1 Double wind farm case: Sheringham Shoal and Dudgeon

The effect of Sheringham Shoal on Dudgeon for a wind direction of 235± 2.5◦ and a wind speed of 8± 0.5 m s-1 is simulated

with RANS, TurbOPark and the WRF model. Three RANS setups are used; two employ either all ADs or all AWF models for

both wind farms, while the third uses ADs for the downstream wind farm (Dudgeon) and an AWF model for the upstream wind

farm (Sheringham Shoal). The horizontal canopy spacing of the AWF models is set to 2D. The RANS models are simulated for505

a wind speed of 8 m s-1 and every 5◦ between 220–250◦ and post processed by a Gaussian filter of 5◦. PyWake’s TurbOPark

implementation follows the original formulation by Nygaard et al. (2020) (as close as possible) and a revised setup where the

ground model is switched off and a wake expansion coefficient of 0.06 is employed instead of 0.04. TurbOPark is used for

the same wind speeds as the RANS setups and for every 1◦, and also post processed using the same Gaussian filter and a

subsequent linear average between 235±2.5◦. The Gaussian filter is applied to represent the uncertainty of the measured wind510

direction (Gaumond et al., 2014; van der Laan et al., 2015b), a mathematical description can be found in Antonini et al. (2019).

The results of the double wind farm case are depicted in Fig. 12, in terms of horizontal wind speed contours Figs. 12a-e, wake

magnitude, Fig. 12f, and shape, Fig. 12g, the latter two are obtained from the wind turbine power of the front row of Dudgeon

using the wind turbine power curve. The wake shape represents the wind farm wake velocity deficit normalized by its mean

value, while the wake magnitude refers to the wind farm wake velocity deficit normalized by the freestream. A wake shape515

is used for validation because the SCADA measurements of the front row turbines are both used to determine the freestream

wind speed, Uref , and to measure the upstream wind farm wake due to the lack of freestream measurements, as discussed in

Sect. 2. Figure 12h also shows results of the wake of Sheringham Shoal extracted along a 145–325◦ transect (perpendicular

to the main wind direction of 235◦), at 1.4 km upstream of Dudgeon. These results are used in order to compare results of all

RANS models and TurbOPark with those using the WRF model because it is not possible to use the wind turbine power output520

of the front row of wind turbines from the WRF simulation to extract the wake effect of Sheringham Shoal due to the large

horizontal resolution. The upstream distance of 1.4 km is chosen to avoid cells that include a wind turbine in the WRF model

setup. In addition, U∞ for the WRF model represents the wind speed from a simulation without turbines, while U∞ is the

actual inflow wind speed in the RANS and TurbOPark models. Finally, results from simulating the Dudgeon wind farm alone

using RANS-AD are also depicted in Fig. 12e, which shows that wind farm induction is in the order of 1% of the freestream525

and much smaller than the effect of Sheringham Shoal on Dudgeon predicted by the RANS and TurbOPark simulations that

also include Sheringham Shoal.

The contours plots in Figs. 12a-e are rotated to better visualize the incoming flow for the front row wind turbines and

transect, for which the results are depicted in Figs. 12f-h. Figs. 12b-d show comparable wind farm wakes between the RANS

models. The horizontal wind speed flow fields from the WRF model results (Fig. 12e) are quite different compared to those530
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Figure 12. Double wind farm case: Effect of Sheringham Shoal (ShS) on Dudgeon (Du) for a wind direction of 235± 2.5◦. The effect is

shown in terms of velocity deficit magnitude (f) and shape (g) based on the Southern front row wind turbine (WT) power of Dudgeon (purple

markers), and the velocity deficit magnitude extracted at a transect upstream of Dudgeon (h) (blue markers). Gaussian averaging (GA) is

applied for the results shown as dashes lines. Contours of horizontal wind speed at z = 102 m, are shown in (a–e) for TurbOPark (revised)

(a), RANS-AD (b), RANS-AD-AWF (c), RANS-AWF (d) and WRF (e). The contours reflect a single wind direction of 235◦for the RANS

models and TurbOPark, while the WRF contours are obtained from 235± 2.5◦.
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obtained from the RANS models. For example, the WRF model simulation lacks regions of increased wind speed at the

sides of Sheringham Shoal, although the flow in between the wind farms is more similar. The horizontal wind speed deficits of

TurbOPark (using the revised setup) shown in Fig. 12a have distinct single wind turbine wakes, due to the applied superposition

method because the depicted contours in Fig. 12a reflect a single wind direction of 235◦.

There is a maximum of 0.9% difference between the RANS-AD and RANS-AD-AWF models in terms of the equivalent535

wind speed extracted from the first row wind turbines (with respect to the freestream wind speed). Note that it is not possible

to perform this exercise with the RANS-AWF simulations, since both wind farms are represented by an AWF model. This

difference in wind speed is smaller along the transect and all three RANS models predict a wake magnitude in the range of the

WRF model results, as shown in Fig. 12e. The results from the RANS-AD-AWF and RANS-AWF models are nearly identical

(Fig. 12h) because the upstream effect on Dudgeon is small at the transect. TurbOPark in its original formulation predicts540

stronger wind farm wake effects compared to RANS for the front row of Dudgeon (Fig. 12f) and compared to the WRF model

results for the transect (Fig. 12h). However, in terms of wake shape (Fig. 12g), all models compare relatively well with the

SCADA measurements, which shows the difficulty of validating the models with SCADA without freestream measurements.

TurbOPark in its revised setup predicts much better results compared to those of RANS and the WRF model, partially due to

removing the mirror plane for the wake deficits. Whilst not relevant in the near wind farm wake, the mirror deficits become545

active at large distances from the turbine of origin, when hitting Dudgeon.
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Figure 13. Double wind farm case: Effect of Sheringham Shoal on Dudgeon in terms of wind farm power loss (a) using the three RANS

models and two horizontal grid resolutions for the AWF model. The difference with the RANS-AD model is shown (b).

The wind farm power loss of Dudgeon due the presence of Sheringham Shoal is depicted in Fig. 13, where results of the

three RANS methods are shown as function of wind direction in Fig. 13a. In addition, the RANS-AD-AWF and RANS-AWF

models are also simulated with a finer horizontal resolution of ∆= 1D. Furthermore, the difference with respect to the RANS-

AD simulation is plotted in Fig. 13b. When the downstream wind farm is also modeled as an AWF (RANS-AWF), then the550

difference with the RANS-AD model results is generally larger (up to 1.5%) except for the wind directions of 245 and 250◦.

The error in the RANS-AWF model is not strongly related to the grid size, since refining the horizontal spacing by a factor of
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two only changes the results of the RANS-AWF by a maximum of 0.1%. We suspect that the main source of error is the fact

that the AWF model is controlled as an entire object instead of individual wind turbine control, as performed for the RANS-

AD model. When the downstream wind farm is operating in a half wind farm wake situation, mostly applicable for the wind555

directions 220–225 and 245–250◦, then the entire AWF is still affected if the change in the AWF volume averaged wind speed

or wind direction changes the wind farm thrust coefficient, which would not be the case when the downstream wind farm is

represented by ADs. If the latter is important, then one could consider splitting each wind farm into several AWF models or

simply model the wind farm of interest with ADs following the RANS-AD-AWF approach.

4.2.2 Wind farm cluster560

The wind farm cluster consisting of the three wind farms Dudgeon, Sheringham Shoal and Race Bank is simulated with RANS-

AD-AWF, where Dudgeon is represented by ADs and the other two wind farms are modeled with the AWF model. A range of

wind directions between 190 and 300◦ is simulated for every 5◦ using a wind speed of 8 m s-1. The wind turbine power of the

first row of Dudgeon is used to calculate the effective wind speed and the results are Gaussian averaged using the same standard

deviation as employed in Sect. 4.2.1. The RANS simulations are compared with the SCADA measurements for the Southern565

and Western front rows of Dudgeon in Figs. 14 and 15, respectively. The results are normalized by Uref , which represents

the mean row wind speed that is used to determine the freestream in the SCADA measurements due to the lack of freestream

measurements. Hence, the wake shape is only validated, while the wake magnitude is not, as also discussed in Sect.4.2.1.

Figures 14 and 15 indicate that the RANS simulations capture the overall trend of the wind farm wake shape as function of

wind directions. For the Southern row of Dudgeon, the measurements indicated a more pronounced wind farm wake shape,570

best visible by the difference in simulation and measurements at the corner wind turbines J05 and A05 for the wind directions

between 205 and 245◦, and 235 and 250◦, respectively. This could indicate stronger wake effects in the measurements, possibly

due to the effect of near stable conditions, which is not accounted for in the simulations.

The RANS results of the Western row in Fig. 15 are more difficult to interpret because the Western row width is not large

enough to capture the entire wind farm wake of Race Bank, which leads to flat wake shapes when the Western front row of575

Dudgeon is operating in the full wind farm wake of Race Bank, as seen for the wind direction of 265◦.

4.3 Computational effort

The main motivation for the AWF model is the reduction in computational effort compared to using ADs. Table 3 provides

an overview of the CFD grid sizes and computational effort per flow case (i.e. a single inflow wind speed and direction) for

running one, two and three wind farms with different combinations of wind farms modeled as AD and/or AWFs. The underlying580

CFD solver in PyWakeEllipSys, EllipSys3D, is a flow solver based on a block structured grids, which uses a Message Passing

Interface (MPI) for communication. In the present work, we use block (edge) sizes of 32 and 64 corresponding to 323 and 643

cells per block, respectively. The largest part of the computational effort is used to solve for the pressure correction equation.

A multi-grid algorithm is applied to solve the pressure correction equation and the coarsest level is made parallel on a single

node using shared memory MPI. The most recent version of EllipSys3D is expected to scale efficiently and be able to run with585
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Figure 14. Measured and simulated effect of the upstream wind farms on the Southern wind turbine row of Dudgeon in terms of wake

shape for different wind directions (a-j). Results are normalized by the row-averaged wind speed. Contours of the streamwise velocity at the

reference height, normalized by the inflow wind speed, are shown for each wind direction case, including zoomed plot around Dudgeon.
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Figure 15. Same as Fig. 14 for the Western row of Dudgeon for different wind directions (a-h).

one block per processor for grids with 100000 blocks of 643. Four shared memory CPUs are used for the wind farm cluster

simulations using three wind farms and only ADs due to the large number of blocks (4550), while the other simulations are not

using shared memory CPUs. The AD model in EllipSys3D is recently made more scalable by distributing the same number of
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ADs to each CPU as much as possible; initial tests have shown good scalability up to 1000 ADs (van der Laan et al., 2023).

Further optimizing the computational effort and scalability of large wind cluster simulations using ADs is planned in the future.590

The RANS-AD grids for multiple wind farms could be reduced by using more complex grid topologies, where each wind

farm is situated in a refined region instead of using a single large refined area that includes all wind farms. However, it is

more challenging to generate such a grid topology compared to box type domains. Furthermore, it should be noted that the

simulations are performed on an in-house shared computer cluster. Hence, the listed CPU hours and wall clock time in Table 3

should be interpreted as indicative. The computer cluster consists of 516 computational nodes, each one equipped with two595

sixteen-core AMD EPYC 7351 2.9 GHz processors and 128 GB RAM of memory (Technical University of Denmark, 2019).

Case Method Cells Block Blocks Wall clock CPU hours CPU hours incl.

[million] size & CPUs Steps 1a and 1b

Single AWF CT,wf and CP,wf generation (Step 1a)

ShS RANS-AD 115 64 437 0.20 88 -

Rb RANS-AD 163 64 621 0.25 153 -

Du RANS-AD 115 64 437 0.22 102 -

Single AWF force calibration (Step 1b)

Shs RANS-AWF 1.05 32 32 0.0080 0.25 -

Rb RANS-AWF 1.31 32 40 0.0072 0.28 -

Du RANS-AWF 1.31 32 40 0.0066 0.26 -

Double wind farm simulations

Du + ShS RANS-AD 297 64 1134 0.72 819 -

Du + ShS RANS-AD-AWF 110 (-63.0%) 64 420 0.50 (-32.6%) 204 (-75.1%) 385 (-53.0%)

Du + ShS RANS-AWF 3.15 (-98.9%) 32 96 0.027 (-96.7%) 2.30 (-99.7%) 421 (-48.6%)

Wind farm cluster simulations

Du + ShS + RB RANS-AD 1193 64 4550 1.53 6958 -

Du + ShS + RB RANS-AD-AWF 252 (-78.9%) 64 960 0.56 (-63.4%) 538 (-92.3%) 1282 (-80.1%)

Du + ShS + RB RANS-AWF 6.55 (-99.5%) 32 200 0.026 (-98.3%) 2.23 (-99.9%) 1206 (-82.7%)
Table 3. Grid size and computational effort of RANS wind farm (cluster) simulations including Dudgeon (Du), Sheringham Shoal (ShS) and

Race Bank (RB). Percentage between brackets reflects the reduction when using AWF models with respect to only using ADs. CPU and run

hours are listed per flow case.

When the investigated wind farm cluster is simulated with Dudgeon as ADs and the other wind farms as AWF models, 76%

of cells can be saved compared to modeling the wind farm cluster with only ADs due to a reduction in horizontal spacing

outside the Dudgeon wind farm area, as listed in Tab. 3. For the double wind case, 63% of the cells can be saved and the

number of CPU hours per flow case is reduced by 75%. When the wind farm cluster consisting of three wind farms is solely600

modeled by AWF models, then the grid size is reduced by 99.5% and a flow case can be solved in about 1.5 min. using 200

CPUs, which is a reduction of 99.9% in terms of CPU hours. However, each AWF model requires information of a wind farm
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thrust coefficient, CT,wf , and the wind farm power coefficient (if the AWF model is used to predict wind farm power), CP,wf , as

function of the AWF volume averaged wind speed and wind direction. If this input is derived from a set of RANS simulations

using ADs, as performed in the present work, then the computational effort will be dominated by this step. For example, Tab. 3605

shows that the Sheringham Shoal wind farm modeled by ADs takes about 0.20 h per flow case or 88 CPU hours using a grid of

115 million cells. The wind farm cluster modeled by three AWFs requires about 1206 CPU hours per flow case when including

the wind farm precursor steps, which is still a reduction of 83% compared to simulating all wind farms as ADs (6958 CPU

hours per flow case), as shown by the last column of Tab. 3. One could attempt to use a simplified wake model to determine

CT,wf and CP,wf but one would risk a loss of accuracy. An initial study shows that is possible to predict CT,wf and CP,wf610

within a mean absolute error of around 1% when using a RANS-based surrogate wind farm model (van der Laan et al., 2023).

5 Conclusions

A RANS-based wind farm parameterization, the AWF model, is proposed. It uses a wind farm thrust force as a momentum

sink similar to a forest canopy model. The AWF model can be used as an obstacle model to a downstream wind farm of interest

represented by ADs or it can be used to estimate wind farm power when the downstream wind farm is also modeled as an615

AWF. The AWF model simulates wind farm interaction by a calibrated controller of wind farm thrust and power as function of

the wind farm volume averaged wind direction and wind speed.

When the horizontal spacing in the AWF model is refined, the wind farm flow approaches the results from a RANS-AD wind

farm simulation. This is achieved by calibrating the thrust force magnitude with precursor RANS-AD wind farm simulations

and employing a horizontal thrust force distribution in the form of wind turbine density using a superposition of the wind turbine620

coordinates represented by two-dimensional Gaussian functions. The verification study showed that the Gaussian superposition

method solves the problem of artificial wind farm wake effects that can occur when the number of wind turbines are binned

for large horizontal cells, as current wind farm parametrizations implemented in numerical weather models, such as the WRF

model, do.

A new atmospheric inflow model is introduced that is potentially more suited for wind farm cluster simulations because it625

does not rely on an ABL height set by a global turbulence length scale limiter that can result in nonphysical wind farm wakes.

The proposed inflow model relies on a prescribed analytical temperature profile including an inversion height and inversion

strength, while a temperature equation is not solved for in order to maintain a steady-state inflow model. The model is shown

to be dependent on three non-dimensional numbers. The new inflow model does not (and is not expected to) solve the problem

of numerical instabilities related to the low eddy viscosity region above the ABL in combination with large horizontal domains630

associated with wind farm clusters. The problem is mitigated in the present work by using a relatively low domain height,

which can introduce additional numerical blockage, thereby negatively influencing the predictions. An alternative solution

needs to be found in the future to allow the more preferred, taller domain heights. In addition, the new ABL model requires

more validation with measurements.
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The proposed RANS-AWF and inflow models are employed to simulate two neighboring wind farms and a cluster consisting635

of three wind farms, where either one of the wind farms is modeled by ADs and the remaining wind farms are represented by

AWF models (RANS-AD-AWF) or all wind farm are AWF models (RANS-AWF). The results for the double wind farm case

are compared with TurbOPark, WRF and RANS-AD simulations (for the latter all wind turbines are modeled by ADs) using

the wind speed derived from the front row turbines of the downstream wind farm and the horizontal wind speed extracted from

a transect 1.4 km upstream of the wind farm farthest downstream. The latter is performed because the chosen resolution for the640

WRF model simulations was not sufficient to resolve the front row wind turbine wind speed. While the overall horizontal wind

speed at the wind farms in the WRF model simulations is quite different with respect to the RANS results, the horizontal wind

speed at the transect from the WRF results compares well with those from the RANS-AD, RANS-AD-AWF and RANS-AWF

models. In addition, the front row wind speed in the RANS-AD-AWF only deviated by 0.9% compared to the RANS-AD results

with respect to the freestream. The original formulation of TurbOPark shows stronger wind farm wake effects compared to the645

other models but its result in terms of wind farm wake shape compared well with all models. This indicates that a comparison

in terms of wind farm wake shape should not be the only type of validation. A revised TurbOPark setup, where the ground

model is switched off and a larger wake expansion coefficient of 0.06 is used, predicts much better results compared to the

higher fidelity models. Unfortunately, the RANS-AD-AWF simulations of the wind farm cluster could only be validated with

the shape of the front row wind speed because the SCADA measurements of this row are used to both measure the wake of650

the upstream wind farm and to determine the freestream conditions due to a lack of concurrent freestream measurements. The

trends of the RANS-AD-AWF simulation results of the upstream wind farm wake shapes compare reasonably well with the

results from the SCADA, although the measured shapes indicate stronger wind farm wake effects possibly due to near stable

conditions that were not filtered out from the SCADA in order to maintain a large enough data set. More validation of both

the AWF model and prescribed temperature inflow model are required. In addition, we need SCADA with concurrent inflow655

measurements in order to validate the magnitude of wind farm wakes and its impact on neighboring wind farms.

With the AWF model, one can simulate large wind farm clusters with RANS; the wind farm cluster validation case showed

a reduction of 92.3% and 99.9% in CPU hours when two of three wind farms or all wind farms are represented by AWF

models instead of using ADs, respectively, when the input wind farm thrust and power coefficient are known. If the wind farm

power and thrust coefficients are calculated from a RANS-AD simulation of each wind farm, as performed in the present work,660

then the reduction in computational effort is 82.7% when the wind farm cluster validation case is solely modeled by AWF

models. Simpler and faster models that can generate the AWF input are currently investigated in a follow up work (van der

Laan et al., 2023). This also enables a larger wind farm cluster to be efficiently simulated with the RANS-AWF methodology

in future work. Such a study would also benefit from a comparison with WRF model results to further investigate the effect of

neglecting the mesoscales in the RANS-AWF approach.665

The AWF model can be used to further develop wind farm parametrizations in WRF; this can be achieved by implementing

the two-dimensional Gaussian superposition method of the wind turbine density, and by using a wind farm drag coefficient that

is dependent on the wind direction instead of using the wind turbine thrust curves. Idealized WRF simulations could be used

to compare the resulting wind farm wakes with RANS-AWF simulation results.
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The current implementation of the AWF model does not include any sources in the turbulence transport equations because670

the employed horizontal spacing of 2D turned out to be sufficiently fine. If larger horizontal cell size are desired one could

investigate the use of additional turbulence-related source terms.

Appendix A: Similarity of the prescribed temperature inflow model
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Figure A1. Similarity of prescribed temperature inflow model for Nf = 100 (a–e) and Nf = 200 (f–j).

32



In previous work (van der Laan et al., 2020), it was shown that the ABL model of Apsley and Castro (1997), including

Coriolis forces, follows a Rossby similarity; here four dimensional input parameters (namely the geostrophic wind speed675

G, roughness length z0, Coriolis parameter fc, and ℓmax) can be reduced to two Rossby numbers, Ro0 ≡G/(|fc|z0) and

Roℓ ≡G/(|fc|ℓmax). We typically generate a library of normalized ABL profiles for all possible solutions, which can then

be used to find values for G and ℓmax in order to get a desired wind speed and turbulence intensity at a reference height for

a fixed roughness length and Coriolis parameter. The new prescribed temperature ABL model from Sect. 3.1.3 depends on

five dimensional parameters; G, z0, fc, zi, ∂θ/∂z|c; however, the normalized profiles only depend on three non-dimensional680

numbers:

Ro0 ≡
G

|fc|z0
, Rozi ≡

G

|fc|zi
, Nf ≡ N

|fc|
=

1

|fc|

√
g

θ0

∂θ

∂z

∣∣∣∣
c

(A1)

Here, Ro0 is the surface Rossby number, Rozi is a Rossby number based on the inversion height and Nf is dimensionless num-

ber based on the ratio of the Brunt–Väisälä frequency and the Coriolis parameter, which is also referred to as the Zilitinkevich

number (Esau, 2004; Kelly et al., 2019; Liu et al., 2021). The similarity is numerically proven by the collapse of simulations685

results for different values of G and fc, as depicted in Fig. A1. The numerical setup is similar to van der Laan et al. (2020),

but we have chosen a smaller time step set to 1/N instead of 1/|fc| in order to maintain numerical convergence. From the

figure one can note that Nf mostly changes the effective sharpness of the inversion, as seen in ϕ(z), as well as the ABL turning

angle ϕ(z = z0); the latter effect is more pronounced for larger zi/z0. It is also possible to use an alternative dimensionless

number for quantifying the inversion strength, using an ABL-wide bulk Richardson number (instead of Nf ):690

Ri≡ z2iN
2

G2
=

z2i
G2

g

θ0

∂θ

∂z

∣∣∣∣
c

. (A2)

Appendix B: Comparison and challenges of RANS inflow models applied to the wind farm cluster validation case

A new atmospheric inflow model is proposed in Sect. 3.1.3 and used to perform the RANS wind farm cluster simulations in

Sect. 4. The new inflow model employs a prescribed temperature profile with an inversion that sets the ABL height. Previous

work employed an ABL inflow model based on a global turbulence length scale limiter, ℓmax (Apsley and Castro, 1997; van der695

Laan and Sørensen, 2017b; van der Laan et al., 2017). For a low value of ℓmax, a lower ABL height is obtained. A major issue

with the global turbulence length scale limiter is that it can also limit the wind farm wake turbulence length scales that could

lead to a nonphysical slow wake recovery. This issue was mitigated by switching off the global length scale limiter in regions

where high velocity gradients are present (van der Laan and Sørensen, 2017b), although it is unclear if this ad-hoc solution

is sufficient for wind farm cluster simulations. Another challenge is that for low ABL heights, one can obtain numerical700

oscillations, which both the new model and the model based on ℓmax can suffer from. This section is meant to illustrate these

issues and to show the difference between the inflow models when applied to the wind farm cluster validation case.

Table B1 lists the input and derived parameters of a shallow and a tall ABL inflow using the new prescribed temperature

ABL model and the ABL model based on ℓmax. The tall ABL case is the same as used through out the article (Sects. 3.1.3 and
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Input parameters Derived parameters

Iamb zi θ0
∂θ
∂z

|c zT
zi

z0 G z0 ℓmax

Case Model [-] [m] [K] [K m-1] [-] [m] [m s-1] [m] [m]

Tall ABL Prescribed temp. 10−5 1000 285 5× 10−3 0.2 - 8.50 3.25× 10−5 -

Tall ABL ℓmax 10−6 - - - - 5× 10−5 8.62 - 53.3

Shallow ABL Prescribed temp. 10−5 300 285 5× 10−3 0.4 - 8.54 1.77× 10−4 -

Shallow ABL ℓmax 10−6 - - - - 5× 10−3 8.93 - 7.62
Table B1. Summary of input and derived parameters for the ABL inflow models, both using Iref = 0.044, Uref = 8 m s-1, zref = 102 m and

fc = 1.168× 10−4 s-1.

4), while the shallow ABL is an additional case meant to illustrate the challenges with the two inflow models. For the ℓmax ABL705

inflow model, the derived values for G and ℓmax are found by interpolating a pre-calculated library of ABL profiles (van der

Laan et al., 2020) for given z0, fc, Iref and Uref values. The prescribed temperature model uses an optimizer for G and z0

instead, as discussed in Sect. 3.1.3. The tall ABL profile from the ℓmax ABL inflow model uses a similar roughness length

(z0 = 5× 10−5 m) as was calculated for the inflow model based on the prescribed temperature (Tab. 2), which results in a

relative large value of ℓmax, namely 53.3 m. The shallow ABL profile of the prescribed temperature ABL model is generated710

with a lower zi (300 m) resulting in a larger derived z0 (Tab. B1). In addition, the value of zT /zi as used in the prescribed

temperature ABL model is increased for the shallow ABL to avoid an inflection of the wind speed profile below the super

geostrophic jet. To lower the ABL height for model based on ℓmax, one can lower z0 or Iref ; we choose to set z0 = 5×10−3 m.

This results in a derived value of ℓmax of only 7.62 m. Finally, the ABL model based on ℓmax is employed with a lower ambient

turbulence intensity value, Iamb, compared to the prescribed temperature model because the ℓmax ABL model is more sensitive715

to this parameter. The chosen values for each ABL model are sufficient to not influence the numerical solution (van der Laan

et al., 2020). The results of all profiles are depicted in Fig. B1. Here it is clear that over the rotor swept area, the profiles of

wind speed, direction, and normalized turbulence intensity resulting from the prescribed temperature model are similar to those

resulting from the ℓmax model for the tall ABL case. The main difference can be found in the turbulence model length scale

(Fig. B1d), where the prescribed temperature ABL model predicts larger length scales over the rotor swept area compared720

to the ℓmax based ABL model. For taller altitudes, the models produce quite different ABL solutions probably because the

prescribed temperature model sets an explicit inversion strength while the ABL model based on ℓmax calculates this implicitly.

For the shallow ABL case, both models predict very different profiles. This is because the model based on ℓmax represents

stable conditions for low values of ℓmax while the prescribed temperature ABL model reflects a conventionally neutral ABL.

The four inflow profiles listed in Tab. B1 are applied to the wind farm cluster validation case using the RANS-AD-AWF725

model, for a wind direction and wind speed of 235◦ and 10 m s-1, respectively. The results of these simulations in terms of

horizontal wind speed contours at hub height (z = 102 m) are depicted in Fig. B2. Here, the prescribed temperature model

for the tall ABL case (Fig. B2a) is same as shown earlier in Fig. 14g and its results are similar as the results of the inflow

model based on ℓmax (Fig. B2b) for the tall ABL case. This is because a large ABL of about 1 km is set by either using a large
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Figure B1. Atmospheric inflow model precursor results employing a global turbulence length scale limiter, ℓmax compared to the prescribed

temperature ABL model for shallow and tall ABL cases. Results are shown in terms of wind speed (a), relative wind direction (b), turbulence

intensity (c), turbulence length scale (d) and potential temperature (e). Horizontal dashed black lines depict the swept rotor area of the 6 MW

wind turbine.

zi or a large value of ℓmax. Figure B3 also shows a similar wake magnitude calculated by the two inflow models, where the730

difference between the models is in the order of 1%. The wake magnitude is based on the front row wind turbine power of

Dudgeon, as performed in Sect. 4.2. Hence, the results presented in Sect. 4 would not have been significantly different if the

inflow model based on ℓmax was used instead of the new inflow model. The shallow ABL inflow profiles applied to the wind

farm cluster do not lead to a converged result using the domain height, Lz , set to 10Dref , as employed for the tall ABL case.

This is because the low eddy viscosity region above the ABL causes numerical instabilities when it is included in the wind735

farm cluster domain. The issue can be mitigated by lowering the domain height to exclude the low eddy viscosity region, as

performed in previous work (van der Laan et al., 2017). Here, we apply two different values: Lz/Dref = 2.5D and Lz/Dref =

3D and the results are shown in Figs. B2c-B2e. It should be noted that these low domain heights are not desired because the

increased numerical blockage causes artificial flow accelerations and reduced wake losses. When using Lz/Dref = 2.5D the

shallow ABL simulations converge for both models (Figs. B2c and B2d). However, for Lz/Dref = 3D (Fig. B2e, prescribed740

temperature ABL model) and Lz/Dref = 4D (Fig. B2f, ℓmax ABL model), the wind farm cluster simulation starts to produce

numerical instabilities towards the outlet. It is clear that both ABL models cannot be used to simulate a wind farm cluster

subjected to a shallow ABL inflow without lowering the domain height to an undesired small value. In addition, it is not fully

determined if the new inflow model actually performs better than the model based on ℓmax and more work is needed to improve

the numerical behavior when considering low ABL heights. However, the prescribed temperature model offers a more physical745
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Figure B2. Contours of the streamwise velocity at the reference height of the validation case simulated with RANS-AD-AWF, for a wind

direction of 235◦, for different inflow models and ABL heights.
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Figure B3. Wake magnitude of the validation case for a wind direction of 235◦simulated with RANS-AD-AWF, for different inflow models

using the tall ABL case.

method of setting an ABL height compared to using a global turbulence length scale limiter, and the new model also provides

the possibility to explicitly set the inversion strength.
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Appendix C: Numerical setup of TurbOPark (as implemented in PyWake)

Description Original model Revised model

Wind farm model All2AllIterative All2AllIterative

Wake deficit model TurboGaussianDeficit( TurboGaussianDeficit(

use_effective_ws=False, use_effective_ws=False,

use_effective_ti=False, use_effective_ti=False,

groundModel=Mirror(), A=0.04) groundModel=None, A=0.06)

Blockage deficit model SelfSimilarityDeficit2020(, SelfSimilarityDeficit2020(,

groundModel=Mirror(), groundModel=Mirror(),

superpositionModel=LinearSum()) superpositionModel=LinearSum())

Rotor velocity averaging model GaussianOverlapAvgModel(4, 3) GaussianOverlapAvgModel(4, 3)

Turbulence model None None

Wake superposition model SquaredSum() SquaredSum()

Table C1. Summary of the original and revised TurbOPark setup in PyWake

An overview of the numerical setup of the original and revised TurbOPark model as implemented in PyWake (DTU Wind

Energy, 2022a) is provided in Table C1.750
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Appendix D: Numerical setup of WRF simulations including wind farms

An overview of the numerical setup of the WRF simulations including wind farm is provided in Table D1.

Table D1. Summary table of WRF model configurations including initial and boundary conditions.

Parameter Value

WRF version Version 3.7.1 with implemented EWP

Spatial Settings

Domains D1: 188 x 188 grid points, 9 km grid spacing,

D2: 243 x 240 grid points, 3 km grid spacing

D3: 216 x 216 grid points, 1 km grid spacing

Nesting strategy one-way nested

Nudging strategy spectral nudging‡ applied above ABL

Vertical levels 64 levels, dz≈25 m up to around 250 m

Temporal Settings

Simulation length blocks of 11 days including 24 h spin-up

Lateral boundary condition update interval every 6 h

Initial and boundary conditions

Forcing data ERA5 (Hersbach et al., 2020)

Terrain data GMTED2010 (30-arc-second, Danielson and Gesch, 2011)

Land cover data ESA CCI-LC 2015 (Poulter et al., 2015)

Sea Surface Temperature OSTIA (Donlon et al., 2012)

Physics

Microphysics WSM5 (Hong et al., 2004)

Radiation RRTMG (Iacono et al., 2008)

Cumulus Grell-Freitas‡ (Grell and Freitas, 2014)

Land surface Noah LSM (Tewari et al., 2004)

Planetary boundary layer scheme MYNN2 (Nakanishi and Niino, 2006)
‡ only domain 1

Author contributions. MPVDL has drafted the article and produced the figures. MPVDL and OGS have proposed the idea of a wind farm

model with a drag coefficient as function of wind direction. MPVDL proposed to represent the wind turbine positions in the AWF model as

two-dimensional Gaussian functions. AMF suggested to use a standard deviation that is twice the horizontal AWF grid size and proposed to755

use of Eq. (3) for the volume average velocity vector of an AWF model; both ideas are based on lessons learned from actuator line modeling.

MPVDL has proposed the inflow model using a prescribed temperature and MK proposed the analytical form of the prescribed temperature

profile. CDB and KSS have prepared the SCADA measurements of Dudgeon. KSS proposed to revise the setup of the TurbOPark model
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simulations. MI has performed and post-processed the WRF simulations. AMF has performed preliminary RANS-AD simulations of the

double wind farm case including Dudgeon and Sheringham Shoal and AMF also implemented the TurbOPark model in PyWake. AP has760

post processed the NEWA data. NNS has implemented the necessary improvements to make the large wind farm cluster RANS simulations

possible with EllipSys3D in an efficient and scalable way. PER has facilitated and supervised the research performed in this article. All

authors contributed to the methodology and finalization of the paper.
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