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Abstract. The Mesoscale to Microscale Coupling team, part of the U.S. Department of Energy Atmosphere to 22 
electrons (A2e) initiative, has studied various important challenges related to coupling mesoscale models to 23 
microscale models for the use case of wind energy development and operation. Several coupling methods and 24 
techniques for generating turbulence at the microscale that is subgrid to the mesoscale have been evaluated for a 25 
variety of cases. Case studies included flat terrain, complex terrain, and offshore environments. Methods were 26 
developed to bridge the terra incognita, that scale from about 100 m through the depth of the boundary layer. The 27 
team used wind-relevant metrics and archived code, case information, and assessment tools and are making those 28 
widely available. Lessons learned and discerned best practices are described in the context of the cases studied for 29 
the purpose of enabling further deployment of wind energy. 30 
 31 
1. Introduction 32 
 33 
Whether one is planning for where to deploy future wind farms, micrositing turbines within a wind farm, or 34 
designing optimal wind farm control, it is crucial to include the impacts of the large-scale (mesoscale, meaning 35 
thousands to hundreds of thousands of meters) flow as well as to model at the microscale (on the order of meters to 36 
tens of meters). As much of the energy of the atmosphere resides in the largest scales, correctly modeling those 37 
scales as well as the turbulence and energy dissipation at the microscale provides the most accurate picture of the 38 
flow and energy available for harvest.  39 
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 40 
The models for the two scales tend to be disparate, however. Although both sets of models are numerical 41 
discretizations of the Navier Stokes equations, they are built for different purposes. The mesoscale models are 42 
formulated for weather forecasting, have larger grid spacing over larger domains, and include parameterizations of 43 
many of the processes that are important for correctly modeling atmospheric flow, such as radiative transfer (short 44 
wave incoming and long wave outgoing), boundary layers, surface layers, cloud microphysics, land surface models, 45 
and more. Including such parameterizations is necessary to predict the flow accurately. Mesoscale models are also 46 
initialized with initial and boundary conditions from global models, which include the day-to-day weather 47 
fluctuations. On the other hand, microscale models are able to resolve details of terrain and wind turbines at a scale 48 
not available to the mesoscale models. But the microscale models do not include all of the atmospheric physics 49 
parameterizations of the mesoscale models. Thus, the solution to obtaining accurate flow prediction representing all 50 
relevant scales is to couple the mesoscale models to the microscale model.     .  51 
 52 
Such coupling has long been a goal of modelers, but there have been a myriad of issues to work out. Some issues 53 
include:            54 
● The mesoscale models are fully compressible while microscale models are typically incompressible or 55 

Boussinesq, where density differences are ignored except due to buoyancy.       56 
● The gap between the typical resolutions of the two types of models – between about 100 m and traditionally 57 

1000 m – known as the inner “grey zone” or the terra incognita, has been difficult to bridge (Wyngaard, 2004) - 58 
see section 2.1.  59 

●  Treatment of surface conditions is often inherently different due to surface inhomogeneities that become 60 
important at the microscale  - see section 2.2.       61 

● Best ways to couple the two models must be identified – see section 2.3. 62 
● One must find ways to initiate turbulence at the microscale that is not resolved at the mesoscale - see section 63 

2.4.  64 
● Adding complexity, whether it comes from complex terrain or coupling atmosphere to ocean and wave models, 65 

complicates the picture and requires separate treatment - see section 2.6.  66 

● Assessing how the models perform must be accomplished in the context of wind energy needs - see section 2.7.  67 
● The uncertainty of the model results should be quantified to be most useful - see section 2.5.  68 
● There is room for improvement in model parameterization – see sections 4.1 and 4.2. 69 
● And finally, how can modern techniques such as improved parameterizations and machine learning be 70 

leveraged to improve modeling? See sections 4.2 and 4.3. 71 
 72 
As part of the U.S. Department of Energy (DOE) Atmosphere to Electrons (A2e) initiative, the Mesoscale to 73 
Microscale Coupling (MMC) team was charged with studying these issues and more. The goal of the project has 74 
been to improve coupling between mesoscale and microscale simulations via enhanced guidance and new strategies 75 
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for setting up simulations and for the development of new tools that can be used across the community. This 76 
philosophy recognizes that including the mesoscale forcing is critical to modeling the full energy transfer across 77 
scales in the atmosphere. Specific objectives include: 78 

• Apply verification and validation techniques to the new modeling tools and develop estimates of the 79 
uncertainty,  80 

• Reduce turbulence spin-up time in microscale simulations and hence decrease their computational cost, 81 
• Improve the surface layer treatment in microscale models to more accurately simulate wind speed and shear 82 

over the rotor diameter, 83 
• Develop best-practice guidance for the community,  84 
• Prepare and document a suite of software tools that can be used across the community, and 85 
• Transition MMC research to the offshore environment. 86 

 87 
Figure 1 illustrates the team’s approach. The goal is to provide more realistic turbulence-resolving simulations 88 
through coupling these scales. The team leveraged a case study approach to address these issues (Haupt et al., 89 
2019a). By working in the framework of studying particular situations for which we have observations, we can 90 
better develop and assess tools to best match real-world situations, which is particularly important for studying 91 
nonstationary meteorological conditions (such as frontal passages, thunderstorm outflows, baroclinic systems, and 92 
low-level jets) or when considering changes of atmospheric stability associated with the diurnal cycle. In essence, 93 
the objective is to have the microscale model “follow” the mesoscale model through dynamic changes while 94 
appropriately modeling the fine-scale behavior of the flow. The approach is to select case studies from field 95 
programs or observational data to identify challenging atmospheric conditions and test methods to simulate them. 96 
Most of these datasets are from DOE-sponsored facilities in flat and complex terrain as well as from offshore sites. 97 
The mesoscale modeling has focused on the widely used community model, the Weather Research and Forecasting 98 
(WRF) model (Skamarock et al., 2008). Several microscale models have been tested, including the large-eddy 99 
simulation (LES) version of WRF (WRF-LES) that can be run online where the inner nest derives the conditions 100 
directly from the outer nest during the simulation, and several offline models, which are run after the mesoscale 101 
model with inputs derived from those previous runs. Some aspects of the coupling that merit study include the 102 
surface and boundary conditions, bridging the terra incognita, initializing turbulence at the microscale that is not 103 
resolved at the mesoscale, the coupling methods themselves, and dealing with multiple sources of flow complexity, 104 
including complex terrain, coastal flows, and offshore flows. The testing is grounded in rigorous verification and 105 
validation configured specifically for wind energy plus uncertainty quantification, which  emphasizes determining 106 
parametric uncertainty of turbulence modeling in microscale simulations.  107 
 108 
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 109 
Figure 1: The MMC team’s case-based approach to addressing challenges of coupling the mesoscale to the microscale. 110 
 111 
An emphasis of the project is testing, evaluating, and comparing multiple methods of coupling the outer mesoscale 112 
flow to the microscale flow. Some methods use a single model (currently, WRF) at both scales, which ensures 113 
continuity across scales (internal coupling). Other methods incorporate forcing information from the mesoscale into 114 
a stand-alone microscale model (external coupling). This work is based on several preliminary investigations using 115 
WRF for both internal (Liu et al., 2011; Mirocha et al., 2014b; Muñoz-Esparza et al., 2014; Muñoz-Esparza et al., 116 
2015) and external (Zajaczkowski et al., 2011; Gopalan et al., 2014) MMC, showing both promise and direction for 117 
future development. Rigorous comparisons of methods for different conditions and use cases provide insight into 118 
best practices. Another effort seeks to compare different methods of generating turbulence in the microscale models 119 
that is unresolved by the mesoscale forcing. The turbulence generation intercomparison was greatly facilitated by 120 
the development of Python-based assessment tools that are used via shared Jupyter notebooks. This effort includes 121 
design, testing, and deploying common code bases to simulate and assess the flows, which are now available on the 122 
public MMC GitHub (Quon et al., 2023a). 123 
 124 
The team has archived simulation codes and model workflows for a range of case studies that can be used as a 125 
starting point for users to develop their own applications. Model codes, preprocessing, and postprocessing scripts are 126 
available on GitHub at  (Quon, et al., 2023a,b,c, Gill et al., 2023, Hawbecker et al. 2023). Online documentation 127 
resides in a ReadtheDocs: (Mesoscale-to-Microscale Coupling, 2023).  The goal of the code and workflow release is 128 
to promote high-fidelity coupled simulation capability to advance wind energy deployment through better 129 

https://github.com/a2e-mmc
https://mmc.readthedocs.io/en/latest/
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knowledge of the atmospheric conditions that drive energy harvest in wind farms. Modelers are invited to test our 130 
models and workflows available at the GitHub site listed above. 131 
 132 
This paper describes what we have learned about some of the difficult issues of coupling (Section 2), presents case 133 
studies that were accomplished (Section 3), and discusses how enhanced methods, such as improved 134 
parameterizations and machine learning, can help accomplish our goals (Section 4). Section 5 concludes with a 135 
summary and a list of lessons learned plus suggests where future research should focus. Recommendations for best 136 
practices are sprinkled throughout the paper. 137 
 138 
 139 
2 Some lessons learned 140 
 141 
The course of the research has investigated the topics laid out in Section 1, and here we summarize the work that has 142 
led to lessons we have learned. 143 
 144 
2.1 The terra incognita 145 
 146 
In coupled mesoscale–microscale simulations, including horizontal grid resolutions falling within the terra incognita 147 
is almost inevitable. The terra incognita, coined by Wyngaard (2004), is the range of horizontal grid spacings where 148 
turbulence models used in both mesoscale and LES do not work properly. The MMC project investigated the impact 149 
of the terra incognita in coupled simulations (Rai et al., 2017; Rai et al., 2019). Our work suggests that the impact of 150 
the terra incognita can be minimized using an appropriate choice of horizontal grid spacing, turbulence modeling 151 
(dependent on the horizontal grid spacing), and grid refinement ratio (GRR) applied between the mesoscale to 152 
microscale simulations. The most important consideration is that the horizontal grid spacing of the mesoscale 153 
simulation should be at least comparable to the boundary-layer depth. Horizontal grid spacing smaller than the 154 
boundary-layer depth produces erroneous structures in the simulated flow. Applying a GRR that allows simulations 155 
to jump over the terra incognita not only alleviates the problem but also reduces the number of computational 156 
domains. A larger value of GRR, however, also increases the fetch needed to generate turbulence on nested domains 157 
due to the inertia of larger structures transported from the parent domain. The need for a larger fetch can be 158 
mitigated by applying perturbations along the inflow boundaries of the domain (Section 2.4). In situations when the 159 
GRR (between mesoscale and microscale domains) becomes large, it can be beneficial to use the LES three-160 
dimensional (3D) turbulence model (e.g., Smagorinsky, 1963) in the terra incognita region, provided that the 161 
horizontal grid spacing is closer to 100 m, and then jump to grid spacing larger than the boundary-layer depth using 162 
the GRR (Rai et al., 2019). However, the use of a 3D LES closure when the grid spacing is too coarse to resolve any 163 
of the motions responsible for momentum transport can result in incorrect stress profiles, leading to significant 164 
errors in wind speed within the ABL. The recently developed 3D planetary boundary layer (PBL) Mellor–Yamada 165 
scheme (Juliano et al., 2022) fills a critical gap in this regard, providing for a consistent representation of transport at 166 
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scales finer than traditional mesoscale applications, but at scales too coarse to rely upon a 3D LES turbulence 167 
closure (Section 4.1).    168 
 169 
2.2 Surface layer  170 
 171 
The surface layer (SL) traditionally represents approximately the lowest 10% of the atmospheric boundary layer 172 
(ABL), within which the vertical fluxes of heat, momentum, and other constituents are assumed to approach nearly 173 
constant distributions with height above the surface. Parameterization of the exchanges of these quantities between 174 
the surface and the atmosphere within atmospheric models relies upon various SL scaling relationships, since the 175 
vertical grid spacing in such models is generally too coarse to use a no-slip boundary condition. The particular SL 176 
scaling employed, along with characteristics of the model spatial discretization, and the turbulence closure employed 177 
to model turbulent exchanges above the surface, all interact to influence the application of the surface boundary 178 
condition in atmospheric models, and subsequently impact resulting flow and other SL and ABL characteristics. 179 
  180 
The most commonly employed SL scaling relationship used within atmospheric models is the Monin–Obukhov 181 
similarity theory (MOST; Monin and Obukhov, 1954). MOST provides relationships to parameterize the fluxes 182 
between the surface and atmosphere based on a small number of surface and near-surface atmospheric flow 183 
parameters. While MOST is well established, relatively simple, and widely used, it is based on a number of 184 
assumptions, including uniform terrain, horizontal homogeneity of both surface and atmospheric variables of 185 
interest, steady flow and forcing conditions over time, and the appropriateness of ensemble-mean values of the 186 
parameterized fluxes. These assumptions are reasonably well satisfied in most historical numerical weather 187 
prediction and mesoscale atmospheric simulations, due in part to the use of coarse grid spacing, which satisfies the 188 
appropriateness of ensemble mean representations within each grid cell, while also not resolving sharp transitions in 189 
terrain features, horizontal heterogeneities, and meteorological forcing. However, the recent transition toward the 190 
use of higher resolution in many mesoscale applications sharpens the representation of some or all of these features, 191 
all of which increasingly violate the assumptions upon which MOST is based. 192 
  193 
While the use of high horizontal resolution violates the applicability of MOST for one set of reasons, the use of high 194 
vertical resolution can create additional problems, especially in settings for which a logarithmic mean profile shape 195 
is not expected, such as within forest canopies or over significant surface waves or ocean swell. Moreover, care must 196 
be taken not to place the lowest model grid cell too close to the surface. 197 
  198 
Microscale atmospheric LES models also routinely apply MOST to formulate the surface stresses at each surface 199 
grid cell based on the instantaneous time-varying horizontal velocities above. Even under highly idealized 200 
conditions satisfying the assumptions of MOST in the aggregate, such models violate the appropriateness of the 201 
ensemble-mean assumption. 202 
  203 
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Despite the above-mentioned caveats, MOST is still routinely applied in atmospheric simulations at all scales, owing 204 
primarily to a dearth of alternatives. To improve its applicability, and the performance of simulating flow within the 205 
SL more generally, numerous approaches have been developed, including various damping (Mason and Thomson, 206 
1992) and correction factors (Khani and Porté-Agel, 2017); the use of more advanced turbulence subgrid-scale 207 
(SGS) models (Bou-Zeid et al., 2005; Chow et al., 2004); taking care to properly set the computational mesh to have 208 
the proper width-to-height ratio (Brasseur and Wei, 2010); and the use of additional near-wall stress 209 
parameterizations (Brown et al., 2001) to distribute the surface stresses vertically. The impacts of many of these 210 
methods on improving LES performance within the WRF model in wind-energy-relevant applications has been 211 
examined in Mirocha et al. (2010), Kirkil et al. (2012), Mirocha et al. (2013), and Mirocha et al. (2014b). 212 
  213 
SL modeling has also been extended to applications over forested landscapes for which a logarithmic vertical profile 214 
of mean wind speed is not observed (see review by Patton and Finnigan (2012)). These methods are based on the 215 
addition of momentum sink terms to the governing horizontal momentum equations to account for the increased 216 
drag effects of foliage, with the magnitude of the drag expressed in terms of a leaf area index, which represents the 217 
surface area of vegetation as a function of height. Modifications to elements of the SGS model, including eddy 218 
viscosity coefficients and SGS turbulence kinetic energy (TKE), may also be included in such formulations. 219 
  220 
Arthur et al. (2019) implemented the plant canopy model of Shaw and Patton (2003) into the WRF model and 221 
demonstrated the ability of WRF-LES to recover expected distributions of winds and turbulence quantities in an 222 
idealized plant canopy. Arthur et al. (2019) additionally combined concepts from the plant canopy approach and the 223 
near-wall stress models used in various LES SGS formulations (Kirkil et al., 2012) to develop a novel distributed 224 
drag implementation for the parameterized surface stresses. This model applies the expected surface momentum 225 
stresses as drag terms in the horizontal momentum equations, distributed vertically over the lowest several model 226 
grid cells. When applied in LES using the MOST surface boundary condition, this approach significantly improves 227 
agreement between simulated mean wind speed profiles and their expected similarity relationships.  228 
  229 
In addition to improving the implementation of MOST within atmospheric solvers, significant progress has also 230 
been achieved in developing an alternative to MOST using machine learning (ML) to relate surface exchange to 231 
relevant atmospheric and surface parameters obtained from observations. Details of this approach are provided in 232 
Section 4.2.  233 
 234 
2.3 Coupling methods  235 
 236 
Over the course of this project, we have explored different frameworks for coupling mesoscale simulations to 237 
microscale LES. Figure 2 depicts the various ways of classifying coupling strategies. Coupling approaches can be 238 
classified according to the following properties: communication directionality (i.e., one-way or two-way coupling), 239 
communication strategy (i.e., online through system memory or offline through file system), information transferred 240 
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(i.e., direct quantities such as wind speed, temperature, and surface fluxes, or indirect quantities such as tendencies 241 
from the mesoscale budget), and the information transfer location (i.e., inflow/surface planes at the LES boundary, 242 
or through the entire flow volume). A comparatively low-cost method for coupling mesoscale to microscale is via an 243 
offline, periodic LES, which includes internal height-time varying source terms that provide mesoscale influence on 244 
the microscale. For this approach, mesoscale simulation output is saved over a one-dimensional (1D) column at a 245 
regular temporal interval (e.g., 10 minutes); this information is used with data assimilation techniques to force the 246 
periodic simulation toward the desired mesoscale behavior. One way to achieve this forcing is through what we term 247 
“profile assimilation,” in which the microscale velocity and potential temperature solutions are plane-averaged at 248 
each height at a given time. Those resultant mean profiles are compared with the desired mesoscale profiles, and the 249 
difference is used to determine the amount of forcing required to drive the microscale mean vertical profiles to 250 
match those of the mesoscale. One of the key lessons learned in this study is that with a strong forcing that enforces 251 
the microscale mean vertical profiles to very closely match those of the mesoscale (what we term “direct profile 252 
assimilation”), unrealistic turbulent fields sometimes form in the microscale simulation. This may be a natural LES 253 
response to mesoscale profiles that are superadiabatic over too much of their vertical extent. To deal with this, we 254 
developed a method that allows the microscale simulation more freedom to depart from the exact mesoscale vertical 255 
structure (what we term “indirect profile assimilation”), but which will follow all the mesoscale trends in time 256 
(Allaerts et al., 2020, 2023). Alternatively, the mesoscale forcing can be included by imposing time-height varying 257 
source terms in the microscale LES. The forcing accounts for large-scale advection and the driving pressure gradient 258 
and is extracted from the mesoscale simulation (Draxl et al., 2021). Any of these methods, though, assume a 259 
horizontally homogeneous forcing field and are applicable only to homogeneous cases that are well-represented by 260 
periodic boundary conditions. Although it is theoretically possible to apply an internal source term that varies three-261 
dimensionally in space to represent horizontally heterogeneous situations, we have not explored that approach; 262 
however, others (Sanz-Rodrigo et al., 2021) have demonstrated the validity of that approach.  Instead, for      263 
horizontally heterogeneous domains, or simulations that resolve turbines, we have focused our attention on 264 
boundary-coupled simulations, which provide the highest degree of generality. Boundary-coupled simulations can 265 
be conducted via online or offline coupling.       266 
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 267 
Figure 2: Four ways of classifying coupling approaches. 268 
 269 
For offline coupling, the mesoscale output once again needs to be saved at regular temporal intervals to provide 270 
boundary forcing for the LES. However, instead of 1D profiles, two-dimensional (2D) planes must be saved, which 271 
increases the I/O and storage requirements considerably. Boundary coupling allows for simulation of a 272 
heterogeneous domain for resolving complex terrain, mesoscale flows with significant horizontal gradients, or wind 273 
farms.  274 
 275 
Online coupled cases downscale from the mesoscale through nesting, usually within a single code; this allows for a 276 
potentially streamlined workflow, as the downscaling usually involves setting runtime input parameters. Advantages 277 
of an online coupled simulation is the ability to use consistent numerics and complete atmospheric physics across 278 
spatial scales, as well as the ability to perform two-way coupling. However, because mesoscale meteorology models 279 
are usually not developed with LES applications in mind, this coupling approach requires greater overhead and 280 
poorly optimized parallelization of computing resources for the LES domain, imposing severe restrictions on the 281 
ability to conduct large numbers of simulations. Note that a current DOE initiative focuses on development of 282 
mesoscale (ERF) and microscale (AMR-Wind) models that are aimed at exascale HPC platforms. However, also 283 
note that online coupling of mesoscale and microscale models that are based on the same formulation, i.e., 284 
equations, and use the same numerical discretization simplifies coupling and results in more consistent simulations 285 
across scales.           Offline boundary-coupled simulations, however, are able to achieve higher simulation 286 
throughput, which is crucial for parameter selection, sensitivity studies, or wind plant design applications. We 287 
conducted a series of case studies directly comparing these approaches: one in a flat, fairly homogeneous onshore 288 
environment (section 3.1, Allaerts et al., 2020; Draxl et al., 2021; Allaerts et al., 2023) and one in the offshore 289 
environment (section 3.5, Thedin et al., 2022). Further case studies demonstrate the use of these techniques in 290 
complex terrain (sections 3.3 and 3.4), resolving the coastal boundary (section 3.6), or in the offshore environment 291 
with variable shallow water roughness and sea surface temperature (section 3.6). 292 
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 293 

We note that while the stand-alone microscale solver adds complexity to the setup, it allows for greater flexibility. 294 
Most importantly, it allows for the study of the interaction of realistic weather conditions, complex terrain, and 295 
turbines. The turbines can be coupled with aero-servo-elastic models using OpenFAST (2022 – see section 3.5.2)). 296 
In the workflows presented in this paper, the turbine can be represented by actuator disk or actuator line models. 297 
Note that the stand-alone, offline approach even allows the use of blade-resolved approaches.  298 
 299 
2.4 Initializing turbulence 300 
 301 
LESs are designed to explicitly resolve the energetically important scales of turbulence and the resulting fluxes and 302 
transport those motions generate      within the flow. Models using grid spacings that are too coarse to resolve those 303 
motions must instead rely on parameterizations (e.g., PBL schemes) to represent those processes. Therefore, when 304 
forcing LES with mesoscale atmospheric data at the domain boundaries, either online or offline, a domain fetch is 305 
required for the resolved scales of motion to appear within the LES flow field, since those motions are not resolved 306 
within the inflow data. A similar issue is encountered when forcing LES with observations, as most observational 307 
datasets do not contain sufficient spatiotemporal frequency to specify the turbulence field. In each of these cases, the 308 
fetch required for resolved-scale turbulence motions to form and equilibrate to the large-scale forcing within the 309 
LES domain can be extensive and represents a significant computational burden. The amount of fetch required 310 
depends on multiple contributing factors, including surface roughness and terrain, wind speed, and atmospheric 311 
stability. Generally, for a computation using specified inflow conditions during unstable conditions, the reduction of 312 
fetch due to perturbations can be small, perhaps only around 100 grid cells in the direction of the mean flow. 313 
However, during neutral or stable conditions, perturbation can foreshorten the fetch by several hundred grid points, 314 
which can constitute a computational savings of 50% or more. Moreover, the flow field within the fetch will not 315 
well represent either the mean or turbulence fields during the process of turbulence spin-up and equilibration.1 To 316 
ameliorate both the computational overhead and flow inaccuracies within LES forced in this manner, several inflow 317 
perturbation methods have been developed and examined within the MMC project. These methods have been shown 318 
to successfully promote the formation and equilibration of resolved-scale turbulence within LES driven by 319 
mesoscale data and low-frequency observations, leading to substantial reductions of computational expense by 320 
permitting the use of smaller LES domains while simultaneously improving the accuracy of the flow field beyond 321 
the fetch. The inflow turbulence perturbation approaches that were examined within the project are briefly described 322 
below.  323 

                                                 
1 Within the fetch region, both the turbulence and mean flow statistics change rapidly, with turbulence developing, and the mean flow responding 
to those changes. Random perturbations applied just inside the inflow plane(s) produce uncorrelated gradients that, through the action of the 
governing equations, develop into robust turbulence features with expected correlations and energetics. During this process, there is often an 
associated reduction in mean wind speeds and a small change in wind direction near the surface, due to a temporary reduction in downward 
momentum transport -since the mesoscale closure is no longer providing that within the LES domain, and the turbulence within the LES domain 
has not yet developed the correlated structures responsible for downward momentum transport. The length of this region varies with stability and 
mean wind speed, with more stable and higher wind speeds generating longer transitional fetches. However, the mean and turbulence statistics of 
the flow do asymptotically approach their equilibrium values, after which no significant changes are observed with increasing distance from the 
inflow. 
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 324 
2.4.1 Stochastic cell perturbation method 325 
 326 
The cell perturbation method (CPM) is based on the application of perturbed values of atmospheric temperature or 327 
velocity to “cells” (groups of contiguous model grid points in the horizontal and vertical directions) located just 328 
within the lateral edges of an LES domain (Muñoz-Esparza et al., 2014; Muñoz-Esparza et al., 2015; Mazzaro et al., 329 
2019). Optimal choices for the amplitude, size and number of cells imparts variability upon the inflow that rapidly 330 
generates resolved-scale turbulence. Since the magnitude of the perturbation applied within each cell is drawn from 331 
a random distribution with a mean of zero, the method does not impose spatial correlations or turbulence structure 332 
explicitly. Rather, the mixture of random amplitudes and spatial correlations among the cells leads to the 333 
development of turbulence that is consistent with the large-scale forcing, defined by the ABL depth, surface 334 
roughness and temperature fluxes, and the distributions of mean winds and temperature – the latter contained within 335 
the inflow.  336 
 337 
The CPM has been successfully applied in both idealized and real-data simulations for wind energy applications, 338 
including a diurnal cycle over an area of wind energy development in the U.S. Midwest region (Muñoz-Esparza and 339 
Kosovic, 2018), during a ramp event interacting with a parameterized wind farm in the Central Great Plains (Arthur 340 
et al., 2019), and in offshore resource characterizations in the North Sea (Thedin, et al. 2023) and U.S. East Coast 341 
regions (Hawbecker, et al., 2023), in each case showing improvement of the LES wind field, relative to unperturbed 342 
simulations 343 
 344 
2.4.2 Synthetic turbulence method 345 

 346 
Synthetic turbulence, such as the Mann method (Mann, 1998), are applied along the inflow boundaries of the LES 347 
domain to help generate realistic turbulence. The Mann synthetic method produces the turbulent winds in the three-348 
dimensional volume, which is converted to a time series of inflow planes employing the frozen turbulence 349 
hypothesis. This method uses the spectral tensor of wave vectors to generate the isotropic turbulence and makes it 350 
anisotropic by applying the rapid distortion theory to the turbulent wind field. The inputs for controlling the 351 
variances of the turbulent field are the length scale and scaling intensity factor that controls the turbulent energy in 352 
the flow. If observations are available, we usually adjust the turbulence intensity by scaling the square root of the 353 
variances from the observations before applying it to the microscale model within the boundary-layer depth. 354 
Similarly, the frequencies of the turbulent inflow field at the domain boundaries can be adjusted based on the inflow 355 
wind speed. In addition to the Mann method, synthetic turbulence methods, such as TurbSim (Jonkman, 2006; 356 
Kelley, 2011; Rinker, 2018), can also generate turbulence along the inflow boundaries. Unlike the Mann method, 357 
TurbSim generates inflow planes in the time domain. If observations are available, the simulated turbulence can be 358 
forced to match an input time series and the structure of the turbulence can be controlled through empirical 359 
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coherence functions. These methods have been compared to CPM for flat terrain (Haupt, et al. 2019b, 2020) as well 360 
as for offshore (see section 3.5). 361 
 362 
2.5 Quantifying uncertainty  363 

 364 
Modeling the atmosphere, at both meso- and microscales, is subject to uncertainty from a variety of sources. 365 
Uncertainty propagates from the data used to specify initial and boundary conditions (e.g., reanalysis-based flow 366 
fields, land surface properties, sea surface temperature data), from the form of model closures, and from specific 367 
parameter values used within a closure. Sensitivities to these uncertain factors may display complex, nonlinear 368 
interactions. Therefore, constraining the impacts on model predictions – particularly when considering mesoscale–369 
microscale coupled modeling – is difficult. A powerful, albeit computationally intensive, approach to evaluating 370 
uncertainty in atmospheric model closures is to generate an ensemble of simulations that sample across a range of 371 
parameter values. To adequately capture potential nonlinearities in the atmospheric model response, several dozen 372 
or more ensemble members are typically required. However, once such a perturbed parameter ensemble is 373 
generated, it may be extensively interrogated using a variety of meta-modeling techniques. For example, 374 

Generalized Linear Models were used  by Yang et al. (2017, 2019) and Berg et al. (2019) for this purpose, while  375 
Kaul et al. (2022) performed analyses using  Random Forest representations of the atmospheric model response . 376 
 377 
In the context of wind energy applications, quantities of interest such as hub-height wind speeds, turbulence levels, 378 
shear, and veer are known to generally show sensitivity to parameterizations of boundary layer turbulence and 379 
surface fluxes, and these kinds of parameterizations have been most extensively targeted for uncertainty 380 
quantification under the MMC project and related A2e projects. For example, uncertainty in mesoscale model 381 
predictions over complex terrain owing to parameter values of PBL and surface schemes was examined by Yang et 382 
al. (2017, 2019) and Berg et al. (2019). Reassuringly, these studies found that only a few parameters accounted for 383 
most of the model uncertainty, although the identity of these parameters could vary diurnally and seasonally based 384 
on the dominant state of atmospheric stability. Uncertainty owing to LES subgrid-scale turbulence closure 385 
parameters in realistic mesoscale–microscale coupled simulations was examined by Kaul et al. (2022) and found to 386 
trace predominantly to a single parameter (an eddy viscosity coefficient). However, the sensitivity of the modeled 387 
flow to variations in this parameter was noted to vary significantly between two case studies with nominally similar 388 
large-scale flow conditions but different smaller-scale flow structures (convective cells versus rolls), and to show 389 
nonlinearity of response. For example, the hub-height wind speed showed much greater sensitivity to the eddy 390 
viscosity coefficient, across the full range of  eddy viscosity coefficient values that were tested, in the case with roll-391 
type structures. TKE was also more sensitive in the case with rolls to changes in the coefficient value through the 392 
lower half of the range of values tested. At higher values of the coefficient, turbulence was effectively damped, so 393 
that the sensitivity of TKE to further increases in the coefficient became slight. In contrast, the case with a cellular 394 
flow structure was better able to sustain turbulence, so sensitivity of TKE to the eddy viscosity coefficient persisted 395 
across the full range of tested values, and sensitivities were greater at higher values of the coefficient.  396 
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 397 
Looking forward, much work remains to better characterize uncertainties within both mesoscale and microscale 398 
model predictions across a wider range of flow conditions, especially offshore. However, these initial studies give 399 
promising indications that uncertainty can typically be traced to a small number of model parameters and that the 400 
importance of these specific parameters can be interpreted in terms of flow physics considerations. Furthermore, 401 
application of meta-modeling techniques and leveraging machine learning approaches can greatly aid in detecting 402 
relationships and patterns within atmospheric model responses. Thus, efforts at uncertainty quantification not only 403 
meet a practical need to bound variability in atmospheric model predictions, but also can provide deeper insights to 404 
modelers that may ultimately drive improvements in parameterizations. 405 
 406 
2.6 Challenges of complexity and ways to approach 407 
 408 
Complexity comes into play in many manners for atmospheric flow. For the purposes of enhanced MMC for wind 409 
energy applications, we have focused on issues relating to complex terrain and offshore environments, including 410 
issues of correctly modeling atmospheric gravity waves but avoiding generating spurious ones.  411 
 412 
2.6.1 Complex terrain 413 
 414 
The coupling of mesoscale to microscale models using an offline approach (see Section 2.3) allows for the use of a 415 
stand-alone microscale LES solver, which brings the ability to use high-quality (in terms of mesh orthogonality) 416 
terrain conforming meshes. In complex terrain simulations, the assumption of horizontal homogeneity (often 417 
assumed in microscale simulations of the boundary layer) is no longer valid. Adding complex terrain to the 418 
simulation implies that periodic boundary conditions are not appropriate, and thus mesoscale coupling must be 419 
performed at the boundaries by means of spatiotemporal varying boundary conditions. A few additional 420 
complexities arise when performing this coupling. 421 
 422 
To initialize the flow field in the microscale, the mesoscale solution is mapped onto the microscale domain. 423 
However, this mesoscale solution is obtained at a significantly coarser resolutions. In order to avoid unnecessary 424 
computational expense, a coarse grid must first be created to allow the mapping. After the mapping, further grid 425 
refinement should be performed to bring the domain to the desired microscale resolution. An additional terrain-426 
conforming step must be taken to ensure the high-resolution LES grid is properly conformed to the underlying 427 
terrain elevation map. The boundary conditions that come from the mesoscale models only contain mean quantities, 428 
and thus the LES-resolved turbulence must be initiated in some way. Due to the inflow–outflow boundary 429 
conditions, two main strategies are used: the application of the cell perturbation method (see Section 2.4.1), or to 430 
allow the terrain itself to trigger the turbulence. We found that a perturbation technique is recommended because the 431 
terrain is only effective at generating the turbulence if it is sufficiently complex, in addition to significant fetch 432 
requirements (Hawbecker and Churchfield, 2021). For flat terrain Mirocha et al. (2014b) showed that under neutral 433 
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stratification fetch can be virtually infinite. An additional complication can be present in the mesoscale boundary 434 
condition, where a single microscale boundary may experience inwards and outwards fluxes, and one must make an 435 
appropriate choice of the boundary conditions for both the velocity and pressure, depending on the LES code of 436 
choice. Finally, the terrain can trigger atmospheric gravity waves under certain stability conditions. The real 437 
atmosphere extends for tens of kilometers vertically and infinitely horizontally, but a simulation domain is finite. 438 
Atmospheric gravity waves reflect off of these domain boundaries and constructively or destructively interact, 439 
creating spurious behavior. Approaches used to mitigate these spurious reflections and interactions are detailed in 440 
Section 2.6.2. 441 
 442 
2.6.2 Atmospheric gravity waves 443 
 444 
As discussed in section 2.6.1, complex terrain can trigger atmospheric gravity waves, which microscale simulations 445 
that include buoyancy effects will capture. In addition to complex terrain, atmospheric gravity waves can be 446 
triggered by certain mesoscale weather patterns, land–sea interfaces, or wind farms themselves. The flow induced by 447 
these atmospheric gravity waves can be of significant importance. But if these waves, whether significant or not to 448 
the simulated problem, are allowed to reflect off of domain boundaries unchecked, they can cause spurious wave 449 
interactions with unreasonable wave amplifications that completely pollute the rest of the flow. Our approach of 450 
choice to mitigate spurious reflections is Rayleigh damping. Rayleigh damping is a simple but flexible concept. A 451 
layer of some thickness is placed adjacent to a domain boundary in which a source term is introduced in the 452 
momentum equation that forces the velocity toward a reference velocity with some time scale. Often we choose to 453 
damp only the vertical velocity component to a zero reference state. However, Rayleigh damping is completely 454 
general in that the reference velocity can be as complex as a 3D, time-varying field. Challenges with Rayleigh 455 
damping include choosing an adequate thickness and proper time scale to effectively damp atmospheric gravity 456 
waves. Too weak a damping layer will not completely damp reflected waves, but waves will reflect off too strong a 457 
layer.  We suggest a damping layer thickness of 3-5 km with a damping time constant of 0.005 1/s, but additional 458 
tuning likely will be required.  An additional challenge arises if the inflow boundary needs to be damped, which we 459 
find to be the case in all inflow–outflow simulations, because upstream propagating atmospheric gravity waves must 460 
be damped, but one does not want to damp incoming turbulence.  461 
 462 
2.6.3 The complexity of modeling offshore wind  463 
 464 
When switching from simulating complex terrain on shore to the offshore environment, our initial assumption was 465 
that the problem became simpler. The offshore environment, due to a “flat” sea surface, seemed ideal for periodic 466 
idealized simulations. Additionally, there are no heterogeneous surfaces to consider such as trees and cities, but only 467 
water. This seemingly simpler problem turns out to be very complex and with fewer observational datasets to 468 
compare against, meaning that it is very difficult to verify simulation accuracy. First, the ocean surface is generally 469 
covered in waves of varying sizes, traveling in different directions, and with different periods. These waves have a 470 
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complex relationship with the atmosphere and ocean depth (see, for example, Jiménez and Dudhia (2018)) that 471 
needs to be carefully considered in order to accurately simulate wind speeds within the boundary layer. Secondly, 472 
sea surface temperature (SST) and SST gradients play an important role in determining the stability of the 473 
atmosphere above. When considering SST gradients in simulations, we are often unable to utilize periodic boundary 474 
conditions. Additionally, while many satellite-derived SST products exist and are used as the lower boundary 475 
condition for temperature in a model, they are commonly only available once per day and rely heavily on gap-filling 476 
techniques to produce estimates of SST where clouds have blocked their measurement, leading to biases in SST 477 
datasets (Zuidema et al., 2016). These impacts may be more significant in the near-shore environment in which 478 
offshore wind is focussed due to the occurrence of coastal upwelling, seasonal and climatological changes in ocean 479 
currents such as the Gulf Stream, and the propensity for cloud coverage. Finally, there are also characteristics of the 480 
offshore environment that are infrequently observed over land. Offshore low-level jets in the New York Bight – 481 
where offshore wind plants are being developed – have been frequently observed to have jet noses below 100 m. 482 
This means that the shear across the rotor will be extremely complex, as hub height for offshore turbines will be 483 
above the jet nose. Another example is the propensity of extreme weather events in the offshore and coastal 484 
environments. Hurricanes and other tropical disturbances commonly weaken as they move on shore due to increased 485 
friction, or over colder seas, which reduces the latent energy that powers them. Such storms can remain quite strong 486 
while located over warm ocean waters; however, the rate of storm motion can also play a role, as slower storm 487 
movement can mix cooler water from below the thermocline up toward the surface, reducing the energy supply. 488 
Upper level wind shear can also reduce the organization of the storm, leading to weakening or dissolution. All of 489 
this leads to a very complex modeling framework requiring the coupling of ocean and atmospheric models (Shaw et 490 
al., 2022). 491 
 492 
2.7 Wind energy relevant assessment and code availability 493 
 494 
To enable accurate assessment and repeatability of our science results, we have made all the essential components of 495 
our studies publicly available. These components include (1) the problem definition, including data exploration, 496 
curation, and transformation into useful simulation inputs; (2) the actual simulation inputs, including model 497 
configuration files and scripts; and (3) postprocessing and synthesis of output. For this purpose, we have established 498 
the A2e-MMC GitHub organization for archiving and disseminating our work archived at Quon, et all 2023a,b,c; 499 
Gill et al., 2023; Hawbecker, et al. 2023. This public GitHub organization hosts Python analysis code, Python 500 
analysis notebooks, code-specific input files, as well as our MMC-specific version of the WRF model that tracks the 501 
community version (currently v.4.3), each constituting a separate version-controlled repository. For every study in 502 
this project, the team has adopted workflows based on a common set of analysis and simulation codes within this 503 
framework, thus ensuring apples-to-apples comparisons between results. To complement the technical content on 504 
GitHub, we have also created a ReadTheDocs documentation site to provide an easily accessible high-level 505 
overview of our project’s accomplishments, describe our capabilities, and link to the resources on GitHub wherever 506 
appropriate (Mesoscale-to-Microscale Coupling, 2023). We believe that in combination the GitHub and 507 

https://mmc.readthedocs.io/en/latest/
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ReadTheDocs will serve as a living record of the MMC project, as well as provide flexible and adaptable 508 
documentation for future related projects. 509 
 510 
3 The value of case studies  511 

 512 
The team has developed and archived simulation codes and model workflows for a range of case studies that can be 513 
used as a starting point for users to develop their own applications. The value of using a case study approach 514 
includes the ability to choose real-world phenomena to model where observational data exist to validate our models. 515 
That allows us to test different modeling approaches and techniques to discern which are most appropriate for the 516 
particular situation. The cases that are curated are described briefly in the following sections, along with some 517 
lessons learned for each. 518 

 519 
3.1 Flat terrain diurnal cycle  520 
 521 
To develop and test methods for coupling so that the microscale follows changes at the mesoscale, an early case 522 
study of a diurnal cycle in flat conditions was chosen. This nonstationary case includes time-varying hub height 523 
wind speed and direction, shear and veer, and turbulence intensity. For such a case, accurate downscaling of energy 524 
from the mesoscale is important for predicting realistic turbulent flow features in the wind farm operating 525 
environment. 526 
 527 
Surrounded by grassland with no significant terrain changes within hundreds of miles, the Scaled Wind Farm 528 
Technology (SWiFT) facility located in the southern Great Plains in West Texas forms an ideal flat terrain test site. 529 
There are several meteorological measurement facilities near the SWiFT site hosted by Texas Tech University’s 530 
National Wind Institute (Hirth and Schroeder, 2014), including a tall meteorological tower and a radar wind profiler 531 
with radio acoustic sounding system. In addition to the ideal terrain and availability of observational data, the site is 532 
also chosen for its relevance to onshore wind energy installations in the United States. Details of the atmospheric 533 
characterization are provided in Kelley and Ennis (2016). 534 
  535 
From available data, the evening transition from 8 to 9 November 2013 was identified as a synoptically quiescent 536 
diurnal cycle leading to nonstationary flow conditions at heights relevant to wind energy. The evolution of flow 537 
parameters including wind speed, turbulence intensity, and virtual potential temperature follows a typical diurnal 538 
pattern, featuring a morning transition, daytime convective boundary layer, afternoon/evening transition, and a 539 
nocturnal low-level jet. The relatively simple geographical and meteorological conditions of the SWiFT diurnal 540 
cycle make it an ideal case to study the performance of internal coupling methods throughout various atmospheric 541 
stability regimes. The case has been used to evaluate existing coupling methodologies (Draxl et al., 2021) as well as 542 
to develop new techniques (Allaerts et al., 2020, 2022). The WRF mesoscale simulation setup contains three nested 543 
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domains with 27 km, 9 km, and 3 km grid spacing, centered at the SWiFT site. The LES domains included 270, 90, 544 
and 30 m resolutions.  545 
  546 
Among the various lessons learned from this flat terrain diurnal cycle case, perhaps the most important one was 547 
regarding the division of responsibilities between the mesoscale and the microscale solvers in an MMC framework. 548 
The trends in the mean flow are set at the mesoscale level, and the microscale solver cannot correct for large biases 549 
in mean-flow quantities or erroneous timing of large-scale events like the evening transition. The task of the 550 
microscale solver is to fill in information on the unsteady, three-dimensional turbulent structures, which was often 551 
accompanied by an improvement in the prediction of wind shear and mean turbulence statistics inside the boundary 552 
layer, even in the relatively simple conditions of the SWiFT diurnal cycle. Further, the SWiFT case also highlighted 553 
the need for more high-quality data extending up to higher altitudes for validation purposes. Despite the available 554 
meteorological tower being taller than typically deployed towers, many boundary-layer processes with relevance to 555 
wind energy take place above 200 m. For example, the low-level jet that developed during the SWiFT diurnal cycle 556 
was predicted to attain its maximum wind speeds at a height between 250 and 350 m, but there was insufficient data 557 
to validate this finding. Moreover, meteorological towers only present observations from a single column, which 558 
means they cannot be used to assess how well the spatial variations in the turbulent flow fields are predicted. Note 559 
that similar work has been carried out using data from the GABLS3 diurnal cycle case that included high-altitude 560 
measurements to over 1000 m. Benchmark results are archived at Sanz Rodrigo et al. (2017a) with mesoscale to 561 
microscale coupling results described by Sanz Rodrigo et al. (2017b) and archived in Sanz Rodrigo (2017b).  562 

 563 
3.2 Frontal passage causing a wind ramp  564 

 565 
A second case study (Arthur et al., 2020) leveraged MMC techniques to conduct simulations of a wind farm during a 566 
frontal passage, for which rapid changes in wind speed, direction and temperature, and atmospheric turbulence were 567 
observed. One of the key benefits of mesoscale–microscale coupling is the ability to examine wind energy 568 
phenomena at the wind plant scale while resolving time-varying forcing from the mesoscale. The simulations 569 
demonstrated the ability to capture the relevant mesoscale meteorological phenomena on a typical mesoscale 570 
simulation domain, downscale those features to an LES domain containing a section of an operating wind plant, 571 
represented as generalized actuator disks (GADs; Mirocha et al., 2014a), and simulate the interactions between the 572 
time-varying meteorological flow and turbines, including wakes, power extracted, and turbulence phenomena. This 573 
case study demonstrates the viability of fully online-coupled MMC simulations in WRF to address important issues 574 
in wind plant behavior under realistic atmospheric operating conditions. 575 

 576 
3.3 Complex terrain case with high wind speeds and convective conditions  577 
 578 
The purpose of a first complex tterrain case study was to examine the flow structures near the surface, which depend 579 
on many factors, including surface forcing. We investigated coherent structures present in the flow measured using 580 
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scanning lidar deployed near Wasco, Oregon, during the WFIP2 campaign (Wilczak et al., 2019) and those 581 
simulated using WRF LES. The simulations utilized WRF to WRF-LES for the unstable condition case on 21 582 
August and stable conditions on 14 August 2016 for the westerly flow. The model output was sampled in a way 583 
consistent with scanning lidar data using plan position indicator scanning. We used the wind field of the innermost 584 
domain that has a horizontal grid spacing of 10 m.   585 
 586 
For both stability conditions, 90 east sectors, each 1 minute apart, were selected from the simulations and used to 587 
compute the spatial proper orthogonal decomposition (POD) modes and energy (Berkooz et al., 1993). The actual 588 
lidar data for the unstable case uses 49 east sectors with wind speed and heat flux values similar to those in the 589 
simulations, 5–7 m/s and ~350 W/m2, respectively. For the stable case, the actual lidar data employs 160 east sectors 590 
with a wind speed of 10–12 m/s and heat flux ~−30W/m2, similar to the simulated values. Figure 3 shows the spatial 591 
POD modes 1 and 21 and the POD energy (λ , which denotes kinetic energy per unit mass of the flow) distributed 592 
among many modes for the simulated and actual lidar data for two stability conditions. The first POD mode in all 593 
cases shows the most significant coherent structures, followed by smaller structures for increasing mode numbers. 594 
For the given stability conditions, the simulated and lidar cases showed similar shape and size variations for all 595 
modes. The first few modes (modes < 5) show similar spatial structures in the POD modes for all stability 596 
conditions. However, they exhibit different spatial structures for the higher POD modes. For instance, mode 21 in 597 
the unstable case shows large open-cell-like structures, whereas mode 21 in the stable case shows streak-like 598 
structures oriented in the predominant wind direction. This variation of flow structures in different modes can be 599 
attributed to the forcing function. POD energy shown in Fig. 3 (right panels) depicts the turbulent energy associated 600 
with each coherent structure starting from mode 2. The unstable conditions consistently exceed the POD energy (for 601 
mode >1) in both simulated and observed lidar data. The cumulative energy (Fig. 3, inset) indicates that the first 602 
mode of the stable condition case contains larger POD energy than the unstable condition case and requires larger 603 
modes to represent the energy in the flow in observational data. Although the trend of varying POD energy shows 604 
similarities between the two cases, the magnitude and the energy spread among the modes differ. Overall, the POD 605 
modes of the different stability cases demonstrate that the simulations capture the important features of coherent 606 
structures present in actual lidar data. 607 
 608 
 609 
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 610 
Figure 3: Spatial POD modes 1 and 21 for the unstable (first and second columns) and stable (third and fourth columns) 611 
condition cases, and POD energy (λ ) among the first several modes (fifth column) and their cumulative energy (in the 612 
inset). Panels in the top and bottom rows represent the results from observed and the simulated data, respectively. 613 
 614 

 615 
3.4 Complex terrain case using 3D PBL  616 
 617 
This second complex terrain case also leverages measurements made during the WFIP 2 campaign, which covered 618 
many stability conditions, including cold air pools (CAPs) that tend to develop during synoptically quiescent 619 
periods. To study the ability of the 3D PBL scheme to capture such features, we chose a case from 10–20 January 620 
2017 when a robust CAP was observed in the Columbia River Gorge. Such events are often challenging to represent 621 
accurately in mesoscale simulations due to the relatively small-scale boundary layer processes that must be 622 
parameterized. To better understand the spatial variability in meteorological and turbulence characteristics during 623 
the CAP lifecycle, we conducted WRF simulations following the High-Resolution Rapid Refresh (HRRR) reforecast 624 
configurations that were run for the WFIP2 project. For these simulations, the Mellor–Yamada–Nakanishi–Niino 625 
(MYNN; Nakanishi and Niino, 2006) scheme is run in the inner domain (horizontal grid cell spacing, Δ = 750 m) of 626 
a nested two-domain setup. A novelty of this study is the use of NCAR’s 3D PBL parameterization (Kosovic et al., 627 
2020; Juliano et al., 2022; Eghdami et al., 2022; Rybchuk et al., 2022), which was implemented into the WRF model 628 
for high-resolution mesoscale simulations. More information about the modeling setup and codes may be found at 629 
Mesoscale-to-Microscale Coupling, 2023. 630 
 631 
Several key findings emerged from the WFIP2 CAP study, with additional details reported by Arthur et al. (2022). 632 
First, turbulence kinetic energy (TKE) measurements from the profiling lidar at the Gordon’s Ridge site reveal that, 633 
compared to MYNN, the 3D PBL simulation more accurately represents the vertical and temporal variability in 634 
TKE. As a result, wind speed errors were lower in the 3D PBL simulation, especially during the CAP erosion 635 
period, which has been especially difficult to model (Adler et al., 2021). To better understand the leading cause of 636 
the improved performance by the 3D PBL compared with MYNN, we performed a sensitivity analysis using the 3D 637 
PBL scheme framework. More specifically, we modified the turbulence closure approach as well as the turbulent 638 
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length scale/closure constants formulation. The main reason for the improvement in TKE prediction is primarily 639 
related to the different turbulent length scale/closure constants formulation. For 3D PBL simulations under 640 
convective conditions, Juliano et al. (2022) reported similar findings regarding the primary importance of turbulent 641 
length scale/closure constants formulation. 642 

 643 
3.5 Offshore wind case with a long offshore fetch  644 
 645 
The MMC techniques developed for onshore studies were tested for a first offshore scenario at the FINO1 research 646 
tower, located in the North Sea. This case is representative of low roughness and low turbulence and leverages 647 
measurements from the FINO towers and data from the Alpha Ventus wind energy plant.  648 
 649 
3.5.1 Comparison of coupling methods and turbulence generation methods 650 
Comparisons are made between members of an ensemble of mesoscale simulations, different coupling methods with 651 
several models, and different turbulence generation schemes. The goal of the comparison is to assess the 652 
performance of each approach and highlight their strengths and weaknesses. The approaches compared include: 653 

● WRF to SOWFA using the indirect profile assimilation technique (IPA), 654 
● WRF to SOWFA using the CPM at the inflow boundaries, 655 
● WRF to WRF-LES without any added turbulence generation (control simulation), 656 
● WRF to WRF-LES using the CPM at the inflow boundaries, and 657 
● WRF to WRF-LES using the Mann model to generate the large-scale turbulence. 658 

 659 
The domains used were 6 x 6 km, with the exception of SOWFA IPA, which had a 3 x 3 km extent. All cases have a 660 
uniform 10-m grid resolution. Initial numerical experiments explored time-averaged vertical profiles at several 661 
locations in the fetch to determine an appropriate size. Convergence of vertical profiles of turbulent metrics was 662 
observed within a 3-km fetch distance. Thus, all the boundary-coupled scenarios considered were set up with a large 663 
3-km extent fetch region to allow turbulence development. The results shown here represent the developed-flow 664 
region, near the outlet boundaries. A qualitative visualization of the resulting flowfield is given in Fig. 4. 665 

 666 
Figure 4: Wind speed at 0100 local time on 16 May 2010 around the FINO1 location for the different methods 667 
investigated. The original domains contain the fetch region. Shown here is developed-turbulence 3 x 3 km subdomain. 668 
 669 
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Comparisons across the methods and observation data were made in terms of vertical profiles, power spectral 670 
density content, correlations, and integral scales. Figure 5 shows the energy spectrum during one hour of the 4-hour 671 
period of interest. The spectrum was obtained using 10-min Hamming windows with a 50% overlap. To obtain 672 
smoother curves, we considered an ensemble average of several locations within the 3 x 3 subdomain shown in 673 
Figure 4, leveraging horizontal homogeneity. WRF Mann and both CPM methods overestimated the energy content, 674 
with the SOWFA IPA matching well the content with respect to observations up to frequency related to the LES 675 
cutoff. The WRF control case showed very little content, as expected. The SOWFA IPA case is the only one where 676 
the turbulence was not triggered by a numerical method, but rather developed using doubly periodic boundary 677 
conditions. All of the vertical profiles are comparable, with the exception of the control simulation, which due to the 678 
lack of resolved turbulence exhibited a larger shear profile. For a horizontal plane at 80 m, correlation maps were 679 
calculated for every point       with respect to the central point, and correlation curves were obtained in the along-680 
wind and cross-wind directions. Taylor’s hypothesis was observed to be valid for this case, by means of spatial 681 
correlation and temporal autocorrelation. The correlation drop matched well the correlation from observations. The 682 
correlations dropped to zero faster in the cell perturbation method cases for both SOWFA and WRF-LES, which 683 
results in lower integral scales. Integration of the correlation curves yield the integral scales of the flow, shown in 684 
Fig. 6. 685 

 686 

 687 
Figure 5: Wind speed at 0100 local time on 16 May 2010 around the FINO1 location for the different methods 688 
investigated. The original domains contains fetch region, showing only a developed-turbulence 3 x 3 km subdomain. 689 
 690 
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  691 
Figure 6: Integral length scales calculated at 80 m in the along-wind and cross-wind directions for each coupling method. 692 
 693 
The integral scales present in the cases that used the cell perturbation method to generate turbulence are smaller 694 
throughout the interval of interest. That is likely a result of the way the perturbation method works, by imposing 695 
small-scale disturbances in the temperature field, thus triggering high-frequency, small-scale turbulence that does 696 
little to change the integral scales of the flow as a whole. The Mann method, on the other hand, imposes large-scale 697 
turbulence, and the LES resolves the smaller scales. The larger scales imposed on the field are clearly observed 698 
when comparing the integral scales of the flow to those obtained using perturbation methods. Lastly, the SOWFA 699 
IPA case resulted in integral scale values comparable to the Mann method in WRF-LES. For this SOWFA approach, 700 
the turbulence is developed by the use of periodic boundary conditions, which allows (in both space and time) the 701 
development of large-scale structures, ultimately resulting in long correlation fetches, and thus, large integral length 702 
scale values. While the SOWFA IPA domain was overall smaller, it was nonetheless able to resolve scales of the 703 
order of 150 m as shown in Fig. 6. The integral scales in the cross-wind direction were of comparable magnitude in 704 
all cases investigated. 705 
 706 
3.5.2 Alpha Ventus wind farm with generalized actuator disk – turbine comparison  707 
 708 
This section examines turbine wakes at the Alpha Ventus wind farm where the FINO1 tower is located and extends 709 
the analysis described in section 3.5.1. WRF to WRF-LES and WRF to SOWFA coupling approaches were extended 710 
to include a wind turbine parameterization using a GAD formulation (Mirocha et al., 2014a). We refer to them as 711 
WRF-LES-GAD and WRF-SOWFA-GAD, and each compares using CPM at the inflow boundaries vs. not adding 712 
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any turbulence. The time window of interest is a 2-hour window starting at 0100 local time (0000 UTC) on 16 May 713 
2010. We consider a single turbine (AV10) for the purpose of this study. 714 
 715 
Figure 7 presents a qualitative visualization of turbine wakes in the horizontal plane at hub height for the WRF-LES-716 
GAD approach. As in section 3.5.1, the LES domain is 6 km x 6 km with a horizontal grid resolution of 10 m, which 717 
provides a large fetch as well as downstream distance for wake propagation. As expected, the simulation without 718 
CPM does not resolve turbulence, and the resulting wake is what would be caused by an obstacle in the flow without 719 
any mixing. The simulation with CPM includes resolved turbulence, and hence mixing in the shear region, leading 720 
to a realistic wake. A comparison simulation using the WRF-SOWFA-GAD approach with CPM (not shown) also 721 
concludes that modeling realistic wakes requires using a turbulence generating method. 722 

  723 
(a)       (b)  724 

 725 
(c)      (d)  726 

 727 
Figure 7: Wind speed at 01:10:00 local time on 16 May 2010 in the domain containing the turbine (AV10) location using 728 
the WRF-LES-GAD approach for (a) and (c) no CPM and (b) and (d) CPM. Entire domain is shown in (a) and (b). A 729 
subset of the domain appears in (c) and (d). 730 
 731 
 732 
3.6 Offshore Northeast U.S. coastal case  733 
 734 
A second offshore case is archived that studies the impact of different ways of representing surface roughness and 735 
providing sea surface boundary conditions. The offshore environment in the Northeast United States is an active 736 
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area of research for wind energy development. Observations have recorded occurrences of persistent low-level jets 737 
(LLJ) with jet noses commonly below hub height (Debnath et al., 2021). In this study we assess the sensitivity of 738 
LLJ characteristics (e.g., jet nose height, maximum wind speed, low-level shear, etc.) to SST. We utilize six freely 739 
available satellite-derived SST datasets from the Group for High Resolution SST website (Table 1 and Fig. 8) to 740 
vary the lower-boundary condition of surface temperature in online WRF simulations.  741 
 742 
Table 1: Sources of SST datasets used in this study.      743 

Dataset Source Organization (year) resolution 
(degrees) 

Naval Oceanographic Office (NAVO)  NASA, 2018 1 

Canadian Meteorological Center (CMC) CMC, 2017 1 

Office of Satellite and Product Operations (OSPO) OSPO, 2015 0.54  

Operation Sea Surface Temperature and Sea Ice Analysis 
(OSTIA)  

UKMO, 2005 0.54 

GOES-16  NOAA, 2019 0.02 

Multiscale Ultrahigh Resolution (MUR) NASA, 2015 0.01 

 744 
 The simulations consist of five domains with grid spacing spanning from 6,250 m to 10 m. We used 88 vertical 745 
levels with 20 m spacing below 1 km. We compare model results against observations from the New York State 746 
Energy Research and Development Authority floating lidars. We assess model performance in capturing the LLJ 747 
nose height, maximum wind speed, and low-level shear on each domain in order to compare how sensitive the 748 
results are to SST on the mesoscale and microscale. With this comparison, we aim to determine whether model 749 
sensitivity on the mesoscale translates directly to the microscale. In other words, can we expect the best performing 750 
mesoscale model setup to be the best setup on the microscale? 751 
 752 
Results indicate that ensemble mean error and spread for various characteristics of the offshore LLJ vary between 753 
the mesoscale solutions and microscale solutions. However, variance within the microscale domains (domains 4 and 754 

5) is small. Ensemble mean error, EME = 2( )os s−  where os  is the observed quantity and s  is the ensemble 755 

mean) and bias of the low-level shear, hub-height wind speed (assumed to be at 118 m in this case), and jet nose 756 
height vary across scales from mesoscale to microscale (Fig. 9). Additionally, the best mesoscale performer did not 757 
lead to the best microscale performing setup in this case when considering these metrics. On the mesoscale, the 758 
shear produced in the lowest levels was lower than what was observed. The LES results improved upon the low-759 
level shear but overcorrected the lowest level wind speeds and produced values lower than what were observed. It is 760 
suspected that using a drag force locally consistent with MOST within the heterogeneous microscale simulation is 761 
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the root cause of this overcorrection of low-level winds. Future work must focus on generalizing this finding in 762 
order to determine if mesoscale simulations can inform performance on the microscale prior to running simulations. 763 
 764 

 765 
Figure 8: Sea surface temperature datasets of varying resolution used as initial and surface boundary conditions over 766 
water. 767 

 768 
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 769 
Figure 9: Error (top) and bias (bottom) for each case on each domain for low-level shear (left), hub-height wind speed 770 
(middle), and LLJ height (right). Units for error are a) and d) s 1− , b) and e) m s 1− , c) and f) m. 771 

 772 
 773 

4 Contributions of enhanced methods 774 
 775 
The MMC team additionally tested ways to improve the models both in terms of improved physics as well as to test 776 
the efficacy of machine learning methods.  777 

 778 
4.1 Three-dimensional planetary boundary layer parameterization 779 

 780 
Traditional PBL schemes in mesoscale models are one-dimensional – that is, they parameterize only the vertical 781 
turbulent mixing under the assumption of horizontal homogeneity. In this sense, the vertical turbulent fluxes of 782 
momentum (<u’w’> and <v’w’>), potential temperature (<θ’w’>), water vapor mixing ratio (<qv’w’>), and any 783 
other relevant scalars (<φ’w’>, where φ is a scalar variable, such as cloud water mixing ratio) are computed. By 784 
definition, the horizontal homogeneity assumption neglects horizontal gradients in resolved quantities, as well as 785 
the vertical gradient in vertical velocity. Therefore, the vertical turbulent fluxes are dependent on only vertical 786 
gradients. However, this assumption is not justified at model resolutions in the terra incognita (Δ ≈ 100–1000 m), 787 
where turbulence is partially resolved, and thus, horizontal gradients play an important role (e.g., Kosovic et al., 788 
2021). A main consequence of ignoring horizontal gradients in the terra incognita and under convective conditions 789 
is the development of spurious structures (termed modeled-convectively-induced secondary circulations, or M-790 
CISCs, by Ching et al. (2004)], which can have a deleterious effect on the model solution. Furthermore, most 1D 791 
PBL parameterizations rely on the 2D horizontal diffusion scheme of Smagorinsky; however, this scheme was 792 
originally introduced for numerical stability and is therefore not physically motivated (Smagorinsky, 1990). 793 
 794 
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To address the fundamental research challenge of modeling in the terra incognita, our team has implemented the 795 
3D PBL parameterization of Mellor and Yamada (Mellor, 1973; Mellor and Yamada, 1974; Mellor and Yamada, 796 
1982) into the WRF model. This new parameterization does not impose the assumption of horizontal homogeneity; 797 
thus, it considers both vertical and horizontal gradients when computing all six momentum stresses and the full 798 
tensor for scalars (namely, θ and qv), in addition to all components of the flux divergences. As a result, this 799 
approach does not require the use of Smagorinsky’s 2D horizontal diffusion scheme and shows promise at grid 800 
resolutions in the terra incognita, especially under convective conditions. To examine the influence of accounting 801 
for horizontal gradients, we set up different idealized model configurations under convective conditions and at 802 
high-resolution mesoscale grid spacing (Δ = 250 m). This grid spacing is considered to be mesoscale resolution 803 
because it is not fine enough to fully resolve the most energetic eddies (i.e., the LES limit) due to the model’s 804 
effective resolution. The three single-domain, doubly-periodic configurations are: homogeneous surface forcing 805 
(rolls and cells), sea breeze front initiation, and mountain–valley circulation. Results clearly depict the suppression 806 
of M-CISCs by the 3D PBL scheme compared to a traditional 1D PBL scheme (Juliano et al., 2022). The impact of 807 
the turbulent length scale/closure constant’s formulation is found to be very important, such that M-CISCs may be 808 
present in the 3D PBL solution when the length scale is insufficiently large and thus vertical mixing is not strong 809 
enough. In general, we believe that the 3D PBL parameterization has potential to be useful both as a mesoscale-810 
only approach and as part of a mesoscale-microscale coupling strategy. 811 

 812 
4.2 Machine learning surface layer scheme  813 

 814 
Specifying lower boundary conditions in numerical simulations of high-Reynolds-number atmospheric boundary 815 
layer flows requires estimating turbulent fluxes of momentum, heat, moisture, and other constituents. However, 816 
these fluxes are not known a priori and therefore must be parametrized. Parameterization of surface fluxes in 817 
atmospheric flow models at any scale, from global to turbulence-resolving large-eddy simulations, are based on 818 
MOST where atmospheric stability effects are accounted for through universal, semi-empirical stability functions. 819 
The stability functions are a function of the nondimensional stability parameter, a ratio of distance from the surface 820 
and the Obukhov length scale z/L (Monin and Obukhov, 1946). However, their functional form is determined based 821 
on observations using simple regression that cannot represent the surface-layer structure and governing parameters 822 
under a wide range of conditions. We have therefore developed and tested a neural network (NN) ML model for 823 
surface-layer parameterization (McCandless et al., 2022). We trained and tested the ML model using long-term 824 
observations from the National Oceanic and Atmospheric Administration’s Field Research Division tower in Idaho 825 
and the Cabauw mast in the Netherlands. The offline comparison of MOST and the NN model surface-layer 826 
parameterizations with observations from the Cabauw mast are shown in Fig. 10. We then implemented the ML 827 
model in the FastEddy GPU-native LES model (Muñoz-Esparza et al., 2022) and the WRF single-column model. 828 
The ML model implementation in Fast-Eddy demonstrates that it can accurately capture the diurnal evolution of an 829 
atmospheric boundary layer as shown in Fig. 11. 830 
 831 
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The ML model implementation in the WRF model was tested using a single-column model (SCM) based on the 832 
GABLS III intercomparison study case defined by Bosveld et al. (2014). The comparison of SCM simulations using 833 
the ML model surface-layer parameterization with observations and the MOST parameterization demonstrates that it 834 
can capture well the sensible heat flux, the skin temperature, the surface friction velocity, and the planetary 835 
boundary layer height, but underestimates the latent heat flux (Fig. 12).  836 

 837 
Figure 10: Comparison of the MOST (top row) and an offline NN model (bottom row) surface-layer parameterizations of 838 
surface friction velocity (left panels), sensible heat flux (middle panels) and moisture flux (right panels) with observations 839 
from the Cabauw mast. Figure originally appeared in (Muñoz-Esparza et al., 2022).  840 

 841 

 842 
Figure 11: Comparison of the diurnal evolution of an ABL using the FastEddy LES model with the MOST and NN model 843 
surface-layer parameterizations: surface friction velocity (top panel), sensible heat flux (second panel), moisture flux 844 
(third panel), and boundary forcing from surface skin temperature (bottom panel). The shaded areas show 1 standard 845 
deviation from the mean over the simulation domain. Figure originally appeared in (Muñoz-Esparza et al., 2022). 846 
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 847 

 848 

 849 
Figure 12: Output from the  SCM simulation of a GABLS III intercomparison study case using an idealized     WRF 850 
model. The figure compares WRF simulations using MOST and a neural network parameterization. The black line shows 851 
the observed data from GABLS III (Cabauw) for comparison. “Ug and Vg only” refers to the single column simulations 852 
only being forced by changes to the geostrophic wind. The bottom portion of the figure shows heat flux (HFX), skin 853 
temperature (TSK), u* (UST), moisture flux (QFX), latent heat (LH) and PBL height (PBLH).      854 
 855 
A potential reason for discrepancies between the ML model-predicted and observed latent heat flux is that the ML 856 
model for the surface-layer parameterization implemented in WRF interacts with a land–surface model, which is 857 
based on MOST. 858 
 859 
The ML model for surface-layer parameterization demonstrates the potential to provide better estimates of surface 860 
fluxes in comparison to commonly used MOST-based parameterizations. However, to develop a generally 861 
applicable ML model it must be trained using long-term, consistent, complete, and quality-controlled observations 862 
from a wide range of environments. Future research could focus on expanding the training dataset and testing the 863 
model in mesoscale simulations over diverse locations. 864 

 865 
4.3 Downscaling with deep learning  866 

 867 
Microscale simulations, like the WRF-LES (30 m) generated over the Columbia River Basin for the Wind Forecast 868 
Improvement Project 2 (WFIP 2), are able to model the very complicated flow associated with complex terrain 869 
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including downslope flows, mountain wakes, mountain–valley circulations, gravity waves, cold pools, and gap 870 
flows. However, such simulations are currently too complex to configure and computationally expensive for use 871 
outside the scientific research community. Here we tested using deep artificial neural networks on the LES to 872 
directly downscale from mesoscale to microscale in complex terrain. Once trained, deep learning models can 873 
generate high-resolution simulations from a coarse image in just a few seconds from mesoscale input. In addition, 874 
we wished to demonstrate that the deep network models can then potentially be applied to regions other than the 875 
LES domain on which they were trained.  876 
 877 
We created high-resolution/low-resolution training sample pairs by subtiling relevant vertical levels of the LES on 878 
the eastern portion of the domain and coarsening the tiles with average filters. We trained two separate Enhanced 879 
Super Resolution Generative Adversarial Networks (ESRGANs; Ledig et al., 2017; Wang et al., 2018) to 880 
accomplish the downscaling by training one GAN to downscale from 960 m to 240 m and the second GAN to 881 
downscale from 240 m to 30 m, and applying the models successively. We set aside data from every third time step 882 
in the LES for testing. Visually, the performance of the compound GAN architecture on testing data samples and the 883 
larger domain was impressive (Fig. 13). We performed statistical analysis of the high-resolution GAN-generated 884 
wind and compared it with the LES, finding good agreement in the power spectra, velocity gradient distributions, 885 
and wind speed and wind direction distributions (Dettling et al., 2022). We found high Pearson correlation 886 
coefficients and very low mean bias between the tiles of GAN-generated wind components and LES, as well as good 887 
agreement in the moments of GAN-generated wind components with the LES, even in the higher-order moments, 888 
skewness, and kurtosis (Dettling et al., 2023).  889 
 890 
To demonstrate the potential of transfer learning, we extended the testing sample set to include the western half of 891 
the WRF-LES, which contains part of Cascade Range including Mt. Hood. The western region is not only very 892 
unique when compared to the training region in the east, it is also topographically much more complex. We 893 
performed the same statistical analysis to compare the GAN-generated wind to the LES in the transfer learning 894 
region and the results were encouraging (Dettling et al., 2023). 895 
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 896 
Figure 13: Example of using the GAN to downscale from a coarsened 960 m resolution simulation (left image) to four 897 
example panels showing high-resolution 30 m generated images. The colors overlaid on the left panel correspond to the 898 
same color outlined image on the right panel. 899 

 900 
 901 

5 Conclusions 902 
 903 

We have summarized the results of the U.S. Department of Energy (DOE)-sponsored Mesoscale to Microscale 904 
Coupling (MMC) project that has focused on the best ways to couple the mesoscale to the microscale in order to 905 
better understand and model the transfer of energy from the largest scales of the atmosphere to those scales that 906 
directly affect harvesting that energy via wind turbines. The approach of using case studies based on observations 907 
has been a productive approach to test methodologies and has kept the findings grounded in real-world atmospheric 908 
behavior. The approach has required that we choose progressively more difficult cases, bringing in real-world 909 
complexity to better understand the implications of that complexity and how to best model it. We have studied how 910 
the mesoscale setup impacts the microscale results, applying consistent and appropriate boundary conditions, 911 
multiple methods of applying the coupling between scales, bridging the terra incognita, initializing turbulence at the 912 
microscale that is not resolved at the mesoscale, and applying these methods in complex terrain and in coastal and 913 
offshore environments. We additionally explored improving model parameterization (3D PBL and a ML-based 914 
surface layer model) plus demonstrated deep learning methods for downscaling from mesoscale to microscale. It is 915 
important to apply assessment metrics that are most appropriate for uses in wind energy, considering more than 916 
merely mean winds, but also sheer, veer, turbulence intensity, and turbulent kinetic energy via metrics such as 917 
energy spectra, pdfs along the flow, covariance, and proper orthogonal decomposition.  918 
 919 
Some specific lessons learned include: 920 
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● Microscale simulations cannot necessarily improve matches to measurements if forced with an inaccurate 921 
mesoscale simulation (section 3.1). 922 

● Idealized simulations may not well represent real-world phenomena and may be more difficult to initialize 923 
well than real cases. 924 

● Microscale data assimilation (through profile assimilation on a periodic domain) requires an approach that 925 
allows the microscale to deviate from the mesoscale, otherwise wind and temperature profiles may not be 926 
in the correct equilibrium, resulting in unrealistic turbulence (Allaerts et al., 2020, 2023). 927 

● High-quality potential temperature profiles, in addition to wind profiles, are necessary when performing 928 
microscale data assimilation with observational data (Allaerts et al., 2023; Jayaraman et al., 2022; Quon et 929 
al., 2022). 930 

● Accurately capturing transitional atmospheric boundary layers and intermittent stable boundary layers 931 
remains a challenge (Allaerts et al., 2022; Quon et al., 2022). 932 

● Without coupling across scales, even mesoscale flow is underresolved (Rai et al., 2019). 933 
● Proper orthogonal decomposition analysis clearly indicates that the microscale contains energetic modes 934 

that originated from the mesoscale flow (Rai et al., 2019). 935 
● The upper limit of the terra incognita is the boundary layer depth, indicating that horizontal spacing 936 

smaller than that (but larger than about 100 m) is likely to result in spurious secondary structures (Rai et al., 937 
2019). 938 

● Spurious roll features from the terra incognita can translate into unrealistic flow in the microscale (Rai, et 939 
al., 2019). 940 

● Turbulence generation methods are necessary to avoid long fetches in developing turbulence at the 941 
microscale that is not resolved at the mesoscale (Section 2.4). 942 

● Temperature perturbation methods create turbulent fields with artificially small integral scales (Section 3.5) 943 

● Uncertainty can typically be traced to a small number of model parameters and the importance of these 944 
specific parameters can be interpreted in terms of flow physics considerations (Section 2.5). 945 

● Certain conditions, such as complex terrain, can force gravity waves that reflect off of boundaries and grow 946 
to spurious amplitudes. Such gravity waves can be mitigated by Rayleigh damping (Section 2.6.2). 947 

● The best mesoscale simulations don’t always translate to the best match to wind-relevant metrics for the 948 
microscale simulation (Section 3.6). 949 

● A three-dimensional planetary boundary layer can alleviate M-CISCS in the terra incognita (Section 4.1; 950 
Juliano et al., 2022). 951 

 952 
Much research remains to be done to continue to enhance our understanding of the scales of atmospheric motion 953 
most relevant for harvesting wind energy. This team and the community have more work to do on the plethora of 954 
complex cases. More research is needed to further improve coupling technologies. For instance, more research is 955 
needed to understand why direct/indirect profile assimilation are successful in some cases and unsuccessful in 956 
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others. We should also continue to explore topics of complexity, both on shore and off shore. Much remains to be 957 
learned through judiciously applying uncertainty quantification methods.  958 

 959 
Although the current A2e MMC project has formally completed, we expect that its impact will live on, both in terms 960 
of providing code and methodologies that can be used by a wide range of wind farm modelers and in terms of being 961 
integrated into subsequent DOE wind energy projects. Specifically, DOE is initiating projects in offshore wind 962 
energy, complex terrain modeling for wind energy, and the impact of extreme events on modeling for wind energy.  963 

 964 
In deploying renewable energy, we have become more cognizant of issues of fairness and justice to the people being 965 
impacted. In the United States, the Biden Administration’s Justice40 Initiative (White House, 2022) seeks to deliver 966 
40% of the overall benefits of climate investments to disadvantaged communities and inform equitable research, 967 
development, and deployment within the DOE, has recently highlighted the importance for energy justice 968 
considerations within the development of new energy systems. One of the major challenges of working in this space 969 
is finding actionable, effective paths forward while acknowledging and respecting the existing legacy of 970 
noninclusivity. Organizations such as the Initiative for Energy Justice and the Energy Equity Project (Initiative for 971 
Energy Justice, 2022) have established guidelines for working in the space of energy justice. Specifically these 972 
include: addressing the current perceptions that have been built on past practices; identifying uniquely 973 
disadvantaged people; procedural fairness; making sure that access is equally tenable; making sure the quality of 974 
service is equal across groups; and ensuring the desired impacts. Defined metrics can be used to determine whether 975 
or not a project is successful in working toward energy justice. While fairly centered on policymaking, these 976 
assessment points can help guide the focus of renewable energy development, and act as a compass for what 977 
research objectives will have meaningful impact.  978 
 979 
Finally, the MMC team wishes to thank colleagues and community members for input throughout the course of this 980 
project. Our industry advisory panel and attendees to our various webinars and workshops have provided valuable 981 
input as to the directions that we have chosen and solutions that may be most practical for application to real-world 982 
needs. The biggest lesson learned is that it is through community cooperation that we are most likely to advance the 983 
science and technology needed to deploy the amounts of wind energy that the world will need for a carbon-free 984 
energy future. 985 
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