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Abstract. Data-driven wake models have recently shown a high accuracy in reproducing wake characteristics from numerical
data sets. This study used wake measurements from a lidar-equipped commercial wind turbine and inflow measurements from
a nearby met mast to validate an interpretable data-driven surrogate wake model. The trained data-driven model was then
compared to a state-of-the-art analytical wake model. A multi-plane lidar measurement strategy captured the occurrence of the
wake curl during yaw misalignment, which had not yet conclusively been observed in the free-field. The comparison between
the wake models showed that the available power estimations of a virtual turbine situated four rotor diameters downstream were
significantly more accurate with the data-driven model than with the analytical model. The Mean Absolute Percentage Error
was reduced by 19 % to 36 %, depending on the input variables used. Especially under turbine yaw misalignment and high

vertical shear, the data-driven model performed better. Further analysis suggested that the accuracy of the data-driven model is

hardly affected when using only SEADA-supervisory control and data acquisition (SCADA) data as input. Fhe-Although the

results are only obtained for a single turbine type, downstream distance and range of yaw misalignments, the outcome of this
study demonstrates-the-enormous-is believed to demonstrate the potential of data-driven wake models.

1 Introduction

With the wind energy industry maturing, more focus is put on maximizing the power yield of existing assets. This involves
moving away from the traditional, and currently still standard, greedy control of individual turbines to an optimization on
wind farm level. In recent years, especially the wake steering concept has received considerable attention in the literature, in
which the turbine is intentionally misaligned with the inflow wind, introducing a lateral component of the thrust force that
deflects the wake away from a downstream turbine. Many aspects of this strategy have been studied over the years, including
the underlying physics (e.g., Howland et al., 2016; Bastankhah and Porté-Agel, 2016) and its characteristics under different
atmospheric conditions (e.g., Vollmer et al., 2016; Schottler et al., 2017). Additionally, the implementation of this concept in
the field with so-called yaw controllers has received attention. Such controllers typically include a representation of the wake in
the form of engineering wake models used to solve the optimization problem, as well as the design of the yaw controller itself
(e.g., wind direction robustness (Rott et al., 2018; Simley et al., 2020), hysteresis (Kanev, 2020) and open- versus closed-loop
(Doekemeijer et al., 2020; Howland et al., 2020)).
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Although a large body of knowledge about the wake steering concept has been obtained, the industry appears to be hesitant to
adapt due to the large uncertainties and lack of validation (van Wingerden et al., 2020; Boccolini et al., 2021). One limitation
is the number of free-field-field experiments carried out. Due to the considerable expense and inaccessibility of testing-test
turbines, most research groups revert to high-fidelity simulations or wind tunnel experiments. Although they provide higher

degree of reproducibility and more flexibility in choosing the studied scenarios, these experiments take place in controlled
environments and do not fully represent the complexity of the field. Wake models and yaw controllers are consequently de-
veloped based on data from idealized conditions. Their accuracy in free-field-field situations is questionable due to limited
validation, slowmg down the adoption by 1ndustry This uncertainty is amplified by the-fact-thaterroneeus-yawingcan-aectaally
findings that the application of wake steering can lead to power

losses under certain conditions (e.g., Fleming et al., 2020; Doekemeijer et al., 2021).
Several free-field-field campaigns have been conducted in recent years to study wake steering control. In their pioneering

work, Wagenaar et al. (2012) used a scaled wind farm to demonstrate the concept. Using rear-facing nacelle-mounted lidars,
asymmetries in wake deflection depending on the sign of the yaw angle were observed for the near (Trujillo et al., 2016)
and far wake (Bromm et al., 2018). This asymmetry is also found using numerical tools (e.g., Fleming et al., 2015) and
attributed to shear-induced initial wake deflection (Gebraad et al., 2016) or the Coriolis force (Archer and Vasel-Be-Hagh,
2019). One prominent aspect associated with wake steering is the development of the wake curl as observed in numerical and
2016; Vollmer et al., 2016; ?).
Fleming et al. (2017a) included a short notion that a curled shape could be observed in the field, while Brugger et al. (2020) did

wind tunnel experiments ., Howland et al.
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not find a curled wake in their field experiment. They argued that the effect of wind veer was too large for the counter-rotating
vortices to generate a curled wake, with wind veer reported to tilt the wake in one direction (Herges et al., 2017; Brugger et al.,
2019).

Using fixed yaw misalignment angles, Howland et al. (2019) found statistically significant gains of up to 47 % for low wind
speeds and a certain wind direction in a small wind farm consisting of six turbines. Ahmad et al. (2019) reported that wake
steering is mainly beneficial in partial wake situations. Fleming et al. (2021) found an asymmetry of the downstream turbine
power generation, where gains from correct steering (wake steered away from turbine) are larger than the losses from erroneous
steering (wake steered into turbine). They attributed this effect to the added wake recovery induced by the counter-rotating
vortices that also generate the wake curl.

Additionally, several controller test studies have been carried out, in which instead of a fixed yaw angle, an optimal yaw angle is

employed based on the inflow conditions. This optimal yaw angle is determined with low-fidelity wake models which generate

discretized look-up tables (LUTS). In a series of NREE-papers-papers from the National Renewable Energy Laboratory (NREL),
different versions of FEORIS-INREEL;2022)the FLOw Redirection and Induction in Steady State (FLORIS, NREL (2022

framework have been used to generate these LUTSs. In a field campaign at an offshore wind farm with a turbine spacing of 7 to
8 rotor diameters, Fleming et al. (2017b) reported a 10 % power gain for certain wind directions. Fleming et al. (2019, 2020)
showed results of a field-test with closely spaced turbines with two different versions of FLORIS, both resulting in a power

gain for most conditions, but clear power losses for some wind directions. Lastly, Doekemeijer et al. (2021) found large power
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gains of up to 35 % for one wind direction sector fer-with a two-turbine setup in complex terrain, but also here large losses
were found for other wind directions.

These studies are pivotal in demonstrating the potential of wake steering, but also indicate that there is a large variability in its
demonstrated effectiveness. Next to atmospheric inflow conditions, this can be attributed to turbine type, turbine spacing and
terrain. Additionally, the choice of yaw controller and accuracy of the wake model used to develop the LUTs are believed to
have an effect.

After the pioneering wake deficit models of Jensen (1983) and Ainslie (1988), Jimenez et al. (2010) first came up with a
wake deflection model under yaw misalignment. Nowadays, most analytical wake models are based on the Gaussian model
(Bastankhah and Porté-Agel, 2014, 2016; Niayifar and Porté-Agel, 2016). Combined with the curl wake model (Martinez-
Tossas et al., 2019), the Gaussian-Curl Hybrid (GCH) model {)«(King et al., 2021) prescribes the effect of counter-rotating
vortices generated by turbine yaw misalignment, such as yaw-induced wake recovery, asymmetric deflection, and secondary
steering. Lastly, Bastankhah et al. (2022) presented an analytical way to describe the development of the wake curl with
downstream distance, and Bay et al. (2022) tackled "deep array" effects, in which many wakes interact deep inside a large wind
farm, with the cumulative-curl model.

In addition to these analytical models, data-driven wake (surrogate) models have received some attention in recent years.
Most use complex neural networks (e.g. Ti et al., 2020; Renganathan et al., 2022; Purohit et al., 2022; Asmuth and Korb,
2022) and have shown highly accurate results. However, these models need lots of training data and have an extremely low
interpretability (black-box). In an attempt to overcome this, Sengers et al. (2022) presented an interpretable Data-driven wAke
steeRing surrogaTe model (DART). Using only linear equations, DART uses inflow and turbine variables to estimate wake

parameters such as deficit, center location and curl. It has a reduced number of parameters and is therefore highly interpretable

and needs fewer training data. I-eutperformed-the-Gausstan-and-GCH-models-in-In a comparison using large eddy simulation
(LES) results, Sengers et al. (2022) demonstrated that DART outperformed the Gaussian and GCH models, especially under

stable atmospheric conditions.

As mentioned before, studies validating wake models with field measurements are rare, especially when wake-steering—is
appliedyaw misalignments are included, resulting in uncertainties about their accuracy. Moreover, comparisons between an-
alytical and data-driven models in their abilities to reproduce the characteristics of wakes observed in the free-field is done
sporadically. However, validations and-comparisons-with measurements and comparisons between models are necessary to
assess their performance and provide direction for future work.

The objective of this paper is to use nacelle-based lidar measurements of the wake of a commercial turbine to validate the

Data-driven-whke-steeRing-surrogate-modeHBART)-DART model and compare its accuracy with that of the Gausstan-Curt

Hybrid-medel{GEH-)-This-GCH model. To achieve the objective, this study comprises of three components: (1) To design a
scanning strategy able to capture wake characteristics such as deficit, center position and curl to accurately reconstruct a vertical

cross-section of the wake-, (2) To-to assess the performance of the wake models by their ability to estimate the available power

of a virtual downstream turbine observed by the lidar—, (3) Fo-to investigate DART’s performance as function of data set size



and input variables, including an analysis whether the model could operate on SEADA-supervisory control and data acquisition
95 (SCADA) data alone.

2 Measurement campaign

This section introduces the field experiment carried out within this study. Section 2.1 describes the measurement site and
general setup. Section 2.2 describes the yaw control experiment. Sections 2.3 through 2.7 then discuss the devices, their
measurement strategies and data processing. Especially in Sect. 2.3 more details are provided, including results from a

100 preliminary study to determine the scanning strategy of the nacelle lidar, since the measurements from this device are essential
for this study. Lastly, Sect. 2.8 describes how the data from all devices are used to select 10-minute averaged cases considered
in the rest of the study.

2.1 Site-and-experimentMeasurement site

Measurements were carried out in the period of February through April 2021 as a part of a yaw-control field campaign at a

105 slightly hilly onshore site in north-eastern Germany located approximately 13.5 km from the Baltic sea, see also Hulsman et al. (2022)
. The layout of the site, including the positioning of the measurement equipment, is shown in Figure-Fig. 1. The nacelle of
turbine T1 was equipped with a downstream facing Leosphere Windcube 2008 pulsed-tidar—TFhis(serial no. WLS200S-024)
pulsed lidar (Sect. 2.3). T1 was a commercial 3.5 MW enol26 turbine with a hub height of 117 m and a rotor diameter D of
126 m. The nacelle was further equipped with a Thies Clima wind vane and cup anemometer (Sect. 2.6), as well as three-a

110 Trimbl ZephirGPSsystens-SPS three-antenna GNSS system (hereafter called GPS) to measure orientation, tilt and roll (Sect.
2.7). A second pulsed lidar of the same type (serial no. WLS200S-023) was installed west of the turbine to measure inflow
profiles (VAD;-Sect. 2.4). North of this turbine, a meteorological mast (MM, Sect. 2.5) was erected and equipped with Thies

Clima cup anemometers and wind vanes.

#As-these-experiments-Lastly, Fig. I shows that a small 6 m high hill 5D upstream of T1 and a larger 27 m high hill 8D
115 downstream of T1 were exactly in the wind direction sector that was not used due to the presence of the downstream turbines

(see Sect. 2.2). Two villages with low buildings were located about 1 km from T1, directly upstream for wind directions

around 0 = 265° and ¢ = 320°, mainly outside of the studied wind direction sectors. The dominant vegetation in the area

is of agricultural nature, with patches of trees and bushes between the fields. These trees could affect the measurements for

9~ 3507, as noted in Hulsman et al. (2022) using data from the same site. This influence was accepted, as omitting this sector
120 would result in large data losses.

2.2 Yaw control experiment

As these measurements were part of a larger field campaign, only in-the wind direction sector ¢ = [268°, 360°] U [0°, 20°]

afixed-yaw-offset-could-be-appliedcould be used for experiments for this study. Unfortunately, in this sector two smaller
turbines (T3 and T4) were located downstream of the lidar-equipped turbine. For the objectives of this study, measurements
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at 4D downstream were targeted. This was to avoid the near wake, as the two investigated wake models fail to represent the
non-Gaussian shape of the wake deficit, and to ensure that the wake curl had developed. The wind speed reduction due to the
induction zone of T3 at 4.8 D (hub height of 103 m and a diameter of 93 m) was estimated to be in the order of 2 % (estimated
with the vortex sheet theory (Medici et al., 2011)) at the targeted distance of 4D. Although not ideal, no alternative was possible
due to the restrictions of the measurement site and it was decided to neglect the effects of this induction zone.

Part of the wind direction sector could not be used due to the positioning of T4 at 3.2D downstream. To make sure that the wake
was not steered into T4, in the sector § = [268°, 316°] the turbine toggled between target yaw misalignment angles of ¢y = 0°
(duration of 30 minutes) and ¢ = +15° (duration of 60 minutes, clockwise rotation looking from above), steering the wake
to the left. Correspondingly, in the sector § = [316°, 360°] U [0°, 20°] the turbine toggled between ¢ = 0° (30 minutes) and

¢y = —15° (60 minutes, counterclockwise rotation looking from above), steering the wake to the right. The downside of this

approach was that directly comparing positive and negative yaw angles under similar atmospheric conditions was not possible.

angular-speed-wrasr Design-seanning strategyThis section describes the measurements performed with the nacelle-mounted
lidar. Section 2.3.1 describes the design of the scanning strategy, including results of a numerical evaluation to determine what
trajectory should be implemented in the field. Section 2.3.2 describes the processing, including filtering, of this data.

2.3.1 Design scanning strategy

A pulsed lidar mounted-on-a-turbine-nacele-typically-measures-a-horizontal-plane-athub-height-using-can be mounted onto the

nacelle to sample to turbine’s wake. When operated with a single plan position indicator (PPI) scan to-sample-the-wakewith an

elevation angle of = 0°, the line-of-

sight velocities on a horizontal plane at hub height are obtained. Although quick, this
trajectory only provides data in-a-herizontal-planeat one height in the wake. Attempts have been made to capture information
in the vertical plane, such as in Beck and Kiihn (2019) who proposed a scanning pattern of alternating PPI and range height
indicator (RHI) scans to obtain information in both dimensions. However, wake shape deformations due to wind veer (tilted)

or yaw misalignment (curled) cannot be captured with this scanning strategy. Brugger et al. (2019, 2020) used nine PPI scans
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Figure 1. Layout of the measurement site with the local topography, relative to mean sea level, indicated in the background. Black markers
indicate turbines, where T1 is equipped with the nacelle lidar. White markers indicate the met mast (MM) and ground-based lidar (VAD).
Shaded areas indicate the wind direction sector with ¢ > 0° (bluered) and ¢, < 0° (yellow) and where wake measurements are assumed to
be disturbed by the downstream turbines (grey). Thick black solid line indicates the measured locations used for analysis. (Source topographic

map including color bar: topographic-map.com (2022)).

at different elevation angles, allowing to describe non-circular wake shapes in a vertical plane.

In this paper, their strategy was adopted and evaluated numerically to find-the-optimum-seanningpattern—in—terms-of-gain
insights on how the number of PPI scans and their angular speed (following Carbajo Fuertes and Porté-Agel (2018)) to-deseribe

a-affect the ability to capture the characteristics of 10-minute averaged wake. This
exercise used large eddy simulation (LES) results, allowing for a systematic uncertainty analysis of the proposed scanning pat-

terns.

The PArallelized Large-eddy-simulation Model (PALM, Maronga et al. (2020)) coupled with the aeroelastic code FAST
(Jonkman and Buhl Jr., 2005; Kriiger et al., 2022) representing the NREL SMW turbine (Jonkman et al., 2009) provides
the numerical wind fields. Precursor simulations generated realistic inflow conditions, after which main simulations with one
turbine were performed. The aeroelastic code for the turbine installed in the field, as used in Sect. 4.1, was not yet available
during the planning stage of this campaign. Both turbine T1 and the NREL SMW turbine have the same rotor diameter (126
m), but differ in hub height (117 vs 90 m) and aeroelastic properties. It was, however, assumed that at 4D the characteristics of
the wakes produced by these turbines are sufficiently similar.

A single turbine with yaw angles of ¢ = (—15°, 0°, 15°) in a neutral (TI = 10.3 %, « = 0.17) and a stable (TI = 5.7 % and

a = 0.32) boundary layer with a hub height wind speed U}, ~ 8 m s~!

was simulated. The simulation length was 25 minutes,
of which the first 15 minutes were omitted as spin-up and the remaining 10 minutes were used for analysis. Synthetic lidar

data targeting 4D downstream were subsequently generated by employing the lidar simulator LiXim (Trabucchi, 2019) with
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an accumulation time of 0.1 s and an opening angle of 70°. Peint-wise-Temporal averages were taken for all points in the scan-
ning cycle. The wake composition method, later described in Sect. 3:43.1, was used to reconstruct vertical cross-sections of the
wake, attowing for-an-evatuation-of avaitable-powerfrom which the available power Py could be determined. This estimate
is compared to the reference (yo¢) 10-minute averaged LES data. Used as metric is the Absolute Percentage Error (APE) of
avatlable-pewer-over the six (two boundary layers times three yaw angles) simulations ;-whieh-is-the-abselute-value-of-the

Percentage Error(PE)-caleulated-with-with-Eg—-calculated with Eq. (1):

P.v — Pay re Ueg _ch3 ref
PEAPE [%)] = | —2——2%ref | 100= quiqf 100 (1)
av,ref eq,ref

in which Py = P/Cp = 0.5 p A Ueq with p the air density (assumed to be constant), A the rotor area and U, indieates-the

rotor equivalent wind speed. The bar "all’ on the far left in Fig. 2 indicates the reconstruction of the wake based on the original
LES data, hence the error introduced by the composition method. Further, 1, 3, 5, 7 and 9 PPI scans were tested, where the
middle scans always targeted hub height and the outermost scans upper and lower tip height at 4D. Trajectories with an even
number of PPI scans were not tested, as this would remove the scan at hub height that was needed for another study. Addition-
ally, it is desirable to measure the largest wake deficit, which is expected to develop around hub height.

Figure 2 shows that 5 PPI scans typically helds-hold the highest accuracy. Using fewer PPI scans results in inaccurate esti-
mations of the wake deficit distribution in the vertical, while using more PPI scans results in long cycles and consequently
fewer measurements per observation point. The angular speed wjiqa, Seems to have little effect, except for when 7 PPI scans

are used. This is attributed to chance, as too few cases are studied for the statistics to converge. Regardless;-based-oen-these

results-it Generating more LES results with a wider range of atmospheric conditions and turbine yaw angles was not possible
due to computational restrictions. While these results are not statistically significant and it can therefore not be claimed that an
“optimal’ scanning strategy is found, this exercise allows for making an informed decision.

It was decided to implement the trajectory showing the lowest error, hence consisting of 5 PPI scans with wijga, = 14° s~1. The
elevation angles of these scans were ¢ppy = (=7.0°, —3.5°, 0.0°, 3.5°, 7.0°) and the accumulation time used was 0.1 s. With
an opening angle of 70°, the duration of one PPI scan is 5 s. Additionally-changing-Changing elevation angles takes 1.3 s and
resetting to the start of the cycle takes 3.5 s, adding to 34 s to complete one full cycle.

Data-processingln-The range gate length was set to 25 m, corresponding to a pulse duration of 100 ns. Range gates were
defined between 50 m and 1340 m with 5 m spacing. However, in the processing phase of-the-field-data;-only data up to 655
downstreamwere-considered-during the filtering—820 m were used to avoid the influence of the ground in the PPI scan with
the lowest elevation angle.

2.3.2  Data processing

Since the performed PPI scans were quite fast with a relatively coarse resolution, all PPI scans with the same elevation angle
in a 10-minute window (see Sect. 2.8) were grouped together to get a better estimate of the measurement distribution.

Simple filtering based on carrier-to-noise ratio (CNR) and line-of-sight velocity (LOS) was performed, where only realistic
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Figure 3. Examples of Multiple PPI scan filtering in LOS-CNR diagram in which black markers indicate original data and red markers data

kept after filtering. (a) A textbook case with few outliers that indicate hard targets and (b) a more problematic case in which many corrupted

measurements. Here yellow markers indicate a second cluster from which all measurements were omitted. Black crosses indicate the two

cluster centers.

data with CNR <0 dB and 0 m s~ < LOS < 20 m s~! were kept. On the remainder, a Gaussian filter was used, retaining only

measurements within three standard deviations of the median CNR and LOS (99 % confidence interval). This removed outliers
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due to hard targets, as illustrated in Fig. 3a.

However, some PPI scans exhibited a LOS-CNR diagram as illustrated in Fig. 3b, containing many measurements with high
CNR and low LOS values. To filter out these erroneous measurements, a Mean Shift clustering algorithm (Fukunaga and
Hostetler, 1975) was employed, as was for instance used in Wang et al. (2022) as part of data cleaning for power curve tuning.
The algorithm identified clusters in the LOS-CNR space and allocated all measurements to any of the clusters based on the

Euclidean distance to the cluster center. Clusters were then either considered or eliminated based on whether the location of

their center was physically feasible. In the example in Fig. 3b the yellow cluster was omitted, since many points outside the

main cluster with high CNR and low LOS values indicate erroneous measurements. Lastly, the Gaussian filter based on the 99
% confidence interval was repeated, as removing one cluster drastically affected the outcome of this filter.

After filtering, all PPI scans were interpolated to a standard grid with a resolution of 1.4° (corresponding to the original reso-
lution) to account for the slightly different azimuth angles between scans as a result of the lidar’s inability to measure the exact
same location each time. Next, the seans-were-averaged-point-wise-PPI scans were temporally averaged as long as not more
than two data points within a 10-minute window were missing. When more than 25 % of the measurements were filtered out,
as is the case with Figure 3b, the averaged PPI scan was removed from the data-setl0-minute window, resulting in fewer than
five PPI scans. If fewer than four averaged PPI scans remained after filtering, the case was eliminated.

Lastly, the PPI scans’ azimuth and elevation angles were corrected with the nacelle’s 10-minute averaged tilt angle and mis-

alignment (see Sect. 2.7). The horizontal wind speed was subsequently computed by correcting the LOS with these azimuth

and elevation angles.

2.4 Ground-based lidar (VAD)

As shown in Figure 1, the ground-based lidar was situated 1.85D upstream of the lidar-equipped turbine for § = 281° to mea-
sure profiles of wind speed and direction. The ground-based lidar performs continuous velocity-azimuth display (VAD) scans

at an elevation angle of ¢yap = 75° with an accumulation time of 0.5 s and an angular speed of 30° s™*. Also for this lidar,

the range gate length was set to 25 m, corresponding to a pulse duration of 100 ns. Range gates were defined between 50 m

and 840 m with 5 m spacing.
Filtering was done based on the 2D Histogram method introduced by Beck and Kiihn (2017), which assumes a normal distri-

bution of LOS and CNR values. The measured data points were binned by their LOS and CNR values and bins-thathad-the
number of data point in each bin were counted. Bins having a count less than 10 % of the maximum-number-of-data-peints-in
one-bin-bin with the highest count were omitted.

Next, the azimuth angle (fyap) was corrected by means of a hard target analysis, such that fyap = 0° faces north. To obtain

the wind speed components (x, v, w) and consequently the horizontal wind speed and direction, the measurements of each
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range gate were fitted with the following sinusoid:
. m . . m ™
LOS = u cos(fyap) sm(§ — ¢vap) + v sin(fvap) sm(E — ¢vap) +w COS(E — ¢vAD) )

Lastly, only when at least 75 % of the data points remained after filtering and the fitted sinusoid achieved a correlation coeffi-

cient of at least 0.8 (determined empirically), the wind speed components of a vertical level were retained.
2.5 Met mast

A meteorological tewer-(met) mast was positioned 2.7D upstream from T1 at § = 350° (Fig. 1). The-met-This mast was
equipped with cup anemometers at 116.3 m (hub height, U},) and 54.2 m (lower tip height, U);) to measure wind speed and
shear. Wind vanes were located at 112.2 m (approximately hub height, d,,) and 54.5 m (lower tip height, J);). The highest cup
anemometer was located on the top of the met mast for undisturbed flow from all directions, whereas the other cup anemometer
and wind vanes had orientations of 315° and 135°, respectively. Disturbances-A flow distortion due to the structure-oceurin-the
seetor that-was-netconsidered-{tower structure affecting the measurements occurs for wind directions between approximately
310° and 320°, which is not considered in this study (see Sect. 2.1). For-other-wind-directions—-the-measurements-were-The
wind directions analyzed here are assumed to be undisturbed. AH-sensers-had-The cup anemometers and vanes had an accuracy
0f 02 m s~ and 1.5°, respectively. All sensors operated at a sampling frequency of 50 Hz.

2.6 Wind turbine operational data

Standard-supervisory-control-and-data-aequisition (SCADA)-SCADA data were collected at the turbine at a frequency of 50

Hz. These data contain measurements from the nacelle’s wind vane dg and cup anemometer Usg, as well as power P, rotor speed
w and turbine status, the latter indicating whether the turbine was operating normally. A standard nacelle transfer function was

used by the operator to correct wind speed measurements for the influence of the rotor.
2.7 GPS

All above-mentioned systems were equipped with a Global Positioning System (GPS) sensor used for time synchronization.

Additionally, the nacelle of T1 was equipped with three-GPS-sensers-a three-antenna GNSS system to measure orientation, roll

and tilt. Orientation-measurements_This system was operated at a sampling frequency of 10 Hz and its measurements have a
Root Mean Square Error of less than 0.1°. This results in a spatial error of less than 1 m at 4D downstream.

Orientation measurements, averaged to 10-minute values to smooth out high-frequency vibrations, were used to compute the
yaw misalignment ¢ of the turbine relative to the wind direction d}, measured at the met mast. Naceleroof These measurements
were then used to correct the PPI scans’ azimuth angles. Likewise, 10-minute averaged nacelle tilt angles were used to correct
the lidar-PPI scans’ elevation angles, but the scans were not corrected for roll as it was expected to only have a small influence

on the results.

10
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2.8 Selection of data for model evaluation

The measurements were averaged over 10 minutes as is commonly done in the wind energy industry. Case selection was done

using the following steps:

. Within a 10-minute window, no yaw maneuver should take place. A preselection of cases was therefore done purely

based on GPS data. A case was considered when the orientation did not change for at least 12 minutes, of which the
first two minutes were not considered for analysis because the wake needed time to reach 4D downstream. In case the
orientation did not change for more than 22 minutes, the first two minutes were omitted and the remainder is split in two

10-minute windows as far apart as possible.

. The 10-minute averaged U}, needed to be between cut-in and rated wind speed. 6}, needed to be in the defined sector

(Sect. 2.1) and approximately normally distributed. This eliminated situations where there is a clear trend in the wind

direction signal.

. The inflow measured at the met mast should reasonably compare to the measurements at the turbine’s nacelle. The met

mast measurements were temporally corrected to match the nacelle signal using Taylor’s hypothesis of frozen turbulence.

1

Next, the two signals were compared, where the 10-minute averaged wind speed |U,, — Us| <1 m s~ and direction

|5h - 5s| < 5°.

. The profiles from the VAD lidar were used to check whether the wind speed profiles were approximately logarithmic, as

the effect of low-level jets on the downstream wake characteristics was currently not captured by the wake models and

considered out of the scope of this study.

. Lastly;+£1f all checks were passed, all completed cycles within the defined 10-minute window were averaged as described

in Sect. 2.3. After averaging, the PPI scans were interpolated to a vertical plane at 4D downstream of the turbine. The
wake deficit (Uqger) Was calculated by subtracting the wake measurements with the inflow profile obtained from the met

mast measurements, and normalized by dividing by the hub height wind speed Uy,.

. Lastly, the 10-minute averaged cases were evaluated by the Multiple 1D Gaussian method (see Sect. 3.1). Since the

opening angle of the PPI scans is 707, it can be expected that wakes from other turbines are also visible in the measurements.
To prevent using an incorrect wake, the scans are sliced around the expected location of the considered wake. Boundaries
of these slices are determined by the maximum wind speeds between the scan’s center, corrected for yaw misalignment,
and 150 m left and right of this center. Furthermore, the correlation coefficient (R) of the Gaussian fit with the wake
deficit observations needed to be higher than 0.85 (empirically determined) to be considered, removing cases that do not
fulfill the model assumptions of a Gaussian wake deficit.

This selection procedure resulted in 382 10-minute averaged cases to be used for analysis. Figure 4 displays the distribution

of measured yaw angles during the campaign. Most measurement were done without yaw misalignment, since during a part
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310

315

of the campaign the implemented controller had issues and turbine control reverted back to standard operation. The difference
between the number of positive and negative yaw angles is due to a more dominant wind direction in the sector containing
positive yaw angles.

The solid vertical lines indicate the median yaw angles per target angle. For greedy control, the median shows a small bias
of o=—=4-2°¢ = —0.94°, suggesting a calibration error of the nacelle’s wind vane. For a target angle ¢, = +15°, the median
achieved ¢=—10-9%¢ = +11.14°, whereas for ¢y = —15°, o=—332>-¢ = —13.19° is achieved. These angles are smaller
than the targeted angles, which is due to the wind vane error under yaw misalignment (Kragh and Fleming, 2012; Simley et al.,
2021). Figure 5 displays an overview of the inflow conditions measured during these 382 cases;-al-showing-an-approximately
nermal-distribution. The shear o with a mean of 0.3 is slightly larger than expected and the veer d« is smaller than expected,

showing a high occurrence of negative values.

Utarbulenee-intensity(Fh;shear(a)and-veer(da): Regardless, all variables show a range of values that are physicall

reasonable.

Neotal = 382
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Figure 5. Distribution of 10-minute averaged inflow variables measured at the met mast for all 382 cases: hub height wind speed (Uy)

turbulence intensity (TI), shear («) and veer (d).

3 Methods

vThis section introduces the modelin
aspects of this study. First, Sect. 3.1 summarizes the Multiple 1D Gaussian method used to obtain quantifiable wake characteristics.
Sect. 3.2 discusses what information is used as a reference and Sect. 3.3 describes the splitting of the data set in training and

the analytical model used in this study.

3.1 Multiple 1D Gaussian method

The Multiple 1D Gaussian method prepesed-in-Sengers-et-al(2020)—1t(Sengers et al., 2020) is utilized to obtain quantifiable

wake characteristics, listed in Table 1. This method fits a 1D Gaussian through the wake deficit data normalized by the wind
speed at hub height (Uger /Uy ) in the horizontal plane for every height level, in the current study obtained from five consecutive
PPI scans. This results in a set of local wake deficits (amplitude), center positions (location) and widths (standard deviation)

for each height. By fitting another 1D Gaussian through the set of local deficits in the vertical, the vertical wake-centerpesition

and-vertieal-deficit profile can be determined. The position of the maximum deficit in this profile is then considered as the

vertical position of the wake center. The horizontal position of the wake center is determined by interpolating the set of local
center positions to this height. A second-order polynomial is fit through the set of local wake center positions to find the wake

curl and tilt. The same thing-is-donre-method is applied for the wake widths to find it’s-their profile as function of height.

13



340

345

350

355

Table 1. Dimensionless variables describing the wake characteristics obtained with the Multiple 1D Gaussian method. Reused from

Sengers et al. (2022) with permission.

Scalar Parameter Symbol

Amplitude normalized wake deficit A,
Lateral wake center displacement Ly

Vertical wake center displacement

Width wake center height oy
Vertical extend 02
Curl curl
Tilt tilt
Quadratic wake width parameter Sa
Linear wake width parameter Sb

The reverse of this method, hereafter called composition method, can be used to obtain a vertical cross-section of the wake
from a set of wake characteristics. For more details on the Multiple 1D Gaussian method and the composition method, the

reader is referred to Sengers et al. (2020, 2022).
In DART: these

3.2 Reference power

The wind speed measured by the nacelle lidar is used to obtain the available power at 41) downstream. Since the spatial
resolution is relatively coarse and the two outermost PPI scans target the tip heights, the 10-minute averaged wind speeds are
interpolated using a cubic spline function to a resolution of A = 35 m. This inherently fills gaps when data are not available.
The spatially interpolated data are consequently used to determine a rotor equivalent wind speed (Ugq) and an available power
Paxues Wsed as a reference in the remainder of this study.

3.3 Training and testing data

The data set is split into a training part (80 % of total size) and a testing part (remaining 20 %). This has been done in

a stratified random manner, meaning the data set was first split up in three subsets according to their target yaw angle
= (—15° 0°, 15°), after which from each subset 20 % was randomly selected to be testing data. This way, it is ensured

that both testing and training data contain cases with a yaw misalignment.

To not base the results on only a single testing data set, this randomly splitting of the data set (resampling) has been repeated 96

24 nodes per core). Error statistics appear to be normally distributed, which was not yet the case with 24, 48 or 72 resamples.

Although more resamples are desirable (e.g., bootstrapping is typically done over several thousands), this was not possible due

to computational limitations as the training of the models can be quite expensive as discussed in Sect. 3.4.1 and 3.5.
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3.4 Data-driven wAKke steeRing surrogaTe model (DART)

This section introduces DART, starting with a summary from previous work in Sect. 3.4.1 and changed made to the model

since this work in Sect. 3.4.2. This is followed by information on the input variables (Sect. 3.4.1). Lastl

of the three version of the model considering in this study is discussed in Sect. 3.4.1.

the feature selection

3.4.1 Model description

the Multiple 1D _Gaussian method (Sect. 3.1) with a linear regression model from standard input parameters (e.g.. yaw.
misalignment, shear, thrust coefficient). These wake characteristics (Y) are estimated from input parameters (X) using a
simple linear model:

Y= X xB. 3)
(n)  (nxp) (p)

in which B are the model coefficients. The matrix dimensions are indicated by the sample size n and the number of input pa-
rameters p, containing the input variables, their second-order and interaction terms, as well as intercepts. The model coefficients

are fitted with the Lasso method (Tibshirani, 1996), using the following cost function:
arg]gnin Z(yn - anpo)2 + /\Z IB,|. 4)
n P P

This method remains close to ordinary least squares, but adds a regularization parameter A to its cost function, effectively
penalizing adding more parameters. This ensures shrinkage of the input parameters and eliminates the issue of multicollinearity
as only one of the highly correlated input parameters is chosen. The notations presented here deviate slightly from those in
Sengers et al. (2022), as in the current study only one distance downstream is considered, simplifying the equations.

To include nonlinear relations between input parameters and wake characteristics, the original variables can be transformed
with e.g., a square-root or exponential transformation. In the training stage (Sect. 223.4.1), it is determined what set of input
variables and transformations yields the most accurate results.

Lastly, the estimated wake characteristics are used in a composition method ;—which—is—the-reversed—version-Multiple 1D
Gaussian-method-deseribed-above-(Sect, 3.1) to generate a vertical cross-section of the wake deficit and wind field. For a more
detailed description of DART, the reader is referred to Sengers et al. (2022).

3.4.2 Modifications to the model

A few changes have been made to DART since its first description in Sengers et al. (2022). Most notably, the feature selection
procedure has been changed. Before estimating the wake characteristics with a linear model, inflow variables (e.g., ¢, a, w) un-
dergo transformations. In addition to the non-transformed variable, the square root, exponent, natural logarithm and reciprocal
transformation are considered for all input variables, resulting in five options for each variable and many possible sets of input

parameters (e.g., ¢, o~ ', In(w)). In Sengers et al. (2022), all these possibilities were tested, the available power of a virtual
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turbine was estimated and compared to the original data, and the set of input parameters that had the smallest error was chosen.
390 This selection procedure was not only very computationally expensive, but also does not necessarily give the most accurate

solution for all wake characteristics. Hypothetically, the wake center position could be best explained by the non-transformed

yaw angle, whereas the wake curl could be best explained by the exponent of the yaw angle. In the current work, the deter-

mination of the best set of transformations is tested for each wake steering variable individually. The best transformation is

then chosen as the one that has the smallest mean absolute error on the training data. This not only allows for more accurate
395 estimates, but also speeds up the training process.

Secondly, square root and natural logarithm transformations do not allow for negative input values. A sign function is used to

include these values rather than omitting them, as was done in the previous work.

Lastly, in the exeeution-testing phase extrapolation is prevented by using the maximum (or minimum) value found in the train-

ing data when an input variables exceeds this range. Although this does not allow DART to give accurate estimations in new

400 situations, it eliminates erroneous estimates due to extrapolation.

3.5 Referencepower

405

, rotor speed

w and power P are considered input variables.
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3.5 Input-variables

3.4.1 Input variables

As argued in Sengers et al. (2022), highly correlated input variables are interchangeable as they provide similar information.
410 However, as long as they are not perfectly correlated, including all variables can lead to a higher accuracy as some new
information is added. Multicolinearity-is-noet-an-issue-due-Due to the use of the Lasso regression method, multicollinearity is
not an issue.
Because of DART’s flexibility, training with different sets of input variables is possible, allowing for an analysis of the model’s
accuracy as a function of chosen input variables. An overview of the available input variables is displayed in a correlation
415 matrix (using the Pearson correlation coefficient) in Fig. 6. Other variables such as the wind direction variability and TI at
lower tip height could have been included, but were omitted for brevity. As opposed to what was seen in LES in Sengers et al.
(2022), the inflow variables dcv, o and TI are weakly correlated in the-free-field-this field experiment. Secondly, w and P are
highly correlated with Uy,.

420

425

430

3.4.1 Feature selection

In this study, multiple versions of the DART model were considered, each having a different set of input variables. Adding
more input variables might increase the accuracy, but will increase the training time of the model significantly. In Sengers et al.
435 (2022) it was hypothesized that DART can achieve reasonable accuracy as long as each of the following clusters was repre-
sented: yaw (¢), atmospheric inflow (da, «, TI) and turbine (w, P, Uy). Due to its high correlation with the turbine variables,

Uy, is here considered a turbine variable rather than an inflow variable. Following this logic, the first version of DART uses
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Figure 7. Performance of DART-3 on the training data. The set of input variables is (¢, «, P). (a) Histogram of PE of P, for one resample.
In-the-topright-the Titted normal distributions are indicated with solid lines and MPE and MAPE are given in the top right. Histograms of
MPE:s (b) and MAPEs (c) over all 96 resamples.

three input variables.

DART:3
To determine the most accurate solution using only three variables, all possible sets of input variables and their respective trans-
formations (see-Seet—229ect. 3.4.2) are tested during the training stage and their accuracy to reproduce the training data set is
investigated. By means of an example, Fig 7a displays the error distribution of one resample. The error metric used here is the
Percentage Error (PE) of P, (calculated with-Eg-analogous to Eq. (1), but without absolute values) at 4D downstream. From
these values, a Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE) can be computed, as indicated in
the top right of the figure.

Repeating this for all 96 resamples, one can obtain a histogram of MPEs and MAPEs as displayed in Fig. 7b and c. Finally,

the mean over 96 MPEs (MPE) and MAPEs (MAPE) can be calculated, see top right of the figures. The MPE = —2.19 %

illustrates a negative systematic bias, meaning DART underestimates P, .

To determine the most accurate set of input variables, MAPE is considered. The results for all considered combinations of
input variables are displayed in Table 2, showing that the set (¢, o, P) provides the most accurate result (lowest MAPE) and
is therefore used in the remainder of the study, denoted as DART-3. The training time for each set of input variables with
DART-3 is in the order of 10 minutes, hence the total training-computation time to determine the best set of input variables is

approximately 1.5 hours.

Because the training of DART-3 is fast, an additional variable can be included to improve the accuracy of the model. The first

three variables are chosen similarly to DART-3 (one from each cluster), while the fourth variable can be any input variable not
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Table 2. Overview of all possible combinations of input variables in DART-3 and their respective MAPE values. Boldface indicates the

combination resulting in the lowest error.

Variable 1  Variable 2 Variable 3 MAPE [%]

10} oo w 18.24
1) ye P 16.70
1) oa Un 17.17
¢ «@ w 15.11
1o} P 14.53
10) @ Un 15.08
1) TI w 15.66
1) TI P 14.77
1) TI Un 14.81

yet selected. Repeating the analysis of computing a MAPE for each resample and consequently a MAPE for each set of input
460 variables, generating a table corresponding to Table 2 (not shown here for brevity), reveals that (¢, o, P, Uy) is the most ac-
curate combination with MAPE = 12.69 %, hereafter called DART-4. Its training time for each combination is approximately

one hour, hence with 18 possible sets of input variables the total training-takes-abeut-computation time needed for training is
18 hours.

465 DART-
Lastly, all available variables are used as input in DART-7, demonstrating the maximum achievable accuracy of the data-driven

model during this experiment. DART-7’s accuracy on the training data was indeed the highest with MAPE = 10.31 %. The
tratning-time-for-computation time needed to train DART-7 is approximately one month if not parallelized.

3.5 Analytical wake model

470 The Gausstan-Curl-Hybrid(GCH-)-model-state-of-the-art GCH model (King et al., 2021) as available in version 3.0rc4 of
the FLORIS framework (NREL, 2022) acts as a reference model in this study. The GCH model incorporates the spanwise and

vertical velocity components (Martinez-Tossas et al., 2019) due to the present vortices to the Gaussian wake model (Bastankhah and Porté-

Since presently only the wake at a distance of 4D behind the upstream turbine is studied, the GCH model could have benefited

475 from including a near-wake model (e.g., Blondel and Cathelain, 2020), but this coupling was not available in this version of
FLORIS. The C't curve of the enol26 turbine is obtained from the Bladed model for which the aerodynamic properties of the
turbine were provided by the operator, and is used in these calculations.

Inflow information is taken from the 10-minute averaged met mast data. The model tuning parameters (e

for the far-wake onset, and k,_ for the wake growth rate) are determined by minimizing the MAPE of avail-
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able power over the training data, analogous to the training of DART described in Sect, 3.4.1. The tuning takes about 3 hours
and the model has an error of MAPE = 18.13 %.

4 Results

This section presents the results of this study. Section 4.1 describes the characteristics of the wake observed in the field, after
which in Sect. 4.2 the performance of the wake models in reproducing these wake characteristics is discussed.

4.1 Observed wake characteristics

In-this-seetion;In Sect. 4.1.1 an assessment of the characteristics of the observed wake listed in Table 1 is performed, which

is deemed a necessary first step before investigating the accuracy of wake models. The observed wake characteristics are linked

to the inflow variables to examine whether the measurements are physically feasible. In Sect. 4.1.2, two wake characteristics
that are deemed important for wake steering are further investigated.

4.1.1 Correlation with inflow variables

The Multiple 1D Gaussian method (Sect. 3:43.1) is used to describe the wake in quantifiable characteristics. Figure 8 displays
how the nine wake characteristics correlate with the input variables.

The wake center deficit normalized with the hub height wind speed, denoted A, is highly correlated with shear « and turbu-
lence intensity TI and shows a moderate correlation with veer dc, corresponding to the correlations found in previous studies
(e.g., Bastankhah and Porté-Agel, 2016; Schottler et al., 2017). A, has a weak correlation with the hub height wind speed U},
as it was already used to normalize the deficit.

The lateral wake center displacement i, has a relatively high correlation with the yaw misalignment ¢, confirming that the
wake is deflected when the turbine is operated with a yaw misalignment. Moderate correlations with o and d« are found, cor-
responding to previous findings (e.g., Fleming et al., 2015; Sengers et al., 2022) that found that wake deflection is affected by
atmospheric conditions. The vertical wake center displacement 1., a relatively unexplored wake characteristic, appears to be
positively correlated with «. It is hypothesized that this is due to a larger wind speed gradient at lower tip height, increasing the

mixing compared to that at upper tip height, effectively moving the wake center upwards. Further analysis (results not shown

here) suggests that the vertical wake center displacement, and with that its correlation with input variables, is independent of

wind direction. This excludes the influence of topography on these results.
The curl only correlates with ¢, whereas the wake tilt is highly correlated with da, corresponding to Abkar et al. (2018). Lastly,

variables related to wake size (0, 0, 54, Sp) have very weak correlations with the input variables, which could be due to the
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Figure 8. Correlation matrix of the input variables and wake characteristics, A is the amplitude of the wake deficit normalized by Uy, u
and 1. the lateral and vertical wake center displacement, the wake curl and tilt, o, and o, the width and height of the wake and s, and s
the quadratic and linear wake width parameter, respectively.

spatial resolution of the lidar PPI scans.

4.1.2 Lateral wake center displacement and wake curl

Two wake characteristics, 11, and curl, are investigated as function of ¢ as these are deemed important for wake steering. Figure
9a demonstrates that |y, | typically increases with |¢|, hence the wake deflection is larger for larger yaw misalignment angles,
although there is a lot of scatter in the field measurements as also indicated by the correlation coefficient R. Three clusters can
be identified, corresponding to the distribution of yaw angles shown in Fig. 4.

To check whether p,,’s order of magnitude is reasonable, field measurements are compared with LES results. Different than

in Sect. 2.3, the turbine simulated here represents turbine T1 in the field, for which the aerodynamic properties were provided
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Figure 9. Scatter plot of (a) i, and (b) curl as a function of yaw angle ¢. Red markers indicate field measurements and blue triangles indicate

LES data. Fitted linear functions are indicated with lines. The quality of these fits is indicated by the correlation coefficient R, correspondin
to Fig. 8. White plus signs indicate the case studied in Fig. 10.

by the operator in the Bladed model and translated into FAST. Because of computational restrictions, only three yaw settings
(—15°,0°,15°) with each four inflow conditions were simulated, which will represent only a small part of the full range of
conditions observed in the field. The simulations have U, ~ 8 m s~*', and the inflow variables are 0.11 < o < 0.26; 1.1° <
da < 2.6° and 6.0 % < TI < 8.4 %. The LES results show an initial deflection for ¢ = 0° (Gebraad et al., 2016), which is not
clearly observed in the field. Otherwise, the observed magnitude of deflection is comparable between LES and the freefield.

Figure 9b displays curl as function of ¢. Similar to y,, the field measurements have a larger spread than the LES results-—Both

s, expressed by the lower qualit
of the linear fit (correlation coefficient R). However, the fitted lines are similar, indicating that the wake curl does indeed occur

in field, something that until now had not conclusively been shown in literature.

One case is selected (indicated with a white plus sign in Fig. 9) to illustrate what a wake with curl ~ 0.5 looks like. Figure 10a
presents the observed deficit measurements (Uqer) normalized by Uy, in which the wake’s curl is indicated by the black dashed
line. The curl is indeed relatively small and could be missed when operating the long-range lidar with a different scanning
strategy. Figure 10b represents a reconstructed wake using DPART s-compesition-algerithm-the composition method (Sect. 3-4)-
Additionally Fig—10b-elearly-shows-3.1), which clearly shows that the wake center has moved to the left and up.

Even though the curling observed in this study is relatively small, Figure 9b does confirm that the wake curls as expected from
numerical and wind tunnel experiments. Free-field-Field experiments are often restricted to yaw misalignments smaller than
20°, whereas numerical and wind tunnel studies allow for larger misalignments. As suggested in Brugger et al. (2020), this is

the reason for the lack of observations of fully curled (or kidney-shaped) wakes in the free-field.
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Figure 10. Exemplary case illustrating the wake curl generated by a misaligned turbine (¢ = 12.8°, Uy, = 9.4ms™ ', a = 0.33, da = —0.8°,
TI = 10.4%). (a) The wake deficit of the ten-minute averaged lidar data of 17 consecutive PPI scans (colors) and local wake center positions

(black plus signs) with corresponding fitted polynomial (black dashed line) indicating the wake curl. (b) The reconstructed wake by utilizing

BARFs-the composition algerithmmethod. The colorbar applies to both figures.
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Figure 11. Like Fig. 7, but for the testing data for GCH (black/grey), DART-3 (red), DART-4 (blue) and DART-7 (yellow). (a) Histogram
for one resample, (b) for MPEs and (c) for MAPE:s of all 96 resamples. Fitted normal distributions are indicated with lines and statistics are

given in the top right.

4.2 Performance of wake models

This section presents the performance of the DART and GCH wake models in reproducing the wake characteristics observed
in the field. Section 4.2.1 presents how well the models can reproduce the available power measured by the lidar. Following
this general result, Sect. 4.2.2 zooms in on how well the model perform under different conditions and Sect. 4.2.3 displays how
well the models can reproduce a selection of wake characteristics. Section 4.2.4 discusses how sensitive the models are to the

amount of training data. Lastly, Sect. 4.2.5 evaluates how well DART performs when only using SCADA data as input.
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4.2.1 Comparison of DART and GCH

This section discusses the performance of DART and GCH in a comparison with the wake observed in the free-field. The
models were trained (DART, Sect. 223.4.1) or tuned (GCH, Sect. 3.5) on 80 % and are now tested on the remaining 20 % of
the data. Fig. 11a displays the model accuracy on one resample, using the Percentage Error (PE) of available power (Py,) as a
performance metric, ealeutated-with-Eg—analogous to Fig. 7. All models seem to have negative bias (MPE < 0 %), indicating
that the rotor equivalent wind speed U, is overestimated. DART’s bias reduces with increasing number of input variables, as
is evident from the smaller error of DART-7 compared to DART-3 and DART-4. DART-7’s bias is comparable to that of GCH.
GCH’s spread is however larger than DART’s, resulting in a larger MAPE despite having a lower MPE.

When repeating this for all 96 resamples, a distribution of MPE and MAPE values can be found (Fig. 11b-c). Also here DART
shows a small negative bias (MPE < 0 %), hence underestimating U, GCH has a small positive bias, therefore overestimat-
ing U, and a much wider distribution.

The distribution of MAPE values indicates that with just three input variables, DART-3 is able to outperform GCH, showing
a reduction of MAPE of 19 %. Moreover, both its MPE and MAPE are very similar to those of the training data (Fig. 7),

indicating that the model is able to generalize well to unseen or independent data. Adding more variables further improves
DART’s accuracy, reducing MAPE with 28 % and 36 % for DART-4 and DART-7 compared to GCH. Moreover, the fitted
normal distributions of MAPE for GCH and DART-4 or DART-7 are hardly overlapping, indicating that DART significantly

outperforms GCH when trained with at least four variables.
These results show that-the potential of a data-driven modelis-erermous—Meore—: more of the variability of wakes observed
in the free-field can be explained by using only four input parameters in a data-driven model than with an industry-standard

analytical model.

4.2.2 Model accuracy under different conditions

To gain a better understanding of these results, it is investigated under what conditions the models’ performances differ con-
siderably. DART-3 is here omitted for brevity. First, the models’ errors are investigated in relation to yaw angle ¢. Figure 12a
displays a histogram of data availability per ¢ bin of 5° over all 96 resamples, while Fig. 12b and ¢ show the MPE and MAPE
of P,, per bin. The GCH model has MPE >0 % for ¢ < —7.5° and MPE < 0 % for 2.5° < ¢ < 7.5°. This is likely due to
low data availability. Regardless;-DART demonstrates a more uniform trend over all yaw angles. When looking at MAPE (Fig.
12¢), it can be seen that especially under yawed conditions (both positive and negative) DART seems to outperform GCH. It is
hypothesized that this is due to a more accurate estimation of the wake center position in DART.

Figures 12d-f display a similar analysis as function of shear . GCH shows an almost linear trend as function of «, with
MPE < 0 % for small a and MPE > 0 % for large . This indicates that the modeled wake recovery is too slow under low
shear and too fast under high shear inflow, which could be due to the turbulence model not explicitly including « as an input

parameter. In contrast, DART explicitly uses « to estimate wake characteristics. It therefore produces more uniform results
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Figure 12. Performance of GCH (grey), DART-4 (blue) and DART-7 (yellow) as function of ¢ (a-c) and « (d-f). Histogram of data availability
per bin (a,d) and corresponding MPE (b,e) and MAPE (c,f) per bin.

and outperforms GCH especially when o > 0.4 (see Fig. 12c). Over the whole range of ¢ and o, DART-7 is marginally more
accurate than DART-4.

4.2.3 Estimating wake characteristics

Finally, the accuracy of GCH and DART in estimating the wake characteristics A, 11, and curl is investigated. The left column
of Figure 13 displays the observed A, as a function of the model estimated A,. As clearly indicated by the fitted line, the GCH
model overestimates small deficits and underestimates large deficits. This could be resolved by giving more weight to outliers
when tuning the parameters, although that could lead to the undesirable decrease of accuracy in frequently occurring conditions.
The fitted line to the DART-4 results appears to be closer to the unity line, while for DART-7 an even better agreement is found.
Additionally, the Mean Absolute Error (MAE) and Pearson correlation coefficient (R) displayed in the top left indicate a more
accurate modeling of A, using DART.

The center column displays a similar analysis for y,. The fitted lines imply a higher accuracy for GCH than for DART, while
the statistical metrics suggest the opposite. GCH’s estimates for 1, seem to be clustered, which is not true for DART or the
measurements. As noted in Sengers et al. (2022), the effect of inflow conditions (e.g., ) on the wake deflection is not well

described in GCH. Consequently, the wake deflection is only a function of yaw angle and the observed clusters can directly
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Figure 13. Accuracy of GCH (a-c), DART-4 (d-f) and DART-7 (g-i) in estimating wake characteristics A. (a,d,f), 1y (b,e,h) and curl (c,f,i).
The models’ estimates are given on the x-axis, the observations on the y-axis. Solid lines indicate linear Orthogonal Distance Regression fits

and dashed lines the identity lines.

be related to the distribution of yaw misalignments angles shown in Fig. 4. Additionally, re-while in Fig. 13e and Fig. 13h
transparent markers can be observed, the markers in Fig. 13b —Sinee- GCHs-estimates for-the-appear to be opaque, Here, many.

transparent markers overlay each other, indicating that GCH estimates the same wake center location are-barely-in all resamples
and that these estimates are not affected by the tuning-parameters; esamples-estimatestmilar-wake-center-positions—and

markers-overlay-each-othermodel’s tuning parameters.

Lastly, the right column displays the results for curl. GCH does not model any curl, whereas DART is able to capture some of
the observed variability. DART-7 performs better than DART-4 as more variables that are (weakly) correlated with curl (see
Fig. 8) are considered. Although the variability found in the field is not fully captured by either model, it is clear that the wake
curl is better reproduced by DART than by GCH.

26



600

605

610

615

620

(a) (b)

6 —- GCH
----- DART-4 20
. .
T ey — e — ey
181 =
2 i
5 —— e | E
0
¥ o S g
£ =
. :
Bocoaorie LI - . S
S I [T PPPPETY . A . ’ e
L -, -
....... L T
-4
12
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Training data [%] Training data [%]

Figure 14. MPE (a) and MAPE (b) as function of training data size. Markers indicate the means (MPE and MAPE), lines indicate the

median and shaded areas indicate the standard deviation, corresponding to the fitted normal distributions in Fig. 11.

4.2.4 Dependency of performance on data set size

An important aspect of data-driven models is understanding how the amount of training data affects the model’s accuracy. This
is especially relevant, as one of the most named drawbacks of data-driven models is their high need of data. This section studies
the sensitivity of the accuracy of DART-4 to the amount of training data. DART-7 is not considered due to its long training
time. Additionally, GCH is included in the analysis as it contains tuning parameters which could benefit from being tuned to a
larger data set. All models are trained with a part of the full data set, ranging from 10 % to 80 %, and tested on the remaining
20 %, analogous to the procedure described in Sect. 3.3. Regardless of the amount of training data, the testing data are always
20 % of the original data set and consist of the same cases for fair comparison. When using e.g., 40 % of the data for training
and 20 % for testing, the remaining 40 % is not used at all.

Figure 14 displays the accuracy of the models as a function of the size of the training data set. The metrics used for this analysis
are again the distribution of MPE and MAPE values of the 96 resamples, corresponding to the normal distributions shown in
Fig. 11. Figure 14a again reveals that DART-4 has a negative bias (MPE < 0 %), which is present regardless of the amount of
training data, whereas GCH typically has a small positive bias (MPE > 0 %). The uncertainty bands, representing one standard
deviation indicated by the shaded area, are larger for GCH than for DART-4, while for both models the uncertainty is reduced
when trained with more data.

Figure 14b displays the distribution of MAPE values of the 96 resamples as function of the data set size. GCH and DART-4
have a similar accuracy when few data are available, but DART-4 already outperforms GCH when as little as 20 % of the
data set (= 75 cases or 13 hours) is used for training. Note that this does not indicate 13 hours of consecutive measurements,
but rather 75 cases covering a range of meteorological conditions representative for the variability experienced by the turbine.
Additionally, the accuracy of DART-4 seems to continue to improve when adding more data, albeit at a slower rate, whereas

GCH hardly shows any improvement with higher data availability.
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Figure 15. Same as Fig. 11 b-c, but with DART-4S (light blue).

4.2.5 Performance with SCADA data as input

In this section, DART-4 is trained using only data routinely available to the operator (SCADA data) as input variables, called
DART-4S. However, it still uses the measurements from the nacelle-mounted lidar to obtain the wake characteristics. Input
variables includes power P, rotor speed w, wind speed Ug and turbulence intensity TIg estimated from the cup anemometer
and yaw misalignment ¢g extracted from the wind vane. As discussed according to Fig. 4, this signal contains a systematic
bias (Fleming et al., 2021) and is disturbed by the turbine yaw misalignment (Kragh and Fleming, 2012; Simley et al., 2021),

resulting in misalignments being overestimated by the nacelle vane. No correction was applied here, as data-driven models

can compensate for any systematic biases. Additionally,—they-A similar reasoning can be applied to the use of Tlg: although
turbulence intensity estimates from a nacelle cup anemometer are affected by the rotor (e.g., Barthelmie et al., 2007), biases
can be handled by data-driven models and are therefore acceptable. Additionally, data-driven models are better able to deal

with noise than analytical models, which assume that the inflow information is undisturbed or need error terms inserted in the
model equations (Schreiber et al., 2020).

The main issue of only using SCADA data is that there is no reliable estimate for the vertical wind speed profile. In this study,
the shear o measured at the met mast is estimated from TlIg using the fitted linear relation: & = 0.625 — 0.023 TIg. Because
« and TTg are quite weakly correlated (R = -0.47), this simple approach introduces uncertainty. However, developing a more
sophisticated solution was deemed out of the scope of this work and this approach is deemed sufficient for the current purpose.
An alternative approach could be to use strain measurements from the turbine’s blades to estimate shear, as demonstrated in
(Bertele et al., 2017, 2021), although this would also involve additional sensors.

Figure 15 displays the results of DART-4S, using (¢s, Tls, Ug, P) as input, in a comparison with GCH and DART-4, both
trained with met mast data. The accuracy of DART-4S is very similar to DART-4, showing a larger negative MPE but an almost

identical MAPE. This indicates that using an arguably lower quality data set hardly affects the accuracy of the wake estimates.
It is hypothesized that this is because the SCADA data better capture the atmospheric conditions at the turbine, whereas met

mast data are subject to heterogeneity between met mast and turbine. This would counter the lower quality of the data, leading
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to only a slight decrease of the model accuracy. Interestingly, DART-4S is significantly more accurate than GCH, even though

645 the latter needs undisturbed measurements as input. Same-asFie—H-b-e;-but-with PART-4S-(light-blae)-

5 Discussion
5.1 Campaign-setup

Section 5.1 discusses the measurement campaign and its accuracy. In Sect. 5.2 the limitations of the data-driven model are
reviewed. Finally, Sect. 5.3 focuses on the implication of this study’s results for future work.

650 5.1 Campaign

This section discusses some key takeaways for future campaigns (Sect. 5.1.1) and an uncertainty analysis considering measurement
errors (Sect. 5.1.2).

5.1.1  Lessons learned

655

660 both-GCH-and DART-in-a-similar-way-The-experimental campaign are noteworthy. First, the nacelle-mounted lidar’s scanning
strategy was based on Brugger et al. (2019, 2020) and evaluated systematically using large-eddy-large eddy simulation results

and a lidar simulator. However, during this analysis, data losses were not considered. Subsequently, in the field data occasionally
all information at one height was filtered out, leaving only information at four heights for the analysis (Sect. 2.3), which could
lead to interpolation errors. A more robust approach would have been to perform seven instead of five consecutive PPI scans,
665 although the accuracy of the wake reconstruction method is slightly lower (see Fig. 2). Lastly, in this study only one distance
of 4D was targeted, but for other purposes it could be desirable to target multiple positions at once. This would likely require

more PPI scans with a larger range of elevation angles, as used in (Brugger et al., 2020). Large elevation angles are needed to

capture the wake close to the turbine, whereas small elevation angles capture the wake further downstream.

670 dataare-considered-to-present-a—wakeeross-seetion—the-Further, no systematic hard target analysis was performed with the

nacelle based lidar. The horizontal offset relative to the turbine’s center axis could be estimated from a set of coarser PPI scans,

but no vertical offset could be estimated. Although this is not expected to have large influence on the results presented here, as
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is also discussed in Sect. 5.1.2, it is recommended to always carry out a hard-target analysis in future measurement campaigns
to reduce the uncertainty of the measurements.

675 5.1.2 Measurement uncertaint

Although the measurement data after filtering have been considered as the "ground truth” in this study, a few aspects affecting
the data quality should be considered. Homogeneity of the background flow is assumed, as well as a vertical wind profile that
can be described with the power law, which is not always satisfied. This refers specifically to the trees in the wind direction
sector around § = 350° that are assumed not to affect met mast data, as mentioned in Sect. 2.1. Besides
680 zone) and T4 (wake) are assumed to not affect the wake, although this cannot be ruled out entirely. Lastly, the lidar measure-

ments are inherently subject to probe volume averaging and they-are-interpelated-to-a-distance-of 4D—Seeondly-a different

filtering method than the one described in Sect. 2.3 will retain other information and therefore result in slightly different wake

turbines T3 (induction

characteristics.

Additional analyses were carried out to investigate the effect of measurement uncertainty on the results presented in Sect. 4,
685 specifically those in Fig. 11. An overview of these tests is displayed in Table 3. First, the influence of the missing hard target
analysis (Sect. 5.1.1) is investigated. In the original measurements, an upward vertical displacement of the wake center of
0.15D was observed, averaged over all 382 cases. Although displacements of this magnitude have been observed in numerical
simulations (Sengers et al., 2020), it is here assumed that this is purely the consequence of an installation error of the lidar. Such
a displacement at 4D downstream would come from a downward angle of tan”'(0.15/4) = ~2.18°. In test 1, the elevation
690 angles of all lidar scans were adjusted with this value, resulting in an average vertical wake center displacement of zero. Since
vertical wake center displacements have been observed in other studies (e.g., Bastankhah and Porté-Agel, 2016; Sengers et al., 2020)
» the previous test was not deemed completely realistic. Additional tests (2 and 3) with half the correction value, as well as
carried out, The next set of tests varies the wind speed and direction measured at the met mast. As noted in Sect. 2.5, the

695 accuracy of the anemometer is 0.2 m s~ ! and the accuracy of the vane is 1.5°. These values are used in tests 4-7, varying the
height (

uncertainties. Note that this does affect the shear and veer as well.
In all tests, DART-4 (DART-3, DART-7 and DART-4S omitted for brevity) and GCH are trained on the adjusted data for
all 96 resembles. Their accuracy on the testing data is evaluated using MPE and MAPE, and shown in Fig. 16. Compared
700  to the original (Test 0) of Fig. 11, Test I shows a slightly poorer performance of DART-4 (larger MPE and MAPE). It is
hypothesized that this is due to the fact that now the 5 PPI scans do not fully target the rotor area anymore, resulting in
less relevant information about the wake to estimate the available power. GCH on the other hand, seems to perform better
(smaller MPT and MAPE) than the original. Since no vertical displacement is estimated with GCH, this new data more
closely resembles to the model’s assumptions. Tests 2 and 3 confirm this, as GCH’s MAPE increases with the magnitude of
705 the vertical wake center displacement.

Tests 4 and 5 illustrate that both models perform better when the shear is decreased (Test 5) compared to when the shear is

measurements at hub height (3,) and lower ti in opposite direction, investigating the maximum influence of these
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Table 3. Overview of all tests carried out for the uncertainty analysis.
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Figure 16. Results of the tests of Table 3. MPE and MAPE of Test 0 correspond to the values found in Fig. 11.

increased (Test 4), which relates to the fact that more uniform conditions are easier to reproduce. Lastly, GCH performs worse
in Test 6 and better in Test 7 compared to the original, but no satisfying explanation was found.

In general, these tests demonstrate that the more closely a data set resembles the model assumptions, the better the model
performs. DART-4 typically shows a higher MPE and a lower MAPE compared to GCH, which is similar to the results
presented in Sect. 4. This uncertainty analysis is believed to demonstrate that the results presented in this study are robust and

5.2 Data-driven model

DART’s quantitative results presented in this study are not ¢4

affeet-thefully generalizable. The fitted coefficients in Eq. (3) %deeﬂ}edﬂﬂ%pefwmfumfe—weﬂﬁegemﬁlﬁ&%hese

then PART-are only valid for the scenario considered in this study and it is unknown how the model’s accuracy transfers
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to different scenarios, such as other turbine types and downstream distances. Besides, while the range of achieved yaw

misalignments is typical for field experiments nowadays (e.g., Fleming et al., 2020, 2021; Doekemeijer et al., 2021), future

720 campaigns could see larger misalignments such as those currently considered in numerical studies (e.g., Howland et al., 2016; Martinez-Tos
. Further lidar measurements would be needed in new scenarios to guarantee accurate model estimates, and although it needs

relatively few data (abeu ases-at-speeifie set-points)-to-outperform-GCH-and-ean-therefore-be-to retrained in new situations

a(Sect. 4.2.4), this limits the potential for application of data-driven

models in wake steering control.

725 To overcome this, future work should attempt to generalize the model’s coefficients. Alternatively, model equations using coef-
ficients determined with previous numerical or experimental data could still be used at new locations to generate a first estimate

of the wake characteristics. Assuming that the wake position and shape are sufficiently accurately modeled, coefficients for the

wake deficit could be retrained using SCADA data by deducing a rotor equivalent wind speed.

Lastly, other data-driven models could be used. Currently, to the best of our knowledge DART is the only data-driven wake
730 model available that does not make use of complex black-box models such as neural networks. Although it would be inter-

esting to compare different data-driven models, more complex models typically need more data. For instance, Asmuth and

Korb (2022) proposed a neural network and showed they need at least 800 cases to train the model for non-yawed cases only.

Although their results are extremely promising, extending this to include wake steering would likely require a substantially

longer measurement campaign.

735 5.3 Implications for future work

As noted in the introduction, the industry appears to be hesitant to adopt the wake steering strategy due to large uncertainties. To
Doekemeijer et al., 2020;
or using preview information (?). On the other hand, the low-fidelity wake models that are utilized to determine the yaw.
misalignment set points used by the yaw controller need to become more accurate.
740 This study contributes to the latter by showing that both DART and GCH perform well on average (small systematic bias).
but that DART can capture a higher degree of variability observed in the field. Besides more accurate estimations of the wake
deficit, which historically has been the main focus of wake models, this extends to other wake characteristics like wake curl

and wake center location, The latter is especially important for wake steering, as erroneous steering can steer the wake into a
downstream turbine.

overcome this, yaw controllers need to become more sophisticated, for instance by using closed-loop controllers

745 Since DART shows a higher accuracy than GCH in estimating wake characteristics, it can be hypothesized that when using.
DART to determine yaw misalignment set points used by the yaw controller, the wake steering strategy can be applied more
successfully. This can consist of achieving higher power gains when wake steering is performed successfully, or reducing power
losses due to erroneous steering, However, an extensive campaign would be needed to investigate this, which was considered
out of the scope of the current work.

750 On a more general level, this study shows that data-driven models are a viable alternative to analytical models. Whereas
data-driven models have often been criticized for their complex nature, this study has demonstrated that accurate estimations
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780

can also be obtained with a very simple linear model.

While the current model focuses on estimated wind speed and consequently power, a similar methodology could be developed
to estimate turbulence and consequently turbine loads. Alternatively, it would be interesting to combine analytical and data-driven
models in hybrid models. Such models could initially benefit from the robustness of analytical models, but exploit the higher
accuracy of data-driven models when more data becomes available.

6 Conclusions

This study uses nacelle-based lidar measurements of the wake of a commercial turbine with a fixed intentional yaw mis-
alignment. Performing a trajectory of five consecutive Plan Position Indicator (PPI) scans with different elevation angles, a
vertical wake cross-section at four rotor diameters downstream is reconstructed. Utilizing the Multiple 1D Gaussian method,
wake characteristics are obtained. The lateral wake center displacement and wake curl observed in the field compare well with
large-eddy-large eddy simulation results. The results from the lidar measurements prove-that-demonstrate the occurrence of the
wake curl alse-eecurs-in-the-free-in the field, which had not conclusively been shown in literature before. This is due to small
curling observed for yaw misalignments below 20°, which could be missed when using a different scanning trajectory.

The field measurements are subsequently used to train and validate the Data-driven-wAkesteeRingsurrogaTe-moedelH{DART
YDART model, and compare the accuracy of the trained data-driven model to the accuracy of the Gausstan-Curl-Hybrid-model
{6EH-HGCH model. When estimating the observed wake characteristics with both wake models, it is demonstrated that DART
systematically outperforms GCH. Depending on the number of input variables used for DART, the error is reduced by between
19 % and 36 % compared to GCH. The metric used here is the Mean Absolute Percentage Error of the available power of a

virtual downstream turbine, averaged over 96 resampled testing data sets. Especially when the turbine is misaligned or high

vertical shear is observed, DART outperforms GCH. G
i weverBesides, DART requires a relatively
small amount of training data (about 75 cases at specific set points) to outperform GCHand-can-therefore-beretrained. Further

analysis suggests that DART’s accuracy is hardly affected when only considering SCADA data as input in comparison to using

undisturbed measurements from a met mast. Theresults-shown-in-this-study-demonstrate-the-huge-
DART shows a high accuracy in the current study, targeting a downstream distance of four rotor diameters and using a range
of yaw misaligenments commonly used in field experiments. However, these results cannot directly be generalized and further

lidar measurements are needed to retrain DART for new scenarios, limiting its applicability. Regardless, this study’s results are
believed to demonstrate the potential of data-driven wake models and the impertantrole they can play in the further deployment

of wake steering control strategies.

Code and data availability. The Data-driven wAke steeRing surrogaTe model (DART), including a short tutorial, is available for download

at: https://github.com/LuukSengers/DART (https://doi.org/10.5281/zenodo.7442225, Sengers and Zech (2022)).
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The large eddy simulation results cannot be shared due to confidentiality of the turbine specific aerodynamic characteristics.
A selection of measurement data are available at https://doi.org/10.5281/zenodo.7741395 (?). This data subset provides ten-minute averaged

785  input parameters and lidar scans of cases with Uy, ~ 8 m s~ .
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Appendix A: Lists of Abbreviations and Symbols

Abbreviations

APE Absolute Percentage Error

CNR Carrier-to-noise ratio

DART Data-driven wAke steeRing surrogaTe model

EC Eddy Covariance

GCH Gaussian-Curl Hybrid model

LES

LOS Line-of-sight velocity

LUT Look-up table

MAE Mean absolute error

MAPE Mean absolute percentage error

MAPE Mean of the mean absolute percentage errors of all resamples
MM Meteorological mast

MPE Mean percentage error

MPE Mean of the mean percentage errors of all resamples
PALM PArallelized Large-eddy simulation Model

PE Percentage error

PPI Plan position indicator

R Pearson correlation coefficient

SCADA Standard supervisory control and data acquisition
VAD Velocity-azimuth display

Symbols

o Shear

aGgcH Tuning parameter GCH

Baen Tuning parameter GCH

1) Wind direction

N Wind direction at hub height, measured at MM

Os Wind direction at hub height, measured at nacelle (SCADA)
e Veer
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Lateral wake center displacement
Vertical wake center displacement
Rotor speed

Angular speed of lidar scan

Yaw misalignment angle

Elevation angle PPI scans
Yaw misalignment angle, measured at nacelle (SCADA)

Target yaw misalignment angle
Elevation angle VAD lidar
Width of wake at center height
Vertical extent of wake

Azimuth angle VAD lidar
Amplitude of wake deficit normalized with Uy,
Thrust coefficient

Wake curl

Rotor diameter

Tuning parameter GCH

Tuning parameter GCH

Power

Available power

Quadratic wake width parameter
Linear wake width parameter
Turbulence intensity

Wake tilt

Turbulence intensity, measured at nacelle
Wind speed

Wind speed deficit

Rotor equivalent wind speed

Wind speed at hub height. When indicating measurement data, it is measured at MM

Wind speed at lower tip hub height
Wind speed at hub height, measured at nacelle (SCADA)
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