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Abstract. Data-driven wake models have recently shown a high accuracy in reproducing wake characteristics from numerical

data sets. This study used wake measurements from a lidar-equipped commercial wind turbine and inflow measurements from

a nearby met mast to validate an interpretable data-driven surrogate wake model. The trained data-driven model was then

compared to a state-of-the-art analytical wake model. A multi-plane lidar measurement strategy captured the occurrence of the

wake curl during yaw misalignment, which had not yet conclusively been observed in the free field. The comparison between5

the wake models showed that the available power estimations of a virtual turbine situated four rotor diameters downstream were

significantly more accurate with the data-driven model than with the analytical model. The Mean Absolute Percentage Error

was reduced by 19 % to 36 %, depending on the input variables used. Especially under turbine yaw misalignment and high

vertical shear, the data-driven model performed better. Further analysis suggested that the accuracy of the data-driven model

is hardly affected when using only SCADA data as input. The outcome of this study demonstrates the enormous potential of10

data-driven wake models.

1 Introduction

With the wind energy industry maturing, more focus is put on maximizing the power yield of existing assets. This involves

moving away from the traditional, and currently still standard, greedy control of individual turbines to an optimization on

wind farm level. In recent years, especially the wake steering concept has received considerable attention in the literature, in15

which the turbine is intentionally misaligned with the inflow wind, introducing a lateral component of the thrust force that

deflects the wake away from a downstream turbine. Many aspects of this strategy have been studied over the years, including

the underlying physics (e.g., Howland et al., 2016; Bastankhah and Porté-Agel, 2016) and its characteristics under different

atmospheric conditions (e.g., Vollmer et al., 2016; Schottler et al., 2017). Additionally, the implementation of this concept in

the field with so-called yaw controllers has received attention. Such controllers typically include a representation of the wake in20

the form of engineering wake models used to solve the optimization problem, as well as the design of the yaw controller itself

(e.g., wind direction robustness (Rott et al., 2018; Simley et al., 2020), hysteresis (Kanev, 2020) and open- versus closed-loop

(Doekemeijer et al., 2020; Howland et al., 2020)).

Although a large body of knowledge about the wake steering concept has been obtained, the industry appears to be hesitant to

adapt due to the large uncertainties and lack of validation (van Wingerden et al., 2020; Boccolini et al., 2021). One limitation25
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is the number of free-field experiments carried out. Due to the considerable expense and inaccessibility of testing turbines,

most research groups revert to high-fidelity simulations or wind tunnel experiments. Wake models and yaw controllers are

consequently developed based on data from idealized conditions. Their accuracy in free-field situations is questionable due to

limited validation, slowing down the adoption by industry. This uncertainty is amplified by the fact that erroneous yawing can

actually lead to significant power losses (e.g., Doekemeijer et al., 2021).30

Several free-field campaigns have been conducted in recent years to study wake steering control. In their pioneering work,

Wagenaar et al. (2012) used a scaled wind farm to demonstrate the concept. Using rear-facing nacelle-mounted lidars, asym-

metries in wake deflection depending on the sign of the yaw angle were observed for the near (Trujillo et al., 2016) and far

wake (Bromm et al., 2018). This asymmetry is also found using numerical tools (e.g., Fleming et al., 2015) and attributed

to shear-induced initial wake deflection (Gebraad et al., 2016) or the Coriolis force (Archer and Vasel-Be-Hagh, 2019). One35

prominent aspect associated with wake steering is the development of the wake curl as observed in numerical and wind tunnel

experiments (e.g., Howland et al., 2016; Vollmer et al., 2016). Fleming et al. (2017a) included a short notion that a curled shape

could be observed in the field, while Brugger et al. (2020) did not find a curled wake in their field experiment. They argued

that the effect of wind veer was too large for the counter-rotating vortices to generate a curled wake, with wind veer reported

to tilt the wake in one direction (Herges et al., 2017; Brugger et al., 2019).40

Using fixed yaw misalignment angles, Howland et al. (2019) found statistically significant gains of up to 47 % for low wind

speeds and a certain wind direction in a small wind farm consisting of six turbines. Ahmad et al. (2019) reported that wake

steering is mainly beneficial in partial wake situations. Fleming et al. (2021) found an asymmetry of the downstream turbine

power generation, where gains from correct steering (wake steered away from turbine) are larger than the losses from erroneous

steering (wake steered into turbine). They attributed this effect to the added wake recovery induced by the counter-rotating vor-45

tices that also generate the wake curl.

Additionally, several controller test studies have been carried out, in which instead of a fixed yaw angle, an optimal yaw angle is

employed based on the inflow conditions. This optimal yaw angle is determined with low-fidelity wake models which generate

discretized look-up tables (LUTs). In a series of NREL papers, different versions of FLORIS (NREL, 2022) have been used to

generate these LUTs. In a field campaign at an offshore wind farm with a turbine spacing of 7 to 8 rotor diameters, Fleming50

et al. (2017b) reported a 10 % power gain for certain wind directions. Fleming et al. (2019, 2020) showed results of a field-test

with closely spaced turbines with two different versions of FLORIS both resulting in a power gain for most conditions, but

clear power losses for some wind directions. Lastly, Doekemeijer et al. (2021) found large power gains of up to 35 % for one

wind direction sector for a two-turbine setup in complex terrain, but also here large losses were found for other wind directions.

These studies are pivotal in demonstrating the potential of wake steering, but also indicate that there is a large variability in55

its demonstrated effectiveness. Next to atmospheric inflow conditions, this can be attributed to turbine type, turbine spacing

and terrain. Additionally, the choice of yaw controller and accuracy of the wake model used to develop the LUTs are be-

lieved to have an effect. After the pioneering wake deficit models of Jensen (1983) and Ainslie (1988), Jimenez et al. (2010)

first came up with a wake deflection model under yaw misalignment. Nowadays, most analytical wake models are based on

the Gaussian model (Bastankhah and Porté-Agel, 2014, 2016; Niayifar and Porté-Agel, 2016). Combined with the curl wake60
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model (Martínez-Tossas et al., 2019), the Gaussian-Curl Hybrid (GCH) model (King et al., 2021) prescribes the effect of

counter-rotating vortices generated by turbine yaw misalignment, such as yaw-induced wake recovery, asymmetric deflection,

and secondary steering. Lastly, Bastankhah et al. (2022) presented an analytical way to describe the development of the wake

curl with downstream distance, and Bay et al. (2022) tackled "deep array" effects, in which many wakes interact deep inside a

large wind farm, with the cumulative-curl model. In addition to these analytical models, data-driven wake (surrogate) models65

have received some attention in recent years. Most use complex neural networks (e.g. Ti et al., 2020; Renganathan et al., 2022;

Purohit et al., 2022; Asmuth and Korb, 2022) and have shown highly accurate results. However, these models need lots of

training data and have an extremely low interpretability (black-box). In an attempt to overcome this, Sengers et al. (2022)

presented an interpretable Data-driven wAke steeRing surrogaTe model (DART). Using only linear equations, DART uses

inflow and turbine variables to estimate wake parameters such as deficit, center location and curl. It has a reduced number of70

parameters and is therefore highly interpretable and needs fewer training data. It outperformed the Gaussian and GCH models

in a comparison using large eddy simulation (LES) results, especially under stable atmospheric conditions.

As mentioned before, studies validating wake models with field measurements are rare, especially when wake steering is

applied, resulting in uncertainties about their accuracy. Moreover, comparisons between analytical and data-driven models in

their abilities to reproduce the characteristics of wakes observed in the free field is done sporadically. However, validations and75

comparisons are necessary to assess their performance and provide direction for future work.

The objective of this paper is to use nacelle-based lidar measurements of the wake of a commercial turbine to validate the

Data-driven wAke steeRing surrogaTe model (DART) and compare its accuracy with that of the Gaussian-Curl Hybrid model

(GCH). This comprises of three components: (1) To design a scanning strategy able to capture wake characteristics such as

deficit, center position and curl to accurately reconstruct a vertical cross-section of the wake. (2) To assess the performance80

of the wake models by their ability to estimate the available power of a virtual downstream turbine observed by the lidar. (3)

To investigate DART’s performance as function of data set size and input variables, including an analysis whether the model

could operate on SCADA data alone.

2 Measurement campaign

2.1 Site and experiment85

Measurements were carried out in the period of February through April 2021 as a part of a yaw-control field campaign at

a slightly hilly onshore site in north-eastern Germany located approximately 13.5 km from the Baltic sea. The layout of the

site, including the positioning of the measurement equipment, is shown in Figure 1. The nacelle of turbine T1 was equipped

with a downstream facing Leosphere Windcube 200S pulsed lidar. This was a commercial 3.5 MW eno126 turbine with a hub

height of 117 m and a rotor diameter D of 126 m. The nacelle was further equipped with a Thies Clima wind vane and cup90

anemometer, as well as three Trimbl Zephir GPS systems to measure orientation, tilt and roll (Sect. 2.6). A second lidar of the

same type was installed west of the turbine to measure inflow profiles (VAD, Sect. 2.3). North of this turbine, a meteorological

mast (MM, Sect. 2.4) was erected and equipped with Thies Clima cup anemometers and wind vanes.
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As these experiments were part of a larger field campaign, only in the wind direction sector δ = [268◦, 360◦] ∪ [0◦, 20◦]

a fixed yaw offset could be applied. Unfortunately, in this sector two smaller turbines (T3 and T4) were located downstream95

of the lidar-equipped turbine. For the objectives of this study, measurements at 4D downstream were targeted. This was to

avoid the near wake, as the two investigated wake models fail to represent the non-Gaussian shape of the wake deficit, and

to ensure that the wake curl had developed. The wind speed reduction due to the induction zone of T3 at 4.8D (hub height

of 103 m and a diameter of 93 m) was estimated to be in the order of 2 % (estimated with the vortex sheet theory (Medici

et al., 2011)) at the targeted distance of 4D. Although not ideal, no alternative was possible due to the restrictions of the100

measurement site and it was decided to neglect the effects of this induction zone. Part of the wind direction sector could

not be used due to the positioning of T4 at 3.2D downstream. To make sure that the wake was not steered into T4, in the

sector δ = [268◦, 316◦] the turbine toggled between target yaw misalignment angles of φt = 0◦ (duration of 30 minutes) and

φt = +15◦ (duration of 60 minutes, clockwise rotation looking from above), steering the wake to the left. Correspondingly,

in the sector δ = [316◦, 360◦] ∪ [0◦, 20◦] the turbine toggled between φt = 0◦ (30 minutes) and φt =−15◦ (60 minutes,105

counterclockwise rotation looking from above), steering the wake to the right. The downside of this approach was that directly

comparing positive and negative yaw angles under similar atmospheric conditions was not possible. Additionally, more data

was collected in the first sector as this wind direction was more dominant. Lastly, Fig. 1 shows that a small 6 m high hill 5D

upstream of T1 and a larger 27 m high hill 8D downstream of T1 were exactly in the wind direction sector that was not used

due to the presence of the downstream turbines. Trees could affect the measurements for δ ≈ 350◦, as noted in Hulsman et al.110

(2022) using data from the same site. This influence was accepted, as omitting this sector would result in large data losses.

2.2 Nacelle lidar: Multiple PPI scans

Design scanning strategy

A pulsed lidar mounted on a turbine nacelle typically measures a horizontal plane at hub height using a single plan position

indicator (PPI) scan to sample the wake. Although quick, this trajectory only provides data in a horizontal plane. Attempts115

have been made to capture information in the vertical plane, such as in Beck and Kühn (2019) who proposed a scanning

pattern of alternating PPI and range height indicator (RHI) scans to obtain information in both dimensions. However, wake

shape deformations due to wind veer (tilted) or yaw misalignment (curled) cannot be captured with this scanning strategy.

Brugger et al. (2019, 2020) used nine PPI scans at different elevation angles, allowing to describe non-circular wake shapes

in a vertical plane. In this paper, their strategy was adopted and evaluated numerically to find the optimum scanning pattern120

in terms of number of PPI scans and their angular speed (following Carbajo Fuertes and Porté-Agel (2018)) to describe a 10-

minute averaged wake. This optimization was using large-eddy-simulation (LES) results, allowing for a systematic uncertainty

analysis of the proposed scanning patterns. The PArallelized Large-eddy-simulation Model (PALM, Maronga et al. (2020))

coupled with the aeroelastic code FAST (Jonkman and Buhl Jr., 2005; Krüger et al., 2022) representing the NREL 5MW

turbine (Jonkman et al., 2009) provides the numerical wind fields. Precursor simulations generated realistic inflow conditions,125

after which main simulations with one turbine were performed. The aeroelastic code for the turbine installed in the field,

as used in Sect. 4.1, was not yet available during the planning stage of this campaign. Both turbine T1 and the NREL 5MW
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Figure 1. Layout of the measurement site with the local topography indicated in the background. Black markers indicate turbines, where T1

is equipped with the nacelle lidar. White markers indicate the met mast (MM) and ground-based lidar (VAD). Shaded areas indicate the wind

direction sector with φt > 0◦ (blue) and φt < 0◦ (yellow) and where wake measurements are assumed to be disturbed by the downstream

turbines (grey). Thick black solid line indicates the measured locations used for analysis. (Source topographic map including color bar:

topographic-map.com (2022)).

Figure 2. Results of the virtual lidar tests. Bars indicate the mean and whiskers the standard deviation of the Absolute Percentage Error (APE)

of available power Pav over six simulations. The number of PPI scans is indicated on the x-axis. "all" indicates the use of all numerical data,

hence the error introduced by the composition algorithm. The opaqueness represents the lidar’s angular speed ωlidar.
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turbine have the same rotor diameter (126 m), but differ in hub height (117 vs 90 m) and aeroelastic properties. It was, however,

assumed that at 4D the characteristics of the wakes produced by these turbines are sufficiently similar.

A single turbine with yaw angles of φ= (−15◦, 0◦, 15◦) in a neutral (TI = 10.3 %, α = 0.17) and a stable (TI = 5.7 % and130

α = 0.32) boundary layer with a hub height wind speed Uh ≈ 8 m s−1 was simulated. The simulation length was 25 minutes,

of which the first 15 minutes were omitted as spin-up and the remaining 10 minutes were used for analysis. Synthetic lidar

data targeting 4D downstream were subsequently generated by employing the lidar simulator LiXim (Trabucchi, 2019) with an

accumulation time of 0.1 s and an opening angle of 70◦. Point-wise averages were taken for all points in the scanning cycle. The

wake composition method, later described in Sect. 3.1, was used to reconstruct vertical cross-sections of the wake, allowing135

for an evaluation of available power compared to the reference 10-minute averaged LES data. Used as metric is the Absolute

Percentage Error (APE) of available power Pav over the six (two boundary layers times three yaw angles) simulations, which

is the absolute value of the Percentage Error (PE) calculated with with Eq. (1):

PE [%] =
Pav−Pav,ref

Pav,ref
· 100 =

U3
eq−U3

eq,ref

U3
eq,ref

· 100 (1)

in which Ueq indicates the rotor equivalent wind speed. The bar ’all’ on the far left in Fig. 2 indicates the reconstruction based140

on the original LES data, hence the error introduced by the composition method. Further, 1, 3, 5, 7 and 9 PPI scans were tested,

where the middle scans always targeted hub height and the outermost scans upper and lower tip height at 4D. Trajectories with

an even number of PPI scans were not tested, as this would remove the scan at hub height that was needed for another study.

Additionally, it is desirable to measure the largest wake deficit, which is expected to develop around hub height. Figure 2 shows

that 5 PPI scans typically holds the highest accuracy. Using fewer scans results in inaccurate estimations of the wake deficit145

distribution in the vertical, while using more scans results in long cycles and consequently fewer measurements per observation

point. The angular speed ωlidar seems to have little effect, except for when 7 PPI scans are used. This is attributed to chance,

as too few cases are studied for the statistics to converge. Regardless, based on these results it was decided to implement the

trajectory showing the lowest error, hence consisting of 5 PPI scans with ωlidar = 14◦ s−1. The accumulation time used was

0.1 s. With an opening angle of 70◦, the duration of one PPI scan is 5 s. Additionally, changing elevation angles takes 1.3 s and150

resetting to the start of the cycle takes 3.5 s, adding to 34 s to complete one full cycle.

Data processing

In the processing phase of the field data, data up to 6.5D downstream were considered during the filtering. Since the performed

scans were quite fast with a relatively coarse resolution, all scans with the same elevation angle in a 10-minute window (see155

Sect. 2.7) were grouped together to get a better estimate of the measurement distribution. Simple filtering based on carrier-to-

noise ratio (CNR) and line-of-sight velocity (LOS) was performed, where only realistic data with CNR < 0 dB and 0 m s−1 <

LOS < 20 m s−1 were kept. On the remainder, a Gaussian filter was used, retaining only measurements within three standard

deviations of the median CNR and LOS (99 % confidence interval). This removed outliers due to hard targets, as illustrated

in Fig. 3a. However, some scans exhibited a LOS-CNR diagram as illustrated in Fig. 3b, containing many measurements with160

high CNR and low LOS values. To filter out these erroneous measurements, a Mean Shift clustering algorithm (Fukunaga and
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(a) (b)

Figure 3. Examples of Multiple PPI scan filtering in LOS-CNR diagram in which black markers indicate original data and red markers data

kept after filtering. (a) A textbook case with few outliers that indicate hard targets and (b) a more problematic case in which many corrupted

measurements. Here yellow markers indicate a second cluster from which all measurements were omitted. Black crosses indicate the two

cluster centers.

Hostetler, 1975) was employed, as was for instance used in Wang et al. (2022) as part of data cleaning for power curve tuning.

The algorithm identified clusters in the LOS-CNR space and allocated all measurements to any of the clusters based on the

Euclidean distance to the cluster center. Clusters were then either considered or eliminated based on the location of their center.

Lastly, the Gaussian filter based on the 99 % confidence interval was repeated, as removing one cluster drastically affected the165

outcome of this filter. After filtering, all scans were interpolated to a standard grid with a resolution of 1.4◦ (corresponding

to the original resolution) to account for the slightly different azimuth angles between scans. Next, the scans were averaged

point-wise as long as not more than two data points within a 10-minute window were missing. When more than 25 % of the

measurements were filtered out, as is the case with Figure 3b, the averaged scan was removed from the data set, resulting in

fewer than five PPI scans. If fewer than four averaged PPI scans remained after filtering, the case was eliminated. Lastly, the170

scans’ azimuth and elevation angles were corrected with the nacelle’s tilt angle and misalignment (see Sect. 2.6). The horizontal

wind speed was subsequently computed by correcting the LOS with these azimuth and elevation angles.

2.3 Ground-based lidar (VAD)

As shown in Figure 1, the ground-based lidar was situated 1.85D upstream of the lidar-equipped turbine for δ = 281◦ to

measure profiles of wind speed and direction. The ground-based lidar performs continuous velocity-azimuth display (VAD)175

scans at an elevation angle of φVAD = 75◦ with an accumulation time of 0.5 s and an angular speed of 30◦ s−1. Filtering was

done based on the 2D Histogram method introduced by Beck and Kühn (2017), which assumes a normal distribution of LOS

and CNR values. The measured data points were binned by their LOS and CNR values and bins that had less than 10 % of the
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maximum number of data points in one bin were omitted.

Next, the azimuth angle (θVAD) was corrected by means of a hard target analysis, such that θVAD = 0◦ faces north. To obtain180

the wind speed components (u, v, w) and consequently the horizontal wind speed and direction, the measurements of each

range gate were fitted with the following sinusoid:

LOS = u cos(θVAD) sin(
π

2
−φVAD) + v sin(θVAD) sin(

π

2
−φVAD) +w cos(

π

2
−φVAD) (2)

Lastly, only when at least 75 % of the data points remained after filtering and the fitted sinusoid achieved a correlation coeffi-

cient of at least 0.8 (determined empirically), the wind speed components of a vertical level were retained.185

2.4 Met mast

A meteorological tower was positioned 2.7D upstream from T1 at δ = 350◦ (Fig. 1). The met mast was equipped with cup

anemometers at 116.3 m (hub height, Uh) and 54.2 m (lower tip height) to measure wind speed and shear. Wind vanes were

located at 112.2 m (approximately hub height, δh) and 54.5 m (lower tip height). The highest cup anemometer was located

on the top of the met mast for undisturbed flow from all directions, whereas the other cup anemometer and wind vanes had190

orientations of 315◦ and 135◦, respectively. Disturbances due to the structure occur in the sector that was not considered

(Sect. 2.1). For other wind directions, the measurements were assumed to be undisturbed. All sensors had a sampling frequency

of 50 Hz.

2.5 Wind turbine operational data

Standard supervisory control and data acquisition (SCADA) data were collected at the turbine at a frequency of 50 Hz. These195

data contain measurements from the nacelle’s wind vane δS and cup anemometer US, as well as power P , rotor speed ω and

turbine status, the latter indicating whether the turbine was operating normally. A standard nacelle transfer function was used

by the operator to correct wind speed measurements for the influence of the rotor.

2.6 GPS

All above-mentioned systems were equipped with a Global Positioning System (GPS) sensor used for time synchronization.200

Additionally, the nacelle of T1 was equipped with three GPS sensors to measure orientation, roll and tilt. Orientation measure-

ments were used to compute the yaw misalignment φ of the turbine relative to the wind direction δh measured at the met mast.

Nacelle roof tilt angles were used to correct the lidar scans’ elevation angles, but the scans were not corrected for roll as it was

expected to only have a small influence on the results.

2.7 Selection of data for model evaluation205

The measurements were averaged over 10 minutes as is commonly done in the wind energy industry. Case selection was done

using the following steps:
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1. Within a 10-minute window, no yaw maneuver should take place. A preselection of cases was therefore done purely

based on GPS data. A case was considered when the orientation did not change for at least 12 minutes, of which the

first two minutes were not considered for analysis because the wake needed time to reach 4D downstream. In case the210

orientation did not change for more than 22 minutes, the first two minutes were omitted and the remainder is split in two

10-minute windows as far apart as possible.

2. The 10-minute averaged Uh needed to be between cut-in and rated wind speed. δh needed to be in the defined sector

(Sect. 2.1) and approximately normally distributed. This eliminated situations where there is a clear trend in the wind

direction signal.215

3. The inflow measured at the met mast should reasonably compare to the measurements at the turbine’s nacelle. The met

mast measurements were temporally corrected to match the nacelle signal using Taylor’s hypothesis of frozen turbulence.

Next, the two signals were compared, where the 10-minute averaged wind speed |Uh−US|< 1 m s−1 and direction

|δh− δS|< 5◦.

4. The profiles from the VAD lidar were used to check whether the wind speed profiles were approximately logarithmic, as220

the effect of low-level jets on the downstream wake characteristics was currently not captured by the wake models and

considered out of the scope of this study.

5. Lastly, if all checks were passed, all completed cycles within the defined 10-minute window were averaged as described

in Sect. 2.2. After averaging, the scans were interpolated to a vertical plane at 4D downstream of the turbine. The wake

deficit (Udef ) was calculated by subtracting the wake measurements with the inflow profile obtained from the met mast225

measurements, and normalized by dividing by the hub height wind speed Uh.

This selection procedure resulted in 382 10-minute averaged cases to be used for analysis. Figure 4 displays the distribution

of measured yaw angles during the campaign. Most measurement were done without yaw misalignment, since during a part

of the campaign the implemented controller had issues and turbine control reverted back to standard operation. The difference

between the number of positive and negative yaw angles is due to a more dominant wind direction in the sector containing230

positive yaw angles.

The solid vertical lines indicate the median yaw angles per target angle. For greedy control, the median shows a small bias

of φ=−1.2◦, suggesting a calibration error of the nacelle’s wind vane. For a target angle φt = +15◦, the median achieved

φ= +10.9◦, whereas for φt =−15◦, φ=−13.2◦ is achieved. These angles are smaller than the targeted angles, which is due

to the wind vane error under yaw misalignment (Kragh and Fleming, 2012; Simley et al., 2021). Figure 5 displays an overview235

of the inflow conditions measured during these 382 cases, all showing an approximately normal distribution. The shear α with

a mean of 0.3 is slightly larger than expected and the veer δα is smaller than expected, showing a high occurrence of negative

values.

9

https://doi.org/10.5194/wes-2022-118
Preprint. Discussion started: 13 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 4. Data availability of the 10-minute averaged cases as a function of achieved yaw angle (φ). Colors indicate the targeted φt =−15◦

(yellow), φt = 0◦ (red) and φt = +15◦ (blue). Solid vertical lines and accompanying text mark the median of the achieved yaw angles.

Figure 5. Distribution of 10-minute averaged inflow variables measured at the met mast for all 382 cases: hub height wind speed (Uh),

turbulence intensity (TI), shear (α) and veer (δα).

3 Methods

3.1 Data-driven wAke steeRing surrogaTe model (DART)240

DART was introduced in an LES study by Sengers et al. (2022) demonstrating that a purely data-driven model has the potential

to outperform analytical wake models in neutral and especially stable atmospheric conditions. DART estimates wake charac-

teristics (e.g., center position, deficit and curliness) with a linear regression model from standard input parameters (e.g., yaw
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Table 1. Dimensionless variables describing the wake characteristics obtained with the Multiple 1D Gaussian method.

Scalar Parameter Symbol

Amplitude normalized wake deficit Az

Lateral wake center displacement µy

Vertical wake center displacement µz

Width wake center height σy

Vertical extend σz

Curl curl

Tilt tilt

Quadratic wake width parameter sa

Linear wake width parameter sb

misalignment, shear, thrust coefficient).

The wake is described as a set of quantifiable characteristics (Table 1) by utilizing the Multiple 1D Gaussian method pro-245

posed in Sengers et al. (2020). It fits a 1D Gaussian through the wake deficit data normalized by the wind speed at hub height

(Udef/Uh) in the horizontal plane for every height level, in the current study obtained from five consecutive PPI scans. This

results in a set of local wake deficits (amplitude), center positions (location) and widths (standard deviation) for each height.

By fitting another 1D Gaussian through the set of local deficits in the vertical, the vertical wake center position and vertical

deficit profile can be determined. A second-order polynomial is fit through the set of local wake center positions to find the250

wake curl and tilt. The same thing is done for the wake widths to find it’s profile as function of height.

In DART, these wake characteristics (Y) are estimated from input parameters (X) using a simple linear model:

Y
(n)

= X
(n×p)

× B
(p)
. (3)

in which B are the model coefficients. The matrix dimensions are indicated by the sample size n and the number of input pa-

rameters p, containing the input variables, their second-order and interaction terms, as well as intercepts. The model coefficients255

are fitted with the Lasso method (Tibshirani, 1996), using the following cost function:

argmin
B

∑

n

(yn−
∑

p

xnpBp)2 +λ
∑

p

|Bp|. (4)

This method remains close to ordinary least squares, but adds a regularization parameter λ to its cost function, effectively pe-

nalizing adding more parameters. This ensures shrinkage of the input parameters and eliminates the issue of multicollinearity

as only one of the highly correlated input parameters is chosen. The notations presented here deviate slightly from those in260

Sengers et al. (2022), as in the current study only one distance downstream is considered, simplifying the equations.

To include nonlinear relations between input parameters and wake characteristics, the original variables can be transformed

with e.g., a square-root or exponential transformation. In the training stage (Sect. 3.5), it is determined what set of input vari-

ables and transformations yields the most accurate results.
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Lastly, the estimated wake characteristics are used in a composition method, which is the reversed version Multiple 1D Gaus-265

sian method described above, to generate a vertical cross-section of the wake deficit and wind field. For a more detailed

description of DART, the reader is referred to Sengers et al. (2022).

3.1.1 Modifications to the model

A few changes have been made to DART since its first description in Sengers et al. (2022). Most notably, the feature selection

procedure has been changed. Before estimating the wake characteristics with a linear model, inflow variables (e.g., φ, α, ω) un-270

dergo transformations. In addition to the non-transformed variable, the square root, exponent, natural logarithm and reciprocal

transformation are considered for all input variables, resulting in five options for each variable and many possible sets of input

parameters (e.g., φ, α−1, ln(ω)). In Sengers et al. (2022), all these possibilities were tested, the available power of a virtual

turbine was estimated and compared to the original data, and the set of input parameters that had the smallest error was chosen.

This selection procedure was not only very computationally expensive, but also does not necessarily give the most accurate275

solution for all wake characteristics. Hypothetically, the wake center position could be best explained by the non-transformed

yaw angle, whereas the wake curl could be best explained by the exponent of the yaw angle. In the current work, the deter-

mination of the best set of transformations is tested for each wake steering variable individually. The best transformation is

then chosen as the one that has the smallest mean absolute error on the training data. This not only allows for more accurate

estimates, but also speeds up the training process.280

Secondly, square root and natural logarithm transformations do not allow for negative input values. A sign function is used to

include these values rather than omitting them, as was done in the previous work.

Lastly, in the execution phase extrapolation is prevented by using the maximum (or minimum) value found in the training data

when an input variables exceeds this range. Although this does not allow DART to give accurate estimations in new situations,

it eliminates erroneous estimates due to extrapolation.285

3.2 Reference power

The wind speed measured by the nacelle lidar is used to obtain the available power at 4D downstream. Since the spatial

resolution is relatively coarse and the two outermost PPI scans target the tip heights, the 10-minute averaged wind speeds are

interpolated using a cubic spline function to a resolution of ∆ = 5 m. This inherently fills gaps when data are not available.

The spatially interpolated data are consequently used to determine a rotor equivalent wind speed (Ueq) and an available power290

Pav,ref used as a reference in the remainder of this study.

3.3 Input variables

As argued in Sengers et al. (2022), highly correlated input variables are interchangeable as they provide similar information.

However, as long as they are not perfectly correlated, including all variables can lead to a higher accuracy as some new

information is added. Multicollinearity is not an issue due to the use of the Lasso regression method.295
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Figure 6. Correlation matrix of available input variables. In addition to the inflow variables shown in Fig. 5, yaw misalignment φ, rotor speed

ω and power P are considered input variables.

Because of DART’s flexibility, training with different sets of input variables is possible, allowing for an analysis of the model’s

accuracy as a function of chosen input variables. An overview of the available input variables is displayed in a correlation

matrix (using the Pearson correlation coefficient) in Fig. 6. Other variables such as the wind direction variability and TI at

lower tip height could have been included, but were omitted for brevity. As opposed to what was seen in LES in Sengers et al.

(2022), the inflow variables δα, α and TI are weakly correlated in the free field. Secondly, ω and P are highly correlated with300

Uh.

3.4 Training and testing data

The data set is split into a training part (80 % of total size) and a testing part (remaining 20 %). This has been done in

a stratified random manner, meaning the data set was first split up in three subsets according to their target yaw angle

φt = (−15◦, 0◦, 15◦), after which from each subset 20 % was randomly selected to be testing data. This way, it is en-305

sured that both testing and training data contain cases with a yaw misalignment. To not base the results on only a single testing

data set, this randomly splitting of the data set (resampling) has been repeated 96 times (hereafter: resamples). The choice of

96 resamples is pragmatic, as it was convenient for parallel computing (multiple of 24 nodes per core). Error statistics appear to

be normally distributed, which was not yet the case with 24, 48 or 72 resamples. Although more resamples are desirable (e.g.,

bootstrapping is typically done over several thousands), this was not possible due to computational limitations as the training310

of the model can be quite expensive as discussed in Sect. 3.5.
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(a) (b) (c)

Figure 7. Performance of DART-3 on the training data. The set of input variables is (φ,α,P ). (a) Histogram of PE of Pav for one resample.

In the top right the MPE and MAPE are given. Histograms of MPEs (b) and MAPEs (c) over all 96 resamples.

3.5 Feature selection

In this study, multiple versions of the DART model were considered, each having a different set of input variables. Adding

more input variables might increase the accuracy, but will increase the training time of the model significantly. In Sengers

et al. (2022) it was hypothesized that DART can achieve reasonable accuracy as long as each of the following clusters was315

represented: yaw (φ), atmospheric inflow (δα, α, TI) and turbine (ω, P , Uh). Due to its high correlation with the turbine

variables, Uh is here considered a turbine variable rather than an inflow variable. Following this logic, the first version of

DART uses three input variables.

To determine the most accurate solution using only three variables, all possible sets of input variables and their respective

transformations (see Sect. 3.1.1) are tested during the training stage and their accuracy to reproduce the training data set is320

investigated. By means of an example, Fig 7a displays the error distribution of one resample. The error metric used here is

the Percentage Error (PE) of Pav (calculated with Eq. (1)) at 4D downstream. From these values, a Mean Percentage Error

(MPE) and Mean Absolute Percentage Error (MAPE) can be computed, as indicated in the top right of the figure. Repeating

this for all 96 resamples, one can obtain a histogram of MPEs and MAPEs as displayed in Fig. 7b and c. Finally, the mean

over 96 MPEs (MPE) and MAPEs (MAPE) can be calculated, see top right of the figures. The MPE =−2.19 % illustrates a325

negative systematic bias, meaning DART underestimates Pav. To determine the most accurate set of input variables, MAPE is

considered. The results for all considered combinations of input variables are displayed in Table 2, showing that the set (φ, α,

P ) provides the most accurate result (lowest MAPE) and is therefore used in the remainder of the study, denoted as DART-3.

The training time for each set of input variables with DART-3 is in the order of 10 minutes, hence the total training time to

determine the best set of input variables is approximately 1.5 hours.330

Secondly, because the training of DART-3 is fast, an additional variable can be included to improve the accuracy of the model.

The first three variables are chosen similarly to DART-3 (one from each cluster), while the fourth variable can be any input

variable not yet selected. Repeating the analysis of computing a MAPE for each resample and consequently a MAPE for each

14

https://doi.org/10.5194/wes-2022-118
Preprint. Discussion started: 13 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 2. Overview of all possible combinations of input variables in DART-3 and their respective MAPE values. Boldface indicates the

combination resulting in the lowest error.

Variable 1 Variable 2 Variable 3 MAPE [%]

φ δα ω 18.24

φ δα P 16.70

φ δα Uh 17.17

φ α ω 15.11

φ α P 14.53

φ α Uh 15.08

φ TI ω 15.66

φ TI P 14.77

φ TI Uh 14.81

set of input variables, generating a table corresponding to Table 2 (not shown here for brevity), reveals that (φ, α, P , Uh) is

the most accurate combination with MAPE = 12.69 %, hereafter called DART-4. Its training time for each combination is335

approximately one hour, hence with 18 possible sets of input variables the total training takes about 18 hours.

Lastly, all available variables are used as input in DART-7, demonstrating the maximum achievable accuracy of the data-driven

model during this experiment. DART-7’s accuracy on the training data was indeed the highest with MAPE = 10.31 %. The

training time for DART-7 is approximately one month if not parallelized.

3.6 Analytical wake model340

The Gaussian-Curl Hybrid (GCH) model as available in version 3.0rc4 of the FLORIS framework (NREL, 2022) acts as a

reference model in this study. Since presently only the wake at a distance of 4D behind the upstream turbine is studied, the

GCH model could have benefited from including a near-wake model (e.g., Blondel and Cathelain, 2020), but this coupling was

not available in this version of FLORIS. The CT curve of the eno126 turbine is obtained from the Bladed model for which

the aerodynamic properties of the turbine were provided by the operator, and is used in these calculations. Inflow information345

is taken from the 10-minute averaged met mast data. The model tuning parameters (αGCH, βGCH, ka,GCH, kb,GCH) are

determined by minimizing the MAPE of available power over the training data, analogous to the training of DART. The tuning

takes about 3 hours and the model has an error of MAPE = 18.13 %.
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Figure 8. Correlation matrix of the input variables and wake characteristics. Az is the amplitude of the wake deficit normalized by Uh, µy

and µz the lateral and vertical wake center displacement, the wake curl and tilt, σy and σz the width and height of the wake and sa and sb

the quadratic and linear wake width parameter, respectively.

4 Results

4.1 Observed wake characteristics350

In this section, an assessment of the characteristics of the observed wake listed in Table 1 is performed, which is deemed a

necessary first step before investigating the accuracy of wake models. The Multiple 1D Gaussian method (Sect. 3.1) is used

to describe the wake in quantifiable characteristics. Figure 8 displays how the nine wake characteristics correlate with the

input variables. The wake center deficit normalized with the hub height wind speed, denoted Az , is highly correlated with

shear α and turbulence intensity TI and shows a moderate correlation with veer δα, corresponding to the correlations found355

in previous studies (e.g., Bastankhah and Porté-Agel, 2016; Schottler et al., 2017). Az has a weak correlation with the hub

height wind speed Uh as it was already used to normalize the deficit. The lateral wake center displacement µy has a relatively

16

https://doi.org/10.5194/wes-2022-118
Preprint. Discussion started: 13 January 2023
c© Author(s) 2023. CC BY 4.0 License.



(a) (b)

Figure 9. Scatter plot of (a) µy and (b) curl as a function of yaw angle φ. Red markers indicate field measurements and blue triangles indicate

LES data. Fitted linear functions are indicated with lines. White plus signs indicate the case studied in Fig. 10.

high correlation with the yaw misalignment φ, confirming that the wake is deflected when the turbine is operated with a

yaw misalignment. Moderate correlations with α and δα are found, corresponding to previous findings (e.g., Fleming et al.,

2015; Sengers et al., 2022) that found that wake deflection is affected by atmospheric conditions. The vertical wake center360

displacement µz , a relatively unexplored wake characteristic, appears to be positively correlated with α. It is hypothesized

that this is due to a larger wind speed gradient at lower tip height, increasing the mixing compared to that at upper tip height,

effectively moving the wake center upwards. The curl only correlates with φ, whereas the wake tilt is highly correlated with

δα, corresponding to Abkar et al. (2018). Lastly, variables related to wake size (σy , σz , sa, sb) have very weak correlations

with the input variables, which could be due to the spatial resolution of the lidar scans.365

Two wake characteristics, µy and curl, are investigated as function of φ as these are deemed important for wake steering. Figure

9a demonstrates that |µy| typically increases with |φ|, hence the wake deflection is larger for larger yaw misalignment angles,

although there is a lot of scatter in the field measurements. Three clusters can be identified, corresponding to the distribution of

yaw angles shown in Fig. 4. To check whether µy’s order of magnitude is reasonable, field measurements are compared with

LES results. Different than in Sect. 2.2, the turbine simulated here represents turbine T1 in the field, for which the aerodynamic370

properties were provided by the operator in the Bladed model and translated into FAST. Because of computational restrictions,

only three yaw settings (−15◦,0◦,15◦) with each four inflow conditions were simulated, which will represent only a small

part of the full range of conditions observed in the field. The simulations have Uh ≈ 8 m s−1, and the inflow variables are

0.11< α < 0.26; 1.1◦ < δα < 2.6◦ and 6.0 %< TI< 8.4 %. The LES results show an initial deflection for φ= 0◦ (Gebraad

et al., 2016), which is not clearly observed in the field. Otherwise, the observed magnitude of deflection is comparable between375

LES and the free field.
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(a) (b)

Figure 10. Exemplary case illustrating the wake curl generated by a misaligned turbine (φ= 12.8◦,Uh = 9.4 m s−1, α= 0.33, δα=−0.8◦,

TI = 10.4%). (a) The wake deficit of the ten-minute averaged lidar data of 17 consecutive scans (colors) and local wake center positions

(black plus signs) with corresponding fitted polynomial (black dashed line) indicating the wake curl. (b) The reconstructed wake by utilizing

DART’s composition algorithm.

Figure 9b displays curl as function of φ. Similar to µy , the field measurements have a larger spread than the LES results. Both

data sets, however, demonstrate a clear and similar dependency of curl on φ. This results proves that the wake curl does indeed

occur in field, something that until now had not conclusively been shown in literature.

One case is selected (indicated with a white plus sign in Fig. 9) to illustrate what a wake with curl ≈ 0.5 looks like. Figure 10a380

presents the observed deficit measurements (Udef ) normalized by Uh, in which the wake’s curl is indicated by the black dashed

line. The curl is indeed relatively small and could be missed when operating the long-range lidar with a different scanning

strategy. Figure 10b represents a reconstructed wake using DART’s composition algorithm (Sect. 3.1). Additionally, Fig. 10b

clearly shows the wake center has moved to the left and up.

Even though the curling observed in this study is relatively small, Figure 9b does confirm that the wake curls as expected from385

numerical and wind tunnel experiments. Free-field experiments are often restricted to yaw misalignments smaller than 20◦,

whereas numerical and wind tunnel studies allow for larger misalignments. As suggested in Brugger et al. (2020), this is the

reason for the lack of observations of fully curled wakes in the free field.

4.2 Performance of wake models

This section discusses the performance of DART and GCH in a comparison with the wake observed in the free field. The390

models were trained (DART, Sect. 3.5) or tuned (GCH, Sect. 3.6) on 80 % and are now tested on the remaining 20 % of the

data. Fig. 11a displays the model accuracy on one resample, using the Percentage Error (PE) of available power (Pav) as a

performance metric, calculated with Eq. (1). All models seem to have negative bias (MPE < 0 %), indicating that the rotor

equivalent wind speed Ueq is overestimated. DART’s bias reduces with increasing number of input variables, as is evident from

the smaller error of DART-7 compared to DART-3 and DART-4. DART-7’s bias is comparable to that of GCH. GCH’s spread395
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(a) (b) (c)

Figure 11. Like Fig. 7, but for the testing data for GCH (black/grey), DART-3 (red), DART-4 (blue) and DART-7 (yellow). (a) Histogram

for one resample, (b) for MPEs and (c) for MAPEs of all 96 resamples. Fitted normal distributions are indicated with lines and statistics are

given in the top right.

is however larger than DART’s, resulting in a larger MAPE despite having a lower MPE.

When repeating this for all 96 resamples, a distribution of MPE and MAPE values can be found (Fig. 11b-c). Also here DART

shows a small negative bias (MPE< 0 %), hence underestimating Ueq. GCH has a small positive bias, therefore overestimating

Ueq, and a much wider distribution. The distribution of MAPE values indicates that with just three input variables, DART-3 is

able to outperform GCH, showing a reduction of MAPE of 19 %. Moreover, both its MPE and MAPE are very similar to those400

of the training data (Fig. 7), indicating that the model is able to generalize well to unseen or independent data. Adding more

variables further improves DART’s accuracy, reducing MAPE with 28 % and 36 % for DART-4 and DART-7 compared to

GCH. Moreover, the fitted normal distributions of MAPE for GCH and DART-4 or DART-7 are hardly overlapping, indicating

that DART significantly outperforms GCH when trained with at least four variables. These results show that the potential of a

data-driven model is enormous. More of the variability of wakes observed in the free field can be explained by using only four405

input parameters in a data-driven model than with an industry-standard analytical model.

To gain a better understanding of these results, it is investigated under what conditions the models’ performances differ con-

siderably. DART-3 is here omitted for brevity. First, the models’ errors are investigated in relation to yaw angle φ. Figure 12a

displays a histogram of data availability per φ bin of 5◦ over all 96 resamples, while Fig. 12b and c show the MPE and MAPE

of Pav per bin. The GCH model has MPE > 0 % for φ < −7.5◦ and MPE < 0 % for 2.5◦ < φ < 7.5◦. This is likely due to410

low data availability. Regardless, DART demonstrates a more uniform trend over all yaw angles. When looking at MAPE (Fig.

12c), it can be seen that especially under yawed conditions (both positive and negative) DART seems to outperform GCH. It is

hypothesized that this is due to a more accurate estimation of the wake center position in DART.

Figures 12d-f display a similar analysis as function of shear α. GCH shows an almost linear trend as function of α, with

MPE < 0 % for small α and MPE > 0 % for large α. This indicates that the modeled wake recovery is too slow under low415

shear and too fast under high shear inflow, which could be due to the turbulence model not explicitly including α as an input
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(a) (b) (c)

(d) (e) (f)

Figure 12. Performance of GCH (grey), DART-4 (blue) and DART-7 (yellow) as function of φ (a-c) and α (d-f). Histogram of data availability

per bin (a,d) and corresponding MPE (b,e) and MAPE (c,f) per bin.

parameter. In contrast, DART explicitly uses α to estimate wake characteristics. It therefore produces more uniform results

and outperforms GCH especially when α > 0.4 (see Fig. 12c). Over the whole range of φ and α, DART-7 is marginally more

accurate than DART-4.

Finally, the accuracy of GCH and DART in estimating the wake characteristicsAz , µy and curl is investigated. The left column420

of Figure 13 displays the observed Az as a function of the model estimated Âz . As clearly indicated by the fitted line, the

GCH model overestimates small deficits and underestimates large deficits. This could be resolved by giving more weight to

outliers when tuning the parameters, although that could lead to the undesirable decrease of accuracy in frequently occurring

conditions. The fitted line to the DART-4 results appears to be closer to the unity line, while for DART-7 an even better

agreement is found. Additionally, the Mean Absolute Error (MAE) and Pearson correlation coefficient (R) displayed in the top425

left indicate a more accurate modeling ofAz using DART. The center column displays a similar analysis for µy . The fitted lines

imply a higher accuracy for GCH than for DART, while the statistical metrics suggest the opposite. GCH’s estimates for µy

seem to be clustered, which is not true for DART or the measurements. As noted in Sengers et al. (2022), the effect of inflow

conditions (e.g., α) on the wake deflection is not well described in GCH. Consequently, the wake deflection is only a function

of yaw angle and the observed clusters can directly be related to the distribution of yaw misalignments angles shown in Fig.430

4. Additionally, no transparent markers can be observed in Fig. 13b. Since GCH’s estimates for the wake center location are

barely affected by the tuning parameters, all resamples estimate similar wake center positions and markers overlay each other.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. Accuracy of GCH (a-c), DART-4 (d-f) and DART-7 (g-i) in estimating wake characteristics Az (a,d,f), µy (b,e,h) and curl (c,f,i).

The models’ estimates are given on the x-axis, the observations on the y-axis. Solid lines indicate linear Orthogonal Distance Regression fits

and dashed lines the identity lines.

Lastly, the right column displays the results for curl. GCH does not model any curl, whereas DART is able to capture some of

the observed variability. DART-7 performs better than DART-4 as more variables that are (weakly) correlated with curl (see

Fig. 8) are considered. Although the variability found in the field is not fully captured by either model, it is clear that the wake435

curl is better reproduced by DART than by GCH.

4.2.1 Dependency of performance on data set size

An important aspect of data-driven models is understanding how the amount of training data affects the model’s accuracy. This

is especially relevant, as one of the most named drawbacks of data-driven models is their high need of data. This section studies

the sensitivity of the accuracy of DART-4 to the amount of training data. DART-7 is not considered due to its long training440
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(a) (b)

Figure 14. MPE (a) and MAPE (b) as function of training data size. Markers indicate the means (MPE and MAPE), lines indicate the

median and shaded areas indicate the standard deviation, corresponding to the fitted normal distributions in Fig. 11.

time. Additionally, GCH is included in the analysis as it contains tuning parameters which could benefit from being tuned to a

larger data set. All models are trained with a part of the full data set, ranging from 10 % to 80 %, and tested on the remaining

20 %, analogous to the procedure described in Sect. 3.4. Regardless of the amount of training data, the testing data are always

20 % and consist of the same cases for fair comparison. When using e.g., 40 % of the data for training and 20 % for testing,

the remaining 40 % is not used at all.445

Figure 14 displays the accuracy of the models as a function of the size of the training data set. The metrics used for this analysis

are again the distribution of MPE and MAPE values of the 96 resamples, corresponding to the normal distributions shown in

Fig. 11. Figure 14a again reveals that DART-4 has a negative bias (MPE < 0 %), which is present regardless of the amount of

training data, whereas GCH typically has a small positive bias (MPE > 0 %). The uncertainty bands, representing one standard

deviation indicated by the shaded area, are larger for GCH than for DART-4, while for both models the uncertainty is reduced450

when trained with more data.

Figure 14b displays the distribution of MAPE values of the 96 resamples as function of the data set size. GCH and DART-4

have a similar accuracy when few data are available, but DART-4 already outperforms GCH when as little as 20 % of the

data set (≈ 75 cases or 13 hours) is used for training. Note that this does not indicate 13 hours of consecutive measurements,

but rather 75 cases covering a range of meteorological conditions representative for the variability experienced by the turbine.455

Additionally, the accuracy of DART-4 seems to continue to improve when adding more data, albeit at a slower rate, whereas

GCH hardly shows any improvement with higher data availability.

4.2.2 Performance with SCADA data as input

In this section, DART-4 is trained using only data routinely available to the operator (SCADA data) as input variables, called

DART-4S. However, it still uses the measurements from the nacelle-mounted lidar to obtain the wake characteristics. Input460

variables includes power P , rotor speed ω, wind speed US and turbulence intensity TIS estimated from the cup anemometer
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(a) (b)

Figure 15. Same as Fig. 11 b-c, but with DART-4S (light blue).

and yaw misalignment φS extracted from the wind vane. As discussed according to Fig. 4, this signal contains a systematic

bias (Fleming et al., 2021) and is disturbed by the turbine yaw misalignment (Kragh and Fleming, 2012; Simley et al., 2021),

resulting in misalignments being overestimated by the nacelle vane. No correction was applied here, as data-driven models

can compensate for any systematic biases. Additionally, they are better able to deal with noise than analytical models, which465

assume that the inflow information is undisturbed or need error terms inserted in the model equations (Schreiber et al., 2020).

The main issue of only using SCADA data is that there is no reliable estimate for the vertical wind speed profile. In this study,

the shear α measured at the met mast is estimated from TIS using the fitted linear relation: α̂= 0.625− 0.023 TIS. Because

α and TIS are quite weakly correlated (R = -0.47), this simple approach introduces uncertainty. However, developing a more

sophisticated solution was deemed out of the scope of this work and this approach is deemed sufficient for the current purpose.470

An alternative approach could be to use strain measurements from the turbine’s blades to estimate shear, as demonstrated in

(Bertelè et al., 2017, 2021), although this would also involve additional sensors.

Figure 15 displays the results of DART-4S, using (φS, TIS, US, P ) as input, in a comparison with GCH and DART-4, both

trained with met mast data. The accuracy of DART-4S is very similar to DART-4, showing a larger negative MPE but an almost

identical MAPE. This indicates that using an arguably lower quality data set hardly affects the accuracy of the wake estimates.475

It is hypothesized that this is because the SCADA data better capture the atmospheric conditions at the turbine, whereas met

mast data are subject to heterogeneity between met mast and turbine. This would counter the lower quality of the data, leading

to only a slight decrease of the model accuracy. Interestingly, DART-4S is significantly more accurate than GCH, even though

the latter needs undisturbed measurements as input.
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5 Discussion480

5.1 Campaign setup

Several considerations regarding the experimental campaign are noteworthy. Although the measurement data after filtering has

been considered as the "ground truth", a few aspects affecting the data quality should be considered. As mentioned in Sect.

2.1, turbines T3 (induction zone) and T4 (wake) are assumed to not affect the wake, which unfortunately cannot be ruled out

entirely. Additionally, trees might affect met mast data in the wind direction sector around δ = 350◦. Further, no systematic485

hard target analysis was performed with the nacelle based lidar. The horizontal offset relative to the turbine’s center axis could

be estimated from a set of coarser scans, but no vertical offset could be estimated. It is, however, assumed that this affects both

GCH and DART in a similar way.

The nacelle-mounted lidar’s scanning strategy was based on Brugger et al. (2019, 2020) and evaluated systematically using

large-eddy simulation results and a lidar simulator. However, during this analysis, data losses were not considered. Subse-490

quently, in the field data occasionally all information at one height was filtered out, leaving only information at four heights

for the analysis (Sect. 2.2), which could lead to interpolation errors. A more robust approach would have been to perform

seven consecutive PPI scans, although the accuracy of the wake reconstruction method is slightly lower (see Fig. 2). Lastly,

in this study only one distance of 4D was targeted, but for other purposes it could be desirable to target multiple positions at

once. This would likely require more PPI scans with a larger range of elevation angles, as used in (Brugger et al., 2020). Large495

elevation angles are needed to capture the wake close to the turbine, whereas small elevation angles capture the wake further

downstream.

Lastly, there are aspects related to field measurements that are unavoidable, but should be mentioned. First, although the lidar

data are considered to present a wake cross-section, the measurements are inherently subject to probe volume averaging and

they are interpolated to a distance of 4D. Secondly, a different filtering method than the one described in Sect. 2.2 will retain500

other information and therefore result in slightly different wake characteristics. Third, homogeneity of the background flow is

assumed, as well as a vertical wind profile that can be described with the power law, which is not always satisfied.

5.2 Data-driven model

DART’s quantitative results presented in this study are not directly generalizable. Different turbine types and topography could

affect the fitted coefficients in Eq. (3). It is deemed important for future work to generalize these coefficients, as performing an505

extensive measurement campaign or large-eddy simulations for each site is not feasible. Until then, DART needs relatively few

data (about 75 cases at specific set points) to outperform GCH and can therefore be retrained in new situations. How to define

these set points is an important open question.

Alternatively, model equations using coefficients determined with previous numerical or experimental data could still be used at

new locations to generate a first estimate of the wake characteristics. Assuming that the wake position and shape are sufficiently510

accurately modeled, coefficients for the wake deficit could be retrained using SCADA data by deducing a rotor equivalent wind

speed.

24

https://doi.org/10.5194/wes-2022-118
Preprint. Discussion started: 13 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Lastly, other data-driven models could be used. Currently, to the best of our knowledge DART is the only data-driven wake

model available that does not make use of complex black-box models such as neural networks. Although it would be interesting

to compare different data-driven models, more complex models typically need more data. For instance, Asmuth and Korb515

(2022) proposed a neural network and showed they need at least 800 cases to train the model for non-yawed cases only.

Although their results are extremely promising, extending this to include wake steering would likely require a substantially

longer measurement campaign.

6 Conclusions

This study uses nacelle-based lidar measurements of the wake of a commercial turbine with a fixed intentional yaw misalign-520

ment. Performing a trajectory of five consecutive Plan Position Indicator (PPI) scans with different elevation angles, a vertical

wake cross-section at four rotor diameters downstream is reconstructed. Utilizing the Multiple 1D Gaussian method, wake

characteristics are obtained. The lateral wake center displacement and wake curl observed in the field compare well with large-

eddy simulation results. The results from the lidar measurements prove that the wake curl also occurs in the free field, which

had not conclusively been shown in literature before. This is due to small curling observed for yaw misalignments below 20◦,525

which could be missed when using a different scanning trajectory.

The field measurements are subsequently used to train and validate the Data-driven wAke steeRing surrogaTe model (DART),

and compare the accuracy of the trained data-driven model to the accuracy of the Gaussian-Curl Hybrid model (GCH). When

estimating the observed wake characteristics with both wake models, it is demonstrated that DART systematically outperforms

GCH. Depending on the number of input variables used for DART, the error is reduced by between 19 % and 36 % compared530

to GCH. The metric used here is the Mean Absolute Percentage Error of the available power of a virtual downstream turbine,

averaged over 96 resampled testing data sets. Especially when the turbine is misaligned or high vertical shear is observed,

DART outperforms GCH. Generalizing the model coefficients is considered important for future work, as these are not directly

transferable to other turbine types and locations. However, DART requires a relatively small amount of training data (about

75 cases at specific set points) to outperform GCH and can therefore be retrained. Further analysis suggests that DART’s ac-535

curacy is hardly affected when only considering SCADA data as input in comparison to using undisturbed measurements from

a met mast. The results shown in this study demonstrate the huge potential of data-driven wake models and the important role

they can play in the further deployment of wake steering control strategies.

Code and data availability. The Data-driven wAke steeRing surrogaTe model (DART), including a short tutorial, is available for download

at: https://github.com/LuukSengers/DART (https://doi.org/10.5281/zenodo.7442225, Sengers and Zech (2022)).540

The large-eddy simulation results cannot be shared due to confidentiality of the turbine specific aerodynamic characteristics. A selection of

measurement data will be made publicly available. This is currently in preparation and will be finalized before publication of this manuscript.
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Appendix A: Lists of Abbreviations and Symbols

Abbreviations

APE Absolute Percentage Error

CNR Carrier-to-noise ratio

DART Data-driven wAke steeRing surrogaTe model

EC Eddy Covariance

GCH Gaussian-Curl Hybrid model

LES Large-eddy-simulation

LOS Line-of-sight velocity

LUT Look-up table

MAE Mean absolute error

MAPE Mean absolute percentage error

MAPE Mean of the mean absolute percentage errors of all resamples

MM Meteorological mast

MPE Mean percentage error

MPE Mean of the mean percentage errors of all resamples

PALM PArallelized Large-eddy simulation Model

PE Percentage error

PPI Plan position indicator

R Pearson correlation coefficient

SCADA Standard supervisory control and data acquisition

VAD Velocity-azimuth display

Symbols

α Shear

αGCH Tuning parameter GCH

βGCH Tuning parameter GCH

δ Wind direction

δh Wind direction at hub height, measured at MM

δS Wind direction at hub height, measured at nacelle (SCADA)

δα Veer

µy Lateral wake center displacement
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µz Vertical wake center displacement

ω Rotor speed

ωlidar Angular speed of lidar scan

φ Yaw misalignment angle

φS Yaw misalignment angle, measured at nacelle (SCADA)

φt Target yaw misalignment angle

φVAD Elevation angle VAD lidar

σy Width of wake at center height

σz Vertical extent of wake

θVAD Azimuth angle VAD lidar

Az Amplitude of wake deficit normalized with Uh

CT Thrust coefficient

curl Wake curl

D Rotor diameter

ka,GCH Tuning parameter GCH

kb,GCH Tuning parameter GCH

P Power

Pav Available power

sa Quadratic wake width parameter

sb Linear wake width parameter

TI Turbulence intensity

tilt Wake tilt

TIS Turbulence intensity, measured at nacelle

U Wind speed

Udef Wind speed deficit

Ueq Rotor equivalent wind speed

Uh Wind speed at hub height. When indicating measurement data, it is measured at MM

US Wind speed at hub height, measured at nacelle (SCADA)
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T., Groß, G., Heldens, W., Hellsten, A., Hoffmann, F., Inagaki, A., Kadasch, E., Kanani-Sühring, F., Ketelsen, K., Khan, A., Knigge, C.,
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