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Abstract.

In the past several years, wind veer — sometimes called ‘directional shear’ — has begun to attract attention due to its effects

on wind turbines and their production, particularly as the length of manufactured turbine blades has increased. Meanwhile,

applicable meteorological theory has not progressed significantly beyond idealized cases for decades, though veer’s effect on

the wind speed profile has been recently revisited. On the other hand the shear exponent (α) is commonly used in wind energy5

for vertical extrapolation of mean wind speeds, as well as being a key parameter for wind turbine loads calculations and design

standards.

In this work we connect the oft-used shear exponent with veer, both theoretically and for practical use. We derive relations

for wind veer from the equations of motion, finding the veer to be composed of separate contributions from shear and vertical

gradients of cross-wind stress. Following from the theoretical derivations, which are neither limited to the surface-layer nor10

constrained by assumptions about mixing length or turbulent diffusivities, we establish simplified relations between the wind

veer and shear exponent for practical use in wind energy. We also elucidate the source of commonly-observed stress-shear

misalignment and its contribution to veer, noting that our new forms allow for such misalignment. The connection between

shear and veer is further explored through analysis of one-dimensional (single-column) Reynolds-averaged Navier-Stokes

solutions, where we confirm our theoretical derivations as well as the dependence of mean shear and veer on surface roughness15

and atmospheric boundary layer depth in terms of respective Rossby numbers.

Finally we investigate the observed behavior of shear and veer across different sites and flow regimes (including forested,

offshore, and hilly terrain cases) over heights corresponding to multi-megawatt wind turbine rotors, also considering the effects

of atmospheric stability. From this we find empirical forms for the probability distribution of veer during high-veer (stable)

conditions, and for the variability of veer conditioned on wind speed. Analyzing observed joint probability distributions of20

α and veer, we compare the two simplified forms we derived earlier and adapt them to ultimately arrive at more universally

applicable equations to predict the mean veer in terms of observed (i.e., conditioned on) shear exponent; lastly, the limitations,

applicability, and behavior of these forms is discussed along with their use and further developments for both meteorology and

wind energy.
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1 Introduction25

The shear exponent has generally not been used or accepted by meteorologists, as it does not (directly) relate to the physics of

atmospheric flow, nor to the most important boundary condition—the surface. Regarding the latter, in contrast with similarity

theory (?), the shear exponent does not contain explicit information about the surface roughness. However, the shear exponent

can be related to surface properties in a generalized way, as well as to turbulent kinetic energy and atmospheric stability (buoy-

ancy) as shown by e.g. ?. This is particularly useful above the atmospheric surface layer (ASL), where micrometeorological30

theory based on ASL assumptions fails—and where the effects of the surface are neither dominant nor simple enough to be

characterized through accepted ASL parameterizations. As practiced in the wind energy resource assessment community for

decades, the shear exponent can thus be preferable over similarity theory for use in vertical extrapolation (???) with quantifi-

cation of uncertainty in its use more recently reinforcing such (??). Shear is also a key parameter for flow characterization

towards loads simulations, being seen to systematically affect various turbine loads (e.g. ??).35

Veer has received much less attention than shear, though its potential importance to wind energy has been noted more re-

cently. In the meteorological literature, where veer is often labelled as ‘directional shear’ or ‘turning,’ ? reviewed the distinction

between veer and vertical gradients of wind speed, listing studies of meteorological phenomena that considered veer (though

they focused on convective storms). While some works in meteorology have investigated veer, these have tended to focus on the

angular difference between winds at the top of the atmospheric boundary layer (ABL) and the surface (e.g. ????),and are not40

generally suited for engineering applications. For wind energy, ? looked at the veer (and shear) along with power production

measured over a six-month period, finding a minor but non-negligible effect of veer on power production for a utility scale tur-

bine. ? found positive veer over the upper half of a single (2.5MW) clockwise-turning turbine rotor to reduce power production,

opposite and slightly larger than the corresponding effects of negative veer there; they also showed the rotor’s lower-half veer

was less significant than the upper half. ? examined measurements from a lidar offshore between islands southwest of Hong45

Kong, observing larger veer when hilly terrain was upstream compared to more open sea conditions; they also noted seasonal

variations. For power production, the veer was incorporated into rotor-equivalent wind speed (REWS) by ?, whom found it

to generally decrease production at two sites; ? found similar results from weather assimilation model output over the USA,

along with higher production at night and lower power during daytime at most locations. Wind veer has also been examined

with regard to its connection with the distortion and lateral movement turbine wakes via measurements and simulations (e.g.50

??), also including yaw-misalignment affects (??).
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also
✿✿✿✿✿✿

include
✿✿✿✿✿✿

forms
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿

of
✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿✿

system.
✿✿✿✿✿✿✿

Because
✿✿✿✿✿✿✿✿✿✿

coordinates
✿✿✿✿✿✿

aligned
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿✿

wind
✿✿

for
✿✿

a
✿✿✿✿✿

given

✿✿✿✿✿

height
✿✿

of
✿✿✿✿✿✿✿

interest
✿✿✿✿

(e.g.
✿✿✿

hub
✿✿✿✿✿✿✿

height)
✿✿✿

are
✿✿✿✿✿✿✿✿✿

commonly
✿✿✿✿

used
✿✿

in
✿✿✿✿✿

wind
✿✿✿✿✿✿

energy,
✿✿✿

and
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿✿✿

expressions
✿✿✿

for
✿✿✿✿

veer
✿✿

in
✿✿✿✿

such
✿✿

a
✿✿✿✿✿✿✿✿✿

coordinate75

✿✿✿✿✿✿

system
✿✿✿

are
✿✿✿✿✿✿

simpler
✿✿

to
✿✿✿✿✿✿✿

express
✿✿✿✿

and
✿✿✿✿✿✿✿✿

calculate,
✿✿✿

we
✿✿✿✿✿✿✿✿✿

ultimately
✿✿✿✿✿

arrive
✿✿

at
✿✿✿

two
✿✿✿✿✿✿

forms
✿✿

in
✿✿✿✿

such
✿✿

a
✿✿✿✿✿✿

system
✿✿✿✿

(eqs.
✿✿✿

14
✿✿✿✿

and
✿✿✿

16);
✿✿✿✿

due
✿✿

to
✿✿✿

its

✿✿✿✿✿✿✿✿✿

robustness,
✿✿✿

one
✿✿✿

of
✿✿✿✿✿

these
✿✿✿

(eq.
✿✿✿✿

14)
✿✿✿

will
✿✿✿✿

later
✿✿✿

be
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿

section
✿✿✿

??
✿✿

to
✿✿✿

be
✿✿✿✿✿✿

further
✿✿✿✿✿✿✿✿✿✿

simplifiable
✿✿✿

and
✿✿✿✿✿✿

usable
✿✿✿

(as
✿✿✿

eq.
✿✿✿

??
✿✿

or
✿✿✿✿

??)
✿✿

in

✿✿✿✿✿✿✿✿✿

comparison
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

measurements.

2.1 Shear exponent

Just as potential temperature—the buoyancy variable commonly-used in meteorology—was labeled the “meteorologist’s en-80

tropy” by ?, one could call the shear exponent (α) the “wind engineer’s phi-function.” Specifically this follows from the

definition of shear exponent

α≡
∂U/∂z

U/z
=

∂ lnU

∂ lnz
(1)

and the dimensionless wind speed gradient

Φm ≡
dU/dz

u∗0/κz
=

κU

u∗0
α; (2)85
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used in meteorology, where u∗0 is the surface layer friction velocity (square root of kinematic shear stress), κ= 0.4 is the von

Kármán constant, and z is the height coordinate1. We remind that (1) is derived from the power-law expression for wind speed

U

Uref
=

(

z

zref

)α

, (3)

which is assumed to be valid over some extent around height zref , with Uref ≡ U(zref). The power-law (3) with shear exponent

(1) has been used in wind engineering for decades (e.g. ??) due to its simplicity, and because it doesn’t require any information90

other than the wind speed at two heights. Although (1) and (2) might appear to be quite alike, one can see a phenomenological

difference when comparing the wind speed profiles resulting from these relations. In Monin-Obukhov (“M-O”) theory Φm

is a function of the stability z/L which is proportional to surface heat flux H0 divided by u3
∗0, i.e. the reciprocal Obukhov

length is 1/L= κ(g/T0)H0/u
3
∗0 where T0 is the background temperature and g is the gravitational acceleration (?); the Φm

function and corresponding M-O wind profile (which arises via integrating dU/dz in (2) from a height equal to the roughness95

length z0 up to height z) thus require a number of assumptions and more information than calculation of α via (1) or use of

the power-law (3). Monin-Obukhov wind profiles also require the surface roughness length (z0), while the friction velocity u∗0

(and thus shear stress) is assumed to be constant in the surface layer where M-O theory is most valid2; further, the assumptions

of stationarity and a uniform flat surface are implicit in use of M-O theory. Following surface layer theory one could write

an equivalent shear exponent αASL =Φm (z/L)
/

[ln(z/z0)−Ψm(z/L)] where Ψm =
∫ z

z0
[1−Φm(z′/L)]d lnz′ is the M-O100

wind speed correction function; the analytic forms for Φm and Ψm differ in stable and unstable conditions, and have been

determined empirically in decades past (???). But Monin-Obukhov similarity theory and its assumptions (such as constant u∗),

as well as established forms for Φm, fail above the surface layer;3 this motivates use of α in applications such as wind energy,

as (1) does not directly rely on surface-layer assumptions.

2.1.1 Relation to stability and turbulence105

As shown by ?, in horizontally homogeneous conditions the steady or mean balance of turbulent kinetic energy (TKE) can be

written in terms of shear exponent as

α=
z

U

(ε−B−T )

−〈uw〉
(4)

for a given height z, where the streamwise direction is defined by the mean wind U(z) and we have suppressed z-dependences

for brevity; here 〈uw〉 is the turbulent horizontal momentum flux (kinematic stress), T is the total (turbulent plus pressure)110

1The full derivative (d/dz) is used in (2) because of
✿✿

due
✿✿

to the assumption of horizontal homogeneity
✿✿✿✿✿✿

assumed by Monin-Obuhkov similarity theory,
✿

from

which Φm arises.
2The ‘constant-flux layer’ in surface-layer theory does not require exactly constant fluxes with height, as is often presumed. The label and assumption are

that the non-dimensional fluxes, normalized by ABL scales, are constant with z (??); i.e., the ASL is the layer over which the decrease in u2
∗

is small compared

to u2
∗0, roughly the bottom 10% of the ABL.

3We note that ? adapted M-O theory to long-term means and ? extended this beyond the surface layer within the European Wind Atlas (WAsP) framework,

thus addressing the stationarity and surface homogeneity aspects. However, the purpose and scope of the current article is to examine the commonly-used

shear exponent and its connection with veer, not on vertical extrapolation methods per se.
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transport, B is buoyant production, and ε is the viscous dissipation rate of TKE.
✿✿✿

We
✿✿✿✿✿

point
✿✿✿

out
✿✿✿

that
✿✿

?
✿✿✿✿✿✿✿

ignored
✿✿✿✿✿✿✿✿✿

cross-wind
✿✿✿✿✿

stress

✿✿✿✿

〈vw〉
✿✿✿✿✿

when
✿✿✿✿✿✿✿

deriving
✿✿✿

(4),
✿✿✿✿✿✿✿

however
✿✿

it
✿✿✿

still
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿

e.g.
✿✿✿✿✿

shear
✿✿✿

will
✿✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿

stable
✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿

(B < 0)
✿✿✿

and
✿✿✿✿✿✿✿✿

decrease
✿✿

in
✿✿✿✿✿✿✿

unstable

✿✿✿✿✿✿✿✿

conditions
✿✿✿✿✿✿✿✿

(B > 0),
✿✿

as
✿✿✿✿

will
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

in
✿✿✿✿

Sec.
✿✿✿

??;
✿✿✿✿✿✿

further,
✿✿✿

as
✿✿

we
✿✿✿✿

will
✿✿✿

see
✿✿✿

in
✿✿✿✿✿✿

section
✿✿✿

2.3,
✿✿✿✿

this
✿✿

is
✿✿✿✿

also

✿✿✿✿✿

related
✿✿✿

to
✿✿✿

the
✿✿✿✿

veer. Within the ASL under these conditions where M-O theory is valid
✿✿✿

and
✿✿✿✿✿✿✿✿

〈vw〉 → 0, using the neutral value

of dissipation rate as ε0 ≡ u3
∗0/(κz) along with the dimensionless functions Φε ≡ ε/ε0 and ΦT ≡ T/ε0 (?), we can express an115

ASL version of (4) as

αASL =
u∗0

κU

(

Φε +
z

L
−ΦT

)

≈ Iu

(

Φε +
z

L
−ΦT

)

(5)

since by definitionB
✿✿

/ε0=−z/L and u2
∗0 =−〈uw〉; here Iu ≡ σu/U is the streamwise turbulence intensity. The dimensionless

dissipation rate (M-O function) Φε ≥ 1 is roughly 1+ 5z/L in stable conditions and increases more weakly with −z/L in

unstable conditions (??); meanwhile the transport is negligible in stable conditions but ΦT > 0 in unstable conditions (e.g. ?).120

Thus in stable conditions (L−1 > 0) one can see α is larger than in neutral conditions, while in unstable conditions α becomes

smaller. Above the ASL this will also generally be the case, though analytic nondimensional forms become difficult to derive,

while the flow becomes affected by more terrain upwind and associated inhomogeneities; furthermore in stable conditions the

local stability (at a given z) becomes increasingly more important than surface-based z/L (?). As will be shown below, the most

common and mean conditions at contemporary rotor heights qualitatively follow (5), but due to these and other non-ideal effects125

(e.g. nonstationary transients) large deviations can occur. We note that in this work we are not searching for analytical forms

for α or surface-layer behavior; rather, we are concerned with how α relates to the veer, especially over heights corresponding

to wind turbine rotors, a portion of which commonly extends beyond the ASL.

2.2 Veer

For the simplified general case of Coriolis-affected mean flow, we write the horizontal mean velocity vector {U,V } as a130

complex number, S ≡ U + iV = |S|eiϕ. For a mean wind direction defined at some height z, the veer can be defined as a

directional shear ∂ϕ/∂z through the wind direction

ϕ(z) = arg[S(z)] = arctan

[

V (z)

U(z)

]

. (6)

In most of the micrometeorological literature, the mean wind direction is defined based on the surface stress (i.e. via the winds

closest to the surface, so ϕ0 ≡ ϕ(0) = 0). We follow this convention unless stated otherwise, as done for some expressions135

later in section 2.3; one could also choose to define the coordinate system based on the geostrophic wind direction (e.g. ?).

As is classically known in micrometeorology (e.g. ?), the veer across the entire ABL depends primarily on the Coriolis

parameter f (thus latitude), geostrophic wind speed |G|, and surface roughness length z0, but is also affected by the ABL

depth h and stability (as confirmed via Reynolds-averaged Navier-Stokes simulations by ?). The veer across a fraction ∆z/h

of the ABL will also depend on these parameters; thus for a given site and height, ∆ϕ/∆z will have a distribution due to140

variations in these parameters.This will become clearer below as we examine the relationship between veer and shear.
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The Coriolis-affected mean momentum balance can be written in the form

∂S

∂t
= 0 =−if(S−G)−

∂〈sw〉

∂z
(7)

for stationary and horizontally homogeneous conditions (thus neglecting advection). Here the kinematic horizontal pressure

gradient ∇p/ρ= f{VG,−UG} is also written like a velocity in complex form as G≡ UG + iVG = (−∂p/∂y+ i∂p/∂x)/(ρf).145

The mean stresses are dominated by vertical momentum transport 〈sw〉, where w denotes (turbulent) vertical velocity fluctua-

tions and s≡u+ iv the horizontal velocity fluctuations.

At a given height z, taking the differential of (6) (recalling darctanx= dx/[1+ x2] and using the chain rule) gives

dϕ=
UdV −V dU

|S|2
; (8)

here the superscript asterisk denotes complex conjugate. Applying ∂/∂z to (8) and (7) and combining provides a basic expres-150

sion for veer:

∂ϕ

∂z
=

U

|S|2

[

1

f

∂2〈uw〉

∂z2
+

∂VG

∂z

]

+
V

|S|2

[

1

f

∂2〈vw〉

∂z2
−

∂UG

∂z

]

. (9)

In the case of zero geostrophic shear (dG/dz = 0), if the coordinate system’s x-axis is defined by the mean wind direction at

the height z where the veer is sought, then (9) can be written more simply as

∂ϕ(z)

∂z

∣

∣

∣

∣

dG/dz→0

=
1

f |S|

∂2

∂z2
〈uw〉|

ex‖U(z). (10)155

Though (9) and (10) are not directly very useful for relating veer to shear, they illustrate that the curvature of stress profiles

and Coriolis effect are the basis for mean veer following (7), and also that geostrophic shear can further contribute to veer (e.g.

due to baroclinity, ???).

2.3 Relating veer to shear

Towards relating the veer to shear, one can alternately derive the veer by first taking the time derivative of (8); using the real160

and imaginary parts of (7), in the horizontally homogeneous limit (ignoring advection) one obtains a rate equation for mean

wind direction:

∂ϕ

∂t
=

[

V

|S|2
∂〈uw〉

∂z
−

U

|S|2
∂〈vw〉

∂z

]

+ f

(

|G|

|S|
cosγ− 1

)

. (11)

The ‘turning’ angle γ ≡ ϕ−ϕG between geostrophic and mean wind directions (e.g. ?) arises through4

UGU+VGV = U ·G = |S||G|cosγ

by taking ∂/∂t of (6) or equivalentlyU∂V/∂t−V ∂U/∂t via (8). The geostrophic wind direction is defined as ϕG ≡ arctan(VG/UG),

and the ‘cross-isobar’ angle, i.e. the turning over the whole ABL (γ0 = ϕ0 −ϕG), is generally less than 45◦ (?)5; in a right-165

4The turning angle can also be expressed in complex notation, recalling that the angle between vectors written in complex notation (here U→S and

G→G) can be recovered by taking ℜ{G∗S}, i.e. |G||S|ℜ{e−i(ϕ+γ)eiϕ}= |G||S|cosγ.
5The ABL turning angle γ0 cannot exceed 45◦, according to the Ekman equations (or their numerical solution, as in ?). However, in some situations, which

tend to involve horizontal inhomogeneities, γ0 > 45◦; these include e.g., baroclinity, terrain-induced turning (especially with stability), convective cells, and

various persistent storm structures.
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The authors note that the latexdiff command includes numerous bugs, and thus created more than 
1000  LaTeX errors when making the difference file.  
We corrected about 100 of them, but were unable to get the file to consistently compile, and discovered 
error types which were too difficult to surmount.  Therefore the 'diff' file ends here.

However, in our responses to the reviewers, we have explicitly shown the changes that we have made.
The current diff file (above) shows most of the 'big' changes, aside from the introduction of the new 
equation(17). 
We appreciate your patience, and direct you to the final PDF file and our responses.
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