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Abstract.

In the past several years, wind veer — sometimes called ‘directional shear’ — has begun to attract attention due to its effects

on wind turbines and their production, particularly as the length of manufactured turbine blades has increased. Meanwhile,

applicable meteorological theory has not progressed significantly beyond idealized cases for decades, though veer’s effect on

the wind speed profile has been recently revisited. On the other hand the shear exponent (α) is commonly used in wind energy5

for vertical extrapolation of mean wind speeds, as well as being a key parameter for wind turbine loads calculations and design

standards.

In this work we connect the oft-used shear exponent with veer, both theoretically and for practical use. We derive relations

for wind veer from the equations of motion, finding the veer to be composed of separate contributions from shear and vertical

gradients of cross-wind stress. Following from the theoretical derivations, which are neither limited to the surface-layer nor10

constrained by assumptions about mixing length or turbulent diffusivities, we establish simplified relations between the wind

veer and shear exponent for practical use in wind energy. We also elucidate the source of commonly-observed stress-shear

misalignment and its contribution to veer, noting that our new forms allow for such misalignment. The connection between

shear and veer is further explored through analysis of one-dimensional (single-column) Reynolds-averaged Navier-Stokes

solutions, where we confirm our theoretical derivations as well as the dependence of mean shear and veer on surface roughness15

and atmospheric boundary layer depth in terms of respective Rossby numbers.

Finally we investigate the observed behavior of shear and veer across different sites and flow regimes (including forested,

offshore, and hilly terrain cases) over heights corresponding to multi-megawatt wind turbine rotors, also considering the effects

of atmospheric stability. From this we find empirical forms for the probability distribution of veer during high-veer (stable)

conditions, and for the variability of veer conditioned on wind speed. Analyzing observed joint probability distributions of20

α and veer, we compare the two simplified forms we derived earlier and adapt them to ultimately arrive at more universally

applicable equations to predict the mean veer in terms of observed (i.e., conditioned on) shear exponent; lastly, the limitations,

applicability, and behavior of these forms is discussed along with their use and further developments for both meteorology and

wind energy.
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1 Introduction25

The shear exponent has generally not been used or accepted by meteorologists, as it does not (directly) relate to the physics of

atmospheric flow, nor to the most important boundary condition—the surface. Regarding the latter, in contrast with similarity

theory (Monin and Obukhov, 1954), the shear exponent does not contain explicit information about the surface roughness.

However, the shear exponent can be related to surface properties in a generalized way, as well as to turbulent kinetic energy

and atmospheric stability (buoyancy) as shown by e.g. Kelly et al. (2014a). This is particularly useful above the atmospheric30

surface layer (ASL), where micrometeorological theory based on ASL assumptions fails—and where the effects of the surface

are neither dominant nor simple enough to be characterized through accepted ASL parameterizations. As practiced in the wind

energy resource assessment community for decades, the shear exponent can thus be preferable over similarity theory for use

in vertical extrapolation (Irwin, 1979; Mikhail, 1985; Petersen et al., 1998) with quantification of uncertainty in its use more

recently reinforcing such (Triviño et al., 2017; Kelly et al., 2019b). Shear is also a key parameter for flow characterization35

towards loads simulations, being seen to systematically affect various turbine loads (e.g. Dimitrov et al., 2018; Robertson

et al., 2019).

Veer has received much less attention than shear, though its potential importance to wind energy has been noted more re-

cently. In the meteorological literature, where veer is often labelled as ‘directional shear’ or ‘turning,’ Markowski and Richard-

son (2006) reviewed the distinction between veer and vertical gradients of wind speed, listing studies of meteorological phe-40

nomena that considered veer (though they focused on convective storms). While some works in meteorology have investigated

veer, these have tended to focus on the angular difference between winds at the top of the atmospheric boundary layer (ABL)

and the surface (e.g. Clarke, 1975; Brown et al., 2005; Grisogono, 2011; Lindvall and Svensson, 2019),and are not generally

suited for engineering applications. For wind energy, Murphy et al. (2020) looked at the veer (and shear) along with power pro-

duction measured over a six-month period, finding a minor but non-negligible effect of veer on power production for a utility45

scale turbine. Gao et al. (2021) found positive veer over the upper half of a single (2.5MW) clockwise-turning turbine rotor to

reduce power production, opposite and slightly larger than the corresponding effects of negative veer there; they also showed

the rotor’s lower-half veer was less significant than the upper half. Shu et al. (2020) examined measurements from a lidar off-

shore between islands southwest of Hong Kong, observing larger veer when hilly terrain was upstream compared to more open

sea conditions; they also noted seasonal variations. For power production, the veer was incorporated into rotor-equivalent wind50

speed (REWS) by Choukulkar et al. (2016), whom found it to generally decrease production at two sites; Clack et al. (2016)

found similar results from weather assimilation model output over the USA, along with higher production at night and lower

power during daytime at most locations. Wind veer has also been examined with regard to its connection with the distortion

and lateral movement turbine wakes via measurements and simulations (e.g. Abkar et al., 2018; Brugger et al., 2019), also

including yaw-misalignment affects (Hulsman et al., 2022; Narasimhan et al., 2022).55

In this paper we investigate wind veer, showing its joint behaviors with and connection to shear and key parameters used

to describe atmospheric boundary layer flow. In Sec. 2, after reviewing expression of the shear exponent and its relation

to stability and turbulence, we derive new relations for veer; we show veer to be composed of shear-driven and Coriolis-
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associated stress gradient contributions. The theoretical behavior of veer is also derived for canonical cases such as Ekman

and surface-layer flow, as well as the effect of shear-stress misalignment on veer. Further, in Sec. 2.4 practical relations from60

micrometeorology are elucidated, towards evaluation of the expressions developed for veer. Section 3 includes analysis of

veer, exploring and connecting the developed relations to both computational modelling and observations. Section 3.1 gives

RANS (mean) simulation results over flat terrain in neutral conditions for hundreds of combinations of surface-Rossby number

and ABL-depth Rossby number, showing the dependence of veer on the latter as well as the counteracting behavior of veer’s

two primary components. Section 3.2 begins with analysis of multi-year observations from six different flow regimes across65

four sites showing the statistical behavior of shear with stability, and subsequently that of veer, also providing new empirical

relations for the probability of occurrence of larger veer (due to the effect of stable conditions) and for the variability of

veer with wind speed. The observational analysis concludes in Sec. 3.3 with simplified practical relations for veer based on

observed shear, including comparison with joint distributions of veer and shear across the six flows analyzed. Finally the results

summarily discussed and conclusions given, with ongoing and future work also described for the reader.70

2 Theory and development

In this section we define the shear exponent and veer, then derive relations for veer in terms of shear and vertical gradients of

stress, as mentioned in the previous paragraph. Section 2.3 provides a number of expressions for veer; this is done to facilitate

its calculation and interpretation in the different coordinate systems typically considered in wind energy flow analyses, and

we also include forms that are independent of coordinate system. Because coordinates aligned with the mean wind for a given75

height of interest (e.g. hub height) are commonly used in wind energy, and because expressions for veer in such a coordinate

system are simpler to express and calculate, we ultimately arrive at two forms in such a system (eqs. 14 and 16); due to its

robustness, one of these (eq. 14) will later be shown in section 3.3 to be further simplifiable and usable (as eq. 39 or 40) in

comparison with measurements.

2.1 Shear exponent80

Just as potential temperature—the buoyancy variable commonly-used in meteorology—was labeled the “meteorologist’s en-

tropy” by Bohren and Albrecht (1998), one could call the shear exponent (α) the “wind engineer’s phi-function.” Specifically

this follows from the definition of shear exponent

α≡ ∂U/∂z

U/z
=
∂ lnU

∂ lnz
(1)

and the dimensionless wind speed gradient85

Φm ≡ dU/dz

u∗0/κz
=
κU

u∗0
α; (2)
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used in meteorology, where u∗0 is the surface layer friction velocity (square root of kinematic shear stress), κ= 0.4 is the von

Kármán constant, and z is the height coordinate1. We remind that (1) is derived from the power-law expression for wind speed

U

Uref
=

(
z

zref

)α

, (3)

which is assumed to be valid over some extent around height zref , with Uref ≡ U(zref). The power-law (3) with shear exponent90

(1) has been used in wind engineering for decades (e.g. Irwin, 1979; Petersen et al., 1998) due to its simplicity, and because it

doesn’t require any information other than the wind speed at two heights. Although (1) and (2) might appear to be quite alike,

one can see a phenomenological difference when comparing the wind speed profiles resulting from these relations. In Monin-

Obukhov (“M-O”) theory Φm is a function of the stability z/L which is proportional to surface heat flux H0 divided by u3∗0,

i.e. the reciprocal Obukhov length is 1/L= κ(g/T0)H0/u
3
∗0 where T0 is the background temperature and g is the gravitational95

acceleration (Monin and Obukhov, 1954); the Φm function and corresponding M-O wind profile (which arises via integrating

dU/dz in (2) from a height equal to the roughness length z0 up to height z) thus require a number of assumptions and more

information than calculation of α via (1) or use of the power-law (3). Monin-Obukhov wind profiles also require the surface

roughness length (z0), while the friction velocity u∗0 (and thus shear stress) is assumed to be constant in the surface layer where

M-O theory is most valid2; further, the assumptions of stationarity and a uniform flat surface are implicit in use of M-O theory.100

Following surface layer theory one could write an equivalent shear exponent αASL =Φm (z/L)
/
[ln(z/z0)−Ψm(z/L)] where

Ψm =
∫ z

z0
[1−Φm(z′/L)]d lnz′ is the M-O wind speed correction function; the analytic forms for Φm and Ψm differ in stable

and unstable conditions, and have been determined empirically in decades past (Businger et al., 1971; Carl et al., 1973; Li,

2021). But Monin-Obukhov similarity theory and its assumptions (such as constant u∗), as well as established forms for Φm,

fail above the surface layer;3 this motivates use of α in applications such as wind energy, as (1) does not directly rely on105

surface-layer assumptions.

2.1.1 Relation to stability and turbulence

As shown by Kelly et al. (2014a), in horizontally homogeneous conditions the steady or mean balance of turbulent kinetic

energy (TKE) can be written in terms of shear exponent as

α=
z

U

(ε−B−T )

−⟨uw⟩
(4)110

for a given height z, where the streamwise direction is defined by the mean wind U(z) and we have suppressed z-dependences

for brevity; here ⟨uw⟩ is the turbulent horizontal momentum flux (kinematic stress), T is the total (turbulent plus pressure)

1The full derivative (d/dz) is used in (2) due to the horizontal homogeneity assumed by Monin-Obuhkov similarity theory, from which Φm arises.
2The ‘constant-flux layer’ in surface-layer theory does not require exactly constant fluxes with height, as is often presumed. The label and assumption

are that the non-dimensional fluxes, normalized by ABL scales, are constant with z (Horst, 1999; Wyngaard, 2010); i.e., the ASL is the layer over which the

decrease in u2
∗ is small compared to u2

∗0, roughly the bottom 10% of the ABL.
3We note that Kelly and Gryning (2010) adapted M-O theory to long-term means and Kelly and Troen (2016) extended this beyond the surface layer within

the European Wind Atlas (WAsP) framework, thus addressing the stationarity and surface homogeneity aspects. However, the purpose and scope of the current

article is to examine the commonly-used shear exponent and its connection with veer, not on vertical extrapolation methods per se.
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transport, B is buoyant production, and ε is the viscous dissipation rate of TKE. We point out that Kelly et al. (2014a) ignored

cross-wind stress ⟨vw⟩ when deriving (4), however it still shows that e.g. shear will increase in stable conditions (B < 0) and

decrease in unstable conditions (B > 0), as will be demonstrated using observations in Sec. 3.2; further, as we will see in115

section 2.3, this is also related to the veer. Within the ASL under these conditions where M-O theory is valid and ⟨vw⟩ → 0,

using the neutral value of dissipation rate as ε0 ≡ u3∗0/(κz) along with the dimensionless functions Φε ≡ ε/ε0 and ΦT ≡ T/ε0

(Kaimal and Finnigan, 1994), we can express a surface-layer version of (4) as

αASL =
u∗0
κU

(
Φε +

z

L
−ΦT

)
≈ Iu

(
Φε +

z

L
−ΦT

)
(5)

since by definition B/ε0 =−z/L and u2∗0 =−⟨uw⟩; here Iu ≡ σu/U is the streamwise turbulence intensity. The dimension-120

less dissipation rate (M-O function) Φε ≥ 1 is roughly 1+5z/L in stable conditions and increases more weakly with −z/L in

unstable conditions (Panofsky and Dutton, 1984; Kaimal and Finnigan, 1994); meanwhile the transport is negligible in stable

conditions but ΦT > 0 in unstable conditions (e.g. Wyngaard, 2010). Thus in stable conditions (L−1 > 0) one can see α is

larger than in neutral conditions, while in unstable conditions α becomes smaller. Above the ASL this will also generally be

the case, though analytic nondimensional forms become difficult to derive, while the flow becomes affected by more terrain125

upwind and associated inhomogeneities; furthermore in stable conditions the local stability (at a given z) becomes increasingly

more important than surface-based z/L (Derbyshire, 1990). As will be shown below, the most common and mean conditions at

contemporary rotor heights qualitatively follow (5), but due to these and other non-ideal effects (e.g. nonstationary transients)

large deviations can occur. We note that in this work we are not searching for analytical forms for α or surface-layer behavior;

rather, we are concerned with how α relates to the veer, especially over heights corresponding to wind turbine rotors, a portion130

of which commonly extends beyond the ASL.

2.2 Veer

For the simplified general case of Coriolis-affected mean flow, we write the horizontal mean velocity vector {U,V } as a

complex number, S ≡ U + iV = |S|eiφ. For a mean wind direction defined at some height z, the veer can be defined as a

directional shear ∂φ/∂z through the wind direction135

φ(z) = arg[S(z)] = arctan

[
V (z)

U(z)

]
. (6)

In most of the micrometeorological literature, the mean wind direction is defined based on the surface stress (i.e. via the winds

closest to the surface, so φ0 ≡ φ(0) = 0). We follow this convention unless stated otherwise, as done for some expressions later

in section 2.3; one could also choose to define the coordinate system based on the geostrophic wind direction (e.g. Svensson

and Holtslag, 2009).140

As is classically known in micrometeorology (e.g. Hess and Garratt, 2002), the veer across the entire ABL depends primarily

on the Coriolis parameter f (thus latitude), geostrophic wind speed |G|, and surface roughness length z0, but is also affected by

the ABL depth h and stability (as confirmed via Reynolds-averaged Navier-Stokes simulations by van der Laan et al., 2020).

The veer across a fraction ∆z/h of the ABL will also depend on these parameters; thus for a given site and height, ∆φ/∆z
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will have a distribution due to variations in these parameters.This will become clearer below as we examine the relationship145

between veer and shear.

The Coriolis-affected mean momentum balance can be written in the form

∂S

∂t
= 0 =−if(S−G)− ∂⟨sw⟩

∂z
(7)

for stationary and horizontally homogeneous conditions (thus neglecting advection). Here the kinematic horizontal pressure

gradient ∇p/ρ= f{VG,−UG} is also written like a velocity in complex form asG≡ UG + iVG = (−∂p/∂y+ i∂p/∂x)/(ρf).150

The mean stresses are dominated by vertical momentum transport ⟨sw⟩, where w denotes (turbulent) vertical velocity fluctua-

tions and s≡u+ iv the horizontal velocity fluctuations.

At a given height z, taking the differential of (6) (recalling darctanx= dx/[1+x2] and using the chain rule) gives

dφ=
UdV −V dU

|S|2
; (8)

here the superscript asterisk denotes complex conjugate. Applying ∂/∂z to (8) and (7) and combining provides a basic expres-155

sion for veer:

∂φ

∂z
=

U

|S|2

[
1

f

∂2⟨uw⟩
∂z2

+
∂VG
∂z

]
+

V

|S|2

[
1

f

∂2⟨vw⟩
∂z2

− ∂UG

∂z

]
. (9)

In the case of zero geostrophic shear (dG/dz = 0), if the coordinate system’s x-axis is defined by the mean wind direction at

the height z where the veer is sought, then (9) can be written more simply as

∂φ(z)

∂z

∣∣∣∣
dG/dz→0

=
1

f |S|
∂2

∂z2
⟨uw⟩|ex∥U(z). (10)160

Though (9) and (10) are not directly very useful for relating veer to shear, since the shear is implicit in the stress terms (and

one would need to know the profiles of horizontal stresses to use these equations), they do illustrate that the curvature of stress

profiles and Coriolis effect are the basis for mean veer following (7), and also that geostrophic shear can further contribute to

veer (e.g. due to baroclinity, see Hoxit, 1974; Arya and Wyngaard, 1975; Pedersen et al., 2013).

2.3 Relating veer to shear165

Towards relating the veer to shear, one can alternately derive the veer by first taking the time derivative of (8); using the real

and imaginary parts of (7), in the horizontally homogeneous limit (ignoring advection) one obtains a rate equation for mean

wind direction:

∂φ

∂t
=

[
V

|S|2
∂⟨uw⟩
∂z

− U

|S|2
∂⟨vw⟩
∂z

]
+ f

(
|G|
|S|

cosγ− 1

)
. (11)

The ‘turning’ angle γ ≡ φ−φG between geostrophic and mean wind directions (e.g. Wyngaard, 2010) arises through4

UGU+VGV = U ·G = |S||G|cosγ
4The turning angle can also be expressed in complex notation, recalling that the angle between vectors written in complex notation (here U→S and

G→G) can be recovered by taking ℜ{G∗S}, i.e. |G||S|ℜ{e−i(φ+γ)eiφ}= |G||S|cosγ.

6



by taking ∂/∂t of (6) or equivalentlyU∂V/∂t−V ∂U/∂t via (8). The geostrophic wind direction is defined asφG ≡ arctan(VG/UG),170

and the ‘cross-isobar’ angle, i.e. the turning over the whole ABL (γ0 = φ0−φG), is generally less than 45◦ (Grisogono, 2011)5;

in a right-handed coordinate system, regardless of whether x is chosen to align with G or the surface-layer wind velocity UASL,

the turning tends to γ > 0 in the Northern hemisphere6. We remind that φ, and thus γ, can vary with height z (as can φG in

baroclinic conditions).

Assuming statistical stationarity so that ∂φ/∂t= 0, the vertical derivative of (11) can be written most conveniently in terms175

of the deviation of dimensionless wind from streamwise; taking the vertical derivative of (11) if we again take dG/dz = 0

(neglect baroclinity), then

∂ cosγ

∂z
=

1

|G|
∂|S|
∂z

+
1

f |G|
∂

∂z

[
U

|S|
∂⟨vw⟩
∂z

− V

|S|
∂⟨uw⟩
∂z

]
. (12)

As it is expressed in terms of angular differences γ, the equation above is independent of whether the coordinate system is

defined at the surface or by the geostrophic wind. Expression (12) clearly separates the shear and Coriolis/stress contributions180

to veer. However, it can be simplified, and is most meaningful, if the coordinate system is defined at the height z for which

it is applied; in practice the veer is typically calculated around hub height, or from hub to tip, or between measurement and

hub heights. Re-expressing (11) with the coordinate system defined by having x in the mean wind direction at height z, so that

S(z) = U(z)ex and |S(z)|= U(z), in the mean (for dφ/dt= 0) one has

cosγ =
|S|
|G|

+
1

f |G|
∂⟨vw⟩⊥
∂z

(13)185

where we use the shorthand notation ⟨vw⟩⊥ to denote the stress perpendicular to the mean flow at a given height. Taking the

inverse cosine and subsequently the vertical derivative, noting that ∂γ/∂z = ∂φ/∂z and d(arccosx) =−dx/
√
1−x2 while

recalling ∂|S|/∂z = α|S|/z, we get

∂φ

∂z

∣∣∣
ex∥U(z)

=−
[
|S|
|G|

α

z
+

1

f |G|

(
∂2⟨vw⟩⊥
∂z2

− 1

|S|
∂V

∂z

∂⟨uw⟩∥
∂z

)][
1−

(
|S|
|G|

+
1

f |G|
∂⟨vw⟩⊥
∂z

)2
]−1/2

;

here the subscript ∥ is used to remind that ⟨uw⟩ is parallel to the flow at height z. Further, in this coordinate system (8) gives190

∂V/∂z = U∂φ/∂z = |S|∂φ/∂z, so that the ∂V/∂z part just becomes an additional veer term on the right-hand side; collecting

the ∂φ/∂z on the left side and rearranging we then obtain

∂φ

∂z

∣∣∣∣
ex∥U(z)

=

− |S|
|G|

α

z
− 1

f |G|
∂2⟨vw⟩⊥
∂z2[

1−
(

|S|
|G| +

1
f |G|

∂⟨vw⟩⊥
∂z

)2]1/2
− 1

f |G|
∂⟨uw⟩∥

∂z

. (14)

5The ABL turning angle γ0 cannot exceed 45◦, according to the Ekman equations (or their numerical solution, as in van der Laan et al., 2020). However, in

some situations, which tend to involve horizontal inhomogeneities, γ0 > 45◦; these include e.g., baroclinity, terrain-induced turning (especially with stability),

convective cells, and various persistent storm structures.
6In the Southern hemisphere, the signs are reversed: geostrophic flow around a local low-pressure moves clockwise, with surface-induced turbulence

(‘friction’) causing the flow to again increasingly turn towards low pressure as the surface is approached, and thus γ < 0.
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As will be demonstrated in a later section, basically one sees from the numerator of (14) that the veer is comprised of a shear-

associated part and a crosswind stress-curvature part; the denominator is basically 1 minus a few relatively small terms. The195

more generic form of veer, for an arbitrary coordinate system, also follows from (11):

∂φ

∂z
=

− |S|
|G|

α
z + 1

f |G|
∂
∂z

(
V
|S|

∂⟨uw⟩
∂z − U

|S|
∂⟨vw⟩
∂z

)
√
1−

[
|S|
|G| −

1
f |G|

(
V
|S|

∂⟨uw⟩
∂z − U

|S|
∂⟨vw⟩
∂z

)]2 . (15)

We note that (14) and (15) avoid the use of the turning (ageostrophic) angle γ, and subsequently nonlinear functions involving

φG, which becomes apparent if one expands cosγ in (12) or (13). However, one can see that there can be an angular dependence

within the stress-related parts written above; when considered in coordinates defined with the x-direction aligned with the mean200

wind at height z, in the general forms (12) and (15), U/|S| and V/|S| can be written as cosφ and sinφ, respectively. Then from

(12) and using cosγ = cosφcosφG +sinφsinφG, again in coordinates defined by |S(z)|= U(z), after some rearranging we

arrive at an expression for veer like (14):

∂φ

∂z

∣∣∣∣
ex∥U(z)

=

|S|α
|G|z +

∂2⟨vw⟩⊥/∂z2

f |G|

sinφG +
∂⟨uw⟩∥/∂z

f |G|

. (16)

Compared to (14) this lacks a negative sign, but sinφG is negative and with larger magnitude than the positive contribution205

to the denominator, ∂⟨uw⟩∥/∂z/(f |G|); this will become more apparent in the sections which follow. We also remind that

in these coordinates φG = γG(z), and opposite signs will occur for the southern hemisphere (expressions 14–16 give dφ/dz

signed for the northern hemisphere in mathematical coordinates, i.e. negative), reflecting winds rotating on average clockwise

with increasing height.

For wind energy ∂(cosφ)/∂z might be considered as relevant as ∂φ/∂z, because it allows direct expression of the veer-210

induced variation in streamwise wind velocity component relative to a reference height such as hub height. One could expect

that the reduction of cosφ away from a given z counteracts the effect of typically positive shear; if desired, the veer can be

simply re-expressed later in terms of cosφ for a given coordinate system, instead of trying to use an expression such as (12).

One last relation between shear and veer can also be elucidated, by considering a corrected version of (4). By keeping the

lateral shear term ⟨vw⟩∂V/∂z in the TKE rate equation, then again using coordinates defined wth x in the mean direction at215

height z and subsequently ∂V/∂z→ U∂φ/∂z, then (4) contains an additional contribution, becoming

α|ex∥U(z) =
ε−B−T

−U⟨uw⟩∥/z
− z

∂φ

∂z

⟨vw⟩⊥
⟨uw⟩∥

. (17)

Recalling in the ABL that ⟨uw⟩∥ < 0 (momentum gets transferred towards the surface7), because ⟨vw⟩⊥ > 0 in the ABL (Wyn-

gaard, 2010) we see as in (14)–(16) that negative ∂φ/∂z (clockwise veer) is associated with positive shear; we remind that the

sign of ∂φ/∂z is flipped in typical wind energy coordinates (left-handed, with 0 degrees corresponding to wind from the north220

and increasing clockwise). Although we have provided (17) to both improve (4) from Kelly et al. (2014a) and offer insight into

how shear and veer are linked within the context of TKE, we advise that it is not easily utilized compared to forms like (14);

the latter will be applied and investigated further in later sections.
7The exception to this is if one considers heights within ∼10–20% of the ABL top (e.g., Kelly et al., 2019a).
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2.3.1 Misalignment of shear and stress

One can see a connection between the shear, veer, and stress in (9) and (12), and we can further examine the relation between225

shear and stress using complex notation as in (7). The ‘misalignment’ can be expressed via the angle between ∂S/∂z and ⟨sw⟩,
i.e.

βma ≡ (φ−φsw) = arg(∂S/∂z)− arg(⟨sw⟩) . (18)

The root of such misalignment arises in the rate-equation for ⟨sw⟩. In the limit of horizontal homogeneity, if we combine the

stress budgets (e.g. see Wyngaard, 2010), i.e. adding ∂⟨uw⟩/∂t to i∂⟨vw⟩/∂t, we may write230

∂⟨sw⟩
∂t

= 0≃ ⟨w2⟩∂S
∂z

− ⟨sw⟩
τR

− ∂

∂z
⟨sww⟩. (19)

The pressure-strain contribution has been written as ⟨sw⟩/τR via the commonly-used Rotta (1951) parameterization, where

τR is the Rotta time scale; this is the basis for commonly used flux-gradient relations (Wyngaard, 2004). In such mixing-

length relations, i.e. using the ‘Boussinesq hypothesis,’ ⟨w2⟩τR is simply written as a turbulent diffusivity −νT , and the final

term in (19) is neglected. We continue to neglect advection and horizontal transport (such as U∂⟨sw⟩/∂x and ∂⟨suw⟩/∂x235

respectively); these can also contribute to misalignment between ∂S/∂z and ⟨sw⟩ in areas of upwind horizontal inhomogeneity

such as nonuniform terrain and turbine wakes. Thus in models where an eddy-diffusivity (flux-gradient relation) is used, such

as most RANS solvers which employ 2-equation turbulence models, for flow over homogeneous surfaces there will be no

stress-shear misalignment.

Ghannam and Bou-Zeid (2021) derived a dimensionless relation in terms of the angular differences βma and γ instead of240

velocity components; although it does not afford convenient description of the veer, it can be re-cast to show the effect of the

misalignment angle:

f |G|sinγ =−
∂
∣∣⟨sw⟩∣∣
∂z

cosβma −
∣∣⟨sw⟩∣∣sinβma

∂φsw

∂z
. (20)

Thus when the stress is aligned with the shear (βma = 0), then f |G|sinγ =−∂|⟨sw⟩|/∂z; this can be seen as a case of (13).

The contribution of stress-shear misalignment to the veer can also be seen considering (19) with our earlier derivations, with245

misalignment modifying the stresses. For example the cross-wind stress in (13)–(15) can be written

⟨vw⟩⊥ =−νT
[
∂V⊥
∂z

+
∂⟨vww⟩⊥/∂z

2k/3

]
(21)

since the Rotta timescale can be expressed in terms of turbulent kinetic energy k via νT = τR⟨uu+ vv+ww⟩/3 (see Pope,

2000; Hatlee and Wyngaard, 2007). But the turbulent third-order moment ⟨sww⟩ is difficult to measure, so a model for it

would be needed in order to explicitly incorporate misalignment into veer predictions. Fortunately the misalignment βma tends250

to be small in the surface layer (Geernaert, 1988), and also beyond the surface layer over homogeneous terrain or long fetch

over water, especially without baroclinity (Berg et al., 2013). However, it has been known for decades (Moeng and Wyngaard,

1989) that turbulent transport is relevant in convective ABLs, so one expects more misalignment in unstable conditions; indeed
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Santos et al. (2021) saw this from measurements over multiple heights over a land and sea site, as did Berg et al. (2013) to a

lesser extent (due to the relatively short measurement campaign) over water. The misalignment tends to be smaller in neutral255

conditions, and thus we do not (yet) offer explicit treatment for it.

2.3.2 Canonical solutions using an eddy diffusivity

When turbulent transport of stress is negligible (along with baroclinity and inhomogeneity), in steady conditions the stress and

mean velocity gradient are aligned. This allows the use of an eddy diffusivity νT to express the stress as ⟨sw⟩=−νT (z)∂S/∂z.

The veer can then be cast as a nonlinear differential equation using the stress cast in terms of eddy diffusivity and shear in (10),260

which again in flow-following coordinates at height z neglecting geostrophic shear is

∂φνT

∂z
=

−1

f |G|
∂2

∂z2

[
νT (z)

∂U

∂z

]
. (22)

This defies solution without some prescription for νT (z), though one can note limits of the veer by considering two canonical

cases where it can be solved: the Ekman and Ellison regimes, corresponding to simple prescriptions for νT . Such limits were

considered by van der Laan et al. (2020) for the geostrophic drag coefficient cG ≡ u∗/|G| and ABL-integrated veer (cross-265

isobar angle) γ0 ≡ φ0 −φG.

Ekman solution.

Ekman (1905) assumed the turbulent stress was related to the mean shear using a constant eddy-viscosity νEk, which in our

notation is expressible as ⟨sw⟩=−νEk∂S/∂z. Thus the momentum balance (7) simplifies to

f(SEk −G) =−iνEk
∂2SEk

∂z2
, (23)270

which gives the classic Ekman solution

SEk =G
(
1− e−(1+i)z/hEk

)
, (24)

where the characteristic Ekman (e-folding) height hEk is defined as hEk ≡
√
2νEk/f . Simpler than relating Ekman veer to

shear, the solutions above along with (9) give the veer directly (again in radians) as

∂φEk

∂z
=

−νEk

f |SEk|2

[
U
∂3U

∂z3
+V

∂3V

∂z3

]
=
e−z/hEk

hEk
· cos(z/hEk)− sin(z/hEk)− e−z/hEk

1− 2e−z/hEk cos(z/hEk)+ e−2z/hEk

≃ −0.5+ z/(6hEk)

hEk
;

(25)275

this result has units of radians/m measured counter-clockwise, with the linear approximation8 deviating from the exact form

by less than 1% for z < 1.5hEk. Integrated over z±∆z/2, this gives the veer across an extent ∆z:

∆φEk ≃
−∆z

2hEk

(
1− ∆z

3hEk

)
. (26)

8The approximation is found by series expansion in z/hEk about 0; the same result is obtainable by taking the vertical derivative of (6), i.e.

∂ [arctan(ℑ{SEk}/ℜ{SEk})]/∂z.
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The Ekman forms might be seen as an upper limit on veer for hEk on the order of typical ABL depths (∼300–1000m),

analogous to what was found by van der Laan et al. (2020) for the cross-isobar angle γ0.280

From (24) one can also find an expression for the Ekman shear exponent αEk via (1),

αEk =
|∂SEk/∂z|
|SEk|/z

=

√
2(z/hEk)√

1− 2cos(z/hEk)ez/hEk + e2z/hEk
≃

(
1−

√
2

π

z

hEk

)
. (27)

This may also be seen as an upper limit, particularly in the surface layer where an unrealistically large diffusivity is assumed;

one can see that Ekman theory predicts α→ 1 approaching the surface.

Ellison solution (linear diffusivity profile / surface-layer regime)285

Using a surface-layer eddy-viscosity relation νT (z)=κu∗z consistent with ASL theory, Ellison (1956) derived the solution

of (7) for the (complex) wind vector, resulting in a profile of geostrophic ‘deficit’ expressible as (Krishna, 1980)

G−SEll(z) =
2u∗
κ

[
ker0

(√
2fz

κu∗

)
+ ikei0

(√
2fz

κu∗

)]
(28)

where ker0(x) and kei0(x) are the so-called Kelvin functions (see e.g. Abramowitz and Stegun, 1972). But the Ellison solution

can be written more compactly and conveniently, similar to (24) with a complex argument, as290

SEll(z) =G− 2u∗
κ
K0

(√
2ifz

κu∗

)
=G

[
1− 2

cG
κ
K0

(
(1+ i)z√
νT (z)/f

)]
=G

[
1− 2

cG
κ
K0

(√
2iz

hmE

)]
; (29)

K0(x) is the zeroth-order modified Bessel function of the second kind, and the modified-Ekman length scale is defined by

hmE ≡κu∗/f , also equal to νT (z)/fz. For the range 0.02≲ cG ≲ 0.06 encountered in nature under neutral conditions (Hess

and Garratt, 2002; van der Laan et al., 2020), for zH/hmE ≫ 0.1 the arctangent of ℑ{S}/ℜ{S} can be approximated via series

expansions of (28) or (29) to yield the practical result295

∆φEll(zH ,∆z)≈ πcG exp
(
−
√
z′/zH

)∣∣∣zH+∆z/2

zH−∆z/2
; (30)

this follows the numerical solution to within ∼20% for 0.3≲ z/hmE ≲ 2, moreso for cG approaching 0.04.

It was shown in van der Laan et al. (2020) that the Ekman and Ellison solutions basically gave upper and lower limits,

respectively, to observed full-ABL turning (φG −φ0). Following this, in Fig. 1 we present veer profiles along with the rela-

tionship between veer and shear, for the Ekman and Ellison solutions; the former is calculated via the expressions in (25) and300

(27), while the latter is obtained via (29).

One can see in the left-hand plot of Fig. 1 that the Ekman solution produces effectively less mixing, and consequently a

higher shear exponent than Ellison’s. Similarly, away from the surface (for z > νEk/(κu∗), i.e. z/hEk ≳ 0.1) in the right-hand

plots of Fig. 1 one can see the dimensionless Ekman veer exceeds that predicted by the Ellison solution; this is consistent

with the Ekman ABL-turning angle of γ0,Ek = 45◦, which exceeds the γ0 of 5–15◦ predicted by Ellison’s form (van der Laan305

et al., 2020). However, we note that the depth h can differ between the Ekman and Ellison solutions; hEk = hmE only if one

chooses νEk = (κu∗)
2/2f . We also point out that for larger cG (not shown in figure), near the surface (z/hmE ≲ 0.1) Ellison’s

veer grows yet larger than the peak value shown at z ≈ 1.5hmE and relative to the behavior seen for cG = 0.04; however, this

idealized near-surface behavior is likely not relevant for wind applications.
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Figure 1. Veer behavior (plotted as degrees clockwise) for analytical/limiting cases of Ekman and Ellison. Left: veer versus shear exponent,

for any Ekman or Ellison ABL depth h; Ekman is dotted purple, Ellison is dashed pink. Center/right: profiles of bulk veer for different ∆z;

Ellison solution in right-hand plot is numerical solution (without approximation).

2.4 Practical forms and application310

To use the expressions derived for veer earlier, one needs the vertical derivatives of stress (or its profile) and the geostrophic

wind speed; in particular the first and second vertical derivatives of the cross-wind stress ⟨vw⟩⊥ appear in (14) and (16), along

with |G|. In wind energy applications, engineers typically lack site-specific stress profiles, unless they are taken from flow

modelling; if the latter is reliable, then there is probably less need for the shear-based estimates for veer given in this work.

The large-scale horizontal pressure gradients which drive ABL flow, expressible as the geostrophic wind G, are likewise rarely315

measured (though lidar measurements above the ABL can make this possible, e.g. Pedersen et al., 2013). The shear contribution

to veer is multiplied by |S|/|G| in (14)–(16). To obtain a practical form relating shear to veer, we can start by parameterizing

|S|/|G|; fortunately |G| is commonly calculated in practice using a geostrophic drag law (‘GDL’, Rossby and Montgomery,

1935). Long used in wind applications such as WAsP (Troen and Petersen, 1989) and related wind resource software, it is

expressible in scalar form as320

|G|= u∗
κ

√[
ln

(
u⋆
fz0

)
−A

]2
+B2 (31)

with components

sin(φG −φ0) =−B u∗
κ|G|

and cos(φG −φ0) =
u∗
κ|G|

[
ln

(
u∗/f

z0

)
−A

]
(32)

where the empirical coefficients {A,B} are assumed to be constants in typical wind application. The geostrophic drag coef-

ficient cG ≡ u∗/|G| and ABL turning (cross-isobar angle) φG are seen to vary with surface-Rossby number Ro0 (Blackadar325

and Tennekes, 1968); these and {A,B} have been shown to depend on dimensionless stability L−1u∗/f (Arya, 1978; Kelly

and Troen, 2016), strength of ABL-capping inversion (Zilitinkevich and Esau, 2002), and baroclinity (Arya and Wyngaard,
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1975; Nieuwstadt, 1984). For practicality, we start by assuming near-neutral stability, which is appropriate in the mean for

most places, as it represents by far the most frequently observed conditions (Kelly and Gryning, 2010); we continue to ne-

glect baroclinity; and we neglect influence of the capping inversion strength.9 With such assumptions, one can also write an330

(approximate) ‘reverse’ form of (31) to get the drag coefficient as (Troen and Petersen, 1989)

cG ≃ crGDL

lnRo0 −A
(33)

where the surface Rossby number is Ro0 ≡ |G|/(fz0) and crGDL is taken to be 0.485 following its use in the wind resource

program WAsP for several decades. Alternate forms of (33) exist, such as that of Hess and Garratt (2002); the latter corresponds

simply to setting A= 1.28 and crGDL = 0.472 in (33). For a given roughness length z0 and measured wind speed |S|, lacking335

the (surface) friction velocity u∗, one needs a relation to connect u∗ and |S|, in order to get |G|. This can be done through

the same wind profile relation upon which the GDL is built, i.e. the log-law; one can use u∗ = κ|S|/ ln(z/z0) within (31) or

alternately |S|/|G|= (cG/κ) ln(z/z0) using (33), where in the latter (31) is also employed to find |G| within Ro0.

In practice one would like a direct estimate for the veer, using the routinely-measured shear, since α is seen to drive ∂φ/∂z.

One way could be to just ignore the stress divergence terms in (14) or (16), which with calculation of |G| mentioned just above340

considerably simplifies the problem. However, this might not be justified, particularly if u2∗/(fh) is not negligible compared

to |S|, as seen from comparing contributions to (14)–(16); this can be seen using the scaling ∂⟨uw⟩/∂z ≈ u2∗/h where h is the

ABL depth (e.g. Wyngaard, 2010). Thus we consider estimating vertical derivatives of the stresses, starting with the ∂⟨uw⟩/∂z
just mentioned, which can be used in (16). Similarly, one can estimate ∂2⟨vw⟩/∂z2 ≈ cvwu

2
∗/h

2 or

∂2⟨vw⟩/∂z2

f |G|
≈ cvw

u2∗
f |G|h2

= cvw
c2G
h

Roh (34)345

where Roh ≡G/(fh) is the Rossby number based on ABL depth and cvw is of order 1; we will treat cvw as an empirical

constant which is tuned later below. To use (16) we also need to find sinφG; employing (32) and using trigonometric identities

to expand sin(φ−φ0), with some rearrangement one obtains

sinφG =
cG
κ

{[
ln

(
u∗
fz0

)
−A

]
sinφ0 −B cosφ0

}
. (35)

Employing this, (34), and ∂⟨uw⟩/∂z ≈ u2∗/h, along with (31) or (33), allows one to then use (16).350

On the other hand, using (14) is simpler and more convenient than (16), because it only requires ∂⟨vw⟩/∂z in addition to the

second derivative of ⟨vw⟩ just approximated in (34) above, so one can also simply approximate ∂⟨vw⟩/∂z ≈ h∂2⟨vw⟩/∂z2

and use (34); the GDL forms (31) and (33) then allow one to get Roh and cG, respectively. Whether using (16) or (14), we

note that the shear contribution to veer includes a surface-Rossby number (Ro0) dependence through S/|G|, while the stress-

Coriolis contribution includes an ABL-depth dependence, Roh; either way, if we do not neglect the latter, then we also need355

an estimate for the ABL depth h. If the shear contribution is expected to dominate variations in veer, then the estimate of h
9We note Zilitinkevich and Esau (2005) gave a form for the GDL incorporating all three of these effects, and Liu et al. (2021) practically simplified that

form, using LES to find its empirical constants in the case of nonzero effect of capping inversion strength per Coriolis parameter. However, the extra parameters

needed are additional to what is required for the current theory given for climatological-mean conditions, and well beyond what is measured in practice.
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may not be so crucial; we will consider this further below in our comparison with real-world cases, and also direct interested

readers to e.g. Liu and Liang (2010) for statistics of h in different conditions.

3 Analysis and Discussion

This section presents analysis of results from RANS simulations of the neutral atmospheric boundary layer10, and of observa-360

tions at different sites (which include the impacts of stability). The simulations are analyzed to check the relations given here,

as well as examine the behavior of and contributions to veer across the range of Rossby numbers (Ro0 and Roh) encountered

in nature. Investigation of observations, spanning turbine rotor heights for six different flow regimes and conditions across four

locations, includes probing the interconnected behaviors of shear (exponent) and veer with atmospheric stability – as well as

their joint statistics, universal trends, and variation with wind speed. The statistical demonstration of observations is accompa-365

nied by predictions of veer using empirically updated forms of the relations given in the previous section, as well as the forms

themselves.

3.1 RANS simulations of neutral ABLs

3.1.1 Model and setup

The Navier-Stokes solver Ellipsys1D (van der Laan and Sørensen, 2017), which is a one-dimensional version of the multiblock370

general CFD solver Ellipsys3D (Sørensen, 1995), was used to simulate the Reynolds-averaged flow in neutral atmospheric

boundary layers, including Coriolis forces. Assuming zero vertical velocity and constant pressure gradients, it solves the RANS

equations for incompressible flow with a finite-volume scheme. The ABL ‘top’ (above which turbulence is extinguished) is

modelled via the length-scale limiter model of Apsley and Castro (1997) implemented into the k-ε turbulence closure equations

solved by Ellipsys1D, as outlined in van der Laan et al. (2020); this includes use of small ambient values of turbulence intensity375

and dissipation rate above the ABL, with k-ε constants Cµ = 0.03, Cε1 = 1.21, Cε2 = 1.92, σk = 1.0 and σε = 1.3. The k-ε

model provides the stresses occuring in the RANS equations, via the flux-gradient relation and νT = Cµk
2/ε; thus we see that

such turbulence closure gives stresses aligned with velocity gradients.

The domain height is set to 105m to ensure it is much larger than h for all simulations, and the bottom boundary is handled

by a rough-wall condition (Sørensen et al., 2007). The numerical ‘grid’ is a vertical line, with the bottom cell height being 1 cm380

(placed above the roughness length) and the cells’ sizes growing progressively upward with an expansion ratio of 1.2; the total

number of cells is 384. At the bottom cell a Neumann condition is set for k (dk/dz = 0) and ε is set to the logarithmic value,

the wall stress is consequently defined by the neutral surface layer for this cell. More details, including a grid-refinement study,

may be found in van der Laan et al. (2020).

Using a constant geostrophic wind speed, the flow is driven by a constant pressure gradient, starting with an initial wind385

profile set to |G| at all heights; the ABL depth grows upward until convergence occurs, providing a steady solution and h for
10The neutral RANS simulations can also be translated into equivalent stable cases within the k-ε-ℓmax turbulence closure framework of Apsley and Castro

(1997), following van der Laan et al. (2020).
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a given choice of z0, pressure gradient (thus G and f ), and turbulence (k-ε) limiting lengthscale ℓmax. The Buckingham Pi

theorem can be used to reduce the four parameters {z0,G,f,ℓmax} into two dimensionless groups, namely Rossby numbers for

z0 and ℓmax; for lengthscale-limited k-ε RANS in the neutral ABL, one further has the relation (van der Laan et al., 2020)

h= ℓ0.6max

(
|G|
|f |

)0.4

(36)390

thus giving us the two Rossby numbers Ro0 and Roh for describing flow cases (van der Laan et al., 2020). Simulations were

done over the full range of ABL depths, surface roughnesses, and wind speeds encountered in nature, which correspond to a

range of Rossby numbers spanning 105 <Ro0 < 1010 and 15.8<Roh < 661. For simplicity |G| was set to 10ms−1 and f to

10−4 s−1 in the simulation set spanning these ranges of Rossby numbers. However, we remind that Rossby similarity means

that for a given pair of {Ro0,Roh} and {z0,h} one has many (infinite) combinations of {|G|,f} which give the same |G|/f and395

thus the same dimensionless profile shapes of velocity, i.e. speed and direction as a function of dimensionless height zf/|G|. At

any rate, the simulations cover ranges of (exceeding): ABL depths of 200–2000m; roughness lengths from water’s roughness

(0.1mm) up to 2.5m; and |G| from 5–50ms−1.

3.1.2 Shear and veer over neutral ABLs simulated over entire range of Rossby numbers found in nature

First we check that the RANS simulations confirm the shear-veer relations developed earlier; we expect this to be, since there400

are no extra terms in the simulated Navier-Stokes equations compared to (7). Figure 2 displays both sides of (9) and (13)

respectively, for four cases representing somewhat common real-world conditions, for heights between 50–200m. From Fig. 2
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Figure 2. Demonstration of 1D RANS solver results, conforming to eq. 13 (left) and eq. 9 (right). Dashed line represents 1:1 prediction;

simulated ABL depth heff calculated from (36).

one can see that the Ellipsys1D solutions conform to equations (9) and (13) derived earlier.

Towards investigating the behavior of veer (and shear) in terms of Rossby numbers – which is facilitated by RANS, but is

quite difficult to accomplish with measurements – we turn our attention to the variation in veer as a function of surface rough-405

ness. Admiting that we are using one-dimensional simulations over a homogeneous surface, we now consider the directional
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change across typical turbine rotor heights, i.e. ∆φ from z = 50m to 150 m. Figure 3 displays ∆φ|150m
50m plotted over different

roughnesses for the two ABL depths represented in the cases shown of the previous figure, namely 490m and 1047m. From
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Figure 3. Roughness dependence of turning (in degrees, clockwise) seen for two representative ABL depths, from 1D RANS simulations

over a range of roughness lengths plotted directly against z0 (left) and alternately versus 1/ ln(Ro0) (right). Lines in right-hand plot indicate

linear trend.

the right-hand plot in Fig. 3 one can see that ∆φ is roughly proportional to 1/ ln(Ro0), as expected from the S/|G| contribution

to veer considering (31) and (33).410

Looking back on (34), we may also expect a Roh dependence in the veer, at least considering the stress gradient contributions.

Figure 4 shows veer across three different rotor extents (z =50–100m, 50–150m, and 100–200m), over a wide range of

effective ABL depth h and associated Rossby number Roh, for a commonly found roughness over land (1.6 cm). In Fig. 4
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Figure 4. Influence of ABL depth and associated Rossby number on veer (clockwise) for different turbine rotor spans.

results are shown only for one roughness, because the curves of veer versus ABL depth and Roh look nearly identical when

using any other z0 (or Ro0) value, such as water roughnesses less than 0.3mm. In other words, the sensitivity of veer to h is415

essentially independent of z0, if one varies these separately from case to case as in our numerical simulations. Looking at these

results, we note a behavior that is consistent with the estimates for stress-gradient contributions following (34): as indicated
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by the dotted lines in Fig. 4, the veer is empirically found to be proportional to Ro1.4h (or h−1.4) over a range of ABL depths

routinely observed in reality (h∼200–800m); the dependence softens to be linear in Roh (or 1/h) for depths approaching

h∼1 km, which are also commonly observed in nature (e.g. Liu and Liang, 2010). For yet deeper ABLs which are more420

rarely encountered, the height dependence vanishes; this can be intuitively interpreted, as ∆z/h becomes so small that less

directional change is found for a given ∆z when h is increased further. The veer and its h-dependence is seen to be basically

independent of height for these 50–100m vertical spans: at the heights of interest for wind energy shown, the lines collapse

onto one another. To compare with Fig. 3, multiplying the veers in Fig. 4 by ∆z = 100m for the blue and gold curves, we can

also see that for a realistic range of ABL depths and roughnesses, the effect of h is stronger than that of z0: across all Ro0 a425

variation in ∆φ|150m
50m of only several degrees is seen, whereas across the common range of Roh a variation of more than 15◦ is

shown.

Now that we have seen in Figs. 3–4 how the veer (or simply the turning ∆φ for typical rotor ∆z) depends on z0 and h,

presumably due to the S/|G| (shear) and stress-gradient contributions respectively, it is prudent to examine the relative sizes

of each of these contributions – particularly because RANS affords us this opportunity. One can cleanly separate these contri-430

butions by examining the variation of cosγ, as indicated by (12) and (13). Accordingly, Fig. 5 presents the two contributions

to the dimensionless veer ∂ cosγ/∂z derived in (12), for the four over-land cases shown in Fig. 2 as well as an over sea case

with the same ABL depth as two of the land cases.
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Figure 5. Profiles of contributions to dcosγ/dz in (12) due to shear (left), stress gradients with Coriolis (center), and their sum (right). Five

RANS simulations shown (two roughnesses and two ABL depths over land, one over sea) over typical turbine rotor heights; the listed z0 and

h correspond to Rossby numbers using G= 10ms−1 and f = 10−4 s−1.

One can note from Fig. 5 that the shear and stress-gradient/Coriolis contributions largely offset each other, with each being

an order of magnitude larger than their sum, which is equal to the dimensionless veer ∂ cosγ/∂z. The vertical profiles of ‘point-435

wise’ veer shown in the figure, which were calculated using 3rd-order finite difference, indicate that in neutral conditions the

veer is smaller offshore compared to on land. Further, one sees the combined effect of the behaviors noted from the previous

two figures: shallower ABLs have larger veer, as do ABLs over rougher surfaces, with Ro0(z0) having a smaller impact

than Roh(h).
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This can be put into a more practical context by considering the variation of shear and veer together across the range of440

Rossby numbers found in atmospheric flows. Figure 6 displays turning versus shear exponent, with each calculated across ∆z

from 50–150m. The figure shows three plots of {α,∆φ}: one for a range of Roh equivalent to h ranging from 490 to 1047m,

over two different z0 (land and sea); one for a range of Ro0 equivalent to z0 values varying from 0.016–25 cm, for two different

ABL depths h (which bracket the range of h in the left-hand plot); and one over the entire atmospheric range of both Ro0

and Roh.
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Figure 6. Turning (bulk veer) in degrees clockwise versus shear exponent calculated from 50–150m, over ranges of ABL depth and surface

roughness; each point represents one RANS solution. Left: using G= 10ms−1 and f = 10−4 s−1, over range of ABL depths spanning the

values used in Figs. 2–5 for water and typical land roughness. Center: again with G= 10ms−1 and f = 10−4 s−1, over range of z0 spanning

those used in Figs. 2–5, for two ABL (typical) depths used in previous figures. Right: over wider range of {Ro0,Roh} spanning that found

in nature; note larger vertical axis scale.

445

From the left and center panels of Fig. 6, it becomes evident that Roh affects ∆φ more than α for typical rotor extents;

opposite of this, Ro0 affects the shear more than the veer. Further, for the relatively representative set of (common) cases shown

in the center and left-hand plots in Fig. 6, we notice much less variation in {α,∆φ} compared to the entire parameter space

displayed in the right-hand plot; as we will see in the next sub-section, the right-hand plot is more in line with observations,

despite the RANS solutions representing nominally neutral conditions11 over uniform surfaces with neglect of shear-stress450

misalignment and baroclinity.

3.2 Results from measurements in different wind regimes and sites

After examining the behavior of neutral-ABL dependencies for shear and veer above from simulations, now we consider the

behavior of each in the real world from measurements at different sites, which includes e.g. the affects of stability. The datasets

11One could argue that our RANS solutions can also be interpreted to include stable conditions, since the lengthscale-limited k-ε turbulence model can

have its maximum mixing length ℓmax rewritten using the Blackadar (1962) mixing-length formulation such that ℓ−1
max,eff = ℓ−1

max plus a stability contribution, as

shown in van der Laan et al. (2020). However, such interpretation employs M-O theory along with the Blackadar-type form to ‘combine’ a surface-layer scale

ℓASL ∝ z with ℓmax; here we choose to keep our analysis as general as possible — avoiding particular ASL forms or assumptions, and models for turbulence

length scale.
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are the same analyzed by Kelly et al. (2014a), which showed shear exponent statistics for these locations, except a longer record455

of Høvsøre data was used for the current study (10 years, from 2005–2015). These are: the aforementioned Høvsøre site, from

60–160m height for both homogeneous land and sea sectors; the partly forested but flat Østerild site (Hansen et al., 2014) for

two virtual rotor spans, from 45–140m and 80–200m over one year; the Dutch research site Cabauw (Beljaars and Bosveld,

1997), from 80–200m height for two years; and one year from a commercial site dubbed ‘MR’ which sits on a ridge over a

mostly forested (>∼ 3/4) area but dominated by hills having elevation differences up to ∼200m within 10 km distance, using460

anemometers at 40–136m height.12

We investigate the statistical behavior of veer with shear exponent as well, not only to see their interdependent behavior,

but also towards providing useful relations for their variability and practical prediction of veer from typical wind energy

measurement campaigns.

3.2.1 Shear exponent465

Here we briefly explore the connection between probability distribution functions (PDFs) of stability and shear exponent. The

shear distribution f(α) can be connected to f(L−1) in the surface layer during stable conditions, but there is not necessarily

a one-to-one (unique) mapping between the two (Kelly et al., 2014a). As seen in (4) and (5), α tends to correlate with stabil-

ity (1/L) and particularly buoyant destruction (−B) during stable conditions, when turbulent transport is negligible. This is

shown in Fig. 7, which displays the joint probability density of α|160m
60m and L−1 calculated in the ASL at z = 10m from the470

homogeneous land sectors at the Danish national test station of Høvsøre (Peña et al., 2016) from 10-minute averages over a

10-year period.

From Fig. 7 one sees the cloud of observed {α,L−1} follow somewhat the curve of Φm/[ln(z/z0)−ψm(z/L)] implied by

M-O theory and (2), but with most α exceeding the similarity-based form; the shear exceeds M-O theory’s prediction primarily

due to the upper-level height (160m) being above the surface layer.13 The left-hand panel of Fig. 7 also shows the distribution475

of α for neutral (|L−1|< 0.001m−1), stable (L−1 > 0.001m−1), and unstable (L−1 <−0.001m−1) flow regimes, weighted

by frequency of occurrence to show the relative contributions to the overall distribution. The threshold of ±0.001m−1 for L−1

is a sensible choice because then z/|L| ≪ 1 (consistent with neutral conditions) in the surface layer, which is generally taken

to have a thickness of 100m or less (roughly h/10, also recalling that M-O theory’s applicability diminishes with height above

the surface-layer). Even at this relatively flat and uniform site, negative shear happens in both stable and unstable conditions,480

though moreso in unstable and yet less often in neutral conditions; overall, α < 0 occurs less than 5% of the time over the 60–

160m span here, and 8–9% from anemometers at 100–160m heights (not shown). We also note that while the ‘ideal’ Høvsøre

land (eastern) sectors have conditions split somewhat evenly between the three stability regimes, other sites can differ (Kelly

and Gryning, 2010).

12The details and location of the site ‘MR’ cannot be shared publicly, due to their proprietary nature (see also Kelly et al., 2014a). The site is located near

the border between New York state (USA) and Canada, in a moderately hilly region.
13The measurement height of 160m also occasionally falls within 10–20% of the ABL depth, whereby the capping inversion causes enhanced stability; to

a lesser extent larger shear is also caused by minor inhomogeneities 3–7 km upwind, within a narrow range of directions.
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Figure 7. Left: PDF of shear exponent α, weighted by frequency of occurence for different atmospheric stability conditions; neutral defined

by |L−1|< 0.001m−1, stable has L−1 > 0.001m−1, and unstable has L−1 <−0.001m−1. Right: joint PDF of shear exponent calculated

from 60–160m height and inverse Obukhov length (surface-layer stability) at z = 10m from sonic anemometers over the homogeneous land

sectors at Høvsøre, along with M-O similarity implied by (2) shown by dashed cyan line; JPDF value of 1000 corresponds to approximately

3.5% occurrence. Measurements span one decade, starting 2005.

3.2.2 Veer485

Along with distributions of α, measured veer distributions are shown in Fig. 8 for both land and sea conditions at Høvsøre, i.e.

from the homogeneous offshore/open-fetch (240◦ < φ< 300◦) and over-land (60◦ < φ< 120◦) directions. Shear and veer are

shown calculated over height spans of 60–160m as well as 100–160m in the figure, which is provided to show the statistical

and behavioral differences between shear and veer.

From the two plots in Fig. 8 one can see that the most common α and ∆φ/∆z, i.e. the portions of P (α) and P (∆φ/∆z)490

with respective probabilities within an order of magnitude of the peak values, both systematically differ when using higher

measurements at 100–160m compared with 60–160m heights; however, the shift in the commonest α is significantly smaller

than the analogous shift in ∆φ/∆z between these two height ranges. This happens over both land and sea, though both α

and ∆φ/∆z vary with height more for the offshore flow than for the homogeneous land directions. The change of mean shear

exponent ⟨α⟩ from 60–160m to 100–160m is less than +5% over land and <+30% is seen over sea, while the mean veer495

⟨∆φ/∆z⟩ is seen to increase by factors of ∼ 5/3 and 2 over land and sea, respectively.

There are several other notable differences between the shear and veer statistics shown in Fig. 8. The peak portion of P (α)

is significantly wider over land compared to offshore (with larger σα over the rougher surface), while the shape around the

P (∆φ/∆z) peak does not differ significantly from land to sea here. Further, the (logarithmic) slope of P (∆φ/∆z) versus

∆φ/∆z for veer larger than the PDF peak is basically the same regardless of height or surface conditions; this and the land-sea500

difference between P (α) are consistent with the earlier RANS results, where z0 primarily affects α, while ∆φ/∆z is impacted
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Figure 8. Distributions of shear exponent (left) and corresponding veer (right) at Høvsore between 60–160m, from the homogeneous

eastern land sectors (red) and from the sea sectors to the west (blue). Solid lines are for measurements spanning 60–160m; dashed for those

spanning 100–160m.

more by ABL depth. P (α) also has wider ‘tails’ (extremes) higher from the ground on both sides, including negative shear

due to low-level jets (such as that due to the capping-inversion when h∼ 200m), whereas the veer simply becomes larger due

to such jets in shallow ABLs, as jets and the environment associated with the capping inversion simply causes more turning,

and not a reversal. The negative veer occurs due to nonstationary processes like passing fronts (e.g. Clark, 2013), as well as505

baroclinity and motions associated with it (Arya, 1978; Foster and Levy, 1998; Floors et al., 2015). Comparing the solid and

dashed lines in Fig. 8, one sees that the highest veers ∆φ/∆z are larger for the 100–160m measurements than those from

60–160m; this is again due to more impact of the ABL-capping inversion and associated jet with turning.

As with shear, stability affects veer, with stable conditions expected to lead to higher veer due to its damping effect on

vertical fluxes (suppressing vertical ‘communication’ of flow information). Following the plots shown in Fig. 7 for the shear510

exponent α, Fig. 9 displays the effect of stability on veer for the Høvsøre land sectors. The figure shows P (∆φ/∆z) for neutral

(|L−1|< 0.001m−1), stable (L−1 > 0.001m−1), and unstable (L−1 <−0.001m−1) flow regimes, weighted by frequency of

occurrence (indicating relative contributions to the full PDF), as well as the joint distribution of stability and ∆φ/∆z.

From Fig. 9 one sees that in comparison with P (α) shown in Fig. 7, the peaks of veer distributions P (∆φ/∆z) do not

depend so much on stability. However, as with the shear distribution, ∆φ/∆z also has its largest values dominated by stable515

conditions; this makes sense considering that stability tends to maintain vertical gradients by limiting vertical fluxes. Unlike

the results shown for the RANS simulations or predicted by theory, negative veer occurs as in Fig. 8 and described thereunder;

one can see in Fig. 9 that it basically happens during non-neutral conditions, which tend to occur at lower wind speeds, and

is dominated by unstable conditions. Looking at the joint distribution P (α,∆φ/∆z) one sees that for the most common veer

values (0≲∆φ/∆z ≲ 0.1◦/m), which tend to occur around neutral conditions, there is a mild stability dependence; however520

for less neutral conditions there is little correlation between veer and stability, aside from higher veer simply being observed

more often in stable conditions.
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Figure 9. Left: PDF of veer ∆φ/∆z, weighted by frequency of occurence for different stability conditions; neutral has |L−1|< 0.001m−1,

stable has L−1 > 0.001m−1, and unstable has L−1 <−0.001m−1. Right: joint probability distribution of veer calculated from 60–160m

height and inverse Obukhov length (surface-layer stability) at z = 10m from sonic anemometers over the homogeneous land sectors at

Høvsøre; here a jPDF value of 3000 corresponds to 4.2% occurrence. Measurements span one decade, starting 2005.

To show the behavior of veer across different locations, Fig. 10 displays the PDFs of veer from a number of sites, all of

which have similar ∆z and cover typical turbine rotor extents. From Fig. 10 we see that for veer magnitudes exceeding the
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Figure 10. Probability density function (distribution) of veer, P (∆φ/∆z), for all conditions at the various sites/cases considered.

most commonly observed values (which tend to occur in stable conditions, as shown in Fig. 9 for the Høvsøre case above), the525

distributions behave similarly across locations; in particular the “slope” of the semi-log plot for veer exceeding the PDF peaks

is roughly constant for ∆φ/∆z ≳ 0.2◦m−1 in each case. These slopes correspond to (conditional) PDFs for the largest veer
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of the form

P

(
∆φ

∆z

∣∣∣∣∣∆φ∆z >mode
{
∆φ

∆z

})
∝ exp

[
−∆φ/∆z

Υveer

]
, (37)

where the charcteristic veer scale defined by Υ−1
veer ≡ ∂[lnP (∆φ/∆z)]/∂(∆φ/∆z) ranges from roughly 0.07 to 0.11 ◦·m−1.530

The lowest Υveer corresponds the offshore Høvsøre case, while the highest Υveer matches the Østerild case from 45–140m. We

expect larger Υveer to correspond to occurences of higher 1/L, i.e. a larger width σ+ of the stable-side distribution P (1/L)

following Kelly and Gryning (2010); essentially the large-veer PDF in (37) is conditional on stable conditions, i.e. we could

express it as P
(
∆φ/∆z

∣∣L−1 > 0
)
∝ exp[−(∆φ/∆z)/Υveer]. The dominance of stable conditions reported by Peña (2019)

for z ≳100m at Østerild is consistent with this, though the data from z =80–200m (green line in Fig. 10) with smaller apparent535

Υveer might appear to not be, considering the increasingly stable conditions higher up at this site; but looking at the Østerild

curves in the figure we see that for higher veer ∆φ/∆z ≳ 0.4◦·m−1, there is consistency: the two largest Υveer occur for

z =80–200m and z =45–140m, respectively. Future work needs to be done to explore this, since we lack air-sea temperature

differences (or water-air heat flux) for the Høvsøre offshore case and stability information for the MR site, while stability

effects above forests tend to be diminished and are difficult to interpret due to turbulent transport through the treetops (e.g.540

Sogachev and Kelly, 2016).

One also sees the peaks of P (∆φ/∆z) in Fig. 10 are at smaller ∆φ/∆z for the forest-dominated Østerild cases, with

the peak of the offshore Høvsøre veer distribution falling between these and the ∆φ/∆z corresponding to the the land cases

of Høvsøre, Cabauw, and ‘MR’. We remind that the most commonly-found veer values are generally dominated by neutral

conditions (or modestly stable for the exceptional Østerild site above 100m), and point out that the mode of ∆φ/∆z is545

essentially the same (0.005–0.006◦ ·m−1) for the land cases that are not dominated by forest. Further considering the RANS

simulation results from Fig. 6 discussed earlier, the mode of ∆φ/∆z being smaller for Høvsøre offshore than for the land cases

(of Høvsøre, Cabauw, and ‘MR’) can be explained by the smaller ABL depths most commonly observed offshore compared

to onshore; this is consistent with the ABL depth distributions aggregated and reported by Liu and Liang (2010). The mode of

∆φ/∆z found at the inhomogeneous forest-dominated site Østerild are more strongly affected by the tree-enhanced mixing550

(which reduces the veer magnitudes) and to a lesser extent by shallower ABLs due to the coastline 5–20km upwind in some

directions.

The dependence of veer on wind speed at the sites considered is shown in Fig. 11, which displays the joint distribution of

veer and 10-minute mean wind speeds, P (∆φ/∆z,U). Along with the joint distribution, the mean veer conditioned on wind

speed, ⟨∆φ/∆z⟩
∣∣U , is displayed.555

From Fig. 11 one can see results consistent with the effects of stability discussed earlier and evoked by Fig. 9: at higher

speeds neutral conditions dominate, giving decreased mean veer. This is more pronounced for the onshore cases (though there

is still a reduction of nearly 40% going from 12 to 24 ms−1 for the offshore case), because sea-air heat fluxes and associated

1/L magnitudes tend to be relatively smaller due to water’s large heat capacity (e.g. Cronin et al., 2019). It is notable that

for the representative wind turbine rotor heights considered, the veer tends to be largest for wind speeds below typical turbine560
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Figure 11. Joint distribution of veer and wind speed at sites considered. Solid line shows ⟨∆φ/∆z⟩
∣∣U , calculated using 1ms−1 bins;

lightest shades are 2% as likely as darkest color in each plot.

rated speeds, especially over land; this can have consequences on both the power output and effective power curve for pre-

construction AEP estimates, as well as loads.

Further, a narrower range of veer with increasing wind speed is seen in Fig. 11, regardless of surface properties; such nar-

rowing is impacted by stability, but also occurs in neutral conditions. The variability of veer with mean wind speed is presented

in Fig. 12, which displays the standard deviation of veer conditioned on mean wind speed for the sites/cases considered. It also565

adds a line to show the overland Høvsøre case filtered for neutral conditions.

Consistent with the joint-PDFs P (∆φ/∆z,U) in Fig. 11, from the semi-logarithmic plot of standard deviation of veer

conditioned on mean wind speed in Fig. 12 we can see that the variation in veer decreases with wind speed, and moreso over

land than water. It is also seen that for the onshore Høvsøre case σ(∆φ/∆z)|U is smaller in neutral conditions compared to over

all stabilities, with the two values converging at higher speeds due to the increasingly neutral conditions. For each site having a570

standard deviation of veer over all speeds σ∆φ/∆z and mean wind speed ⟨U⟩, the rms veer conditioned on wind speed roughly
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Figure 12. Measured standard deviation of veer conditioned on wind speed, again using 1ms−1 bins, for the sites considered. Neutral

conditions at Høvsøre defined as in earlier figures, i.e. |L−1|< 0.001m−1.

follows the empirical form

σ(∆φ/∆z)|U =

[〈(
∆φ

∆z

)2 ∣∣∣∣U
〉]1/2

≈ σ∆φ/∆z exp

[
−U
⟨U⟩

]
(38)

up to about 12ms−1 over land, and to higher speeds offshore. A more complicated speed-dependent variability in veer is

seen for the MR case, with higher σ(∆φ/∆z)|U at speeds above 15ms−1 caused (presumably) by hill-induced turning. This575

has two consequences worth mentioning: first, that turbines at a site such as ‘MR’ can experience persistent veer above rated

speed, potentially increasing loads and/or reducing power below rated; secondly, such speed-dependent behavior is likely

difficult to capture with standard single RANS simulations, demanding more detailed treatment to handle the Reynolds-number

dependence despite the lack of stability effects at such speeds.

3.3 Relating veer to shear in application580

One of the aims of this work is to relate veer to shear (or shear exponent), as with the expressions developed in Sect. 2.3–2.4.

Here we present joint observations of shear exponent and veer, and following these, give practical simplified forms based on

the equations derived earlier in sections 2.3–2.4.

Following the previous subsection, we first consider the joint behavior of ∆φ/∆z and α with wind speed and stability, for

the ‘simple’ onshore Høvsøre case having homogeneous upwind conditions. Figure 13 shows the observed joint distribution585

P (∆φ/∆z,α) in neutral conditions, over typical turbine operation speeds (4–25ms−1) and separately over different speed

ranges (4–8, 8–12, 12–16, and 16–25ms−1); counts are used instead of PDF per wind speed range, to show relative frequencies

of occurence.

From Fig. 13 one can notice that in neutral conditions there does not appear to be significant variation in the joint shear-veer

behavior with U , with a bit more variability at the lowest speeds and smaller values of both ∆φ/∆z and α for U > 16ms−1;590

25



Figure 13. Top: joint distribution of veer and shear exponent observed over 10 years from 60–160m for the Høvsøre land sectors in neutral

conditions, in different speed ranges; axes zoomed in to show detail, and occurence rate normalized per wind speed range (each plot has a

different color scale, showing occurence rate in increments of 1/10, with lightest representing 10% as likely as darkest shade). Bottom: the

same joint distributions shown with unscaled rate of occurrence (number of counts per {α,∆φ/∆z} bin, 2000 corresponds to about 3.9%);

axis ranges are chosen to compare with later figures.

this is consistent with Figs. 7, 9, 11, and 12. The larger spread at lower speeds for neutral conditions is attributed to the

larger relative effect of non-stationarity and particularly sampling uncertainty; per the latter the integral time scale increases

roughly as U−1 (Wyngaard, 2010) so fewer integral time scales are ‘sampled’ per each 10-minute period. This is also evident

considering the previous plot of σ(∆φ/∆z)|U versus U in Fig. 12, where one sees σ(∆φ/∆z)|U increasing with diminishing wind

speed during both neutral and all conditions for the Høvsøre land case, but where stability effects cause larger veer variability595

up to speeds of about 15ms−1. Also, the overall jPDF P (∆φ/∆z,α) appears similar to that in the most common speed

range (8–12ms−1). Aside from nonstationarity and sampling effects one does not expect much speed dependence in neutral

conditions, considering the α-related part of (14)–(16) behaves as |S|/G, which following (33) has a weak |S|-dependence

through (lnRo0 −A)−1; the RANS results also confirm this. We note a joint trend between α and ∆φ/∆z, but also see a

spread around the most common shear exponent and veer values due to variations in ABL depth, stress gradient and curvature,600

and top-down stability (capping-inversion strength, see e.g. Kelly et al., 2019a), in addition to nonstationarity.

Figure 14 shows joint α-veer distributions like Fig. 13, but over all conditions, i.e., not limited to neutral stratification. One

notices immediately the more frequent occurence of higher veer and shear, as well as negative α and ∆φ/∆z. Further, in

addition to a wider range of shear and veer compared to neutral conditions, in Fig. 14 one can see there is also a sharper
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Figure 14. Joint distribution of veer and shear exponent for different speed ranges from Høvsøre land sectors, but for all stability conditions;

plots are analogous to those in bottom of Fig. 13. All plots use same color scale; color bar denotes count, where 3000 corresponds to about

1.4% occurrence.

increase in ∆φ/∆z with α for larger α, due to stable conditions. One can see that at the most common (8–12ms−1) and lower605

wind speeds, which occur in the range below rated speed for typical turbines, there is a significant increase in ∆φ/∆z with α

in the more stable conditions where α≳ 0.3; this higher ‘slope’ of ∆φ/∆z vs. α is likely enhanced by the shallower ABLs

which generally occur along with stable surface-layer conditions (we remind that the stability metric L−1 was measured in the

ASL), whereby additionally stable air above augments the veer. As mentioned previously, the turning and veer near the ABL

top will continue to increases for yet shallower ABLs (decreasing h); meanwhile α is less sensitive to h as the upper height610

(used to calculate α and ∆φ) exceeds the peak of the inversion-induced ‘jet.’ Further, such high-veer conditions are not rare

for such a ‘simple’ site at the heights considered (60–160m); e.g., conditions where ∆φ/∆z = 0.2 and α= 0.4 (a veer of 20◦

over a 100m rotor) occur as frequently as conditions with zero shear and veer.

Towards relating veer to shear for application, we now consider the mutual behavior of ∆φ and α together at all of the sites

analyzed for this work. Figure 15 shows the joint distribution of shear and veer for the sites considered, with each plot also615

including the conditional mean of veer per shear exponent (i.e. ⟨∆φ/∆z|α⟩, as solid lines). From this figure we see a number

of trends across the six cases analyzed. First, some nonlinear variation of veer with α is evident, along with the (less common)

occurence of negative values of shear and veer, as was seen in Fig. 14 for the Høvsøre land case. Further, the veer tends to be

skewed towards higher values: i.e., ⟨∆φ/∆z|α⟩ exceeds the most commonly observed values of ∆φ/∆z; however, the site

MR does not show such skewed behavior (consistent with Fig. 10), presumably due to the complex terrain there. We note the620

conditional mean veer ⟨∆φ/∆z|α⟩ is also more clearly nonlinear in α, becoming less dependent on α in low (and negative)

shear conditions; the site MR is an exception to this, with hill-induced height-dependent turning causing larger veer for α

smaller than the most commonly-observed values there.

27



-��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����
������ �=���±���

�

-��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����
������� ���� �=���±���

-��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����
������� ���� �=���±���

-��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

α

�������� �=���±���

-��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

α

�������� �=��±���

-��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

α

�� �=��±���

Figure 15. Joint distribution P (∆φ,α) at sites considered. Solid lines: mean veer conditioned on shear exponent, ⟨∆φ/∆z
∣∣α⟩; dotted

lines: simple estimate via shear portion using (39); dashed lines: estimate including estimate of cross-wind stress/Coriolis contribution, (40).

Lightest shades are 10% as likely as darkest shade in each plot.

3.3.1 Simplified estimate of veer per α

Figure 15 also includes two predictions based on the theory presented earlier. First, as discussed at the end of section 2.4, using625

only the shear-associated (|S|/|G|) portion of (14) to be practical, we arrive at the estimate

∂φ

∂z
≈ |S|

|G|
α

z

/√
1−

[
|S|
|G|

]2
,

|S|
|G|

≈ csα
crG
κ

ln(z/z0)

(lnRo0 −A)
; (39)
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compared to (14) the negative sign has been dropped to express the veer in coordinates commonly used in wind energy, i.e.

clockwise positive. The basis for the simple shear-driven form can be understood by recalling section 3.1 and Fig. 5, where

we showed that the shear and crosswind stress-curvature contributions behaved in nearly identical but opposite fashions, with630

their sum amounting to dcosγ/dz; (39) can be considered as a simple model assuming the veer behaves like either of its two

components, but simply smaller in magnitude. The practical form of |S|/|G| in (39) employs the log-law for wind profile

and reverse geostrophic drag law (33) for u∗/|G|. The constant csα crudely accounts for the (competing) effects of stability on

both |S| and the geostrophic drag (and any other mechanisms affecting |S|/|G|), but also accounts for the smaller magnitude of

∂φ/∂z compared to its shear-driven component. Within the surface Rossby number Ro0, the geostrophic speed G is calculated635

using (32) wherein u∗ is found via the log-law and |S| with z0. To make the plots of (39) in Fig. 15 for each site, the |S| is

calculated per each bin of α, with the case-specific parameters {z0,f,z} used as well. At any rate, the practical parameterization

using csα with the log-law and (neutral) reverse GDL in (39) can roughly fit the mean conditional veer at and above the most

common α observed for the onshore sites considered (α≳ 0.2) and at α≳ 0.1 for the offshore Høvsøre case; here we have

used effective roughness lengths consistent with earlier studies employing these sites (z0 =1.5 cm for Høvsøre land, 3 cm for640

Cabauw, 0.9m for Østerild, 2m for MR, and 0.02 cm for offshore). A value of csα = 0.5 can be seen to fit the heterogeneous

terrain cases where terrain and roughness dominated over stability (Østerild and MR, bottom plots of Fig. 15), while for the

more stability-dominated homogeneous cases (top plots in Fig. 15) a value of csα =0.7 for Høvsøre and 0.8 for Cabauw gave

reasonable fits. The latter aspect could be practically addressed by directly casting csα as a minimal value plus an amount

depending on the long-term variability in positive stability (labelled σ+ following Kelly and Gryning, 2010); we note Cabauw645

has larger values of σ+ than Høvsøre, which has larger σ+ then Østerild. However, obtaining such an expression is beyond

the scope of the current article, and some sites could have factors other than stability which enhance the veer. We do find that

including stability within the drag law via M-O theory (for positive L−1 values consistent with observed distributions) reduces

the reverse drag-law constant by roughly 10–40% for the Rossby numbers applicable at these sites, consistent with the values

of csα used in the plots of Fig. 15; but again, to model stability effects beyond the surface layer becomes rather complicated650

and is the subject of ongoing work. For reference, a value of csα = 0.6 fits the mean veer for the Høvsøre land case during

neutral conditions (not shown), in contrast to the value of 0.7 which fits when all stabilities are considered there.

3.3.2 Veer estimate including both α and cross-wind stress

We remind that for simplicity, (39) ignored the effect of cross-wind stress; it neglects not only ⟨vw⟩ but consequently also Roh,

though it does incorporate the effect of Ro0 seen in the simulations of Section 3.1. Thus we also consider an approximation of655

the ⟨vw⟩ terms using (34) in (14), which introduces Roh, along with the parameterization for |S|/|G| from (39):

∂φ

∂z
≈

|S|
|G|

α
z + cvw

c2G
h Roh√

1−
[
|S|
|G| + cvwc2GRoh

]2
− c2GRoh

,
|S|
|G|

≈ c′sα
crG
κ

ln(z/z0)

(lnRo0 −A)
(40)

where cG is found using (33), |S|/|G| is calculated the same way as done earlier for (39), and |G| within Roh is calculated

as it was within Ro0 of (39). To use (40) the ABL depth must be prescribed, along with the constant cvw and the parameters
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{z, |S|,z0,f} also employed for (39). Given the negative curvature of lateral stress, ∂2⟨vw⟩/∂z2 < 0 (e.g. Wyngaard, 2010),660

cvw is negative and of order 1, with the ⟨vw⟩ (Roh) contribution reducing the predicted veer compared to (39). With its

moderating effect on the α contribution, the ⟨vw⟩ part can produce an α-dependent ‘upturn,’ though slight; this is seen for the

offshore and MR cases in Fig. 15. However, the constant c′sα within |S|/|G| is slightly larger than csα of (39) in order for (40)

to fit the observed ⟨∆φ/∆z|α⟩; the values of csα =0.5 are replaced by c′sα=0.7, and csα =0.7 and 0.8 for Høvsøre and Cabauw

are replaced by c′sα of 0.8 and 0.9, respectively. The value of cvw giving the estimates shown in Fig. 15 was −0.7 for all sites,665

while characteristic ABL depths h were taken to be 800m over the simple land cases, 600m offshore, and 1000m over the

hilly/forested terrain cases; we note that the results have limited sensitivity to h, but choose these values to be consistent with

mean ABL depth observations over sites of similar character and h distributions aggregated by Liu and Liang (2010). One can

see from Fig. 15 that the estimates of ⟨∂φ/∂z|α⟩ using (40) are not better than the simpler form (39), though the constants

csα and cvw could easily be ‘tuned’ together to give a better fit for each case. However, in practice one might not be able to do670

so, and wishes to simply predict veer based on α; to this end, for practical applicability we suggest using (39). Though such a

recommendation would appear to be neglecting Roh and the ABL depth, we note that for estimation of mean veer (per shear)

one is not so concerned with variations of Roh or Ro0 at a given site. The spread (scatter) around the mean veer seen in Fig. 15

is due to variation of stability as well as Roh or Ro0, and variation from site to site is also due to different distributions of Roh

or Ro0; this is consistent with Fig. 6 and discussions following it.675

To illustrate the differences just mentioned, both the mean and standard deviation (spread) of conditional veer is shown

in Fig. 16, for all the sites/cases considered . One immediately sees the character of ⟨∆φ/∆z|α⟩ tends to follow the type
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Figure 16. Statistics of veer conditioned on shear exponent, across sites considered.

of site; offshore has larger veer for high α, simpler sites like Cabauw and Høvsøre onshore exhibit modest veer for large

α, and the more complex sites have more limited veer for α around or above its most common values of α. But we remind

that Fig. 15 shows that high-shear conditions offshore are relatively rare, and that α exceeding ∼0.3 is more common at the680

complex sites. We also see from Fig. 16 that for low-shear conditions (α <∼ 0.1), the simpler sites exhibit higher mean veer

than offshore and yet more compared to the forested cases, while much larger veer is present due to upwind hills at the MR site

for such low shear conditions (though somewhat uncommon, as seen in Fig. 15). From the middle plot we further note a that

the long-term variability in veer σ∆φ/∆z|α is lower offshore for the most commonly occuring α there, while veer variability
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does not differ so much for the most common conditions across the other sites/cases—except for the 45–140m (lower) height685

range at Østerild, which shows larger veer variability due to being in the roughness sublayer above the forest there. In very

high-shear conditions (α >∼ 0.5) the veer variability is highest offshore (though rarer). However, as shown in the right-hand

plot of Fig. 16, the relative veer variability σ∆φ/∆z|α/⟨∆φ/∆z|α⟩ tends to more clearly show the different character of the

sites: the spread of veer relative to its mean (conditioned on α) is much larger in low-shear conditions over forest, while this

relative spread is similar across all non-simple (forested, complex) cases for the most commonly occuring shear; the more690

homogeneous sites/cases exhibit comparable σ∆φ/∆z|α/⟨∆φ/∆z|α⟩ under most conditions. For low-shear conditions, over

more complex terrain the relative veer variability decreases, departing from the inhomogeneous forested (Østerild) values due

to the large hill-induced mean veer.

The use of ⟨S|α⟩ in the calculations was also investigated; the plots in Figs. 15–16 actually incorporated mean speed

conditioned on α, though use of each site’s corresponding overall mean speed ⟨|S|⟩ gave nearly identical results as those695

shown in the plots (within 2%, not shown).

4 Summary and Conclusions

We have derived relationships between shear exponent (α) and veer (∆φ/∆z), in a manner which avoids atmospheric surface-

layer (ASL) assumptions about meteorological parameters; this has been done in order to be applicable at wind turbine rotor

heights, regardless of whether they are within or above the ASL. Canonical behavior of veer and shear with regards to surface700

roughness z0 and ABL depth h is also elucidated (through Rossby numbers Ro0 and Roh defined by each), through numerical

solution of the 1-D RANS equations under neutral conditions with lengthscale-limited k-ε turbulence closure (i.e. neutral but

also translatable to stable conditions, see van der Laan et al., 2020).

The derived equations and RANS results essentially show that veer most simply arises from two contributions: the shear,

and the vertical variation of crosswind shear stress at a given height (mostly through ∂2⟨vw⟩/∂z2, but also via ∂⟨vw⟩/∂z).705

The numerical RANS solutions show that the shear and crosswind-stress contributions mostly offset each other in neutral

conditions, and that each is much larger (up to an order of magnitude) than the veer itself. It is further seen that α primarily

depends upon surface roughness in neutral conditions, with a weaker dependence on ∆z/h; in contrast, ∆φ/∆z more strongly

depends on the ABL depth h, increasing as Ronh where n is between 1 and 1.4 for the h most commonly encountered in nature

(though ∆φ/∆z does also vary with 1/ lnRo0). These behaviors are consistent with the shear-veer relations derived in Sec. 2.3.710

We note that in this work we have also derived the cause of misalignment between shear and stress, as well as its contribution

to veer; we remind that RANS solutions using mixing-length type closures (as well as e.g. WRF PBL schemes which lack

turbulent transport) give stress aligned with shear, while the analytic shear-veer relations derived here allow for misalignment

through the cross-wind stress.

The actual ‘real-world’ behavior of shear exponent and veer has also been investigated from multi-year measurements at715

four sites covering six different flow conditions (one with separate land and offshore sectors, one with measurements both in

and above the roughness sublayer over a forest), for height spans or effective rotor diameters ranging from 47–60m centered
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around (hub) heights of 88–140m. The observed {α,∆φ/∆z} include effects not fully accounted for in the equations derived

here, particularly horizontal turbulent transport due to terrain inhomogeneities (Kelly, 2020) and nonstationary/transient flow

conditions; though buoyancy is not explicitly accounted for, it primarily affects α and the stress, which are already incorporated720

into the derived veer equations.

The effect of surface-based atmospheric stability on shear and veer was examined for the relatively ideal (homogeneous)

onshore site Høvsøre, where it is seen that unstable conditions dominate the low (negative) tails of the distributions P (α) and

P (∆φ/∆z), while stable conditions are responsible for large α and ∆φ/∆z; neutral conditions contributed mostly to the

peaks of the shear and veer distributions. Stability efffects are consequently seen to increase the long-term variability in veer725

and shear, as well as veer for a given α — particularly for the commonly-occuring wind speeds which tend to occur below

the rated speed of modern wind turbines (e.g. Kelly and Jørgensen, 2017, Appendix B). The mean of both α and ∆φ/∆z

was larger compared to neutral conditions, due to stably stratified conditions enhancing α and ∆φ/∆z more than unstable

conditions (we note that sites having a distribution of 1/L more dominated by unstable conditions, possibly some offshore,

could have mean behavior similar to that found in neutral conditions).730

Comparison between offshore and homogeneous onshore sectors at Høvsøre showed α to be smaller offshore (as one would

expect), with more extreme values at higher z (160m) above the surface layer regardless of the surface; the latter is presumably

due to the effect of the capping inversion for ABL depths which occasionally approach such heights (Liu and Liang, 2010;

Kelly et al., 2014b). The veer distributions also show larger values over land compared to offshore, though to a lesser extent

than P (α); but in contrast to α, which can increase or decrease (with wider extremes) due to the position of the jet associated735

with the capping inversion, ∆φ/∆z increases overall with z through the jet as the surface-based stress decreases with height

(though there can be occasional deviations from this behavior due to stress profiles affected by upwind inhomogeneities or

large coherent structures).

Two practical veer-shear relationships were derived, including parameterizations for typically unmeasured quantities con-

tained within them, then compared to the joint distributions P (α,∆φ/∆z) and the ⟨∆φ/∆z|α⟩ measured from all sites over all740

conditions. A simplified form (39) neglecting the stress contributions was tested, as well as one (40) containing the cross-wind

stress. Due to the relative simplicity of the practical shear-veer forms (and additional phenomena not included in them), they

needed to be calibrated in order to match observed ⟨∆φ/∆z|α⟩; basically one coefficient in (39) and two in (40), all of which

were of order 1 and universal (constant) across all six sites/flow situations analyzed. The form (40) for veer including cross-

wind stress did not give a better match to observations of ⟨∆φ/∆z|α⟩ across sites, compared to the simpler formula (39), and745

so we recommend the latter for shear-based predictions of veer at this time. Both forms provide their best predictions (within

10% of observed) ⟨∆φ/∆z|α⟩ during the most commonly-observed (moderate speeds and shear) and highest-impact (large-

veer stable) situations, with underpredictions of mean veer occuring in low-veer conditions. The observed ⟨∆φ/∆z|α⟩ are

nonlinear in α, whereas the derived forms were nearly linear, with the inclusion of cross-wind stress containing only a slight

implicit nonlinearity. Lacking turbulent transport, our predictive mean veer relations are more suited for neutral and stable750

conditions where transport is less significant (e.g. Wyngaard, 2010); the underpredictions for smaller α, dominated by unstable
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conditions, evoke such. Consistent with this, the hilly site ‘MR’ shows yet more low-shear deviation from our predictions due

to inhomogeneity-related horizontal transport (recalling low shear means less shear-production of TKE).

Beyond the comparison of derived analytical forms with measurements of conditional mean veer ⟨∆φ/∆z|α⟩, some general

trends were also noted. For a given α≳ 0.2, ⟨∆φ/∆z|α⟩ was larger offshore than for the onshore cases (though we remind that755

larger α are relatively rarer offshore compared to onshore conditions); this larger mean veer for a given α is due to the ABL

depth h generally being lower offshore (see e.g. Liu and Liang, 2010, for offshore and onshore h). Perhaps counterintuitively,

over the forested site the mean veer ⟨∆φ/∆z|α⟩ was smaller than other sites. As for the mean veer, for α≳ 0.3 the long-term

variability σ∆φ/∆z|α was also found to be larger offshore; this may have impact on yaw error statistics, and may be the subject

of future research. Analogous to σα|U found in Kelly et al. (2014a) for shear, an empirical expression for the standard deviation760

of veer conditioned on wind speed (σ∆φ/∆z|U ) was also found, with an approximately exponential decrease with speed.

Ongoing and future work

While the current work provided both theoretical meteorological relations and practical forms for veer in terms of shear, it did

so without explicit treatment of buoyancy nor turbulent transport. Some relations including stability within |S|/|G| in the shear

contribution to veer were developed and tested; however these were not included here, as they did not offer improvement, are765

seen to be beyond the scope of the current work, and might also require stability effects to be explicitly incorporated within

the cross-stress terms. Ongoing work involves addressing the latter: i.e., self-consistent α-based description of stability within

the veer formulations, within both the shear and cross-stress contribtions in concert with the stability-perturbed geostrophic

drag law (Arya and Wyngaard, 1975; Kelly and Troen, 2016). Future work includes incorporation terrain-induced turbulent

transport parameterization (following e.g. Kelly, 2020) into the veer, as well as study of the latter via LES.770

Because the veer at commonly-occuring speeds (which occur below typical rated power) and also the mean veer are larger

than for commonly-assumed neutral conditions, and since we have found relations for veer variability in terms of wind speed,

practical ongoing work also involves vertical extrapolation of veer and accounting for its effect on power production. Ac-

companying this is validation and uncertainty quantification, towards pre-construction resource assessment as well as loads

calculations.775
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