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Abstract. Condition monitoring and failure prediction for wind turbines is currently a hot research topic. This follows from the

fact that investments in the wind energy sector have increased dramatically due to the transition to renewable energy production.

This paper reviews and implements several techniques from state-of-the-art research on condition monitoring for wind turbines

using SCADA data and the Normal Behavior Modelling framework. The first part of the paper consists of an in-depth overview

of the current state-of-the-art. In the second part, several techniques from the overview are implemented and compared using5

data (SCADA and failure data) from five operational wind farms. To this end, 6 demonstration experiments are designed. The

first 5 experiments test different techniques for the modeling of the normal behavior. The sixth experiment compares several

techniques that can be used for identifying anomalous patterns in the prediction error. The
::::::::
selection

::
of

:::
the

:::::
tested

:::::::::
techniques

::
is

:::::
driven

:::
by

::::::::::
requirements

:::::
from

::::::::
industrial

:::::::
partners,

::::
e.g.

:
a
::::::
limited

:::::::
amount

::
of

::::::
training

:::::
data,

:::
and

::::
low

::::::
training

::::
and

::::::::::
maintenance

:::::
costs

::
of

:::
the

::::::
models.

::::
The paper concludes with several directions for future work.10

1 Introduction

In recent years,
:

investments in renewable energy sources like wind and solar energy have increased significantly. This is the

result of goals set in climate change agreements and changes in the geopolitical situation. According to the Global Wind

Report 2022, an additional 93.6 GW of wind energy production capacity was installed in 2021. This brings the total to 837

GW, which corresponds to a 12% increase compared to the previous year (Lee and Zhao, 2022). To keep the transition on15

track, the profitability of the investments needs to be guaranteed. Furthermore, to keep the European economy competitive in

the globalized market
:
, the price of energy production using wind turbines needs to be kept as low as possible. Both depend to

a large extent on the maintenance costs.

According to (Pfaffel et al., 2017), recent studies have shown that the operation and maintenance of wind turbines make

up 25-40% of the levelized cost of energy. A more detailed analysis shows that premature failures due to excessive wear20

play a considerable role. These are caused by, among other things, high loads due to environmental conditions and aggressive

control actions (Verstraeten et al., 2019), (Tazi et al., 2017), (Greco et al., 2013). If it would be possible to identify these types

of failures well in advance, it would create the opportunity to avoid unexpected downtime and organize the maintenance of
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turbines more optimally. This in turn would result in increased production and a further reduction of maintenance costs, which

will improve the profitability of the investments and reduce wind energy prices.25

This paper gives an overview of the current state-of-the-art on condition monitoring for wind farms using SCADA data

and the Normal Behavior Modelling (NBM) framework. The focus on SCADA data is motivated by the fact that it is an

inexpensive source of information that is readily available. This is valuable in an industrial context where adding new sensors

is not straightforward and expensive. The focus on the NBM methodology can be justified by the fact that it has shown its

merits, and that properly trained NBM models can result in interesting engineering insights. Several techniques used in the30

state-of-the-art research are also implemented and compared. For this, 10-minute SCADA data from five different wind farms

is used. Furthermore, failure information is also available for these wind farms. More specifically, there is information on

generator bearing, generator fan, and rotor brush high temperature failures. The different techniques are implemented and

compared using six demonstration experiments. Five experiments focus on NBM and one focuses on the analysis of prediction

error. By doing a comparative analysis and a discussion of the results on real data, a better understanding can be achieved of35

the added value
::::::::::
performance

:
of different techniques on real data.

:::::::
Because

::
an

:::::::::
exhaustive

::::::::
overview

::
is

:::::::::
unfeasible,

::::
only

::
a

::::::
limited

:::::::
selection

:::
can

:::
be

::::::::
discussed.

::::
This

::::::::
selection

::
is

:::::
based

::
on

::::::
several

:::::::::::
assumptions,

::::
e.g.

:::
that

:::::
there

::
is

::::
only

:
a
::::::::
relatively

::::::
limited

:::::::
amount

::
of

::::::
training

::::
data

::::
and

::::
time,

::::
and

:::
that

::::
due

::
to

::::::::::
maintenance

:::::::::
constraints

:::
the

::::::::::
complexity

::
of

:::
the

:::::::::::
methodology

:::::
needs

::
to
:::
be

::::
kept

::
as

::::
low

::
as

:::::::
possible.

:::::
These

:::::::::
constraints

:::
are

:::::
based

:::
on

::::::::
feedback

:::::::
received

::::
from

::::::
several

::::::::
industrial

::::::::
partners.

The paper is built up as follows. The first section is the introduction. The second section discusses the current state-of-the-art.40

In the third section, an experimental methodology is designed that combines, compares, and demonstrates the performance of

several techniques mentioned in the state-of-the-art overview. The fourth part is the comparative analysis of several techniques

from the state-of-the-art. The fifth and last part is the conclusion, which also includes a discussion of possible future directions

for research.

2 Overview of the state-of-the-art45

Failure prediction on wind turbines using SCADA data is a hot research topic. This is due to the fact that over time more sensor

data has become available (Helsen, 2021). There are several different families of methodologies that compete in this domain.

According to (Helbing and Ritter, 2018), the methodologies can be divided into model-based signal processing and data-driven

methods. An alternative classification can be found in (Black et al., 2021), where a distinction is made between 1) trending, 2)

clustering, 3) NBM, 4) damage modeling, 5) alarm assessment, and 6) performance monitoring. In (Tautz-Weinert and Watson,50

2017) five categories are identified: 1) trending, 2) clustering, 3) NBM, 4) damage modeling, and 5) assessment of alarms and

expert systems.

The NBM methodological family is very diverse. Many different algorithms can be used to model the "normal" or "healthy"

behavior of a wind turbine signal. However, in all this diversity, there are several commonalities. Figure 1 gives an overview of

a standard NBM flow. The SCADA data is ingested by the pipeline. The first step is splitting the data into a training and testing55

dataset. This is done prior to the preprocessing and modeling steps to avoid "information leakage". The testing dataset is a
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Figure 1. Schematic overview of NBM framework.

random subsample that is set aside for the final validation of the methodology , and should not be used during training. How

this split is made depends on the type and the amount of data. Often 80-20% or 70-30% random splits are made. However, other

options are possible. If the data are time series, which is the case when using SCADA data, and the models used as NBM use

lagged predictors, then the train-test split should be done more carefully so that the relation between the target and the lagged60

predictors is not broken. A possibility is assigning the first 70% of the observations (based on their timestamp) to the training,

and the rest to the testing dataset. In the next step, the data is preprocessed. This is done to clean the signals (e.g. removing

measurement errors, filling in missing values, ...) and in some cases to reduce the noisiness of the signals (e.g. binning, ...).

Filtering is sometimes used if it is expected that the relation between the signals is influenced by certain other factors (e.g.

wind turbine states, ...). The preprocessing is done on the training and testing dataset separately. However, the same techniques65

are used on both datasets.

In the next step, the training dataset is used to learn or train the normal behavior model. For this, a health label of some kind

is required. In the case of SCADA-based anomaly detection for wind turbines, this is in general a temperature signal that is

related to the failure that needs to be detected. For example, if the research is focused on predicting generator bearing failures,

then the label might be the temperature of a generator bearing. This means that it is a supervised regression problem. Many70

different algorithms are suitable as NBM model, e.g. Ordinary Least Squares (OLS), Random Forest (RF), Support Vector

Machine (SVM), Neural Network (NN), Long Short-Term Memory (LSTM), ... The NBM model is trained on healthy data

(meaning not polluted with anomalies that can be associated with a failure). Once the NBM model has been trained it can
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be used for predicting the expected normal behavior on the test dataset. In the next step, the difference between the predicted

and the observed behavior is analyzed. If there is a large deviation between the two, this can be considered evidence of a75

problem. The deviation is in general transformed into an anomaly score that says something meaningful about for example the

probability of failure or the Remaining Useful Life (RUL).

In what follows an overview is given of different techniques that are used in the state-of-the-art literature for each step of the

pipeline. The papers that will be discussed in this section have the following properties: firstly, they are based on wind turbine

SCADA data, secondly, they perform condition monitoring and anomaly detection on temperature signals of the turbine
::::
(this80

:::::::
excludes

:::
for

:::::::
example

:::::::
research

:::
that

:::::::
focuses

::
on

:::
the

:::::
power

::::::
curve), and thirdly, they follow the NBM methodology. By limiting the

scope of the overview, it can be more exhaustive, and give the reader a better insight into what has been tried in the literature.

2.1 Preprocessing techniques

Preprocessing is an important, although often a somewhat underexposed, part of the NBM pipeline. Decisions taken during this

step can influence the training and performance of the NBM models later on. Different preprocessing techniques exist and have85

been used in recent research. The choice of a technique is to a certain extent guided by the properties of the input data. E.g.

for time series data the order of the data points, and the relation between them, is relevant. This means that only preprocessing

techniques that retain this property of the data should be used. But even then multiple preprocessing techniques are usable.

Why a certain technique is chosen over a different one is often not thoroughly explained in papers. This subsection attempts to

give an overview of which techniques are used in current state-of-the-art research. An analysis of the literature shows that the90

preprocessing of the data is used for among other things the handling of missing values, outliers, noise reduction, filtering, and

transforming the data.

Missing values can be problematic for certain statistical and machine learning models. For this reason, they need to be

treated/filled in properly. Several techniques are used in the literature. The first one is interpolation. This can be done in

several ways, e.g. Hermite interpolation (see (Bermúdez et al., 2022) and (Campoverde et al., 2022)), linear interpolation (see95

(Chesterman et al., 2022), (Chesterman et al., 2021) and (Miele et al., 2022)), .
:
A

::::
first

::::::::
technique

::
is

::::::::
removing

:::
the

:::::::::::
observations

::::
with

:::::::
missing

::::
data

::::
(see

:::::::::::::::::
(Maron et al., 2022),

::::::::::::::::
(Miele et al., 2022)

:
,
:::::::::::::::
(Cui et al., 2018)

:::
and

:::::::::::::::::::
(Bangalore et al., 2017)

:
). .. Another

technique is called
::::
This

:::
can

::
be

:::::::
difficult

:::::
when

::::
time

:::::
series

::::::::
modeling

:
is
:::::
used.

:::::::::::
Furthermore,

:::
the

:::::::
question

:::::
needs

::
to

::
be

:::::
asked

::::
why

:::
the

:::
data

::
is

:::::::
missing.

::
If

:
it
::
is
:::
not

:::::::
Missing

::::::::::
Completely

:::
Ad

:::::::
Random

:::::::
(MCAR)

::::
this

:::
can

:::::
result

::
in

:::
bias

::::::::::::::::::::
(Emmanuel et al., 2021)

:
.
:
A
::::::::
different

::::::
solution

::
is
::::::
single

:::::::::
imputation.

::
A
::::
first

:::::::
example

:::
of

:::
this

::
is carry forward and/or backward. In this technique, the missing value is100

replaced by the last known value before
::::::::
preceding the missing value (carry forward) or the first known value after

::::::::
following

::
on

:
the missing value (carry backward). This is used in (Bermúdez et al., 2022), (Campoverde et al., 2022), (Chesterman et al.,

2022), (Chesterman et al., 2021) and (Mazidi et al., 2017). The missing values can also be handled by filling them with the

values of similar non-missing observations
::
An

:::::::::
alternative

::
is
:::::::::::

interpolation. This can be done by using clustering algorithms,

for example, k-nearest neighbors (see (Black et al., 2022)). An alternative technique is simply removing the observations with105

missing data (see (Maron et al., 2022), (Miele et al., 2022), (Cui et al., 2018) and (Bangalore et al., 2017)). This can be difficult

when time series modeling is used. Another option is to aggregate or bin the data by for example using the mean or median
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over a certain time interval. As long as for a substantial part of the interval, data is available
:
in

:::::::
several

:::::
ways,

:::
e.g.

::::::::
Hermite

::::::::::
interpolation

::::
(see

::::::::::::::::::::
(Bermúdez et al., 2022)

:::
and

::::::::::::::::::::::
(Campoverde et al., 2022)

:
),

:::::
linear

:::::::::::
interpolation

::::
(see

:::::::::::::::::::::
(Chesterman et al., 2022)

:
,
:::::::::::::::::::::
(Chesterman et al., 2021)

:::
and

::::::::::::::::
(Miele et al., 2022)

:
),
:::
....

:::::
There

:::
are

::::::
several

::::::::
elements

::::
that

::::
need

:::
to

::
be

:::::
taken

::::
into

:::::::
account

:::::
when110

::::
using

:::::
these

::::::::::
techniques.

::::
First

::
of

:::
all,

:::::
extra

:::
care

::::::
needs

::
to

::
be

:::::
taken

:::::
when

:::::
using

:::
the

:::::::::
previously

:::::::::
mentioned

:::::::::
techniques.

::::::
Large

::::
gaps

::
in

::::
time

:::::
series

:::
are

:
a
:::::::
problem

:::::
since

:::
the

:::::::::
imputation

:::
can

:::::::
become

:::::::::::
meaningless.

::::
This

:::
can

:::::
result

::
in

::::::::
pollution

::
of

:::
the

:::::::
relation

:::::::
between

:::::::
multiple

::::::
signals.

:::::
High

::::::::::::
dimensionality

::
of

:::
the

::::
data

:::
can

::::
also

::
be

::
a
:::::::
problem

::::::::::::::::::::
(Emmanuel et al., 2021).

:

:
If
:::

the
:::::::

amount
::
of

:::::::
missing

::::
data

::
is
:::::

fairly
:::::::

limited
::::
(and

::
it

::::
does

:::
not

:::::::
contain

::::
long

::::::::
stretches

::
of

:::::::
missing

:::::
data), an aggregate like

the mean or median can be calculated and used as a proxy. The resulting time series has of course a lower resolution,115

but the missing values are gone. This method is used in (Verma et al., 2022).
:::
The

:::::::
success

::
of

::::
this

:::::::::::
methodology

:::
of

::::::
course

:::::::
depends

::
on

::::
how

:::::
much

::::
data

::
is

:::::::
missing,

::::
and

::
on

::::
how

:::::
much

::::
data

::::
each

:::::::::
aggregated

:::::
value

::
is
:::::
based

:::
on.

:::::::
Another

:::::::
solution

::
is
:::::
what

::
is

:::::
called

:::::::
machine

::::::::::::
learning-based

::::::::::
imputation.

::::
This

:::::::::
technique

:::
uses

::::::
certain

::::::::
machine

:::::::
learning

::::::
models

::
to

::::::
impute

:::
the

:::::::
missing

::::::
values

:::::::::::::::::::
(Emmanuel et al., 2021)

:
.
:::::
There

:::
are

::::::
several

:::::
ways

::
to

::
do

::::
this.

:::
For

::::::::
example,

::::::::
clustering

:::::::::
algorithms

::::
like

::::::::
k-nearest

::::::::
neighbors

:::
can

:::
be

::::
used

::
to

:::
find

::::::
similar

::::::::
complete

:::::::::::
observations.

::::
This

::
is
::::
used

::
in
::::::::::::::::
(Black et al., 2022)

:
.120

:::
The

:::::
above

::::::::
overview

::::
gives

::::::
several

:::::::::
techniques

::::
that

::::
have

::::
been

::::
used

::
in

:::::::
research

:::
that

:::::::
focuses

::
on

:::::::
anomaly

::::::::
detection

::
in

::::::::::
temperature

::::::
signals

::::
from

:::::
wind

:::::::
turbines.

::::::::
However,

:::::
there

::::
exist

:::::::
several

::::
other

::::::::::
techniques

:::
that

::::
can

::
be

::::
used

:::
for

::::::::
imputing

:::::::
missing

::::::
values,

::::
e.g.

:::::::
hot-deck

::::::::::
imputation,

:::::::::
regression

:::::::::
imputation,

::::::::::::::::::::::
expectation-maximization,

::::
and

:::::::
multiple

::::::::::
imputation

::::::::::::::::::::
(Emmanuel et al., 2021).

:::
To

::
the

::::
best

::
of

:::
the

:::::::
authors’

::::::::::
knowledge,

:::
no

::
(or

::
a
::::
very

::::::
limited

:::::::
number

:::
of)

:::::
papers

::
in

::::
this

::::::
specific

::::::::
research

::::::
domain

::::
have

:::::
been

::::::
written

:::
that

:::
use

:::::
these

::::::::::
techniques.

::::
The

::::
lack

::
of

:::::::
research

::::
that

::::
uses,

:::
for

::::::::
example,

::::::::
multiple

:::::::::
imputation

::::
(like

:::::::::::
Multivariate

:::::::::
Imputation

:::
by125

:::::::
Chained

::::::::
Equations

::
or

::::::
MICE

::::::::::::::::::::::::::::::::::::
(van Buren and Groothuis-Oudshoorn, 2011)

:
)
:::
can

:::
be

:::::::::
considered

:
a
:::::
blind

::::
spot.

:

A second problem that might influence the NBM training, is outliers. If these occur in sufficient quantity they can impact

the modeling severely. Oftentimes the decision is made in the literature to simply remove them(which is not without risk if

the cause of the missingness is not well understood). This of course implies that the outliers can be detected in the first place.

This can be done for example by using the interquartile range (see (Campoverde et al., 2022)), or a custom dynamic or user-130

defined threshold (see (Chesterman et al., 2022), (Chesterman et al., 2021) and (Castellani et al., 2021)), the 5-sigma rule

(see (Miele et al., 2022)) or clustering (see (Cui et al., 2018) and (Bangalore et al., 2017)). This operation
::::::::
Removing

:::::::
outliers

needs to be done carefully to avoid that abnormal values associated with the failure of interest are also removed.
::::
This

:::::::
requires

:
a
:::::
good

::::::::::::
understanding

::
of

:::
the

::::
data.

:::
In

:::::
some

::::
cases

::::
the

::::::
outliers

::::
will

::
be

:::::::
clearly

::::::
visible.

::::
This

::::
can

:::
for

:::::::
example

:::
be

:::
the

::::
case

:::::
when

:::::::::::
measurement

:::::
errors

:::::
result

::
in

::::::
values

:::
that

::::
are

:::::::
multiple

:::::
times

:::::
larger

::
or

:::::::
smaller

::::
than

::::
what

::
is
:::::::::
physically

::::::::
possible.

::
In

:::::
these

:::::
cases135

::::::::
removing

:::
the

::::::
outliers

::
is

:::::::::::::
straightforward.

:::::::::
However,

::
in

::::
other

::::::
cases,

:::
the

::::::::
difference

::::::::
between

::::::
outliers

::
or

:::::::::
anomalies

::::::
caused

:::
by

:::
the

:::::
failing

::::::::::
component

:::
and

:::::::
outliers

::::::
caused

::
by

:::::::
another

::::::
reason

::
is

:::::
much

:::
less

:::::
clear.

:::::::::
Removing

:::::
these

::::
types

:::
of

::::::
outliers

::::::
should

::::
only

:::
be

::::
done

::::
after

::::::
careful

::::::::::::
consideration.

Some papers also use noise reduction techniques. Noise on signals can make it more difficult for the NBM algorithm to

model the relation between them. If it is possible to clean the signal this should be considered, since it will improve the140

performance of the NBM model. This can be done for example by aggregating the data to a lower resolution (see (Chesterman

et al., 2022), (Chesterman et al., 2021) and (Turnbull et al., 2021)), or cleaning or filtering the data using expert knowledge
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(see (Peter et al., 2022), (Takanashi et al., 2022), (Verma et al., 2022), (Turnbull et al., 2021), (Udo and Yar, 2021), (Beretta M.

and J., 2020) and (Kusiak and Li, 2011)).

In some cases, it might be useful to transform the data. This can result in features with more favorable properties. For145

example, the Principal Component Analysis (PCA) transformation (see (Campoverde et al., 2022) and (Castellani et al., 2021))

or
:::
and

:
Zero-Phase Component transformation (see (Renström et al., 2020)) result in uncorrelated features which are linear

combinations of the original signals. This can be beneficial for the training of the NBM. Another transformation that might be

done is rebalancing the dataset. This can be necessary when certain operational states of the turbine are underrepresented in

the training data. Oversampling of the minority class or undersampling of the majority class is an option. A more sophisticated150

technique is the Synthetic Minority Oversampling Technique (SMOTE) used in for example (Verma et al., 2022). Lastly, in

some papers, new features are created by clustering the original signals of the SCADA data in several groups using clustering

algorithms. The new features are in the next step used as input to the NBM model (see (Liu et al., 2020)).

This overview shows that many different preprocessing techniques are available and have been tried. However, the technique

choice is often not well motivated in the papers. Also, the impact of a certain technique on the results is in general not155

extensively discussed, even though it is known from statistical research that this can be significant.

2.2 The data and signals

SCADA data can come in different resolutions. The most available resolution is 10 minutes since it reduces the amount of data

that needs to be transmitted (Yang et al., 2014). This means that the dataset contains for each 10-minute window the average

signal value. In general, the SCADA data also contains information on the minimum, maximum, and standard deviation of the160

signal during the 10-minute window. Less common resolutions are for example 1-minute and 1-second. In the state-of-the-art

literature, the following resolutions can be found:

– 10-minutes: (Bermúdez et al., 2022), (Black et al., 2022), (Campoverde et al., 2022), (Chesterman et al., 2022), (Maron

et al., 2022), (Mazidi et al., 2017), (Miele et al., 2022), (Peter et al., 2022), (Takanashi et al., 2022), (Beretta et al., 2021),

(Beretta M. and J., 2020), (Castellani et al., 2021), (Chen et al., 2021), (Chesterman et al., 2021), (Meyer, 2021), (Turn-165

bull et al., 2021), (Udo and Yar, 2021), (Beretta M. and J., 2020), (Liu et al., 2020), (McKinnon et al., 2020), (Renström

et al., 2020), (Zhao et al., 2018), (Bangalore et al., 2017), (Dienst and Beseler, 2016), (Bangalore and Tjernberg, 2015),

(Bangalore and Tjernberg, 2014), (Schlechtingen and Santos, 2014), (Schlechtingen and Santos, 2012), (Zaher et al.,

2009), (Garlick and Watson, 2009).

– 5-minutes: (Kusiak and Li, 2011).170

– 10-seconds: (Kusiak and Verma, 2012).

– 1-second: (Sun et al., 2016), (Li et al., 2014).

– 100 Hz: (Verma et al., 2022), (Kim et al., 2011).
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The 100 Hz data used in for example (Verma et al., 2022) comes from the Controls Advanced Research Turbine (CART) of

the National Renewable Energy Laboratory (NREL). The fact that it is a research turbine makes it possible to sample at much175

higher rates than what is normally possible. Some papers combine the SCADA data with other information sources like event

logs that contain wind turbine alarms (see (Miele et al., 2022), (Beretta M. and J., 2020), (Renström et al., 2020) and (Kusiak

and Li, 2011)) or vibration data (see (Turnbull et al., 2021)).

The SCADA data contains information on many different parts of the turbines. This implies that the datasets consist in

general of dozens or even hundreds of signals (depending on the turbine type). However, not all of them are relevant to180

the case that is being solved. Some papers focus on a small subset of expert-selected signals (see for example (Peter et al.,

2022), (Bermúdez et al., 2022) and (Chesterman et al., 2022), ...). Other papers use a large subset of signals and reduce the

dimensionality of the problem during the preprocessing step or during a model-based automatic feature selection step that

extracts the relevant information (see for example (Lima et al., 2020), (Renström et al., 2020), (Dienst and Beseler, 2016), ...).

Some papers select signals based on the internal structure of the wind turbine (for example on subsystem level (Marti-Puig185

et al., 2021)). The advantage of the first method is that the number of signals used for training is limited, which reduces the

computational burden of the training process. The disadvantage is however that for cases in which the expert knowledge is

not complete, important signals might be missed. This is less likely when the second method is used. The disadvantage of this

method is however that the computational cost is significantly higher and that the selected subset can change over different

runs. The third method uses the wind turbine ontology or taxonomy as a guideline. Its performance depends of course on the190

quality of the ontology or taxonomy.

The signals that are often used for condition monitoring of wind turbines can be more or less divided into three groups:

1) environmental data like wind speed, outside temperature, ... (used in for example (Bermúdez et al., 2022), (Bermúdez

et al., 2022), (Black et al., 2022), (Campoverde et al., 2022), (Mazidi et al., 2017), (Miele et al., 2022), ... ), 2) operational

data from the wind turbine like active power, rotor speed, ... (used in for example (Bermúdez et al., 2022), (Black et al.,195

2022), (Chesterman et al., 2022), (Miele et al., 2022), (Peter et al., 2022), ...) and 3) wind turbine temperature signals like the

temperatures of the generator bearings, the temperature of the main shaft bearing, the temperature of the generator stator, ...

(used for example (Bermúdez et al., 2022),(Black et al., 2022), (Campoverde et al., 2022), (Chesterman et al., 2022), (Mazidi

et al., 2017), ...). The first two groups are often used by default, independent of the target signal that needs to be modeled or

the failure that needs to be detected. This is because they contain information on the wind turbine context (e.g. it is a stormy200

day, a very hot day, the turbine is derated, ...). The third group of signals is much more tied to the case at hand. For example,

generator temperature signals are used if the focus lies on generator failures , and gearbox temperature signals are used if

gearbox failures need to be detected.

Overall it can be stated that most state-of-the-art research is focused on 10-minute SCADA dataand
:
.
::::
This

::::::
means that there

are research opportunities on data with a higher resolution like 1 minute or 1 second. Furthermore, several signal or feature205

selection techniques are used in the literature. However, a thorough examination of their performance (expert knowledge

based vs. automatic or model-driven vs. ontology or taxonomy-guided feature selection), advantages, and disadvantages, has

according to the best of our knowledge not been done yet.
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2.3 Normal behavior modeling algorithms

The next part of the NBM framework is the algorithm that is used for modeling the normal behavior. In general, a considerable210

amount of attention is paid in the literature to this. This part models the normal (or healthy) behavior of the signal of interest.

For this, the current state-of-the-art literature uses techniques from the statistics and machine learning domains. These domains

contain a large variety of algorithms that are suitable for the task. More or less three categories can be distinguished: 1)

statistical models, 2) shallow (or traditional) machine learning models, and 3) deep learning models. Although this classification

gives the impression that the papers can be assigned to a single category, it is quite often the case that research use
:::
uses

:::
or215

::::::::
combines models from multiple categories.

Even though there are examples of recent papers in which statistical techniques are used for the modeling of the normal

behavior, they are a minority. Models that are used are for example OLS and ARIMA (see (Chesterman et al., 2022) and

(Chesterman et al., 2021)), where they are used to remove autocorrelation and the correlation with other signals from the target

signal. A different kind of statistical algorithm that is occasionally used is the PCA (see (Campoverde et al., 2022)), and its non-220

linear variant (see (Kim et al., 2011)). These are, contrary to the previous algorithms unsupervised, but they can be used to learn

the normal or healthy relations between the signals. In (Garlick and Watson, 2009) an OLS and an Autoregressive Exogenous

(ARX) model are combined to model the normal behavior, which makes it possible to take time dependencies into account.

The advantage of statistical models is that they are relatively simple, computationally lightweight, and data-efficient. They are

well-studied, and their behavior is well-understood. This makes them often suitable as a first-analysis tool or in domains where225

there are constraints on the computational burden or the amount of data that is available. The downside is however that they

are relatively simple, which makes them in general unsuitable to model highly complex non-linear dynamics. Whether this is

a problem depends of course on the case that needs to be solved.

Techniques from the traditional (shallow) machine learning domain are used more often. With traditional machine learning

is meant models like decision trees, random forests, gradient boosting, and support vector machines, ... These models are230

more complex than traditional statistical models and are better able to model non-linear dynamics. However, they require in

general more training data and training time. Examples of algorithms that are used in the current state-of-the-art are tree-based

models like random forest (see (Chesterman et al., 2022), (Turnbull et al., 2021), (Kusiak and Li, 2011)) and gradient boosting

(see (Chesterman et al., 2022), (Maron et al., 2022), (Beretta et al., 2021), (Udo and Yar, 2021), (Beretta M. and J., 2020),

(Kusiak and Li, 2011)), and models like support vector machine and regression (see (Chesterman et al., 2022), (Castellani235

et al., 2021), (McKinnon et al., 2020), (Kusiak and Li, 2011)). Another type of model that is occasionally used is derived from

the linear model (OLS) but includes some form of regularization to be better able to cope with high-dimensional data and

highly correlated features, i.e. least absolute shrinkage and selection operator (LASSO) (see (Dienst and Beseler, 2016)). The

latter model can be situated somewhere between the statistical and traditional machine learning categories.

In recent years deep learning models, e.g. neural networks, have become popular. Deep learning models are more complex240

than the traditional machine learning models. The advantages are that they are
::::
even better at modeling non-linear dynamics.

The disadvantages are that they require even more data, are computer intensive
:::::::::::::::
computer-intensive to train, and the results are
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more difficult to interpret. This however has not diminished their popularity, and at the moment they are in the state-of-the-

art research the most popular model category. Just like the traditional machine learning domain, the deep learning domain is

very diverse. Over the years many different types of models have been developed. These are
:::::
either completely new models245

or combinations of already existing deep learning models. Both types can be found in the state-of-the-art literature. Deep

neural networks are used in (Black et al., 2022), (Jamil et al., 2022) (transfer learning), (Mazidi et al., 2017), (Verma et al.,

2022), (Meyer, 2021) (multi-target neural network), (Turnbull et al., 2021), (Cui et al., 2018), (Sun et al., 2016), (Bangalore

and Tjernberg, 2015) (NARX), (Bangalore and Tjernberg, 2014), (Li et al., 2014), (Kusiak and Verma, 2012), (Kusiak and

Li, 2011), (Zaher et al., 2009). Another popular type of model is the Autoencoder (AE). Just like a PCA,
:
this model learns250

the normal or healthy behavior through dimension reduction which makes it ignore noise and anomalies. However, compared

to the PCA it is better at learning non-linearities. This model type is used for example in (Miele et al., 2022), (Chen et al.,

2021), (Beretta M. and J., 2020), (Beretta M. and J., 2020), (Renström et al., 2020), (Zhao et al., 2018). Convolutional Neural

Networks (CNN), originally designed and used for the analysis of images, can also be used for the detection of anomalies and

failures. Examples can be found in (Bermúdez et al., 2022) (combination of CNN and LSTM), (Xiang et al., 2022), (Zgraggen255

et al., 2021),(Liu et al., 2020). Another model that is used is the LSTM. This model is particularly suitable for time series since

it is able to model the time dependencies. This model is used in (Bermúdez et al., 2022) and (Udo and Yar, 2021). Two other

models that have also been used, but to a much lesser extent are the Extreme Learning Machines (ELM) (see (Marti-Puig et al.,

2021)) and the Generative Adversarial Network (GAN) (see (Peng et al., 2021)).

A last
:::::::
Another type of algorithm that is occasionally used in the literature is based on Fuzzy Logic. An example of such a260

model is the Adaptive Neuro Fuzzy
::::::::::
Neuro-Fuzzy

:
Inference System (ANFIS). Papers that use this model are (Schlechtingen

and Santos, 2014), (Schlechtingen et al., 2013) and (Schlechtingen and Santos, 2012).
::
In

:::::::::::::::::::::::::::::
(Tautz-Weinert and Watson, 2016)

::::::::::
experiments

:::
are

:::::::::
performed

::::
with

::::::
among

:::::
others

::::::
ANFIS

::::
and

:::::::
Gaussian

:::::::
process

:::::::::
regression.

::::
And

::::::
finally,

:::::
there

:
is
::::
also

:::::::
research

::::
that

:::
uses

:::::::::::
copula-based

:::::::::
modeling.

:::
An

:::::::
example

::
is

:::
the

:::::::
research

::::::::
presented

::
in
:::::::::::::::::::::
(Zhongshan et al., 2018).

:

Overall it can be stated that the NBM ecosystem is diverse. In recent years, deep learning has become the most popular265

methodology. The merits of these models are clear from the results. Often they outperform the statistical and traditional machine

learning models. However, the question is whether they are always the most suitable methodology for implementation in the

field. The data requirements mean that deploying the system quickly on a new wind farm is not possible (transfer learning

alleviates this issue to a certain extent). Also, the high computational requirements result in more costly retraining and higher

maintenance costs. The question is whether these disadvantages weigh up against the improved performance once deployed in270

the field. Not much attention is paid in the literature to this question.

2.4 Algorithms for the analysis of the NBM prediction error

The last step of the NBM methodology is the analysis of the prediction error of the NBM model. This model predicts the

expected normal behavior of a signal. If the true or observed signal deviates abnormally much from this prediction, or the

deviation shows certain trends, then this might indicate that something is going wrong with the related component and that275

a failure is imminent. The main goal of the last step is to search for these patterns in the prediction error. There are many
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different techniques (and combinations of techniques) that can be used for this. There are different ways to classify them. They

can be divided by the domainfrom which they are from, e.g. the
::::::
domain.

::::::
Firstly

::::
there

:::
are

:
statistics-based methods that use the

distribution of the prediction error under healthy conditions to determine a threshold that can be used to classify the prediction

errors as normal or anomalous, the methods
:
.
::::::::
Secondly,

::::
there

:::
are

::::::::
methods

:::
that

:::
are based on models from the Statistical Process280

Control (SPC) domain, and methods .
:::::::
Thirdly

::::
there

:::
are

::::::::
methods

:::
that

:::
are

:
based on models from the machine learning domain.

A different classification focuses on the number of signals they analyze in a single pass, e.g. .
:::::
There

:::
are

:
univariate methods,

which only take a single signal at a time into consideration, versus .
:::::
There

::::
are

:::
also

:
multivariate methods, which look to

::
at

multiple signals. In general, machine learning-based methods are multivariate. The SPC-based method can be both since the

univariate control charts algorithms like Shewhart, CUSUM, and EWMA have their multivariate counterparts. However, in285

the state-of-the-art literature often only the univariate versions are used. The statistics-based methods that use the distribution

of the prediction error are in general univariate. An exception to this is the Mahalanobis distance which is mostly used in a

multivariate setting.

The overview of the state-of-the-art here will mainly focus on
::::
given

::
in

:::
this

:::::
paper

::::
will

:::
use the first classification

::
as

:
a
::::::::
guideline.

The technique that uses the distribution of the prediction error to find a suitable threshold to identify anomalies is for exam-290

ple used in (Meyer, 2021), (Zhao et al., 2018), (Kusiak and Verma, 2012), ... The Mahalanobis distance combined with an

anomaly threshold is used in (Miele et al., 2022), (Renström et al., 2020), (Cui et al., 2018) and (Bangalore et al., 2017). SPC

techniques are used in (Udo and Yar, 2021) (Shewhart control chart), (Chesterman et al., 2022) (CUSUM), (Chesterman et al.,

2021) (CUSUM), (Bermúdez et al., 2022) (EWMA), (Campoverde et al., 2022) (EWMA), (Xiang et al., 2022) (EWMA) and

(Renström et al., 2020) (EWMA). The machine learning-based methods for the analysis of the prediction error are in general295

modifications of traditional machine learning algorithms. For example, the Isolation Forest, which is used in (Beretta et al.,

2021), (Beretta M. and J., 2020) and (McKinnon et al., 2020), is similar to the Random Forest algorithm, while the One-Class

SVM, used in (Turnbull et al., 2021), (Beretta M. and J., 2020) and (McKinnon et al., 2020), is similar to the SVM.

Overall it can be stated that in the current state-of-the-art multiple techniques are used for the analysis of the prediction error,

without a single category clearly having the upper hand. Furthermore, both univariate and multivariate techniques are still used.300

The multivariate techniques can analyze the prediction errors of multiple signals, which gives them an advantage compared to

the univariate techniques. However, their disadvantage is that when analyzing several signals at the same time, a deviation in a

single signal might be masked. This is shown in (Renström et al., 2020), where the authors observe that when the Mahalanobis

distance is calculated on several prediction errors at the same time (multivariate setting), it does not always clearly increase

when only a single prediction error deviates. For this reason, they point out that it would be interesting to combine multivariate305

and univariate techniques.
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3 Design of demonstration experiments for evaluating the performance of techniques used in the state-of-the-art

literature

In this section, the methodology of the experiments is explained, which will be used to demonstrate certain techniques found in

the state-of-the-art literature. For this demonstration, an NBM pipeline is designed, which consists of the following steps: data310

preprocessing, NBM modeling, anomaly detection, and health score calculation. The pipeline is validated on data from five

operational wind farms. The data contains information on 3 types of failures, e.g. generator bearing replacements, generator fan

replacements, and rotor brush high temperature failures. In each step of the pipeline, multiple techniques and configurations are

tested and compared. To this end, 6 experiments are designed. Care is taken to create as much as possible a lab environment.

This means that the parts of the pipelines that are not relevant to the experiment are kept constant.315

3.1 The input data

The experiments are based on two data sources (for confidentiality reasons not all the details of the input data can be shared).

The first one is 10-minute SCADA data originating from 5 different onshore wind farms (wind farms 1-5). The geographic

location of each wind farm is different. The wind turbines in these wind farms are all of the same type with a rated power of

2MW. The wind farms are relatively small, containing only 4-6 wind turbines. Some datasets contain a substantial amount of320

missing values. The number of (obvious) measurement errors is low. The SCADA data contains over 100 signals. Only the

10-minute averages of the signals related to the drive train or the operational condition of the wind turbine are used in this

research. The signals that are selected from the SCADA data are based on the state-of-the-art literature. It is a relatively large

subset, larger than what would be used if the selection is based on only expert knowledge. Table 1 gives an overview.

The second source of information are the maintenance logs, which contain the replacements and failures. Information is325

available on three types of events: generator bearing replacements, generator fan replacements, and rotor brush high tempera-

ture failures. For each replacement or failure event, information is available on the turbine ID, the date, and the event type. This

is valuable information for validating the methodologies. However using these logs has also a couple of challenges, e.g. impre-

cise event dates or missing events. The logs give only an approximate indication of when something went wrong. Furthermore,

it needs to be pointed out that a replacement of a component does not necessarily mean that the component had failed. Some330

components will have failed, others will have been replaced as a preventive measure.

3.2 Preprocessing

The first step of the NBM framework is preprocessing
::
or

:::::::
pipeline

::
is

:::
the

:::::::::::
preprocessing

::
of

:::
the

::::
data (see Figure 1). An exhaustive

:::::::
Because

:::
the

::::
main

:::::
focus

::
of

:::
this

:::::
paper

:::
lies

:::
on

:::
the

:::::
NBM

:::
and

:::
the

:::::::
anomaly

::::::::
detection

:::::::::
techniques,

:::
no

::::::::
extensive comparative analysis

of all possible
:::::::
different

:
preprocessing techniques is unfeasible. For this reason, only a couple will be discussed. Some steps335

used in this paper
:::::
done.

::::::::
However,

:::
the

:::::
NBM

:::::::
pipeline

:::::
makes

::::
use

::
of

::::::
several

:::::::::::
preprocessing

::::::::::
techniques,

:::::
which

::::::
makes

:
it
:::::::::
necessary

::
to

:
at
:::::
least

::::::
discuss

::
or

:::::::
mention

:::::
them.

:::::
Some

:::::::::
techniques are trivial but necessary. Those

::::
They

:
will just be mentioned without going
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Signal name Symbol Unit Info

TempGenBearing_1 (avg) Tgen_bear_1 °C Temperature of the first generator bearing.

TempGenBearing_2 (avg) Tgen_bear_2 °C Temperature of the second generator bearing.

TempStatorWind (avg) Tstator °C Temperature of the generator stator.

GeneratorSpeed (avg) Vgen RPM Rotational speed of the generator.

Generator torque (avg) τgenerator Nm Torque at the generator.

TempConvInlet (avg) Tconv_inlet °C Temperature of the converter inlet.

TempGearbBear_1 (avg) Tgear_bear_1 °C Temperature of the gearbox bearing 1.

TempGearbBear_2 (avg) Tgear_bear_2 °C Temperature of the gearbox bearing 2.

TempGearbInlet (avg) Tgear_inlet °C Temperature of the gearbox inlet.

GearboxSpeed (avg) Vgearbox RPM Rotational speed of the gearbox.

TempRotorBearing (avg) Trotor_bear °C Temperature of the rotor bearing.

Rotor speed (avg) Vrotor RPM Rotational speed of the rotor of the wind turbine.

Active power (avg) Pactive kW Amount of power that is being produced by the wind

turbine.

Nacelle temperature (avg) Tnacelle °C Temperature measured inside the nacelle of the wind tur-

bine.

Outside temperature (avg) Tambient °C Ambient temperature.

Wind speed Vwind m/s Wind speed measured at each turbine.
Table 1. Overview of the SCADA signals used as input for the NBM model

into more detail. The more interesting ones, like for example the healthy data selection
::
or

:::
the

::::
fleet

::::::
median

::::::::::::
normalization, will

be discussed in more detail. The
::::
more

::::::::::
thoroughly.

:

:::
The

:::::
NBM

:::::::::
framework

::::::
makes

:::
use

::
of

:::
the

:
following preprocessing stepsare used:340

– Data cleaning: selection of relevant variables and turbines, renaming of the variables, matching of the SCADA data with

the replacement information, and linear interpolation or carry forward/backward of the missing values (similar to what

was done in (Bermúdez et al., 2022), (Campoverde et al., 2022), (Mazidi et al., 2017), (Renström et al., 2020) but with

linear interpolation). This step will not be discussed in more detail since it is a trivial transformation.

– Selecting healthy training data: a rule-based method will be discussed in depth.345

– Determining the operating condition of the turbines: this is done using the IEC 61400-1-12 standard (Commission, 2022)

as a guideline.

– Signal filtering using the wind farm median: this is an important transformation with a significant impact on the results.

For this reason, this step is discussed in depth.

– The removal of sensor measurement errors is done in a fully automated way. A short discussion of this step is given.350
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– Aggregating to hour level: the purpose of this step is to reduce the amount of noise
:::
and

:::
the

:::::::
number

::
of

:::::::
missing

::::::
values

in the data. Similar actions were taken for example in (Turnbull et al., 2021)
:::
and

::::::::::::::::
(Verma et al., 2022). This step

::
is

:::
not

::::::
always

::::::::::
appropriate.

::::
This

::
is

:::
for

:::::::
example

::::
the

::::
case

:::
for

::::::
failures

::::
that

:::::
form

::::
very

:::
fast

:::::
over

::::
time,

:::
or

:::
for

::::::
signals

::::
that

::::::
exhibit

::::::
damage

:::::::
patterns

::::
that

:::
are

::::
very

:::::::::
short-lived

:::
like

::
in
::::::::

vibration
::::::::
analysis.

:
It
::

is
:::
up

::
to

:::
the

::::
data

::::::
analyst

::
to

:::::::::
determine

:::::::
whether

:::
the

:::::::::
advantages

:::::
weigh

:::
up

::::::
against

:::
the

::::::::::::
disadvantages.

::::
This

:::::::::::
preprocessing

::::
step

:
will not be discussed in more detail,

:::::
since

::
it

:
is
::
a355

:::::
trivial

::::::::
technique.

3.2.1 Signal filtering using the fleet (wind farm) median

The wind turbine signals in the SCADA data are quite complex, meaning there are a lot of factors that influence them. This

complexity makes it more difficult to model the normal behavior. This means that if a part of this complexity could be removed

it would simplify the problem, which normally should result in an improved modeling performance and an overall more data-360

efficient model. This can be accomplished by calculating the fleet median of a signal (e.g. temperature of generator bearing 1 at

time t for turbines 1, 2, 3, 4, 5) and subtracting it from the wind turbine signals (e.g. temperature of generator bearing 1 at time

t of turbine 1). This technique is also used in (Chesterman et al., 2022) and (Chesterman et al., 2021). The fleet median can be

seen as an implicit normal behavior model. It is implicit because it does not require us to select predictors or train
::
the

::::::::
selection

::
of

::::::::
predictors

::
or

:::
the

:::::::
training

::
of

:
a model. It models the normal behavior as long as 50% + 1 turbines are acting normally at any365

given time. By taking the median over a whole farm, it captures farm-wide effects, which are common to all the turbines, which

is why it will be called the "common component". Elements modeled by this component are for example the wind speed, the

wind direction, and the outside temperature, ... By subtracting the median from the wind turbine signal, these farm-wide effects

are removed. What is left are turbine-specific effects, which will be called the "idiosyncratic component". Turbine-specific

anomalies should only be visible in there.370

In practice, this preprocessing step means that from each signal in Table 1 the fleet median is subtracted (e.g. Trotor - fleet

median Trotor, Trear - fleet median Trear, ...). Figure 2 shows the results of the decomposition for the 5 turbines of wind

farm 2. The top subplot shows the original generator bearing 1 temperature signals. The middle subplot shows the common

components. From the plot, it is obvious that the common component captures the general (fleet or farm-wide) trend, while

turbine-specific evolutions are ignored. The bottom subplot shows the idiosyncratic components. The power down of turbine375

4 is (more) clearly visible in the idiosyncratic component than in the original signal. This indicates that the decomposition

is successful. Figure 3 shows that the fleet median is useful for filtering out macro-level or fleet-wide effects like seasonal

fluctuations from the data. The common component captures clearly the seasonal fluctuations in the nacelle temperature, which

results in an idiosyncratic component that is free of them. This is beneficial because it means that seasonal fluctuations will

not influence the false positive rate when less than one year of training data is used.
::::::::::
Furthermore,

:::
the

::::::::
common

:::::::::
component

::::
also380

:::::::
captures

:::
the

:::::::
transient

::::::::
behavior

:::
like

::::::::::
cool-downs

::::
that

:::
are

:::::::
common

::
to

:::
all

:::::::
turbines

::
in

:::
the

::::
fleet.

:::::
This

:::::
means

::::
that

:::
the

:::::::::::
idiosyncratic

:::::::::
component

::
is

::::
free

::::
from

:::::
most

:::::::
transient

:::::::::
behavior.

:::::
What

:::::::
remains

::
of

::::::::
transient

:::::::
behavior

:::
are

::::::::::
cool-downs

::::
that

:::
are

::::::
unique

:::
to

:::
the

::::::
turbine.

::::
This

::::::
means

:::
that

::::
they

:::
are

::::::
caused

:::
for

:::::::
example

::
by

::
a

::::::
turbine

:::
that

::
is

::::::
turned

::
off

:::
for

:::::::::::
maintenance.

:::::
These

::::::
events

:::
are

::::::::
relatively

::::
rare,

:::::
which

::::::
makes

:::
that

:::::::::
subtracting

:::
the

::::
fleet

:::::::
median

::::
from

:::
the

::::::
signals

:::
has

:::::::
reduced

:::
the

::::::::
modeling

::::::::::
complexity

:::::::::::
substantially.
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Figure 2. Example of the impact of decomposing the generator bearing 1 temperature of the turbines in wind farm 2 in a common and

idiosyncratic component

How well the fleet median removes the macro-level effects depends of course on the quality of the fleet median. An issue that385

may arise, especially in small wind farms, is that a substantial amount of turbines are offline for maintenance. For example,

it can be that 2 turbines are offline for maintenance in a wind farm with 4 turbines. This will of course have an impact on

how representative the median is for the normal behavior. For this reason, a rule-based safeguard is added that under certain

conditions will convert the fleet median to NaN. The rules are the following:

– if fleet size < 5 =>
:::::::::::
fleet size < 5

:
: No missing values at time t are allowed.390

– if fleet size < 10 =>
:::::::::::::::
5≤ fleet size < 10

:
:
:
At most 20% missing values at time t are allowed.

– if fleet size >= 10 =>
::::::::::::
fleet size ≥ 10

:
: At most 40% missing values at time t are allowed.
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Figure 3. Example of the impact of decomposing the nacelle temperature of the turbines in wind farm 2 in a common and idiosyncratic

component

3.2.2 Selecting healthy training data

The selection of healthy training data is an important step in the NBM framework. If it is not done properly, it can result

in the contamination of the training data with anomalous or "unhealthy" observations, which can disturb the training of the395

normal behavior. Data is considered "healthy" if it is not polluted by abnormal behavior caused by a damaged component.

Unfortunately, real data
::::
data

::::
from

:::
real

:::::::::
machines does not contain a label that indicates whether it is healthy or not. This means

that certain assumptions need to be made about the data, e.g. a "healthy data"-rule. The rule used in this paper considers data

that precedes a failure by less than 4 months (which is the same as what is used in (Verma et al., 2022)) or follows on a failure

by less than a month (to avoid test and upstart behavior) as unhealthy.400
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Figure 4. Unhealthy data identification

Figure 5. Heuristic-based healthy data identification

Once the unhealthy data has been identified, healthy data can be selected. The methodology presented here selects the

healthy data in a fully automated fashion. The user can determine how much training data (number of observations) per turbine

is required for modeling the normal behavior. The healthy data is selected in chronological order from the time series. For most

experiments, the first 4380 (which equals roughly 6 months of data) healthy samples of each turbine are selected for training.

The selected data is combined into a single training dataset. This implies that only a single model per signal per farm is trained,405
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which results in a large reduction of the training time, and more efficient usage of the training data. Figures 4 and 5 give a

schematic representation of how the healthy training data is selected.

3.2.3 Handling of measurement or sensor errors

Removing outliers and/or measurement errors is something that is done in most research. The SCADA data used for the

demonstration experiments contains a small amount of unrealistically large or small
::::::::
unrealistic

:
values. The technique used410

here uses thresholds to determine which observations are measurement errors and which are not. The overview of the state-of-

the-art shows that this is a technique that is often used. The thresholds used in the demonstration experiments are determined in

a fully automated fashion so that the thresholds should not
::::
they

::
do

:::
not

::::
need

::
to
:
be manually determined for each signal of each

turbine type. This manipulation of the data is not without risk. Only measurement errors should be removed, not the deviations

in the signals caused by the failure of the component. The threshold depends on the median value of the original signal415

(meaning that the fleet median has not been subtracted from the wind turbine signal). This value is multiplied with a scaling

factor, which is in this paper set to 1. This threshold is used on the signal from which the fleet median has been subtracted. All

absolute values in this signal that are larger than the threshold are considered measurement errors. Concretely this means that

values from the wind turbine signal that deviate from the fleet median (on the positive side) by more than its median value are

considered measurement errors. Eq. 1 shows the procedure using mathematical notation. The measurement errors are replaced420

with NaN values. In a later step, they are replaced using linear interpolation or if necessary carry forward/backward.

ErrorError
::::measurement =

1 if |Valuefleet_corrected|> Valueoriginal outlier_factor

0 otherwise
(1)

:::::
where:

:

Errormeasurement =
:::::::
Indicator

:::::::
whether

:::
the

::::::::::
observation

::
is

:
a
:::::::::::
measurement

:::::
error

::
or

:::
not.

:

Valuefleet_corrected =
:::::
Signal

:::::
value

::::
from

::::::
which

:::
the

::::
fleet

::::::
median

:::::
value

:::
has

::::
been

:::::::::
subtracted.

:

Valueoriginal =
:::::
Signal

:::::
value.

:

outlier_factor =
:::::::
Constant

:::::::::
multiplier.

3.3 Normal behaviour modelling425

The normal behavior model is the core of the NBM framework. It models the "normal" or "healthy" relation between one

or more predictors and a target signal. Once trained it can be used to predict the expected normal behavior. The differences

between the observed and predicted values are then analyzed by anomaly detection algorithms in the final step. In this section,

the methodological setup of the experiments will be discussed. To assess the performance of the NBM configurations, they will

be compared using
:::
two

::::::
metrics

:::
are

:::::
used.

::::
The

:::
first

::::::
metric

::
is

:
the healthy test data RMSE. As a baseline, the root mean square430

of the
::
A

::::::
proper

:::::
NBM

::::::
model

::::::
should

::
be

::::
able

::
to

::::::
model

:::
the

:::::::
healthy

::::
data

::::
well.

::::::::
However,

::::
this

::::::
metric

::::
does

:::
not

::::
tell

:::::
much

:::::
about
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:::
how

::::
well

::
it
:::
can

:::::::::
distinguish

:::::::::
unhealthy

::::
from

:::::::
healthy

::::
data.

:::
For

:::
this

:::::::
reason,

:
a
::::::
second

::::::
metric

::
is

:::::::::
introduced,

:::::
which

::
is
:::
the

:
difference

between the wind turbine signal and the
::::::
median

::::::::
prediction

:::::
error

:::
for

:::
the

::::::
healthy

::::
and

::::::::
unhealthy

::::
data

:::::::::::
(∆PEunh−h)

::::
(see

:::
Eq.

:::
2).

:::
The

::::
idea

::::::
behind

:::
this

::::::
metric

::
is

:::
that

:::::
good

:::::
NBM

::::::
models

::::::
should

::::
have

::
a

::::
small

:::::::::
prediction

::::
error

:::
on

:::
the

::::::
healthy

::::
data

:::::
(PEh)

::::::::
(because

:::
they

:::
are

::::::
trained

:::
on

:::
the

::::::
healthy

::::
data)

::::
and

:
a
::::
large

:::::::::
prediction

::::
error

::
on

:::
the

:::::::::
unhealthy

:::
data

:::::::
(PEunh)

::::::::
(because

:::::::::
something

:::
has

:::::::
changed435

::::::::
compared

::
to

:::
the

:::::::
healthy

::::::::
situation).

::::
For

:::
the

::::
type

::
of

:::::::
failures

::::::
studied

::
in
::::

this
:::::
paper,

::::::::::
∆PEunh−h::::::

should
:::
be

:::::::
positive

:::::::
because

:::
the

::::::
damage

::
to
::::

the
::::::
related

::::::::::
components

::::::
should

:::::
result

:::
in

::::::::::::::::
higher-than-normal

:::::::::::
temperatures.

::::
The

:::::
more

:::::::
positive

::::::::::
∆PEunh−h:::

is,
:::
the

:::::
better

::
the

::::::
NBM,

:::::::
because

:
it
::::::::
indicates

::::
that

:::
the

:::::
model

:::
can

::::::::::
distinguish

:::::
better

::::::
healthy

::::
from

:::::::::
unhealthy

::::
data.

:

∆PEunh−h = median(PEunh)−median(PEh)
:::::::::::::::::::::::::::::::::::::

(2)

:::::
where:

:
440

∆PEunh−h =
::::::::
Difference

::::::::
between

::::::
median

::::::::
unhealthy

::::
and

::::::
healthy

::::
data

:::::::::
prediction

::::
error.

:

PEunh =
::::::::
Unhealthy

::::
data

:::::::::
prediction

:::::
error.

PEh =
::::::
Healthy

::::
data

:::::::::
prediction

:::::
error.

::
As

::
a
:::::::
baseline

:::
the

:
fleet median signal for the healthy training data will be

::
is used. Since the fleet median also models the

normal behavior, but without the requirement of specifying the predictors, it will be called an "implicit NBM" (vs. the "explicit

NBMs" that do require a specification of predictors, model, parameters, ...). The explicit NBM that will mainly be used is the

elastic net. It is a simple, transparent, and robust model that can handle large amounts of (correlated) predictors, while at
:
.445

::
At

:
the same time

:
, it can work with a limited amount of training data. This corresponds to requirements set by the industry.

For this reason, deep learning models, like AEs, are notused in this research
:::::::
industrial

::::::::
partners,

:::
e.g.

::
at
:::::

most
::::
only

::
a

:::::
couple

:::
of

::::::
months

::
of

:::::::::
10-minute

:::::::
training

::::
data

:::
per

:::::::
turbine,

:::
low

:::::::::::
maintenance

::::
cost,

::::
low

::::::
training

:::::
cost,

:::
and

::::
high

:::::::::::
transparency.

::::::::::::
Nevertheless,

::
in

::::::::::
experiments

:
2
::::
and

:
6
:::
the

:::::::::::
performance

::
of

:::
the

::::::
elastic

:::
net

:::
will

:::
be

::::::::
compared

::
to
::::

that
::
of

:::::
more

:::::::
complex

:::::::
models

::::
from

:::
the

:::::::
shallow

:::::::
machine

:::::::
learning

::::::
domain

::::
(i.e.

::::
light

:::::::
gradient

:::::::
boosting

::::::::
machine

:::::
(light

::::::
GBM),

::::::
support

::::::
vector

::::::::
regression

::::::
(SVR)

::
in

::::::::::
experiment

::
6)450

:::
and

:::
the

::::
deep

:::::::
learning

::::::
domain

::::
(i.e.

:::::::::
multi-layer

:::::::::
perceptron

::::::
(MLP)

::
in

:::::::::::
experiments

:
2
:::
and

:::
6).

::::
This

::::::
should

::::
give

::
an

::::
idea

::
of

:::
the

:::::
limits

:::
and

:::::::
usability

:::
of

:::
the

:::::
elastic

:::
net

::::::
model,

::::
and

:::::::
whether

:::
the

:::::::
trade-off

:::::::
between

::::::::::::
computational

::::
cost

::::
and

:::::::::
complexity

:::
on

:::
the

:::
one

:::::
hand

:::
and

:::
the

::::::::::
performance

:::
on

:::
the

::::
other

:::::
hand,

::
is
:::::::::
acceptable

::
or

:::
not.

3.3.1 Elastic net regression for modeling the normal behavior

It has been shown in the literature that linear models can be good modelers of the normal behavior of wind turbines, and they are455

also time efficient (see (Dienst and Beseler, 2016)). However, by using elastic net
::::::
(which

:::
was

:::::::::
developed

::
in

::::::::::::::::::
(Zou and Hastie, 2005)

:
), which is basically a linear regressor with L1 and L2 regularizers added to it (see Eq. 3), there are some extra advantages.

Firstly, the model is more robust when many (correlated) features are used, and secondly, .
:::::::::
Secondly, it also performs an auto-

matic feature selection. This implies that it is possible to model for example the generator bearing 1 temperature by giving the

model all the signals that are connected to the whole drive train of the turbine. This reduces the configuration burden for the460
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user. Furthermore, the algorithm works in a transparent way, which avoids the "black box" problem. The amount of training

data it requires is also favorable compared to more complex machine learning algorithms. A disadvantage of the model is that

it is relatively simple, which means that it is not good at modeling highly non-linear dynamics. Whether this is a problem will

be tested in experiment 5, where the performance of the elastic net is compared with that of an SVR with a radial kernel and a

light GBM
::::
more

:::::::
complex

:::::::
shallow

:::::::
machine

:::::::
learning

::::
and

::::
deep

:::::::
learning

::::::
models.465

β̂elastic−net = argmin
β

{ N∑
i=1

(yi −β0 −
p∑

j=1

xijβj)
2 +λ1

p∑
j=1

|βj |+λ2

p∑
j=1

β2
j

}
(3)

:::::
where:

:

β̂elastic−net =
:::::::
estimates

:::
of

:::
the

:::::::::
coefficients

::
or

:::::::
weights

:::
by

:::
the

:::::
elastic

:::
net

::::::
model.

:

β0,βj =
:::::::::
coefficients

::
or

:::::::
weights

::
of

:::
the

::::::
model.

:∑p
j=1 |βj | =

::
L1:::::::

penalty
::::
term.

:∑p
j=1β

2
j =

::
L2:::::::

penalty
::::
term,

::::
also

:::::
called

::::::::
Tikhonov

:::::::::::::
regularization.

λ1 ≥ 0 =
:::::
weight

:::
of

::
L1:::::::

penalty
::::
term.

:

λ2 ≥ 0 =
:::::
weight

:::
of

::
L2:::::::

penalty
::::
term.

:

3.3.2 Training of the NBM model

The NBM models are trained on "healthy" data that is extracted from the SCADA data. Failing to train on more or less470

healthy data can result in severe degradation of the modeling performance of the NBM (this depends on the relative quantity

of anomalies). To reduce the computational and maintenance burden of the pipeline, a single NBM model per signal per wind

farm is trained. This means that healthy training data from several wind turbines are combined in a single training dataset. This

decision was taken in response to concerns raised by wind turbine operators that if separate models would be trained per turbine

this would result in an unacceptable maintenance burden. Combining training data from multiple wind turbines is however not475

without risks. Structural signal differences (e.g. a turbine with a generator bearing that is always 1 or 2 degrees warmer than the

one of a different turbine under the same conditions) between the different wind turbines are not modeled (unless wind turbine

dummies are added to the predictor list). This can result in structural deviations in the prediction errors, e.g. a prediction error

that is structurally positive or negative. Whether this really manifests itself will become clear
:::::::
However,

::::
data

:::::::
analysis

:::::::
showed

:::
that

:::
the

::::::::::
temperature

:::
or

:::::::
behavior

::::::::::
differences

:::::::
between

:::
the

:::::::
different

::::::::
bearings

:::
are

:::::
small.

::::::
There

:::
are

::
no

::::::::::
indications in the results480

.
:::
(see

:::::::
further)

::::
that

:::
the

:::::::::
differences

:::::::
between

:::
the

::::::::
different

:::::::
bearings

::::::::
seriously

:::::::
hamper

:::
the

:::::::
analysis.

:::::::::::
Furthermore,

:::::::::::
experiments

::
in

:::::
which

:::
the

:::::
model

::::
was

::::::::
retrained

::::
after

::::
each

::::::
bearing

:::::::::::
replacement

:::
did

:::
not

::::
show

::::
any

::::
clear

:::::::::::
performance

:::::::::::
improvement.

:

In general, the training of the NBM models will be done by using the first 4380 healthy observations (or six months of data)

of each turbine. This amount is limited on purpose so that it answers the requirements of the industry. Less training data means

that new wind turbines can more easily be added to the anomaly detection system (less start-up time). The subtraction of the485

fleet median from the wind turbine signals neutralizes seasonal fluctuations. The NBM models are trained on the training data
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using a full grid search, or a random grid search when the number of hyperparameter combinations is large, over sensible ranges

for the hyperparameters. To avoid overfitting 5-fold cross-validation is used. The trained model is tested on the test dataset to

assess the performance. For each model, the healthy test data RMSE is calculated. This is used to compare the models from the

different experiments. The third experiment examines the impact of further reducing the amount of training data to 2 months490

per turbine.

3.4 The anomaly detection procedure

The trained NBM model is used to predict the expected normal behavior. The prediction error of the model indicates how

anomalous the observed behavior is. As shown in the state-of-the-art overview there are many different anomaly detection

techniques that can be used to analyze it. The techniques used in the sixth demonstration experiment are based on univariate495

statistical techniques that are transparent, robust, and computationally light. More specifically, the performance is analyzed of

a technique that uses
:::
two

:::::::
different

:::::::::
techniques

:::
are

::::::
tested.

::::
The

:::
first

:::::::::
technique

::
is

:::::
based

::
on

:
the prediction error distributionas a

basis, and one that
:
.
:::
The

::::::
second

:::::::::
technique is based on a technique from the SPC domain.

The first technique is most suitable for identifying point anomalies. It is based on the principle of Iterative Outlier Detection

(IOD) (also called Iterative Outlier Removal). This means that outliers are removed over several iterations until the outlier500

thresholds (these are the thresholds that determine which observations are outliers and which are not) have stabilized. To make

these thresholds more robust for outliers, the standard deviation is approximated by the Median Absolute Deviation (MAD)

(see Eq. 4 and 5, with k = 1.4826). The anomaly scores are calculated using Eq. 6.

MADMAD
::::

=medianmedian
:::::

(|Xi − X̃|) (4)

:::::
where:

:
505

Xi =
:::::
signal

::::::::::
observation

::
at

::::
time

:
t
:
=
::
i.

X̃ =
:::::
signal

:::::::
median.

MAD =
::::::
median

:::::::
absolute

::::::::
deviation.

:

σ̂robust = k ∗MADk MAD
::::::

(5)

:::::
where:

:

σ̂robust =
:::::
robust

:::::::
estimate

::
of

::::::::
standard

:::::::
deviation

::::::
signal.

:

k =
:::::::
constant

::::::::
multiplier

::
or

::::::
scaler.

MAD =
::::::
median

:::::::
absolute

::::::::
deviation.

:
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anomaly_scoreanomaly score
:::::::::::

=



−3 if idio_comp > medianidio_comp − 5 σ̂robust

−2 if idio_comp > medianidio_comp − 4 σ̂robust

−1 if idio_comp > medianidio_comp − 3 σ̂robust

1 if idio_comp > medianidio_comp +3 σ̂robust

2 if idio_comp > medianidio_comp +4 σ̂robust

3 if idio_comp > medianidio_comp +5 σ̂robust

(6)510

:::::
where:

:

idio_comp =
::::::::::
idiosyncratic

::::::::::
component.

:

medianidio_comp =
::::::
median

:::::::::::
idiosyncratic

::::::::::
component.

σ̂robust =
:::::
robust

:::::::::
estimation

::
of

:::
the

:::::::
standard

:::::::::
deviation.

In the next step, the anomaly scores are transformed into health scores. This is done by calculating the moving average of

the anomaly scores for different windows (1 day, 10 days, 30 days, 90 days, and 180 days). For these moving averages, upper

and lower bounds are calculated. This is done by combining the moving averages with the same window length of the same515

signals from the different wind turbines and calculating Tukey’s fences. Three positive thresholds are used to determine the

moving average anomaly score. Next, the sum of the moving average anomaly scores is taken over the different windows for

each timestep t. This sum is the health score and determines the health category .
::::
(Eq.

::
8).

:

MA_anomaly_scoreMAanomaly score win x
::::::::::::::::::

=


1 if MAwinx > q(MAwinx,0.75)+1.5 (q(MAwinx,0.75)− q(MAwinx,0.25))

2 if MAwinx > q(MAwinx,0.75)+2.5 (q(MAwinx,0.75)− q(MAwinx,0.25))

3 if MAwinx > q(MAwinx,0.75)+3.5 (q(MAwinx,0.75)− q(MAwinx,0.25))

(7)

:::::
where:

:
520

MAwinx =
::::::
moving

:::::::
average

::::
with

:::::::
window

:::::
length

::
x.

:

q(MA, .) =
:
.
::
th

::::::
quantile

:::
of

::::::
moving

:::::::
average

::::::::::
distribution.

:

MAanomaly score win x =
::::::
moving

:::::::
average

::
of

:::::::
anomaly

:::::
score

:::
for

:::::::
window

:::::
length

::
x.

:
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health_category

health score
::::::::::

= MAanomaly score win 1d
:::::::::::::::::::

+MAanomaly score win 10d
:::::::::::::::::::::

+MAanomaly score win 30d
:::::::::::::::::::::

+MAanomaly score win 90d
:::::::::::::::::::::

+MAanomaly score win 180d
::::::::::::::::::::::

(8)

:::::
where:

:

MAanomaly score win x =
::::::
moving

:::::::
average

::
of

:::::::
anomaly

:::::
score

::::
over

:::::::
window

::::
with

:::::
length

::
x.
:

health category =


good if health score ≤ 5

mediocre if 5< health score ≤ 10

bad if health score > 10
:::::::::::::::::::::::::::::::::::::::::::::

(9)525

The second technique is based on CUSUM (Page, 1955), which comes from the Statistical Process Control (SPC) domain.

The CUSUM is designed to be more sensitive to small changes in the mean than for example the Shewhart charts (used for

example in (Udo and Yar, 2021)). The algorithm is run with different subgroup sizes, e.g. 10 days, 30 days, 90 days, and 180

days. Instead of using the subgroup mean and the overall mean the subgroup median and overall median are used. The standard

deviation of the subgroups is replaced with the robust standard deviation estimated using the MAD (see Eq. 5). This makes530

the algorithm more robust against anomalous trends. For each subgroup size, anomaly thresholds are calculated using Eq. 7.

For each signal, there are three thresholds. These are common for all turbines in the wind farm. The signal health scores are

calculated by summing the anomaly scores for the different subgroup sizes (meaning for each time step t the sum is taken over

all the subgroup sizes) .
::::
(Eq.

::
8).

:
The health category is calculated using Eq. 9.

Assessing the performance of the anomaly detection algorithms on real data is a non-trivial task due to data imperfections.535

Imprecisions in the replacement dates, problems that are not resolved after a first attempt, incomplete event lists, and preventive

maintenance, ... make it hard to automate the validation process. This means that each detection or non-detection needs to

be validated by a human. Also, it introduces a certain inexactness in the validation process. For this reason, a somewhat

different validation procedure will be used. The performance of the anomaly detection algorithms is assessed by calculating

the percentage of failures that are correctly identified. This is the case when a cluster of bad health is found around the time540

of the failure. The ratio of false positives is also estimated. This is done using the following methodology. Firstly, turbines are

selected that experienced no known failures. This is the case for 10 turbines in total. For those turbines, it can be assumed

that the components were probably relatively healthy during the observation period. This means that the number of bad health
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observations will be fairly limited. Bad health observations that are found for those turbines are probably false positives. For

each signal, the percentage of "bad" health observations is calculated. The median ratio for each signal over all the selected545

turbines is used as an approximation of the false positive ratio of the anomaly detection model.

3.5 The experiments

In total 6 demonstration experiments will be conducted. 5 experiments will focus on the NBM model, and 1 experiment will

focus on the anomaly detection algorithms. Experiment 1 compares the performance of the base elastic net regression with

that of the implicit NBM. Experiment 2 evaluates the added value of using lagged predictors. Lagged predictors have also550

been used in (Garlick and Watson, 2009). Experiment 3 analyzes the impact of reducing the amount of training data from 6

months per turbine to 2 months. In the state-of-the-art different amounts of training data are used. This is mainly driven by the

amount of data available. Experiment 4 discusses the added value of PCA-transformed input for the elastic net. Using PCA

for preprocessing of the data is also done in (Campoverde et al., 2022). Experiment 5 examines the added value of using more

complex machine learning models like SVR (with a radial kernel) and light GBM. The performance of these models compared555

to that of the elastic net will say something about the importance of non-linearities. Experiment 6 compares the performance

of the IOD-MAD and the CUSUM anomaly detection algorithms. For the analysis, the prediction error of the base elastic net

model is used.

4 Results

4.1 Experiment 1: The added value of using the elastic net regression model on top of the results of the implicit NBM560

Pipeline configuration: implicit NBM based on fleet median, explicit NBM based on elastic net regression, heuristic-based

healthy data selection, full grid search hyperparameter tuning (5-fold CV), 6 months training data per turbine.

The first experiment investigates the usefulness of adding an explicit NBM (elastic net regression) model to the pipeline. One

of the downsides of the implicit NBM (fleet median) is that it is unable to model turbine-specific transient behavior. Whether

this is a serious problem depends on the case. However, if it is a problem it can be solved by adding an explicit NBM to the565

pipeline. If the above reasoning is correct, it can be expected that the healthy test data RMSE will decrease considerably if the

elastic net regression is added to the pipeline.

Figures 6 and 7 show that the prediction error when using the elastic net, is indeed smaller than when only the implicit NBM

is used. The most obvious improvement is that the large negative spikes in the prediction error of the implicit NBM, which

correspond to cool-downs caused by power downs of the turbine, are much smaller in the prediction error made by the elastic570

net. This indicates that the elastic net is modeling the transient behavior to a certain extent. The error is however still larger

during transient phases than during steady-state phases. The healthy test data RMSEs in Figure 8 further support the findings

that the elastic net is a useful addition to the pipeline. The RMSEs of the prediction errors are substantially smaller when the

elastic net is used.
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Figure 6. Prediction error explicit and implicit NBM model for the TempGenBearing_1 (avg) signal of turbine 1
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Figure 7. Prediction error explicit and implicit NBM model for the TempStatorWind (avg) signal of turbine 1

Based on the results of the first experiment, it can be concluded that using the elastic net has a clear added value. The healthy575

test data RMSE is always smaller for the pipeline with the explicit NBM. The fact that the RMSE of the elastic net model is

quite small, shows that relatively simple and lightweight models can be useful for the modeling of the normal behavior.

4.2 Experiment 2: The added value of using lagged predictors

Pipeline configuration: implicit NBM based on fleet median, explicit NBM based on elastic net regression, heuristic-based

healthy data selection, full grid search hyperparameter tuning (5-fold CV), 6 months training data per turbine, lags 1, 2, and 3580

of each predictor are added.
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Figure 8. Comparison of RMSE of implicit and explicit NBM for wind farms 1-5. Signal ID 1 = TempGearbBear_1 (avg), signal ID 2 =

TempGearbBear_2 (avg), signal ID 3 = TempGearbInlet (avg), signal ID 4 = TempGenBearing_1 (avg), signal ID 5 = TempGenBearing_2

(avg), signal ID 6 = TempRotorBearing (avg), signal ID 7 = TempStatorWind (avg).

In the second experiment, the input data is augmented by adding the lagged values of the input signals (excluding the

target signal that is being modeled). The idea behind using the lagged terms is that it makes it possible to model the time

dependencies. This can be useful when modeling the transient behavior of the turbine. In steady-state situations where factors

like active power, ... change little, the positive impact will most likely be less clear. 3 lags (t, t-1, t-2, t-3) for each input signal585

are added. This means that the model can look up to 3 hours in the past.

Figures 9 and 10 show that the difference between the prediction errors for the NBM with no lags and the NBM with 3 lags

is marginal. In general, there is no clear difference visible between the two. Surprisingly, there is also no clear improvement to

be found in the modeling of the transient behavior. It is possible that this is due to the fact that after preprocessing the resolution

of the data is 1 hour. This might be insufficient for modeling the dynamics. Figure 11 gives an overview of the RMSE on the590

healthy data for all the target signals for the turbines in wind farms 1-5. The results show that adding the 3 lags to the model

results for a majority of the signals in a marginal reduction of the
:::::
median

:
healthy test data RMSE.

Based

:::::
Figure

:::
12

:::::
shows

:::
the

::::::::
difference

:::::::
between

:::
the

:::::::::
unhealthy

:::
and

::::::
healthy

::::::
median

:::::::::
prediction

:::::
errors

::::::::::
(∆PEunh−h:::::::::

calculated
:::::
using

:::
Eq.

::
2)

::
for

:::
the

::::::
elastic

:::
net

:::
and

::::::::::
multi-layer

:::::::::
perceptron

::::::
(MLP).

::::
The

:::::
figure

:::::::
focuses on the results of the second

:::
for

::::
three

:::::
target

:::::::
signals,595

::
i.e.

:::::::::::::::::
TempGenBearing_1

:::::
(avg)

:::::::::::
(Tgen_bear_1),

:::::::::::::::::
TempGenBearing_2

::::
(avg)

:::::::::::
(Tgen_bear_2)

::::
and

::::::::::::::
TempStatorWind

:::::
(avg)

::::::::
(Tstator).

:::
For

::
the

:::::
three

:::::::
failures

:::
that

:::
are

:::::
being

:::::::::
examined,

:::
i.e.

:::
the

:::::
rotor

:::::
brush

::::
high

::::::::::
temperature

:::::::
failure,

:::
the

::::::::
generator

::::::
bearing

::::::
failure

::::
and

:::
the

::::::::
generator

:::
fan

::::::
failure,

:
it
::
is
::::::::
assumed

:::
that

:::
the

::::::::::
degradation

::
of

:::
the

:::::::::
component

::::
can

::
be

::::::::
observed

::::::
directly

::
or

:::::::::
indirectly

::
in

::::::::::
respectively
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Figure 9. Prediction error explicit and implicit NBM model for the TempGenBear_1 (avg) signal of turbine 2
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Figure 10. Prediction error explicit and implicit NBM model for the TempStatorWind (avg) signal of turbine 2

::
the

:::::::
Tstator,

:::
the

::::::::::
Tgen_bear_1::

or
::::::::::
Tgen_bear_2:::

and
:::

the
:::::::
Tstator,

::::::::::
Tgen_bear_1,

::::
and

::::::::::
Tgen_bear_2.

:::::
More

::::::::::
specifically,

::
in

:::
all

::::
three

::::::
cases,

::
an

:::::::
increase

::
in

:::
the

:::::::::::
temperatures

::
is

::::::::
expected

::::
when

:::
the

::::::::::
component

::
is

::::::::
damaged.

::::
This

::::::
means

:::
that

::::::::::
∆PEunh−h::::::

should
::
be

::::::::
positive.600

:::
The

:::::
more

::::::
positive

::
it
::
is

:::
the

::::
more

::::::
useful

:::
the

:::::
NBM

::
is

:::
for

:::::::
anomaly

::::::::
detection.

:

:::
The

::::::
results

::
in

::::::
Figure

:::
12

::::
show

::::
that

:::
for

:::
the

::::::
elastic

:::
net

:::
the

::::::::::
∆PEunh−h::::

only
:::::::::
marginally

::::::::
increases

:::::
when

::
3
::::::::
predictor

::::
lags

:::
are

::::
used.

::::
For

::::
rotor

:::::
brush

:::::
high

::::::::::
temperature

:::::::
failures

::::::::::
∆PEunh−h ::

is
::::::
clearly

:::::::
positive

:::
for

:::
the

::::::
elastic

:::
net

::::::
model

::::
with

::
0

::
or

::
3

::::::
lagged

::::::::
predictors.

:::::
This

::::::::::
corresponds

::::
with

:::
the

:::::::::::
expectations.

::::::::
However,

::::::::::
∆PEunh−h ::

is
:::
also

:::
for

::::::::::
Tgen_bear_1::::::

clearly
:::::::
positive.

::::
This

::
is

:::::
more

::::::
difficult

::
to

:::::::
explain

::::
since

::
it

::
is

:::::::
unlikely

:::
that

:::
the

::::
rotor

:::::
brush

::::
high

::::::::::
temperature

::::::
failure

:::
can

::
be

::::::
linked

::
to

::::::::
abnormal

::::
high

:::::::::::
temperatures605

:
at
:::

the
::::

first
::::::::
generator

:::::::
bearing.

::::
For

:::
the

::::::::
generator

::::::
bearing

::::::
failure

:::
the

::::::::::
∆PEunh−h::

is
::::::
clearly

:::::::
positive

:::
for

::::::::::
Tgen_bear_2.

::::
This

::
is

::::
also

::
in

:::
line

::::
with

:::
the

:::::::::::
expectations.

:::::
Since

::::::::::
∆PEunh−h ::

is
::::
only

::::::
positive

:::
for

:::
the

::::::
second

::::::::
generator

:::::::
bearing

:::
and

:::
not

:::
for

:::
the

::::
first

::::::::
generator
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Figure 11. Comparison of RMSE of the no lags and the 3 lags NBM for wind farms 1-5. Signal ID 1 = TempGearbBear_1 (avg), signal ID 2

= TempGearbBear_2 (avg), signal ID 3 = TempGearbInlet (avg), signal ID 4 = TempGenBearing_1 (avg), signal ID 5 = TempGenBearing_2

(avg), signal ID 6 = TempRotorBearing (avg), signal ID 7 = TempStatorWind (avg).
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Figure 12.
::::::::
Difference

::::::
between

:::
the

::::::
median

::::::::
prediction

::::
error

::
for

:::
the

::::::::
unhealthy

:::
and

:::::
healthy

::::
data

:::
for

:::::
elastic

::
net

:::
and

:::::
MLP

:::::
models

::::
with

::
no

::
or
::
3

:::
lags

::
of

::
the

:::::::
predictor

::::::::
variables.

::
EN

::
=
:::::
elastic

:::
net,

::::
MLP

:
=
:::::::::
multi-layer

::::::::
perceptron,

::
0

:
=
::
no

:::::::
predictor

::::
lags,

:
3
::
=

:
3
:::::::
predictor

:::
lags

:::::
(xt−1,

:::::
xt−2,

:::::
xt−3).

::::::
bearing,

::
it
::
is

:::::
likely

::::
that

::::
most

::
of

:::
the

:::::::
bearing

::::::
failures

::::::::
happened

::
at
:::
the

::::::
second

::::::::
generator

:::::::
bearing.

::::::::::::
Unfortunately,

:::
the

:::::::::::
replacement

:::::::::
information

::::::::
received

::::
from

:::
the

:::::
wind

::::::
turbine

:::::::
operator

:::::
does

:::
not

:::::::
indicate

:::::
which

:::::::
bearing

:::
has

::::::
failed,

::
so

:::
this

:::::::::
statement

:::
can

:::
not

:::
be
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:::::::
verified.

:::
For

:::
the

::::::::
generator

:::
fan

::::::
failures

:::
the

::::::::::
∆PEunh−h::

is
::::::
clearly

:::::::
positive

::
for

:::
the

::::::
elastic

:::
net

::::
with

:::::
three

::::
lags.

::::
This

::
is

:::
not

:::
the

::::
case610

::
for

:::
the

:::::
other

:::::::
signals,

:::::
which

::
is

:::::
quite

::::::::
surprising

:::::
since

:::
the

:::::::::
hypothesis

::
is

::::
that

:
a
::::::::
generator

:::
fan

::::::
failure

::::::
should

:::
be

::::::::
indirectly

::::::
visible

::
in

::
all

:::::
three

::::::::
generator

::::::
signals.

:::::::::::
Furthermore,

:::::
there

::
is

::
no

::::::::
evidence

:::
that

:::
the

:::::
MLP

:::::
(with

:
0
:::
or

:
3
:::::
lags)

::::::::
improves

::::
upon

:::
the

::::::
elastic

:::
net

::::::
model.

::::
The

:::::::
meaning

:::
of

:::
this

:::
will

:::
be

::::::::
discussed

::::::
below.

:::
The

::::::
results

::
in

:::::
Figure

:::
12

::::
give

::::
only

:
a
::::
first

::::::::
indication

::
of

:::::::
whether

:::
the

:::::
NBM

::
is

:::::
useful

:::
for

:::::::
anomaly

::::::::
detection

::
or

::::
not.

:::
The

::::
lack

::
of

:
a
:::::
clear

:::::::
positive

:::::::::
∆PEunh−h:::

for
::::::
signals

:::::
where

::
it
::
is

:::::::
expected

::
to
:::
be

:::::::
positive

::::
does

:::
not

::::
mean

::::
that

::
all

::
is
::::
lost.

::::
The

:::::::
anomaly

::::::::
detection

:::::::::
techniques

::::::::
discussed

::
in
::::::::::
Experiment

::
6

:::
are

::::
more

::::::::
sensitive

:::
for

:::::
small

:::::::::
deviations.615

::::
This

:::::
makes

::::
that

::::
they

:::
can

::
in

:::::
some

::::
cases

::::
still

:::::
detect

:::::::::
anomalies

::::
even

::::::
though

:::
the

::::::::::
∆PEunh−h :

is
:::
not

::::::
clearly

::::::::
positive.

::::
From

:::
the

::::::
results

:::
of

:::
the

::::::
second

:
experiment, it can be concluded that the addition of 3 lags, only marginally improves the

prediction performance for some signals.
:::::
model

::::::::
accuracy

:::
on

::::::
healthy

:::::
data.

:::::
There

::
is
:::::

some
::::::::

evidence
::::
that

:::
the

:::::::
addition

:::
of

:::
the

:::::::
predictor

::::
lags

::::::
results

::
in

::::::
NBMs

::::
with

::::
more

::::::::
anomaly

::::::::
detection

::::::::
potential.

::::::::
However,

:::
the

:::::::::::
improvement

::
is

::
in

::::::
general

::::::
small. Taking

into account that adding the lags of all the predictors results in a strong increase in the dimensionality of the problem and620

the computational time, it is questionable whether the
::::::::
debatable

:::::::
whether

:::
the

::::::::
(limited) performance gains outweigh the extra

cost. Reasons for the low added value of the lags can perhaps be an insufficient number of lags, a lack of information on

the dynamics in the aggregated SCADA data, or the combination of transient and non-transient behavior. The first hypothesis

seems to be unlikely since limited experimentation using more lags showed no clear improvement in performance. The second

hypothesis is possible .
:::
due

::
to

:::
the

::::
fact

::::
that

:::::::::
subtracting

::::
the

::::
fleet

::::::
median

:::::
from

:::
the

::::::::
SCADA

::::
data

::::::
signals

::::
(see

::::::::::::
preprocessing625

::::::
section)

::::::
results

::
in
::::

less
:::::::::::::
autocorrelation

::
in

:::
the

:::::
data.

:::::
Also,

:::
the

::::::::::
aggregation

::
of

:::
the

::::
data

::
to
:::::

hour
::::
level

::::
will

::::
have

:::
an

:::::::
impact.

::::
This

:::::
results

::
in

::::::
lagged

::::::::
predictor

::::::
values

:::
that

:::
are

::::
less

::::::::::
informative. The third hypothesis would imply that the dynamics of the steady-

state and the transient behavior of the turbine are so different they can not be learned by one elastic net model.
::::
This

:
is
::
a
:::::::
possible

::::::::::
explanation.

::
A

:::::::
solution

::
to

::::
this

:::::::
problem

:::::
would

:::
be

::
to

::::
train

::
a
:::::::
separate

::::::
model

:::
for

:::
the

:::::::
transient

::::
and

::::::::::
steady-state

:::::::
behavior

::
or

::::
use

:
a
:::::
more

:::::::
complex

::::::
model

:::
that

::
is
:::::
better

::::
able

::
to

:::::
learn

:::
the

:::::::::
differences

::::::::
between

:::
the

:::
two

::::::
states.

:::
The

::::
fact

::::
that

::
no

:::::::::::
performance

:::::
gains630

::
are

::::::::
achieved

:::::
when

:::::
using

:::
the

:::::
MLP

:::::
makes

::::
this

:::::::::
hypothesis

::::::::
however

::::::::
somewhat

::::
less

::::::::::
convincing.

::::::::
However,

::
to

::::
give

::
a

:::::::::
conclusive

::::::
answer

::
to

:::::
which

:::::::::
hypothesis

::
is

:::
the

::::::
correct

::::
one,

::::::
further

:::::::
research

::
is

:::::::
required.

:

4.3 Experiment 3: Impact of reducing the training data to 2 months per turbine instead of 6

Pipeline configuration: implicit NBM based on fleet median, explicit NBM based on elastic net regression, heuristic-based

healthy data selection, full grid search hyperparameter tuning (5-fold CV), 2 months training data per turbine.635

In this experiment, the impact is analyzed of reducing the amount of training data from 6 months per turbine to 2 months.

This is relevant since less training data means less computational time, and less startup
:::
and

::::::
startup

:::
time

:
when using the pipeline

on a new wind farm. However, reducing the amount of training data in general also comes at a cost. The model accuracy tends

to decrease. The question is how much and whether it weighs up against the advantages. Furthermore, since the training data

is selected in chronological order (meaning the first X healthy observations), less training data means that it becomes more640

likely that certain turbine conditions are missed (or are underrepresented in the data). This can for example be the case with

long-duration power downs which cause exceptionally low temperatures for certain components. The most likely result will be

28



that those conditions will be less well modeled, resulting in a larger prediction error. Depending on the use case of the pipeline

this might be a problem.

Figures 13 and 14 show indeed that there is some loss of prediction accuracy when the amount of training data is reduced645

from 6 to 2 months. This shows itself as an increase in the prediction error. During steady-state behavior, this loss is not really

visible, but during transient behavior, the loss of fit can be substantial (see for example Figure 13). This is most likely caused

by the fact that the training data does not (sufficiently) contain similar transient behavior examples. Figure 15 gives a more

general overview of the RMSE results. It shows that the reduction in training data in general leads to an increase in the healthy

test data RMSE. This increase is not massive, but often also not negligible. For some signals, the median RMSE is slightly650

smaller. This reduction should not be considered evidence for a superior model but more as an indication that the influence of

the sample on the results is considerable. This is something that should be taken into account when analyzing the results.
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Figure 13. Prediction error NBMs with 6 months and 2 months of training data for the TempGenBearing_2 (avg) signal of turbine 3 of wind

farm 5

:::::
Figure

:::
16

:::::
shows

:::
the

::::::::::
differences

:::::::
between

:::
the

::::::
median

:::::::::
prediction

:::::
errors

:::
on

::
the

:::::::::
unhealthy

:::
and

:::::::
healthy

::::
data

:::::::::::
(∆PEunh−h).

::::
The

:::::
results

:::::::
indicate

::::
that

::
for

::::::::
detecting

:::::
rotor

:::::
brush

::::
high

::::::::::
temperature

:::::::
failures,

:
6
:::::::
months

::
of

:::::::
training

:::
data

::
is
:::::
better

::::
than

::
2.
::::
This

::
is
:::::
clear

::::
from

:::
the

:::
fact

::::
that

::::::::::
∆PEunh−h :::

for
::::::
Tstator ::

is
:::::
much

:::::
larger

:::::
when

:::::
using

:
6
:::::::
months

::
of

:::::::
training

::::
data.

::::
The

::::::::
generator

::::::
bearing

:::::::
failures655

::
are

::::::::
detected

::::::
clearly

::
in

::::::::::
Tgen_bear_2.

:::::
Again

::
it
:::
can

:::
be

::::::::
observed

:::
that

::::::::::
∆PEunh−h::

is
::::::::
somewhat

:::::::
smaller

:::::
when

:::::
using

::::
only

:
2
:::::::
months

::
of

:::::::
training

::::
data.

::::
The

:::::::
analysis

:::
for

:::
the

::::::::
generator

:::
fan

:::::::
failures

::
is

::::::::
somewhat

::::
less

:::::
clear.

:::
On

:::
the

::::
one

:::::
hand,

::::
there

:::
is,

::::::::::
surprisingly,

::
a

:::::
larger

:::::::::
∆PEunh−h:::

for
:::
the

::::::
model

::::::
trained

::
on

::::
only

::::
two

::::::
months

:::
of

::::
data

::::
when

:::::
using

::::::::::
Tgen_bear_2::

as
:::
the

:::::
target

::::::
signal.

:::
On

:::
the

:::::
other

::::
hand,

:::
the

::::::
model

::::::
trained

::
on

::
2
::::::
months

::
of

:::::::
training

::::
data

::::
does

:::
not

:::::
result

::
in

:
a
:::::::
positive

::::::::::
∆PEunh−h:::

for
:::
the

::::::
Tstator ::::::

signal,
:::::::
contrary

::
to

::
the

::::::
model

::::
with

::
6

::::::
months

::
of

:::::::
training

:::::
data.

::::::
Overall

::
it

:::
can

:::
be

:::::
stated

:::
that

::::
less

:::::::
training

::::
data

:::::
results

:::
in

::::::
general

::
in

::::::
NBMs

::::
with

::::
less660

:::::::
potential

::
to

::
be

::::::
useful

:::
for

:::::::
anomaly

::::::::
detection.

:

Experiment 3 has shown that reducing the training data to 2 months results in reduced performance of the model. This is not

so much a problem for the behavior states that are frequently shown by the turbine (e.g. steady-state behavior). It does have
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Figure 14. Prediction error NBMs with 6 months and 2 months of training data for the TempStatorWind (avg) signal of turbine 3 of wind

farm 5
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Figure 15. Comparison of RMSE when using 6 months or 2 months of training data for the NBM model for wind farms 1-5. Signal ID 1

= TempGearbBear_1 (avg), signal ID 2 = TempGearbBear_2 (avg), signal ID 3 = TempGearbInlet (avg), signal ID 4 = TempGenBearing_1

(avg), signal ID 5 = TempGenBearing_2 (avg), signal ID 6 = TempRotorBearing (avg), signal ID 7 = TempStatorWind (avg).

however a large influence on the states that are rare (e.g. long-term cool-downs, ...). Whether a reduction of the
:::::::::::
Furthermore,

:::
the

:::::
results

::::
also

:::::
show

:::
that

:::
the

:::::::
anomaly

::::::::
detection

::::::::
potential

::
of

:::
the

:::::
NBM

::::::::
decreases

::
if

:::
the

::::::
amount

:::
of training data is useful

:::::::
reduced

::
to665

:
2
:::::::
months.

:::::::
Whether

:::
the

:::::::
reduced

:::::::::::
performance

::
of

:::
the

:::::
NBM

:
is
::
a
:::::::
problem, really depends on the use case. For some use cases, the

larger prediction error in certain rare states is not an issue. For those cases, it might be useful to reduce the amount of training

30



TempGenBearing_1 (avg) TempGenBearing_2 (avg) TempStatorWind (avg)
Signal name

1.5

1.0

0.5

0.0

0.5

1.0

1.5

°C

Difference between median prediction error of unhealthy and healthy data
Failure/Months

Rotor brush high temperature/6
Rotor brush high temperature/2
Generator bearing replacement/6
Generator bearing replacement/2
Generator fan replacement/6
Generator fan replacement/2

Figure 16.
::::::::
Difference

::::::
between

:::
the

:::::::
median

::::::::
prediction

::::
error

:::
for

:::
the

::::::::
unhealthy

:::
and

::::::
healthy

::::
data

::
(
:::::::::
∆PEunh−h)

:::
for

::::::
elastic

:::
net

::::::
models

:::
with

::
6
::::::
months

:::
and

::
2

::::::
months

::
of

::::::
training

::::
data.

::
6
:
=
::

6
::::::
months

::
of

::::::
training

:::::
data,

:
2
::
=

:
2
::::::

months
:::

of
::::::
training

::::
data.

:::
The

::::::
results

:::
are

:::::
shown

:::
for

:::::::::::::::
TempGenBearing_1

::::
(avg)

::::::::::
(Tgen_bear_1),

:::::::::::::::
TempGenBearing_2

:::::
(avg)

::::::::::
(Tgen_bear_2)

:::
and

::::::::::::
TempStatorWind

:::::
(avg)

:::::::
(Tstator).

data because it will reduce the computational burden of the pipeline. However, if rare behavior is important, the advantages

may not outweigh the disadvantages.

4.4 Experiment 4: Added value of a PCA transformation step before the explicit NBM modeling670

Pipeline configuration: implicit NBM based on the fleet median, PCA transformation, explicit NBM based on elastic net

regression, heuristic-based healthy data selection, full grid search hyperparameter tuning (5-fold CV), 6 months of training

data per turbine.

In the fourth experiment, the impact of PCA transforming (only a transformation, no dimensionality reduction) the data

prior to the elastic net modeling is analyzed. Normally the elastic net algorithm should be able to handle high dimensional675

data with strong correlations between some of the predictors. However, in practice, there might still be some benefit of first

PCA-transforming the data. Figure 19 shows that the prediction accuracy in general does not (or only marginally) improve

when a PCA transformation step is added to the pipeline. For several signals
:
, the opposite happens. However, these results

hide certain interesting side effects. Figure 17 shows that the pipeline with the PCA tends to better model
::
be

::
a

:::::
better

:::::::
modeler

::
of the cool-downs than the model without the PCA. Figure 18 also shows that the pipeline without the PCA in some rare680

cases generates (unrealistically) large prediction errors, while this is not the case when the PCA is used. Furthermore, the

training time (and hyperparameter tuning) is considerably shorter for the pipeline with the PCA, even though the number of

combinations being tested during tuning is much larger (2728 for the pipeline with PCA, 341 for the pipeline without PCA).

This might have something to do with the fact that the new features generated by the PCA transformation are uncorrelated.
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This might
:::
can

:
improve the training of the elastic

:::
net. For example, for wind farm 5 the hyperparameter tuning without PCA685

took 4329 s, while with the PCA it took only 3859 s.
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Figure 17. Prediction error base NBM and PCA + NBM for the TempGenBearing_1 (avg) signal of turbine 1 of wind farm 1
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Figure 18. Prediction error base NBM and PCA + NBM for the TempGenBearing_2 (avg) signal of turbine 3 of wind farm 3

:::::
Figure

:::
20

::::::
shows

:::
the

:::::::::
differences

::::::::
between

:::
the

:::::::::
unhealthy

:::
and

:::
the

:::::::
healthy

:::::::::
prediction

::::
error

::::::::::::
(∆PEunh−h).

::::
The

::::::
results

:::::
show

:::
that

:::::
using

:::
the

:::::
PCA

::
as

::
a

:::::::::::
preprocessing

::::
step

::::
has

::
in

:::::::
general

:
a
:::::
small

:::::::
positive

::::::
impact

:::
on

::::::::::
∆PEunh−h.

::::
For

:::
the

::::
rotor

:::::
brush

:::::
high

::::::::::
temperature

::::::
failures

:::::
there

::
is

::
no

::::
clear

:::::::
change

::
in

:::
the

:::::::
positive

::::::::
difference

:::
for

::::::
Tstator::::::

signal
:::
for

:::
the

:::::
model

::::
with

::::
and

::::::
without

:::::
PCA

::::::::::::
preprocessing.

:::
For

:::
the

::::::::
generator

::::::
bearing

:::::::
failures

:::
the

::::::
positive

:::::::::
difference

:::
for

:::
the

:::::::::
Tgen_bear_2::::::

signal
:
is
:::::::
slightly

:::::
larger

:::::
when

:::::
using690

::
the

::::::
model

::::
with

::::
PCA

::::::::::::
preprocessing.

::::
The

:::::
same

::
is

:::
true

:::
for

:::
the

::::::
Tstator:::::

signal
:::
for

:::
the

::::::::
generator

:::
fan

:::::::
failures.

:

32



1 2 3 4 5 6 7
Signal id

1.5

2.0

2.5

3.0

3.5

4.0

4.5

RM
SE

RMSE for PCA vs. no PCA for wind farms 1-5
NBM RMSE
PCA + NBM RMSE

Figure 19. Comparison of the RMSE when the data is PCA transformed to when the data is not PCA transformed for wind farms 1-

5. Signal ID 1 = TempGearbBear_1 (avg), signal ID 2 = TempGearbBear_2 (avg), signal ID 3 = TempGearbInlet (avg), signal ID 4 =

TempGenBearing_1 (avg), signal ID 5 = TempGenBearing_2 (avg), signal ID 6 = TempRotorBearing (avg), signal ID 7 = TempStatorWind

(avg).
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Figure 20.
:::::::
Difference

:::::::
between

:::
the

::::::
median

::::::::
prediction

::::
error

:::
for

:::
the

::::::::
unhealthy

:::
and

::::::
healthy

:::
data

:::
for

::::::
elastic

::
net

::::::
models

::::
with

::::
and

::::::
without

::::
PCA

::::::::::
preprocessing.

::
0
:
=
:::
no

:::
PCA

:::::::::::
preprocessing,

::
1
:
=
::::
PCA

:::::::::::
preprocessing.

:::
The

::::::
results

::
are

:::::
shown

:::
for

:::::::::::::::
TempGenBearing_1

::::
(avg)

:::::::::::
(Tgen_bear_1),

:::::::::::::::
TempGenBearing_2

::::
(avg)

::::::::::
(Tgen_bear_2)

:::
and

:::::::::::::
TempStatorWind

::::
(avg)

:::::::
(Tstator).
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Based on the results of the fourth experiment, it can be concluded that PCA transforming the data prior to the elastic net

modeling can be beneficial in some cases. Although the healthy test data RMSE does not decrease, it does avoid certain

large (erroneous) prediction errors and it seems to improve the modeling of the transient behavior. It also
:::::
seems

::
to
::::::::

improve

::::::::
somewhat

:::
the

:::::::::
distinction

:::
the

:::::
NBM

:::
can

::::
make

::::::::
between

::::::
healthy

:::
and

::::::::
unhealthy

:::::
data.

:::::::::::
Furthermore,

:
it
::::
also reduces the training time695

considerably.
::::
This

:::::
means

::::
that

:::::
PCA

::::::::::
transforming

::::
the

:::
data

:::::
prior

::
to

:::
the

::::::
elastic

:::
net

::::::::
modeling

:::
has

:::::
some

::::::::
benefits.

:::::::
Whether

:::::
these

:::::
weigh

::
up

:::::::
against

:::
the

:::::
added

:::::::::
complexity

::::
and

:::
the

:::
loss

::
of

:::
the

:::::::
original

:::::::
features

::::
(the

:::::::
principal

::::::::::
components

:::
are

:::::
linear

::::::::::::
combinations

::
of

::
all

:::
the

:::::::
original

:::::::
features)

:::::::
depends

:::
of

:::::
course

:::
on

:::
the

::::
case.

:

4.5 Experiment 5: Added value of more complex NBM models

Pipeline configuration: implicit NBM based on the fleet median, explicit NBM based on elastic net regression or SVR or light700

GBM
::
or

:::::
MLP, heuristic-based healthy data selection, full grid search hyperparameter tuning

::
for

:::::::::
elastic-net,

:::::
SVR

:::
and

:::::
light

:::::
GBM

:::
and

::::::::::
randomized

::::
grid

:::::
search

::::::
tuning

:::
for

::::
MLP

:
(5-fold CV), 6 months of training data per turbine.

The fifth experiment focuses on the complexity of the relations between the inputs (predictors) and the outputs (targets) of

the NBM problem. The elastic net regression is a relatively simple model that works well when the problem is linear (meaning

linear in the parameters). However, if the problem is highly non-linear this type of model is not really suitable. In that
:::
the705

::::
latter

:
case, more complex models like tree-based algorithms or neural networks are more appropriate. The trade-off is however

that these models are more "black box" and require in general much more training data. Nevertheless, it is still interesting to

analyze the performance of these models. If they clearly outperform the elastic net model then that is evidence for the existence

of non-linear relations. The performance of the elastic net will be compared with that of an SVR with a radial kernel (also

used in (Castellani et al., 2021))and ,
:
a light GBM (which is similar to the Gradient Boosting algorithms used in (Udo and Yar,710

2021), (Maron et al., 2022) and (Beretta et al., 2021))
:::
and

::
a

::::
MLP.

Figure ??
::
21

:
shows that the prediction error for the three

::::
four models is roughly similar in size, with some large upward

or downward spikes at certain points in time for the SVR. Figure ??
::
22

:
shows however that under certain conditions the SVR

and light GBM performance severely degrades. This is the case during large long-term cool-downs. This problem also impacts

the elastic net
:::
and

:::
the

:::::
MLP, but to a lesser extent. With limited examples in the training dataset, the SVR and light GBM715

have difficulties estimating the normal behavior in those cases, while the
:
.
:::
The

:
elastic net, which is a much simpler model,

might use relatively accurate extrapolations for the estimations. Figure ??
:::::::::
estimating

::::
those

::::::
cases.

:::
The

:::::
MLP

::::::::
performs

::::::
during

:::::::::
cool-downs

::::::
clearly

:::::
better

:::::
than

:::
the

::::
SVR

::::
and

::::
light

:::::
GBM,

::::
but

::::
does

:::
not

:::::::::
completely

:::::
reach

:::
the

:::::::::::
performance

::
of

:::
the

::::::
elastic

::::
net.

::
A

:::::::
possible

:::::::::
explanation

::
is
::::
that

:::
the

::::
MLP

::
is
:::::
better

::
at
:::::::
learning

:::
the

::::::::::::
non-linearities

::::
than

:::
the

:::::
SVR

:::
and

::::
light

::::::
GBM,

:::
but

:::
the

::::::::
problems

::
it

:::
has

::::
with

:::::::::::
extrapolation,

:::::
make

::::
that

:
it
::::
does

:::
not

:::::::
perform

:::
as

::::
well

::
as

:::
the

:::::
elastic

::::
net.

::::::
Figure

::
23

:
gives an overview of the healthy test720

data RMSEs. The results show that the SVR never performs best, and it often performs significantly worse than the two
::::
three

other models. The light GBM performs
:::
and

::::
MLP

:::::::
perform

:
for some signals marginally better than the elastic net, however, the

improvement is small. For some signals, it performs
::::
they

::::::
perform

:
worse than the elastic net. This means that there might be

::
is

some evidence for non-linearities when modeling some of the signals. The evidence is however weak.

The results of725
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Figure 21. Prediction error elastic net, SVRand ,
:
light GBM

:::
and

::::
MLP NBMs for TempGenBearing_1

:
2
:
(avg) signal of turbine 1

:
2 of wind

farm 5

1 2 3 4 5
Years

40

30

20

10

0

10

Pr
ed

ict
io

n 
er

ro
r (

°C
)

Turbine 3 : signal TempGenBearing_1 (avg)

elastic-net
svr
light gbm
mlp

Comparison base NBM based on elastic-net, SVR, light GBM and mlp

Figure 22. Prediction error elastic net, SVRand
:
, light GBM

::
and

:::::
MLP NBMs for TempGenBearing_2

:
1
:
(avg) signal of turbine 3 of wind

farm 2

:::::
Figure

:::
24

:::::
shows

:::
the

::::::::::
differences

:::::::
between

:::
the

:::::::::
unhealthy

:::
and

:::
the

:::::::
healthy

::::::::
prediction

:::::
error

:::::::::::
(∆PEunh−h).

::::
The

:::::::
purpose

::
of

::::
this

:::
plot

::
is

::
to

:::
see

:::::::
whether

:::::
using

:::::
more

:::::::
complex

::::::::
machine

:::::::
learning

::::::
models

::::::
results

::
in

::::::
NBMs

:::
that

:::
are

:::::
better

::
at
::::::::::::
distinguishing

:::::::
healthy

::::
from

::::::::
unhealthy

:::::
data.

:::
For

:::
the

::::
rotor

:::::
brush

::::
high

::::::::::
temperature

:::::::
failures

:::
the

::::::
elastic

:::
net

:::::
model

::::::::::
outperforms

:::
the

:::::
other

:::::::
models.

::::
This

::
is

::::
clear

::::
from

:::
the

::::
fact

:::
that

:::
the

::::::::::
∆PEunh−h:::

for
:::
the

::::::
Tstator:::::

signal
::
is
:::
the

::::::
largest

:::
for

:::
the

::::::
elastic

:::
net.

:::
For

:::
the

::::::::
generator

:::::::
bearing

::::::
failure

::
the

:::::
story

::
is

:::
the

:::::
same.

::::
The

::::::
elastic

:::
net

::::::::::
outperforms

:::
the

:::::
other

:::::::
models.

::::
The

:::::::::
prediction

::::
error

:::::::::
difference

:::
for

:::
the

::::::::
Tgenbear2::::::

signal730

:
is
:::
the

::::::
largest

:::
for

::::
the

:::::
elastic

::::
net.

:::
For

:::
the

:::::::::
generator

:::
fan

::::::
failures

::::
the

:::::
results

:::::::
indicate

::::
that

:::
the

:::::
more

::::::::
complex

::::::
models

:::::::::
somewhat

:::::::::
outperform

:::
the

::::::
elastic

:::
net

::::::
model.

::::
The

::::
light

::::::
GBM

:::
has

:
a
::::::

larger
::::::::::
∆PEunh−h :::

for
:::
the

::::::::
Tgenbear1::::::

signal,
::::
and

:::
the

:::::
MLP

:::
and

:::::
SVR

::::
have

:
a
:::::
larger

::::::::::
∆PEunh−h:::

for
:::
the

::::::
Tstator ::::::

signal.
:::::
These

:::::
results

:::::::
indicate

::::
that

:::::
using

:
a
::::::::::
combination

:::
of

::::::
several

::
of

:::
the

::::
more

::::::::
complex

::::::
models

:::::
might

:::::
result

::
in

:
a
:::::
better

::::::::
anomaly

::::::::
detection

:::::::::::
performance.
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Figure 23.
:::::::
Difference

:::::::
between

:::
the

::::::
median

::::::::
prediction

::::
error

::
of

:::
the

::::::::
unhealthy

:::
and

::::::
healthy

::::
data.

:
Comparison of the RMSE of the elastic

net, the SVRand ,
:
the light GBM

:
,
:::
and

:::
the

::::
MLP

:
NBM models for wind farms 1-5. Signal ID 1 = TempGearbBear_1 (avg), signal ID 2 =

TempGearbBear_2 (avg), signal ID 3 = TempGearbInlet (avg), signal ID 4 = TempGenBearing_1 (avg), signal ID 5 = TempGenBearing_2

(avg), signal ID 6 = TempRotorBearing (avg), signal ID 7 = TempStatorWind (avg).

:::
The

::::::
results

::
of

:
experiment 5 show some (weak) evidence that the relation between the predictors and some of the targets is735

non-linear. This means that some non-linear models (e.g. from the traditional machine learning or the deep learning domain)

might improve the results. The improvement
::::::::
modeling

::
of

::::
the

::::::
healthy

:::::
data.

:::
The

:::::::::::::
improvements obtained by the light GBM

is small. Whether it is sufficient to justify the extra complexity and training time depends on the use case
:::
and

:::
the

:::::
MLP

:::
are

:::::::
however

:::::
small.

:::::::::::
Furthermore,

::
if

:::
the

:::::::::
∆PEunh−h::

is
::::::::
analyzed

::::
then

::::
there

::
is

::
no

::::::::
evidence

:::
that

:::
the

:::::
more

:::::::
complex

::::::
models

::::::::::
outperform

::
the

::::::
elastic

:::
net

:::
for

::::
rotor

:::::
brush

::::
high

:::::::::::
temperature

:::
and

::::::::
generator

:::::::
bearing

:::::::
failures.

::::::::
However,

:::
for

::::::::
generator

:::
fan

::::::
failures

::
it
:::::
might

:::
be740

::::::::
beneficial

::
to

:::
use

:::
the

:::::
more

:::::::
complex

:::::::
models

::
or

:
a
:::::::::::
combination

::
of

:::
the

:::::::
models. Furthermore, the results

::::
also show that the more

complex models are much more susceptible to the underrepresentation of certain states in the training dataset. This can result

in large
:::
lead

::
to

:::::
severe

:
performance degradation.

4.6 Experiment 6: Identifying anomalies in the prediction error using Iterative Outlier Detection and CUSUM

The sixth and last experiment focuses on detecting anomalies in the prediction error of the NBM. The previous experiments745

all focused on the NBM itself because it is the basis of the anomaly detection pipeline. In this section,
:
the focus shifts to

the anomaly detection algorithms that can be used to find abnormal prediction error patterns. As shown in the state-of-the-art

section there are multiple ways how this can be achieved. Testing and comparing all the methods that have been developed is

obviously unfeasible. For this reason, a selection will be made that takes into account the requirements of the industry, namely
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Figure 24.
:::::::
Difference

:::::::
between

:::
the

::::::
median

::::::::
prediction

::::
error

:::
for

:::
the

::::::::
unhealthy

:::
and

::::::
healthy

::::
data

:::
for

:::::
elastic

::::
net,

::::
light

:::::
GBM,

:::::::::
multi-layer

::::::::
perceptron

:::
and

::::::
support

:::::
vector

:::::::
regression

:::::::
models.

::
EN

::
=
:::::
elastic

:::
net,

:::::
GBM

:
=
::::::::::
light-gradient

:::::::
boosting

:::::::
machine,

::::
MLP

::
=

::::::::
multi-layer

:::::::::
perceptron,

::::
SVR

:
=
::::::
support

:::::
vector

::::::::
regression.

:::
The

:::::
results

:::
are

:::::
shown

::
for

:::::::::::::::
TempGenBearing_1

::::
(avg)

:::::::::::
(Tgen_bear_1),

:::::::::::::::
TempGenBearing_2

::::
(avg)

::::::::::
(Tgen_bear_2)

:::
and

::::::::::::
TempStatorWind

:::::
(avg)

:::::::
(Tstator).

maintainability, transparency, computational efficiency, and robustness. Preference is given to univariate statistical techniques750

that have been thoroughly studied, i.e. the IOD-MAD and the CUSUM. The accuracy of the techniques will be, as described

in the methodology section, assessed both in a quantitative and qualitative fashion. For practical reasons
:
,
:
the figures shown in

this section are only a subset of all figures that can be generated from the results.

4.6.1 Generator bearing replacement

Generator bearing failures can normally be detected in the temperatures of the bearings. When damage or wear is forming755

the temperatures start to increase due to increased friction. The information from the wind turbine operator, unfortunately,

does not mention which bearing was replaced, e.g. bearing 1 or 2. However, in general, this can be deduced from the results

because the health degradation is much more pronounced for one of the two bearings. Generator bearing failures normally form

slowly over time. This means that health degradation shows itself mostly during a prolonged period of time. The strength of the

degradation depends however also on how fast the bearing was replaced. If it was replaced as part of preventive maintenance760

then the degradation signal will most likely be less strong compared to situations in which the bearing truly failed. In total

information on 4 generator bearing replacements is available.

The generator bearing replacement in Figures 25 and 26 is detected by the IOD-MAD and the CUSUM algorithms, although

the latter detects it only lightly. The IOD-MAD tends to generate more anomalies that can not be associated with this failure

than the CUSUM. The generator bearing replacement in Figures 27 and 28 is also clearly detected by both the IOD-MAD and765

the CUSUM algorithm. The fact that both algorithms detect the replacement strongly indicates most likely that the degradation
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of the bearing was severe. Both algorithms raise around year 5 also some anomalies. It is unclear at the moment what the

reason for this is.
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Figure 25. Health score and category based on IOD-MAD algorithm for TempGenBearing_1 (avg) of turbine 3 of wind farm 3.

1 2 3 4 5
Years

0

2

4

6

8

He
al

th
 sc

or
e

Health scores, health categories and replacements calculated using CUSUM
health score
no anomaly
mediocre anomaly
strong anomaly
Generator bearing replacement

Turbine 3 : signal TempGenBearing_2 (avg)

Figure 26. Health score and category based on CUSUM algorithm for TempGenBearing_1 (avg) of turbine 3 of wind farm 3.

The overall results show that the IOD-MAD algorithm is able to identify 3 out of 4 generator bearing replacements, while

the CUSUM found only 2 out of 4. The IOD-MAD has however the tendency to generate more bad health flags that can not be770

associated with the failures. This probably means that the false positive rate for this algorithm is higher than for the CUSUM.

The CUSUM on the other hand seems to be much less sensitive (probably not sensitive enough). It is likely that changing

the hyperparameters would improve the performance. However, parameter tuning with such a small number of examples is

difficult.
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Figure 27. Health score and category based on IOD-MAD algorithm for TempGenBearing_1 (avg) of turbine 2 of wind farm 4.
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Figure 28. Health score and category based on CUSUM algorithm for TempGenBearing_1 (avg) of turbine 2 of wind farm 4.

4.6.2 Generator fan replacement775

Generator fan problems can only be observed indirectly for the turbines of wind farms 1-5. This is due to the fact that there

is no signal available in the SCADA data that is directly linked with the fans. However, it can be assumed that the failure of

a generator can be observed indirectly by analyzing the temperatures of generator components. Even though this should be

possible, indirect observations are probably less clear than direct observations, meaning that the health degradation will most

likely be much less clear. Initially, it was assumed that a generator fan failure could be identified if all three generator signals,780

e.g. TempGenBearing_1 (avg), TempGenBearing_2 (avg), and TempStatorWind (avg), show health degradation. However,

in practice, it appears that this is not the case and that in general the failure can only be spotted in one signal, namely the
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TempGenBearing_1 (avg) signal. The result of this is that it is often difficult to make a distinction between a generator bearing

failure and a generator fan failure. This means that when bad health is observed in the TempGenBearing_1 (avg) signal, the

user will receive the warning that there is an issue with the bearing or the fan.785

The datasets for wind farms 1-5 contain in total 3 usable examples. The three examples show that the IOD-MAD finds all

the replacements correctly. The CUSUM misses one. Figures 29 and 30 show the results for the third generator fan failure in

the dataset. The IOD-MAD algorithm also raises bad health flags at some other points in time. This is less the case for the

CUSUM. It would be a bit premature to immediately decide that those are false positives. After all the TempGenBearing_1

(avg) signal can also be influenced by issues with the bearings, or some other factors. In practice, it would mean that at those790

points in time the user would also get a warning for a potential fan or bearing failure. However, the number of those cases is

relatively small given that the observation window is nearly 6 years long.
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Figure 29. Health score and category based on IOD-MAD algorithm for TempGenBearing_1 (avg) of turbine 1 of wind farm 5.

Overall the IOD-MAD algorithm identified three out of three generator fan replacements correctly, while the CUSUM found

two out of three. The results show also that the CUSUM is more conservative than the IOD-MAD, which makes it less capable.

However, it also generates fewer bad health flags that can not be linked to the generator fan replacements.795

4.6.3 Rotor brush high temperature failure

The datasets for wind farms 1-5 contain 5 examples of rotor brush high temperature failures that can be used for the validation

of the anomaly detection models. 2 failures had to be excluded due to missing SCADA data. Just like the generator fan

replacements, there is no direct way to identify this failure. It is however assumed that they can be identified indirectly through

the temperature of the stator windings (although there is some debate whether this is always the case). Just like for the generator800

fan replacement case, it means that the signal might not always be very strong.
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Figure 30. Health score and category based on CUSUM algorithm for TempGenBearing_1 (avg) of turbine 1 of wind farm 5.

The first rotor brush high temperature failure (Figures 31 and 32) is detected by both algorithms. For the IOD-MAD the main

detections happen after the date of the replacement, but given the uncertainty about the event dates, and the fact that sometimes

an issue is not solved after the first try, it can still be considered a correct detection. The detection by the CUSUM algorithm

is very clear. The generator rotor brush high temperature failure in Figures 33 and 34 are also detected correctly. However, the805

detection strength is lower for the CUSUM algorithm than for the IOD-MAD algorithm.
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Figure 31. Health score and category based on IOD-MAD algorithm for TempStatorWind (avg) of turbine 2 of wind farm 1.

The overall results show that both algorithms can quite reliably detect the rotor brush high temperature failures using the

temperature of the stator windings. Four out of five failures were detected. However, from the results, it is also clear that the
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Figure 32. Health score and category based on CUSUM algorithm for TempStatorWind (avg) of turbine 2 of wind farm 1.
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Figure 33. Health score and category based on IOD-MAD algorithm for TempStatorWind (avg) of turbine 1 of wind farm 4.

detections are not always very clear. Nevertheless, they are still sufficiently different from the rest of the data to be useful for

the user.810

4.6.4 False positive ratio

The last part of this experiment is assessing the false positive ratio of the anomaly detection models. The analysis will be

focused on the IOD-MAD algorithm because it has the highest detection accuracy. The results in Table 2 show that false

positive ratios for the different signals are, 0.12 for the TempGenBearing_1 (avg) signal and 0.08 for the TempGenBearing_2

(avg) and the TempStatorWind (avg) signals. This is a relatively small ratio given that there is always some uncertainty about815

the health of the data. The results show however that for some turbines the false positive ratio for certain signals can be high.

42



1 2 3 4 5
Years

0

2

4

6

8

10

12

He
al

th
 sc

or
e

Health scores, health categories and replacements calculated using CUSUM
health score
no anomaly
mediocre anomaly
strong anomaly
Rotor brush high temperature

Turbine 1 : signal TempStatorWind (avg)

Figure 34. Health score and category based on CUSUM algorithm for TempStatorWind (avg) of turbine 1 of wind farm 4.

WF / T TempGenBearing_1 (avg) TempGenBearing_2 (avg) TempStatorWind (avg)

1 / 1 0.03 0.03 0.14

1 / 4 0.09 0.09 0.06

2 / 1 0.28 0.43 0.03

3 / 1 0.12 0.25 0.08

3 / 2 0.15 0.04 0.08

3 / 4 0.02 0.08 0.02

4 / 3 0.14 0.17 0.01

4 / 4 0.12 0.24 0.11

5 / 2 0.16 0.04 0.11

5 / 3 0.06 0.05 0.09

Median 0.12 0.08 0.08
Table 2. Overview of the ratio of bad health observations on the total number of observations. WF stands for wind farm and T for turbine.

This is for example the case for the TempGenBearing_2 (avg) signal of turbine 1 of wind farm 2. This might indicate that there

is a hidden underlying issue with the second bearing of this turbine. Nevertheless, it can be concluded that in general, the false

positive ratio is quite low.

5 Conclusion and future research820

This paper gives an overview of recent research on condition monitoring of wind turbines using SCADA data and the NBM

framework. The goal is to give the reader an idea of what the current state-of-the-art is, e.g. what has been tried, and what the

performance of techniques is on data from operational wind farms. This is done by first presenting a structured overview of
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the current state-of-the-art. This gives an idea of how an NBM pipeline is normally set up and which techniques are used for

the different steps. In the second part of the paper, several techniques from the state-of-the-art are selected and applied to data825

from several real operational wind farms. This is done through six demonstration experiments. The different techniques are

compared, and their performance is thoroughly analyzed. Five experiments focus on the NBM model, one experiment focuses

on the analysis of the prediction error.

The first experiment examines the modeling performance of a relatively simple NBM model, i.e. the elastic net. The results

show that the model is a capable modeler, even during the transient behavior of the turbine. The second experiment discusses830

the impact of using the lagged values of the predictors as input to the elastic net model. The results show only a marginal

improvement of the model quality (minor reduction in the healthy test data RMSE). The modeling of the transient behavior is

not noticeably better. Potential explanations for this are, firstly, data with a 1-hour resolution might be insufficient, secondly, 3

lagged values might not be enough, and thirdly, a single model for transient and non-transient behavior might be problematic

due to differences in the behavior dynamics. The third experiment examines the impact of reducing the amount of training data835

from 6 to 2 months. The results show a reduction in the modeling accuracy (as expected). The risk of underrepresentation of

certain wind turbine states in the training data also increases. This can result in degraded model performance for these states.

The fourth experiment discusses the added value of PCA transforming the output of the implicit NBM before it is given to

the elastic net. The results show that the overall model performance does not improve when the PCA transformation is used.

However, some abnormal large prediction errors disappear and the run time of the pipeline is significantly reduced. A possible840

explanation for this is the fact that the PCA breaks the correlation between the predictors, which results in a more stable model

and faster convergence. The fifth experiment investigates whether more complex machine learning models are useful for the

pipeline. The results show that the SVR with a radial kernel performs overall worse than the elastic net, while the light GBM

:::
and

:::::
MLP performs slightly better (for some signals). However, these more complex models

::
can

:
suffer from severe model

degradation during the transient behavior of the turbine. A possible explanation can be found in the underrepresentation of this845

behavior in the training dataset. A possible solution for this might be oversampling the minority behavior. The sixth and last

experiment tests two different univariate anomaly detection techniques (IOD-MAD and CUSUM) that generate a health score

for the signals. The results show that IOD-MAD is able to identify the failures more accurately, at the cost of more alerts during

periods that not immediately can be linked to a failure. Most generator bearing replacements, generator fan replacements and

rotor brush high temperature failures can be detected accurately. Furthermore, the number of false positives generated by the850

IOD-MAD algorithm is quite low. The end result is an NBM pipeline with relatively low computational demands, which is

quite robust, has a limited number of models, and is able to detect 3 different failure types accurately on 5 different wind farms

without changes to the configuration of the pipeline.

The overview of the state-of-the-art shows that at the moment a lot of research is done on condition monitoring and failure

prediction for wind farms using SCADA data. The NBM methodology is a popular methodological choice for this. Many855

different configurations (preprocessing, NBM modeling, and analysis of the prediction error) have been tried. Nevertheless,

there are still some blind spots that might be interesting for future research. Firstly, a thorough structured analysis of the impact

of different preprocessing techniques on the performance of the condition monitoring can be useful. This will give insights
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into which techniques work well, and give future researchers a basis to start from. This should avoid the situation there is

today where often ad hoc decisions are taken without proper motivation why or a clear idea of what the impact will be on the860

final results. Secondly, a more thorough comparative analysis of different NBM models (e.g. statistical, traditional machine

learning, deep learning) might be useful, preferably taking into account the demands/remarks from the industry. Thirdly,

most research now focuses on SCADA data with a 10-minute resolution. With more and more data becoming available from

wind turbines and improved connectivity, research can be done on data with a higher resolution. Comparative studies of the

performance of condition monitoring using 10-minute SCADA data and data with a higher resolution (e.g. 1-minute, 10-865

second, 1-second) might be interesting. It will give the industry an idea of what the added value is of collecting SCADA data

with a higher resolution. Furthermore, it most likely will make it possible to detect events or failures that are short-lived. A

thorough comparative analysis of the techniques used for the analysis of the prediction errors would also be useful. Fourthly,

these analyses should preferably be done on data from real operational wind farms. Furthermore, it would help the research

on this topic a lot, if data from several operational wind farms could be made public. This would make it possible to use these870

datasets as standards, which would make it easier to compare the performance of different techniques.
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